Contents
Next:
1 Introduction
Up:
Intracranial Boundary Detection and
Previous:
Acknowledgments
Contents
Abstract
Acknowledgments
1 Introduction
1.1 Motivation
1.1.1 Multiple Sclerosis Lesion Segmentation
1.1.2 Automatic Registration
1.1.3 Image Compression
1.2 Goals
1.3 Research Methodology
1.4 Thesis Overview and Scope
2 MR Imaging and Data Characteristics
2.1 Overview
2.2 Basic Principles of MRI
2.3 RF Inhomogeneity
Tissue Intensity Profiles and Variances
2.4 Partial Volume Effect
2.5 Background Noise Characteristics
2.6 Brain Tissue Characteristics
2.7 Summary
3 Previous Work
3.1 Overview
3.2 Intracranial Boundary Detection
3.2.1 Automatic Thresholding
3.2.2 Region Growing and Boundary Detection
3.2.3 Statistical Segmentation
3.2.4 Active Contour Models
3.3 Radio Frequency Correction
3.3.1 ``Phantom'' Correction
3.3.2 Approximate ``Phantom'' Correction
3.3.3 Surface Fitting
3.3.4 Implicit Correction
3.3.5 Homomorphic Filtering
3.4 Summary
4 Nonlinear Anisotropic Diffusion Filtering
4.1 Overview
4.2 Definition
4.3 Discrete Implementation
4.3.1 1D Filtering
4.3.2 2D Filtering
4.3.3 3D Filtering
4.3.4 Stability Analysis
4.4 Experiments
4.4.1 Edge Tracking
4.4.2 Noise Reduction
4.4.3 Intracranial Boundary Detection
1D Filter
2D Filter
3D Filter
4.4.4 Performance
1D Filter
2D Filter
3D Filter
4.5 Summary
5 Active Contour Models (``Snakes'')
5.1 Overview
5.2 Energy Formulation
5.2.1 Internal Energy
Continuity Energy
Balloon Force
5.2.2 External Energy
Image Intensity Energy
Image Gradient Energy
5.2.3 Regularization
Continuity Energy
Balloon Energy
Intensity Energy
Gradient Energy
5.3 Experiments
5.3.1 Intracranial Boundary Detection
5.3.2 Contribution of Diffusion Filtering
5.3.3 Contribution of Gradient Direction
5.3.4 Contribution of Balloon Force
5.3.5 Effect of the Parameters
Continuity Energy Weighting (
)
Balloon Energy Weighting (
)
Intensity Energy Weighting (
)
Intensity Energy Sensitivity (
)
Gradient Energy Weighting (
)
Gradient Energy Sensitivity (
)
Maximum Iterations (
)
Number of Contour Point Moves (
)
Deformable Contour Size
Neighborhood Search Space Size (
)
5.3.6 Performance
5.4 Summary
6 Homomorphic Filtering
6.1 Overview
6.2 Spectral Domain Homomorphic Filtering
Poor Performance
Circular Convolution
6.3 Spatial Domain Homomorphic Filtering
6.4 Homomorphic Filtering using a Low Pass Filter
6.5 Experiments
Results
Performance
6.6 Summary
7 Intracranial Boundary Detection and RF Correction
7.1 Overview
7.2 Segment Head
7.2.1 Histogram Image Volume
7.2.2 Determine Background Threshold Level
7.2.3 Remove Noise
7.3 Generate Initial Brain Mask
7.3.1 Normalize Image Volume
7.3.2 Nonlinear Diffusion Filter
7.3.3 Automatic Threshold
7.3.4 Eliminate Misclassified and Non-brain Regions
7.4 Generate Final Brain Mask
7.4.1 Convert the Initial Mask to a Set of Contours
7.4.2 Compute the Image Gradient
7.4.3 Deform the Contours
7.5 Correct Intensity
7.5.1 Apply Brain Mask
7.5.2 Homomorphic Filter
7.5.3 Normalize Result
8 Results
8.1 Overview
8.2 MRI Data Set Descriptions
8.2.1 Data Set 1
8.2.2 Data Sets 2 and 3
8.2.3 Data Sets 4 and 5
8.3 Head Mask
8.3.1 Data Set 1
8.3.2 Data Set 2
8.3.3 Data Set 3
8.3.4 Data Set 4
8.3.5 Data Set 5
8.3.6 Performance
8.3.7 Discussion
8.4 Initial Brain Mask
8.4.1 Data Set 1
8.4.2 Data Set 2
8.4.3 Data Set 3
8.4.4 Data Set 4
8.4.5 Data Set 5
8.4.6 Performance
8.4.7 Discussion
8.5 Final Brain Mask
8.5.1 Data Set 1
8.5.2 Data Set 2
8.5.3 Data Set 3
8.5.4 Data Set 4
8.5.5 Data Set 5
8.5.6 Performance
8.5.7 Discussion
8.6 Intensity Correction
8.6.1 Data Set 1
8.6.2 Data Set 2
8.6.3 Data Set 3
8.6.4 Performance
8.6.5 Discussion
8.7 Summary
9 Summary
9.1 Review
9.2 Conclusions
9.2.1 Intracranial Boundary Detection
9.2.2 RF Correction
9.3 Future Work
9.3.1 Intracranial Boundary Detection
9.3.2 RF Correction
References
About this document ...
Next:
1 Introduction
Up:
Intracranial Boundary Detection and
Previous:
Acknowledgments
Blair Mackiewich
Sat Aug 19 16:59:04 PDT 1995