3.3 Radio Frequency Correction



next up previous contents
Next: 3.4 Summary Up: 3 Previous Work Previous: 3.2 Intracranial Boundary Detection

3.3 Radio Frequency Correction

As mentioned previously, a few methods for correcting intensity variation due to RF inhomogeneity in MR images have been proposed. All the methods model the unwanted intensity variation by an illumination gain:

where is the image produced by the MR scanner, is the desired MR image, and is the illumination gain due to RF inhomogeneity. The methods focus on estimating , then removing it. The methods are effective to varying degrees.

3.3.1 ``Phantom'' Correction

 

An MRI ``phantom'' provides the best known method for correcting MR images [5]. A phantom image is produced by an MR scanner when a structurally homogeneous object is scanned. The resulting image is a very good model of the RF inhomogeneity, . Therefore, corrected images are easily obtained. Several researchers use phantoms for RF correction [53][45][18][12]. Because RF correction is not required for human analysis of MR scans, phantoms are not always available and other correction methods must be pursued.

3.3.2 Approximate ``Phantom'' Correction

Axel et al. [5] suggest low pass filtering the MR image to approximate a phantom. Similar methods have been implemented by others [26][33][31][18][6][20]. Kamber et al. have shown that this method improves the quality of their MS lesion segmentations [26]. However, a quick glance at any signal or image processing text book (see [19], for example) will confirm that, in general:

where ``lpf()'' denotes the low pass filter operation. Thus, artifacts are injected into the ``corrected'' images.

3.3.3 Surface Fitting

Dawant et al. use an intensity correction method that models two components of RF inhomogeneity [14]:

They estimate within each MRI slice by fitting a surface to interactively defined points. Since all of these points must correspond to similar tissues, the user must have some anatomical knowledge, or have access to a segmented image. The inter-slice intensity variation, , is estimated by comparing the intensities of similar tissue voxels in adjacent slices. Although proven effective, this method of RF correction is unduly complicated.

3.3.4 Implicit Correction

Wells et al. [52][51] and Ettinger et al. [15] account for RF inhomogeneity in their iterative statistical segmentation algorithm. In each iteration, the Expectation Maximization (EM) algorithm first estimates an RF inhomogeneity ``gain'' for each voxel intensity, then guesses the tissue type based on the gain and the voxel intensity. This method offers us no reprieve since we are using an alternate segmentation method. Their segmentation method is more limited than ours because it does not take partial volumes into consideration.

3.3.5 Homomorphic Filtering

Many of the authors mentioned in the previous sections claim that their intensity correction methods are equivalent to, or comparable to, homomorphic filtering. The basis of homomorphic filtering is that can be ``easily'' filtered from the point-wise logarithm of the MR image, . Details of homomorphic filtering can be found in [19].

Lufkin et al. used a form of homomorphic filtering to compress the dynamic range of MR images for display [32]. Because their technique artificially increases the intensity of sharp image edges, such as the intracranial boundary, it can not be effectively used for our RF correction problem.



next up previous contents
Next: 3.4 Summary Up: 3 Previous Work Previous: 3.2 Intracranial Boundary Detection



Blair Mackiewich
Sat Aug 19 16:59:04 PDT 1995