CMPT459 Fall 2000 - Supplementary Readings
-
Notational convention:
A : paper distributed as supplementary reading,
B : suggested book to read,
D : paper downloadable, and
R : suggested further reading.
- Textbook.
J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.
- Chapter 1. Introduction
- [ R D ]
A. Silberschatz, M. Stonebraker, and J. D. Ullman.
Database research: achievements and opportunities into the 21st century.
SIGMOD Record, 25(1):52-63, March 1996.
- [ R ]
U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth.
Knowledge discovery and data mining: Towards a unifying framework.
Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD'96),
Portland, Oregon, pp. 82-88, Aug. 1996.
- [ A ] V. Ganti, J. Gehrke, R. Ramakrishnan. Mining very large databases.
COMPUTER, 32(8):38-45, 1999.
- [ A ] M. S. Chen, J. Han, and P. S. Yu.
Data mining: An overview from a database perspective.
IEEE Transactions on Knowledge and Data Engineering, 8(6):866-883, 1996.
- [ R D ] J. Han,
Data Mining Techniques. 1996 ACM/SIGMOD Int'l Conf. on Management
of Data (SIGMOD'96) (Conference tutorial notes), Montreal, Canada,
June 1996. http://db.cs.sfu.ca/sections/publication.html.
- [ B ] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy,
Advances in Knowledge Discovery and Data Mining. The MIT Press, 1996.
- [ B ] J. Han (ed.).
KDD-99 Tutorial Notes.
ACM Presss, August 1999.
- Chapter 2. Data Warehouse and OLAP Technology for Data Mining
- [ D ] S. Chaudhuri, and U. Dayal.
An overview of data warehousing and OLAP technology.
ACM SIGMOD Record, 26(1):65-74, 1997.
- [ R ] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao,
F. Pellow, and H. Pirahesh.
Data cube: A relational aggregation operator generalizing group-by,
cross-tab and sub-totals.
Data Mining and Knowledge Discovery, 1(1):29-54, 1997.
- [ R B ] E. Thomsen. OLAP Solutions: Building Multidimensional Information
Systems, John Wiley & Sons, 1997.
- [ R B ] R. Kimball. The Data Warehouse Toolkit, John Wiley & Sons, New York,
1996.
- [ R D ]
V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Implementing data cubes efficiently.
In SIGMOD'96, pp. 205-216, Montreal, Canada, June 1996.
- [ R D ]
S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton,
R. Ramakrishnan, and S. Sarawagi.
On the computation of multidimensional aggregates.
In Proc. 1996 Int. Conf. Very Large Data Bases (VLDB'96),
pp. 506-521, Bombay, India, Sept. 1996.
- [ D ]
Y. Zhao, P. M. Deshpande, and J. F. Naughton.
An array-based algorithm for simultaneous multidimensional aggregates.
In SIGMOD'97, pp. 159-170, Tucson, Arizona, May 1997.
- [ R ]
R. Agrawal, A. Gupta, and S. Sarawagi.
Modeling multidimensional databases.
In Proc. 1997 Int. Conf. Data Engineering (ICDE'97),
Birmingham, England, April 1997.
- [ D ] S. Sarawagi, R. Agrawal, and N. Megiddo.
Discovery-driven exploration of OLAP data cubes.
In Proc. Int. Conf. of Extending Database Technology (EDBT'98),
Valencia, Spain, pp. 168-182, March 1998.
- [ D ] K. A. Ross, D. Srivastava, and D. Chatziantoniou.
Complex aggregation at multiple granularities.
In EDBT'98, pp. 263-277, Valencia, Spain, March 1998.
- Chapter 3. Data Preprocessing
- Chapter 4. Primitives for Data Mining
- [ R D ] R. Meo, G. Psaila, and S. Ceri.
A new SQL-like operator for mining association rules.
In VLDB'96, pp. 122-133, Bombay, India, Sept. 1996.
- [ A ]
R. Agrawal, M. Mehta, J. Shafer, R. Srikant, A. Arning, and T. Bollinger.
The Quest data mining system.
In KDD'96, pp. 244-249, Portland, Oregon, August 1996.
- [ D ] J. Han. Towards on-line analytical mining in large databases.
ACM SIGMOD Record, 27:97-107, 1998.
- Chapter 5. Concept Description: Characterization and Comparison
- [ R ] R. S. Michalski. A theory and methodology of inductive learning.
Artificial Intelligence, 20:111-118, 1983.
- [ A ] J. Han, Y. Cai, and N. Cercone.
Data-driven discovery of quantitative rules in relational databases.
IEEE Trans. Knowledge and Data Engineering, 5:29-40, 1993.
- Chapter 6. Mining Association Rules in Large Databases
- [ D ]
R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
In VLDB'94, pp. 487-499, Santiago, Chile, Sept. 1994.
- [ D ]
J. Han and Y. Fu.
Discovery of multiple-level association rules from large databases.
In VLDB'95, pp. 420-431, Zürich, Switzerland, Sept. 1995.
- [ R D ]
R. Srikant and R. Agrawal.
Mining generalized association rules.
In VLDB'95, pp. 407-419, Zürich, Switzerland, Sept. 1995.
- [ D ] R. Srikant and R. Agrawal.
Mining quantitative association rules in large relational tables.
In SIGMOD'96, pp. 1-12, Montreal, Canada, June 1996.
- [ A ] B. Lent, A. Swami, and J. Widom. Clustering association rules.
In ICDE'97, pp. 220-231, Birmingham, England, April 1997.
- [ D ] S. Brin, R. Motwani, and C. Silverstein.
Beyond market basket: Generalizing association rules to correlations.
In SIGMOD'97, pp. 265-276, Tucson, Arizona, May 1997.
- [ A ] J. Han, L. V. S. Lakshmanan, and R. T. Ng.
Constraint-based, multidimensional data mining. COMPUTER, 32(8): 46-50, 1999.
- [ R D ] R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang.
Exploratory mining and pruning optimizations of constrained associations rules.
In SIGMOD'98, pp. 13-24 Seattle, Washington, June 1998.
- Chapter 7. Classification and Prediction
- [ R ] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.
- [ R B ] S. M. Weiss and N. Indurkhya. Predictive Data Mining. Morgan Kaufmann, 1997.
- [ R D ] J. Shafer, R. Agrawal, and M. Mehta.
SPRINT: A scalable parallel classifier for data mining.
In VLDB'96, pp. 544-555, Bombay, India, Sept. 1996.
- [ B ] T. M. Mitchell. Machine Learning. McGraw Hill, 1997.
- [ D ] J. Gehrke, R. Ramakrishnan, V. Ganti.
RainForest: A framework for fast decision tree construction of large datasets.
In VLDB'98, pp. 416-427, New York, NY, August 1998.
- [ R ] S. K. Murthy.
Automatic construction of decision trees from data: A multi-disciplinary survey.
Data Mining and Knowledge Discovery, 2(4): 345-389, 1998.
- Chapter 8. Cluster Analysis
- [ R D ] R. Ng and J. Han.
Efficient and effective clustering method for spatial data mining.
In VLDB'94, pp. 144-155, Santiago, Chile, Sept. 1994.
- [ R D ] T. Zhang, R. Ramakrishnan, and M. Livny.
BIRCH: An efficient data clustering method for very large databases.
In SIGMOD'96, pp. 103-114, Montreal, Canada, June 1996.
- [ R ] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu.
A density-based algorithm for discovering clusters in large spatial databases.
In KDD'96, pp. 226-231, Portland, Oregon, August 1996.
- [ R D ] S. Guha, R. Rastogi, and K. Shim.
CURE: An efficient clustering algorithm for large databases.
In SIGMOD'98, pp. 73-84, Seattle, Washington, June 1998.
- [ A ] S. Guha, R. Rastogi, and K. Shim.
ROCK: A robust clustering algorithm for categorical attributes.
In ICDE'99, pp. 512-521, Sydney, Australia, March 1999.
- [ R D ] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan.
Automatic subspace clustering of high dimensional data for data mining applications.
In SIGMOD'98, pp. 94-105, Seattle, Washington, June 1998.
- [ A ] M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander.
Optics: Ordering points to identify the clustering structure.
In SIGMOD'99, pp. 49-60, Philadelphia, PA, June 1999.
- [ B ] L. Kaufman and P. J. Rousseeuw.
Finding Groups in Data: an Introduction to Cluster Analysis.
John Wiley & Sons, 1990.
- [ D ] G. Sheikholeslami, S. Chatterjee, and A. Zhang.
WaveCluster: A multi-resolution clustering approach for very
large spatial databases.
In VLDB'98, pp. 428-439, New York, NY, August 1998.
- [ A ] G. Karypis, E.-H. Han, and V. Kumar.
CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling.
COMPUTER, 32(8): 68-75, 1999.
- Chapter 9. Mining Complex Types of Data
- [ R D ]
K. Koperski and J. Han.
Discovery of spatial association rules in geographic information databases.
In Proc. 4th Int'l Symp. on Large Spatial Databases (SSD'95),
pp. 47-66, Portland, Maine, Aug. 1995.
- [ A ] M. Ester, H.-P. Kriegel, and J. Sander.
Spatial data mining: A database approach.
In SSD'97, pp. 47-66, Berlin, Germany, July 1997.
- [ R D ] X. Zhou, D. Truffet, and J. Han.
Efficient polygon amalgamation methods for spatial OLAP and spatial data mining.
In SSD'99, pp. 167-187, Hong Kong, Aug. 1999.
- [ R ] R. Agrawal and R. Srikant. Mining sequential patterns.
In ICDE'95, pp. 3-14, Taipei, Taiwan, March 1995.
- [ D ] R. Agrawal, K.-I. Lin, H.S. Sawhney, and K. Shim.
Fast similarity search in the presence of noise, scaling, and translation
in time-series databases.
In VLDB'95, pp. 490-501, Zurich, Switzerland, Sept. 1995.
- [ R D ] R. Agrawal, G. Psaila, E. L. Wimmers, and M. Zait.
Querying shapes of histories.
In VLDB'95, pp. 502-514, Zürich, Switzerland, Sept. 1995.
- [ R D ]
J. Han, G. Dong, and Y. Yin.
Efficient mining of partial periodic patterns in time series database.
In ICDE'99, pp. 106-115, Sydney, Australia, April 1999.
- [ A ]
S. Chakrabarti, B. E. Dom, S. R. Kumar, P. Raghavan, S. Rajagopalan,
A. Tomkins, D. Gibson, and J. Kleinberg.
Mining the Web's link structure. COMPUTER, 32(8):60-67, 1999.
- [ R ] J. Kleinberg and A. Tomkins.
Application of linear algebra in information retrieval and hypertext analysis.
In PODS'99, pp. 185-193, Philadelphia, PA, May 1999.
- [ R D ] K. Wang, S. Zhou and S. C. Liew.
Building hierarchical classifiers using class proximity.
In VLDB99, Edinburgh, UK, Sept. 1999.
- Chapter 10. Data Mining Applications and Trends in Data Mining
- [ R ] J. Han, Y. Huang, N. Cercone, and Y. Fu.
Intelligent query answering by knowledge discovery techniques.
IEEE Trans. Knowledge and Data Engineering, 8:373-390, 1996.
- [ R ] C. Clifton and D. Marks.
Security and Privacy Implications of Data Mining.
In Proc. 1996 SIGMOD'96 Workshop on Research Issues on Data Mining
and Knowledge Discovery (DMKD'96), Montreal, Canada, pp. 15-20, June 1996.
Page maintained by: Jian
Pei
Last update: September 1, 2000