The New Jersey Data Reduction Report

Daniel Barbara William DuMouchel Christos Faloutsos Peter J. Haas
Joseph M. Hellerstein Yannis loannidis H. V. Jagadish Theodore Johnson
Raymond Ng Viswanath Poosala Kenneth A. Ross Kenneth C. Sevcik*

1 Introduction

There is often a need to get quick approximate answers from large databases. This leads to a need for
data reduction. There are many different approaches to this problem, some of them not traditionally
posed as solutions to a data reduction problem. In this paper we describe and evaluate several popular
techniques for data reduction.

Historically, the primary need for data reduction has been internal to a database system, in a
cost-based query optimizer. The need is for the query optimizer to estimate the cost of alternative
query plans cheaply — clearly the effort required to do so must be much smaller than the effort of
actually executing the query, and yet the cost of executing any query plan depends strongly upon the
numerosity of specified attribute values and the selectivities of specified predicates. To address these
query optimizer needs, many databases keep summary statistics. Sampling techniques have also been
proposed.

More recently, there has been an explosion of interest in the analysis of data in warehouses. Data
warehouses can be extremely large, yet obtaining answers quickly is important. Often, it is quite
acceptable to sacrifice the accuracy of the answer for speed. Particularly in the early, more exploratory,
stages of data analysis, interactive response times are critical, while tolerance for approximation errors
is quite high. Data reduction, thus, becomes a pressing need.

The query optimizer need for estimates was completely internal to the database, and the quality
of the estimates used was observable by a user only very indirectly, in terms of the performance of the
database system. On the other hand, the more recent data analysis needs for approximate answers
directly expose the user to the estimates obtained. Therefore the nature and quality of these estimates
becomes more salient. Moreover, to the extent that these estimates are being used as part of a data
analysis task, there may often be “by-products” such as, say, a hierarchical clustering of data, that are
of value to the analyst in and of themselves.

Copyright 1997 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this ma-
terial for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

*Email addresses in order: dbarbara@isse.gmu.edu, dumouchel@research.att.com, christos@cs.cmu.edu, pe-
terh@almaden.ibm.com, jmh@cs.berkeley.edu, yannis@di.uoa.gr, jagQ@research.att.com, johnsont@research.att.com,
rng@cs.ubc.ca, poosala@research.bell-labs.com, kar@cs.columbia.edu, sevcik@cs.toronto.edu.

1.1 The Techniques

For many in the database community, particularly with the recent prominence of data cubes, data
reduction is closely associated with aggregation. Further, since histograms aggregate information in
each bucket, and since histograms have been popularly used to record data statistics for query opti-
mizers, one may naturally be inclined to think only of histograms when data reduction is suggested. A
significant point of this report is to show that this is not warranted. While histograms have many good
properties, and may indeed be the data reduction technique of choice in many circumstances, there is
a wealth of alternative techniques that are worth considering, and many of these are described below.

Following standard statistical nomenclature, we divide data reduction techniques into two broad
classes: parametric techniques that assume a model for the data, and then estimate the parameters of
this model, and non-parametric techniques that do not assume any model for the data. The former
are likely, when well-chosen, to result in substantial data reduction. However, choosing an appropriate
model is an art, and a parametric technique may not always do well with any given data set. In
this paper we consider singular value decomposition and discrete wavelet transform as transform-based
parametric techniques. We also consider linear regression models and log-linear models as direct, rather
than transform-based, parametric techniques.

A histogram is a non-parametric representation of data. So is a cluster-based reduction of data,
where each data item is identified by means of its cluster representative. Perhaps a more surprising
inclusion is the notion of an index tree as a data reduction device. The central observation here is
that a typical index partitions the data into buckets recursively, and stores some information regarding
the data contained in the bucket. With minimal augmentation, it becomes possible to answer queries
approximately based upon an examination of only the top levels of an index tree. If these top levels are
cached in memory, as is typically the case, then one can view these top levels of the tree as a reduced
form of data eminently suited for approximate query answering.

Finally, one way of reducing data is to bypass the data representation problem addressed in all
the techniques above. Instead, one could just sample the given data set to produce a smaller reduced
data set, and then operate on the reduced data set to obtain quick but approximate answers. This
technique, even though not directly supported by any database system to our knowledge, is widely
used by data analysts who develop and test hypotheses on small data samples first and only then do
a major run on the full data set.

1.2 The Data Set

The appropriateness of any data reduction technique is centrally dependent upon the nature of the
data set to be reduced. Based upon the foregoing discussion, it should be evident that there is a wide
variety of data sets, used for a wide variety of analysis applications. Moreover, multi-dimensionality is
a given, in most cases.

To enable at least a qualitative discussion regarding the suitability of different techniques, we
devised a taxonomy of data set types, described below.

1.2.1 Distance Only

For some data sets, all we have is a distance metric between data points — without any embedding
of the data points into any multi-dimensional space. We call these distance only data sets. Many
data reduction (and indexing) techniques do not apply to such data sets. However, an embedding in a
multi-dimensional space can often be obtained through the use of multi-dimensional scaling, or other
similar techniques.

1.2.2 Multi-dimensional Space

The bulk of our concern is with data sets where individual data points can be embedded into an appro-
priate multi-dimensional attribute space. We consider various characteristics, in two main categories:
intrinsic characteristics of each individual attribute, such as whether it is ordered or nominal, discrete
or continuous; and extrinsic characteristics, such as sparseness and skew, which may apply to individual
attributes or may be used to characterize the data set as a whole. We also consider dimensionality
of the attribute space, which is a characteristic of the data set as a whole rather than that of any
individual attribute.

1.2.3 Intrinsic Characteristics

We seem to divide the world strongly between ordered and unordered (or nominal) attributes. Un-
ordered attributes can always be ordered by defining a hash label and sorting on this label. So the
question is not as much whether the attribute is ordered by definition as whether it is ordered in spirit,
that is, with useful semantics to the order. For example, a list of (customer) names sorted alphabeti-
cally is ordered by definition. However, for many reasonable applications, there is unlikely to be any
pattern based on occurrence of name in the dictionary, and it is not very likely that queries will specify
ranges of names. Therefore, for the purposes of data representation, such an attribute is effectively
unordered. Similar arguments hold for account numbers, sorted numerically.

Ordered Attributes have values drawn from a finite or an infinite interval. The points in the data
set may take discrete or continuous values. None of these details matter as far as data reduction
techniques are concerned. There is a difference in language (and formal notation) between discrete
and continuous domains. For convenience, we will use only the language of the discrete domain in
what follows. The notation and language for a continuous attribute follows analogously, and is not
given explicitly in this document. Some attributes, such as rank, may be ordered but have no metric
associated with the order. We do not consider such attributes in this report.

Unordered Attributes can have values that are drawn from a flat or a hierarchical name space.
The name space is said to be flat if there is no particular structure to the range of attribute values. A
name space is said to be hierarchical if values within a sub-category are in some sense “closer” than
values within the next higher level category, and so on, as in a file system hierarchy. Item stock unit
numbers, library book classification numbers, and classification systems in general, all have this sort
of property.

1.2.4 Extrinsic Attributes

Sparse Data Set A data set is said to be sparse if most points in the attribute space defined have
no data points corresponding. Conversely, a data set is dense if most coordinate points in the attribute
space have at least one data point defined. At least for ordered and hierarchical attributes, one can
aggregate “ranges” of attribute values to change a sparse space into a less sparse (or more dense) data
space. While such manipulations may be common in practice, we work with the data set as given to
the data representation/reduction process, paying no heed to any pre-processing steps that may have
been involved.

Skewed Data Set A data set is said to be skewed if the number of data points per attribute point
has a high variance across the entire data space, but has a substantially lower variance in appropriately

defined “local” regions. Note that this definition of skew applies only to ordered attributes. Note also
that an over-fine disaggregation of attribute value will make it hard to observe skew — aggregation
into appropriate size ranges is required. Finally, note that this definition is for “skew in frequency”.
There is a different notion of skew — “skew in value”, where the attribute value for a small number of
data points differs substantially from the attribute value for the bulk of the population. Skew in value
implies skew in frequency over the attribute value range. However, the converse is not necessarily true.

1.2.5 Dimensionality

By default, we assume all data sets to be low dimensional, that is, represented in ten or fewer dimen-
sions. A data set with more dimensions (attributes) is said to be high dimensional. There are many
tricks that can be used to reduce the dimensionality of a given data set. We look at the data set after
any such techniques have been applied.

1.3 Metrics

In this paper we focus purely on data reduction — the value of a hierarchical clustering of data, for
example, to a data analyst or data miner, is not considered, except in so far as it results in less
data storage and quick approximate answers to queries. Thus, the primary metric applied to a data
reduction technique is how accurate it can be in response to queries as a function of the storage space
consumed or as a function of the time taken to respond. In most cases, the time to respond is closely
related to the storage consumed.

There are secondary metrics as well. Data often changes, and we may care how easy it is to
maintain the data reduced storage structure incrementally in the face of additions and deletions. Some
data reduction techniques may cause a complete recomputation, and this is clearly not desirable.

Finally, progressive resolution refinement may sometimes be useful. We may want to produce an
approximate answer very rapidly, and then progressively improve the approximation with time. A few
data reduction techniques may permit this sort of refinement.

1.4 Outline of Paper and Acknowledgment of Contribution

The paper is organized into sections, one per technique. In each section, the technique is first de-
scribed and then its applicability to the different types of data sets is explored. Finally, our summary
conclusions are presented in Section 10.

Section 2 on the Singular Value Decomposition, and Section 3 on the discrete Wavelet transform
were primarily written by Christos Faloutsos. Section 4 on Linear Regression was primarily written by
Daniel Barbara. Section 5 on Log-Linear Models was primarily written by Bill DuMouchel. Section 6
on Histograms was primarily written by Vishy Poosala and Yannis Ioannidis. Section 7 on Clustering
was primarily written by Raymond Ng. Section 8 on Index Trees was primarily written by Ken Sevcik
and Joe Hellerstein. Section 9 was primarily written by Peter Haas. The introduction and conclusion
sections were primarily written by H. V. Jagadish. The paper as a whole was edited, smoothed, and
formatted by Joe Hellerstein and Ken Ross.

2 Singular Value Decomposition (SVD)

The first proposed method is based on the so-called Singular Value Decomposition (SVD) of the data
matrix. SVD is a popular and powerful operation, and it has been used in numerous applications,
such as statistical analysis (as the driving engine behind the Principal Component Analysis [Jol86]),

text retrieval under the name of Latent Semantic Indexing [Dum94], pattern recognition and dimen-
sionality reduction as the Karhunen-Loeve (KL) transform [DH73], and face recognition [TP91]. SVD
is particularly useful in settings that involve least-squares optimization such as in linear regression,
dimensionality reduction, and matrix approximation. See [Str80] or [PTVF96] for more details. The
latter citation also gives ‘C’ code.

Example 1: Table 1 provides an example of the kind of matrix that is typical in warehousing ap-
plications, where rows are customers, columns are days, and the values are the dollar amounts spent
on phone calls each day. Alternatively, rows could correspond to patients, with hourly recordings of
their temperature for the past 48 hours, or companies, with stock closing prices over the past 365 days.
Such a setting also appears in other contexts. In information retrieval systems rows could be text
documents, columns could be vocabulary terms, with the (i,) entry showing the importance of the
j-th term for the i-th document.

day We Th Fr Sa Su
customer 7/10/96 7/11/96 7/12/96 7/13/96 7/14/96
ABC Inc. 1 1 1 0 0
DEF Ltd. 2 2 2 0 0
GHI Inc. 1 1 1 0 0
KLM Co. 5 5 5 0 0
Smith 0 0 0 2 2
Johnson 0 0 0 3 3
Thompson 0 0 0 1 1

Table 1: Example of a (customer-day) matrix

To make our discussion more concrete, we will refer to rows as “customers” and to columns as
“days”. The mathematical machinery is applicable to many different applications, such as those men-
tioned in the preceding paragraph, including ones where there is no notion of a customer or a day, as
long as the problem involves a set of vectors or, equivalently, an N x M matrix X.

2.1 Description

2.1.1 Preliminaries

We shall use the following notational conventions from linear algebra:
e Bold capital letters denote matrices, e.g., U, X.
e Bold lower-case letters denote column vectors, e.g., u, v.

e The “x” symbol indicates matrix multiplication.

The SVD is based on the concepts of eigenvalues and eigenvectors:
Definition 2.1: For a square n X n matrix S, the unit vector u and the scalar A that satisfy
Sxu=Axu (1)

are called an eigenvector and its corresponding eigenvalue of the matrix S.

2.1.2 Intuition behind SVD

Before we give the definition of SVD, it is best that we try to give the intuition behind it. Consider a set
of points as before, represented as an N X M matrix X. In our running example, such a matrix would
represent for N customers and M days, the dollar amount spent by each customer on each day. It
would be desirable to group similar customers together, as well as similar days together. This is exactly
what SVD does, automatically! Each group corresponds to a “pattern” or a “principal component”,
i.e., an important grouping of days that is a “good feature” to use, because it has a high discriminatory
power and is orthogonal to the other such groups.

Figure 1 illustrates the rotation of axis that SVD implies: suppose that we have M =2 dimensions;
then our customers are 2-d points, as in Figure 1. The corresponding 2 directions (z' and y') that SVD
suggests are shown. The meaning is that, if we are allowed only k=1, the best direction to project on
is the direction of z’; the next best is 1/, etc.See Example 2, for more details and explanations.

Figure 1: Illustration of the rotation of axis that SVD implies: the “best” axis to project is z'.

2.1.3 Definition of SVD
The formal definition for SVD follows:

Theorem 2.1 (SVD): Given an N x M real matrix X we can express it as
X=UxAxV! (2)

where U is a column-orthonormal N X r matrix, r is the rank of the matrix X, A is a diagonal r X r
matrix and V is a column-orthonormal M X r matrix.

Proof: See [PTVF96, p. 59]. O
Recall that a matrix U is called column-orthonormal if its columns u; are mutually orthogonal unit
vectors. Equivalently: U? x U = I, where I is the identity matrix. Also, recall that the rank of a
matrix is the highest number of linearly independent rows (or columns).
Eq. 2 equivalently states that a matrix X can be brought in the following form, the so-called spectral
decomposition [Jol86, p. 11]:

X = Aug X v 4 doug x v+ ...+ Nu, x VE (3)

where u;, and v; are column vectors of the U and V matrices respectively, and); the diagonal
elements of the matrix A. Without loss of generality, we can assume that the eigenvalues \; are sorted
in decreasing order. Returning to Figure 1, v is exactly the unit vector of the best z’ axis; vo is the
unit vector of the second best axis, v/, and so on.

Geometrically, A gives the strengths of the dimensions (as eigenvalues), V gives the respective
directions, and U x A gives the locations along these dimensions where the points occur.

In addition to axis rotation, another intuitive way of thinking about SVD is that it tries to identify
“rectangular blobs” of related values in the X matrix. This is best illustrated through an example.

Example 2: for the above “toy” matrix of Table 1, we have two “blobs” of values, while the rest of
the entries are zero. This is confirmed by the SVD, which identifies them both:

[0.18 0
0.36 0
x — 8'33 g l9.64 0 1 y l 0.58 0.58 058 0 0 @
0 0.53 0 5.29 0 0 0 0.71 0.71
0 0.80
| 0 0.27 |
or, in “spectral decomposition” form:
[0.18]| [0]
0.36 0
0.18 0
X = 9.64x | 0.90 | x[0.58, 0.58, 0.58, 0, 0] + 5.29x | 0 | x[0, 0, 0, 0.71, 0.71]
0 0.53
0 0.80
0] | 0.27 |

Notice that the rank of the X matrix is r=2: there are effectively 2 types of customers: weekday
(business) and weekend (residential) callers, and two patterns (i.e., groups-of-days): the “weekday
pattern” (that is, the group {‘We’, ‘Th’, ‘Fr’'}), and the “weekend pattern” (that is, the group {‘Sa’,
‘Su’}). The intuitive meaning of the U and V matrices is as follows:

Observation 2.1: U can be thought of as the customer-to-pattern similarity matrix,
Observation 2.2: Symmetrically, V is the day-to-pattern similarity matrix.

For example, v; 2 = 0 means that the first day (‘We’) has zero similarity with the 2nd pattern (the
“weekend pattern”).

Observation 2.3: The column vectors v; (j = 1,2,...) of the V are unit vectors that correspond to
the directions for optimal projection of the given set of points

For example, in Figure 1, vi and vy are the unit vectors on the directions =’ and 3, respectively.

Observation 2.4: The i-th row vector of U x A gives the coordinates of the i-th data vector (“cus-
tomer”), when it is projected in the new space dictated by SVD.

For more details and additional properties of the SVD, see [KJF97] or [Fal96].

2.2 Distance-Only Data

SVD can be applied to any attribute-types, including un-ordered ones, like ‘car-type’ or ‘customer-
name’, as we saw earlier. It will naturally group together similar ‘customer-names’ into customer
groups with similar behavior.

2.3 Multi-Dimensional Data

As described, SVD is tailored to 2-d matrices. Higher dimensionalities can be handled by reducing
the problem to 2 dimensions. For example, for the DataCube (‘product’, ‘customer’, ‘date’)(‘dollars-
spent’) we could create two attributes, such as ‘product’ and (‘customer’ x ‘date’). Direct extension
to 3-dimensional SVD has been studied, under the name of 3-mode PCA [KD80].

2.3.1 Ordered and Unordered Attributes

SVD can handle them all, as mentioned under the 'Distance-Only’ subsection above.

2.3.2 Sparse Data

SVD can handle sparse data. For example, in the Latent Semantic Indexing method (LSI), SVD is
used on very sparse document-term matrices. [FD92]. Fast sparse-matrix SVD algorithms have been
recently developed [Ber92].

2.3.3 Skewed Data

SVD can handle skewed data. In fact, the more skewed the data values, the fewer eigenvalues that
SVD will need to achieve a small error.

2.3.4 High-Dimensional Data

As mentioned, SVD is geared towards 2-dimensional matrices.

3 Wavelets

3.1 Description

The Discrete Wavelet Transform (DWT) is a signal processing technique that is well suited for data
reduction. A k-d signal is a k-dimensional matrix (or, technically, tensor, or DataCube, in our termi-
nology). For example, a 1-d signal is a vector (like a time-sequence); a 2-d signal is a matrix (like a
grayscale image) etc.. The DWT is closely related to the popular Discrete Fourier Transform (DFT),
with the difference that it typically achieves better lossy compression: for the same number of coeffi-
cients retained, DWT shows smaller error, on real signals. Thus, given a collection of time sequences,
we can encode each one of them with its few strongest coefficients, suffering little error. Similarly, given
a k-d DataCube, we can use the k-d DWT and keep a small fraction of the strongest coefficients, to
derive a compressed approximation of it.

We focus first on 1-dimensional signals; the DWT can be applied to signals of any dimensionality,
by applying it first on the first dimension, then the second, etc. [PTVF96].

Contrary to the DF'T, there are more than one Wavelet transforms. The simplest to describe and
code is the Haar transform. Ignoring temporarily some proportionality constants, the Haar transform
operates on the whole signal (e.g., time-sequence), giving the sum and the difference of the left and
right part; then it focuses recursively on each of the halves, and computes the difference of their two
sub-halves, etc., until it reaches an interval with one only sample in it.

It is instructive to consider the equivalent, bottom-up procedure. The input signal £ must have a
length n that is a power of 2, by appropriate zero-padding if necessary.

10

1. Level 0: take the first two sample points zy and z1, and compute their sum s and difference
do,0; do the same for all the other pairs of points (z2;, £2;41). Thus, so; = C * (x2; + T2;41) and
do; = C * (x2; — T2i41), where C is a proportionality constant, to be discussed soon. The values
50, (0 <1 <n/2) constitute a ‘smooth’ (=low frequency) version of the signal, while the values
do; represent the high-frequency content of it.

2. Level 1: consider the ‘smooth’ sg; values; repeat the previous step for them, giving the even-
smoother version of the signal s;; and the smooth-differences d; ; (0 <i <n/4)

3. ... and so on recursively, until we have a smooth signal of length 2.

The Haar transform of the original signal Z is the collection of all the ‘difference’ values d;; at every
level [and offset ¢, plus the smooth component sz, o at the last level L (L = logy(n) — 1).

Following the literature, the appropriate value for the constant C' is 1/4/2, because it makes the
transformation matrix orthonormal (eg., see Eq. 8). An orthonormal matrix is a matrix which has
columns that are unit vectors and that are mutually orthogonal. Adapting the notation (eg., from
[Cra94] [VM]), the Haar transform is defined as follows:

dii =1/V2 (s1-12i — si-12i+1) 1=0,...,L, i=0,...,n/2" —1 (5)

with
s10=1/V2 (51 12i +s1-12i41) 1=0,...,L, i=0,...,n/2" -1 (6)

with the initial condition:
S_14 = T4 (7)

I

For example, the 4-point Haar transform is as follows. Envisioning the input signal Z as a column
vector, and its Haar transform @ as another column vector (& = [s1,0, d1,0,do,0, do,l]t - the superscript
t denoting transposition), the Haar transform is equivalent to a matrix multiplication, as follows:

81,0 1/2 1/2 1/2 1/2 To
dl,O o 1/2 1/2 —1/2 —1/2 % I (8)
doo | — | 1/V2 —1/vV2 0 0 T2

do,1 0 0 1/V2 —1/V2

8

3

The above procedure is shared among all the wavelet transforms: we start at the lowest level,
applying two functions at successive windows of the signal: the first function does some smoothing,
like a weighted average, while the second function does a weighted differencing; the smooth (and,
notice, shorter: halved in length) version of the signal is recursively fed back into the loop, until the
resulting signal is too short.

There are numerous wavelet transforms [PTVF96], some popular ones being the so-called Daubechies-
4 and Daubechies-6 transforms [Dau92].

3.1.1 Discussion

The computational complexity of the above transforms is O(n), as can be verified from Eq. 5-7. In
addition to their computational speed, there is a fascinating relationship between wavelets, multireso-
lution methods (like quadtrees or the pyramid structures in machine vision), and fractals. The reason
is that wavelets, like quadtrees, will need only a few non-zero coefficients for regions of the image (or
the time sequence) that are smooth (i.e., homogeneous), while they will spend more effort on the ‘high
activity’ areas. It is believed [Fie93] that the mammalian retina consists of neurons which are tuned

11

each to a different wavelet. Naturally occurring scenes tend to excite only few of the neurons, implying
that a wavelet transform will achieve excellent compression for such images. Similarly, the human ear
seems to use a wavelet transform to analyze a sound, at least in the very first stage [Dau92, p. 6]
[WS93].

In conclusion, the Discrete Wavelet Transform (DWT) achieves even better energy concentration
than the DFT and Discrete Cosine (DCT) transforms, for natural signals [PTVF96, p. 604]. It uses
multiresolution analysis, and it models well the early signal processing operations of the human eye
and human ear.

3.2 Distance-Only Data

In this case, DWT can only be applied after the data have been mapped to an k-dimensional space,
with, e.g., Multidimensional scaling, or FastMap [FL95].

3.3 Multi-Dimensional Data

As mentioned, the DWT can be applied to an k-dimensional hyper-cube. In fact, it has been very
successful in image compression [PTVF96], where a grayscale image is treated as a 2-d matrix.

3.3.1 Ordered and Unordered Attributes

DWT will give good results for ordered attributes, when successive values tend to be correlated (which
is typically the case in real datasets). For unordered attributes (like “car-type”), DWT can still be
applied, but it won’t give the good compression we would like.

3.3.2 Sparse Data

DWT will work fine on sparse data - it will just have zero coefficients in the deserted regions of the
address space.

3.3.3 Skewed Data

DWT should work well on skewed data because it is adaptable: it will have many non-zero coefficients
for the portion of the address space that has large values, and near-zero coefficients for the rest.
3.3.4 High-Dimensional Data

As mentioned several times before, the definition of DWT can be trivially extended to arbitrary dimen-
sionalities. However, although linear on the number of cells of the k-d matrix, notice that the number
of cells itself grows exponentially with the number of dimensions k. This is the only point that may
create efficiency problems. However, most of the competitors will run into similar problems, too (and,
probably, sooner than DWT).

4 Regression

Regression is a popular technique that attempts to model data as a function of the values of a multi-
dimensional vector. The simplest form of regression is that of Linear Regression [WW85], in which a
variable Y is modeled as a linear function of another variable X, using Equation 9.

12

Y =a+pX (9)

The parameters a and (3 specify the line and are to be estimated by using the data at hand. To do
this, one should apply the least squares criterion to the known values Y7, Ys, ..., X1, Xo,.... The least
squares formulas for 9 yield the values of 8 and a as shown in Equations 10 and 11 respectively.

X -X)(Y -Y)

P==vx_xp

(10)

a=Y - X (11)

where X and Y are the average values for the data points X1, Xs, ... and Y7, Y3, ... respectively.

The extension of Linear Regression, called Multiple Regression, takes account of more than one
independent variable X, allowing us to model Y as a linear function of a multidimensional vector. An
example of a Multiple Regression model based on two dimensions is shown in Equation 12

Y =bg+ b X1 +b:Xo (12)

Again, by,b; and by must be estimated using the values at hand. The general procedure to do least
square fitting for Multiple Regression can be found in [PTVF96).

It is also possible to use nonlinear functions to perform data regression. Equation 13 shows an
example of a nonlinear regression between variables Y and X.

Y =bg + b1 X + b X? 4 b3 X3 (13)

To estimate the parameters of (13), we could simply define the new variables:

X, = X
Xy = X?
X; = X°
(14)
By the substitutions shown in Equation 14, Equation 13 becomes a linear model:
Y = b() + b1 X1 + b Xo + b3X3 (15)

that can be solved with the standard least square techniques. The method of redefining variables to
make the model linear is quite general. For instance, terms like reciprocals (£ and cosines (cos(%))
can be easily redefined as linear terms. This technique does not work, however, if the nonlinearity is
present in the parameters to be estimated.

A notorious case of nonlinearity that can be easily removed by taking logarithms is shown in

Equation 16:

Y = boX? (16)

The following substitutions

13

Yi = log(Y)

a = log(ho)
B = b
X1 = log(X)
(17)
transform Equation 16 into the linear model shown in Equation 18.
Yi =a+ 68X, (18)

Other models are intractably nonlinear and cannot be subject to any transformation that renders
them linear (e.g., the sum of exponential terms). For these models, it is sometimes possible to obtain
least-square estimates by performing a lot of calculations on more complex formulae.

Let us describe now in which cases regression can be used to compress or characterize data.

4.1 Distance-Only Data

Clearly regression is useless with this kind of data, since the data is not embedded in any multi-
dimensional space.

4.2 Multi-Dimensional Data

1. Ordered: This is the class of data for which regression applies more naturally. A simple example
would be the case of modeling the amount of sales in a store as a function of the date.

2. Unordered (Flat/Hierarchical) Although unordered data can always be nominally ordered and
thus subjected to regression, the model obtained by doing this may not be very meaningful.
Alternatively, one could do the regression in using the range of a function whose domain is
formed by the attribute values. An example of such a function is one to compute marginal
values. Consider a dataset that maps “amount of sales” to the variables “store location” and
“date”. Clearly, the variable “store location” is not ordered. However, it is possible to create a
variable X whose domain is formed by the cumulative sales for each store location, and use X as
an ordered variable for the regression model.

4.2.1 Sparse Data

The sparseness of the data does not affect the applicability of regression. It is sometimes advisable to
perform the regression only for the multidimensional points that are non-zero, to make the model fit
the non-zero data better. For example, stores with amount of sales = 0 may be exceptional and fit a
regression model poorly.

4.2.2 Skewed Data

Skewness is actually a good feature for regression. Skewed data is more likely to fit better in a model,
given that the proper model is found.

14

4.2.3 High-Dimensional Data

High-dimensionality forces the usage of a multiregression model. The price of using a multiregression
model of a high degree is performance. Given a model, the dataset that needs to be modeled might not
fit in memory, forcing the estimation of the regression parameters to perform several passes over the
data, thus slowing down the process. To alleviate this problem, one might choose to model portions of
the dataset, by fixing the values of one or several of the dimensions in each portion. Each of the models
will have a smaller degree and the corresponding datasets will be also smaller, perhaps small enough
to fit in main memory, making the estimation a faster process. By doing this, however, one increases
the number of estimations that need to be performed (one for each portion of the original dataset).
Therefore there exists a tradeoff between the size of the portions modeled and the performance of the
overall modeling process. If the portions of the dataset are too small, each individual modeling process
runs fast, but there may be too many of them to be performed, thus offsetting the gains obtained by
the individual runs. On the other hand, if the portions are too big, each individual modeling effort will
run slowly, but there will be few models to be run. The tradeoff depends heavily on how sparse the
data is: if only a few multidimensional cells are non-zero, then even a high degree portion of the data
set (one with only a few of the dimensions fixed) may be small enough to fit in memory.

In the rest of this section we discuss three important aspects of the use of regression as a data
reduction technique.

e Accuracy: Accuracy, of course, depends on how well the chosen model fits the real data. In
practice, however, even with simple models such as linear regression (and multiregression) one
can obtain a reasonable approximation to the dataset.

One way of getting better accuracy progressively is by reducing the influence that outliers have
in the model by giving them less weight in the least square regression. This method is known
as biweight regression or robust regression; an example of this is the use of weighted least
squares [WW85].

The first thing to do is determine whether a data value is an outlier. That is usually done by
measuring the difference between the real value and its estimation, as in Equation 19.

d=Y -Y (19)
It is customary to normalize d, dividing it by some overall measure of spread S, as shown in
Equation 20. An example of S is the interquartile range of all deviations. (I.e., the difference
between the 25th percentile and the 75th percentile of deviations).

Y -V
7 = 2
35 (20)

With Z, we can compute the biweights, shown in Equation 21

10 otherwise

Equation 21 effectively makes the weight of an outlier equal to 0. These weights are now used in
the estimation formulas shown in Equations 22 and 23.

_YwX - X)(Y -Y)
S w(X — X)2

p (22)

15

a=Y —bX (23)

where the averages Y and X are found by using Equations 24 and 25.

- —Zzwj (24)
X = Zzwf (25)

The new estimation of « and (8 supports a more robust model. We can improve on it by re-
calculating the deviations using Equation 20 and estimating new values of « and 8 using new
weights. That should give an even better line. This process can be repeated until no substantial
improvement can be obtained.

e Progressive resolution refinement: A way of obtaining progressively refined answers is to store
the outliers of the model. A first cut of the answer consists of the estimated values for all
the points requested. That answer can be polished by retrieving the real values of the outliers
progressively replacing the estimated values for those data points. A technique similar to this
has been successfully used in [BS97].

e Incremental maintenance: As new data gets incorporated in the dataset, the relevant model(s)
need to be updated to reflect the effect of this data. The updating of the model can be achieved by
using techniques similar to those described in [CR94] to update polynomial models for selectivity
estimation. The techniques use a method called recursive least-square-error [You84] to avoid a
lot of expensive recomputation.

5 Log-Linear Models

Log-linear modeling is a methodology for approximating discrete multidimensional probability distri-
butions. The multi-way table of joint probabilities is approximated by a product of lower-order tables.
For example, suppose the four categorical attributes A, B, C, and D can respectively assume the values
a=1,..,.Ksb=1,...,Kg;c=1,...K¢; and d = 1,..., Kp. Then, if p(a,b,c,d) = Prob(A = a,B =
b,C = ¢,D = d), one might assume a model of the form:

p(a, b, c,d) = agpBacVadObed (26)

For given matrices «, 3,y and three-dimensional array . The simplest log-linear model is that of inde-
pendence, which in this example becomes P(a, b, c,d) = a,0y7Y.04. The presence of multiple subscripts
in the same array allows for greater dependency within the distributions of the associated attributes.
The name “log-linear” is used for these models in the statistics literature because log p is assumed to be
a linear combination of unknown parameters. The phrase “multiplicative model” is more common in
the computer science literature. Such models have been discussed and used since the 1940s or earlier,
but especially since the 1970s, when computer algorithms to fit them became widely available. Many
text-book treatments of log-linear modeling are available, for example [Agr90] and [BFHT75]. Sample
references from the Computer Science literature are [KK69], [Pea88], and [Mal91].

Log-linear models use only categorical variables — continuous variables must be discretized first,
and even then the modeling will not make use of the ordinal nature of the categories. The purpose of

16

using this technique can be either data compression (since the several small arrays will take up less
storage than the full multidimensional array) or data smoothing (since estimates of the small arrays
will be less subject to sampling variation than elements of the full array), assuming that the full array
was computed as observed proportions from a sample.

Using log-linear models involves two steps: choosing a general form (how many factors to use and
what sets of attributes are associated with each factor) and then estimating the numerical values of
the array elements for each factor (parameter estimation). An important result due to [Bir63] is that,
given the results of step one, the parameter estimation problem only requires as input the marginal
proportions corresponding to the combinations of attributes making up the factor arrays. By marginal
proportion we mean the sum of the values of elements in the datacube corresponding to appropriate
specified attributes, with all other attributes projected out. In the example of Equation 26, the pa-
rameters «, 3,7,d can all be estimated using just the marginals p(a,b, +,+),p(a, +, ¢, +),p(a, +,+, d)
and p(+,b,c,d), where “+” denotes summation over the appropriate range. In statistical terms, the
indicated marginals are sufficient statistics for the parameters, and no more information is needed to
estimate the parameters efficiently, assuming that the model of Equation 26 holds. In addition, the
computed approximation will fit the input marginal distributions exactly. Another application of the
methodology occurs when only certain marginal tables are available, and it is required to extend the
probability distribution to the complete array, as in [Mal89].

The estimation of the parameter arrays can sometimes, for certain assumptions of factor combina-
tions called decomposable models or graphical models, be quite simple, involving just simple arithmetic
products and ratios of the given marginal probabilities. In general, however, an iterative method will
be required to obtain the maximum likelihood (maximum entropy) estimates for scaling factors to be
applied to the marginals. The most common such method is iterative proportional scaling, generally
attributed to [DS40], which is guaranteed to converge to a unique solution whenever the marginal
arrays have all positive elements and are consistent with each other. One drawback of the standard
iterative proportional scaling algorithm is that it requires storage and computation over the complete
estimated probability array, which could be quite large. For example, if there are 20 attributes, the
complete array could have 10'0 cells, depending on the number of values each variable takes on. Even
if the data base represents millions of entities, the vast majority of the cells will have zero count. In
such situations, there is obviously a great advantage to choosing a decomposable model. Among oth-
ers [Mal91] discusses how to search the set of decomposable models for a good fitting model. As in
all such model choice problems, one must consider the usual tradeoff between parsimony and variance
reduction on the one hand, and adequacy of representation on the other.

On the whole, log-linear modeling is a powerful and flexible technique that scales up well to many
dimensions and has many favorable and well understood statistical properties. The user can specify
that arbitrary marginal distributions be fit exactly, and be assured that all estimated probabilities
remain within the unit interval. At the cost of discretizing continuous variables, it can be applied to
any data type.

5.1 Distance-Only Data

Assuming that the distances can be rounded to a discrete number of values, log-linear models might
be useful for data reduction, depending on the complexity of the attributes for labeling endpoints.

5.2 Ordered Data

There is no problem with using ordered categories with log-linear models, and some extensions of these
models have been proposed to explicitly use the ordinal information, as in [Agr90] (Chapter 8).

17

5.3 Unordered Data

This type of data is the primary application for log-linear models.

5.4 Sparse Data

The log-linear methodology does not require dense data. However, as mentioned above, a very high-
dimensional sample will usually have many cells with zero count in its multiway frequency table. Thus
one may be limited for computational reasons to decomposable log-linear models. This may limit the
adequacy of the representation of a sparse data set, depending on the complexity of the distributional
dependencies.

5.5 Skewed Data

Since the user of log-linear models is free to choose discrete values to match the distribution of observed
values, skewness of data values is not a problem. Skewness of frequencies (presence of some very large
counts) is also not necessarily a problem, although such data may mean that simple log-linear models
fit poorly.

5.6 High-Dimensional Data

As mentioned above, log-linear models scale up fairly well to ten or so dimensions for arbitrary models.
Above that number, it may be necessary to restrict consideration to decomposable models, which have
fewer and weaker dependency relations.

5.7 Accuracy

The ability to choose more complex log-linear models allows the user to tune the accuracy of the fit
as desired. There is also a well-developed statistical theory providing measures of goodness of fit of
models, hypothesis tests comparing models, and confidence limits for the estimated parameters.

5.8 Progressive Resolution Refinement

Once a log-linear model has been constructed, computing the answer to any point query is rather easy,
involving simply the multiplication of a few numbers, so progressive resolution refinement is not of
much value.

The method of iterative proportional scaling allows the result of fitting one log-linear model to be
used as a starting point when fitting a more complex log-linear model - that is, a model inputting
higher-dimensional marginals than the first model. This provides good control over the resolution of
the model.

5.9 Incremental Maintenance

As new data are collected, the values of the marginal proportions used as input to the model fitting will
change. As in the previous item, the fit from the previously computed data cube can be used to begin
the iterative proportional scaling and hasten convergence compared to default initial values. However,
in practice, the savings in computation will probably not be large in either situation, perhaps in the
range of 10-50%.

18

6 Histograms

Histograms approximate the data in one or more attributes of a relation by grouping attribute values
into “buckets” (subsets) and approximating true attribute values and their frequencies in the data
based on summary statistics maintained in each bucket. For most real-world databases, there exist
histograms that produce low-error estimates while occupying reasonably small space (of the order of
500 bytes in a catalog)!. Hence, they are the most commonly used form of statistics in practice (e.g.,
they are used in DB2, Informix, Ingres, Oracle, Microsoft SQL Server, Sybase, and Teradata). They
are used mainly for selectivity estimation purposes within a query optimizer. They have also been used
in query execution (e.g., for parallel-join load balancing [P196]) and there is work in progress on using
them for approximate query answering.

6.1 Definitions

In what follows, histograms are defined in the context of a single attribute. The extensions to multiple
attributes can be found elsewhere [P197].

The domain D of an attribute X in relation R is the set of all possible values of X and the (finite)
value set V (C D) is the set of values of X that are actually present in R. Let V = {v;: 1<i< D},
where v; < v; when ¢ < j. The spread s; of v; is defined as s; = vi41 —v;, for 1 <4 < D. (We
take sp = v1 and sp = 1.) In this section we only consider numerical attributes. A commonly used
technique for constructing histograms on non-numerical attributes (such as string fields, etc.) is to use
a function that converts these data types into floating point numbers before constructing a histogram?.
The frequency f; of v; is the number of tuples ¢ € R with {.X = v;. Finally, the area a; of v; is equal
to v; X fi. The data distribution of X (in R) is the set of pairs T = { (v1, f1), (ve, f2),---,(vD, fD) }-
Typically, several real-life attributes tend to have skewed or highly non-uniform data distributions.
The main characteristics of such distributions are unequal frequencies and/or unequal spreads.

A histogram on attribute X is constructed by partitioning the data distribution 7 into disjoint
subsets called buckets and approximating the frequencies and values in each buckets in some common
fashion. Typically, the frequencies are approximated by their average. The value domain is most often
approximated by the entire set of values in the bucket’s range (the continuous value assumption). A
much more accurate approximation, however, and the one that has been used in recent research is one
assuming that all the values in a bucket are separated by the same amount from their next neighbor (the
uniform spread assumption). In all cases, histograms can be viewed as approximate data distributions
of the underlying attributes and used in any estimation problem requiring those distributions. These
definitions are illustrated in the following example.

Example 1: Consider a relation with schema EMP(ename,salary). The following table shows how
each parameter defined above is instantiated for this relation.

|| Quantity || Set of values ||
Attribute Value {v;} || 10 | 60 | 70 | 120 | 140 | 190
Frequency {f;} 110 | 90 | 20 | 30 | 70 | 80

| Spread {s;} [50 J10]50[20 [50 |1 |

Figure 2 plots the data distribution, with attribute values on the x-axis and frequencies on the
y-axis. Figure 3 corresponds to the approximate data distribution arising from a histogram using three
buckets and making the uniform spread assumption.

!Nevertheless, one can construct data distributions that cannot be approximated well using a small number of buckets.
2For example, this technique is used in IBM’s DB2-6000 system.

19

150 | 150 |

F F
Bkt 1
R R
E il E il
Q 100 Q 100
U U
E E
N N Bkt 3
C C Bkt 2 -
| I e — .
E so| E so|
S S
FSPREADJ
10 60 70 120 140 190 10 60 90 120 140 190
ATTRIBUTE VALUES ATTRIBUTE VALUES

Figure 2: Data Distribution Figure 3: Approximated distribution

One of the key factors affecting the accuracy of the histograms is the partitioning rule employed in
determining the buckets. In order to illustrate this, two well-known classes of histograms, the equi-
width and equi-depth histograms are described next. Both these histograms group contiguous ranges of
attribute values into buckets and assume that all attribute values within the range corresponding to a
given bucket occur with equal probability. Theis difference lies in the exact choice of bucket boundaries
chosen. In an equi-width histogram, the widths of all buckets’ ranges are the same; in an equi-depth
(or equi-height) histogram, the total number of tuples having the attribute values associated with each
bucket is the same.

In [PIHS96], a set of key properties that characterize histograms have been identified, forming the
basis for a taxonomy of histograms. These properties essentially determine the effectiveness histograms
in approximating data distributions and are the following: the sort parameter, which determine the
order in which the attribute-value/frequency pairs of the data distribution are grouped in the histogram;
the histogram class, which determines the sizes of buckets allowed in the histogram (e.g., are singleton
buckets mandatory?); the source parameter, which represents the quantity that the histogram should
try to capture accurately; and the partition constraint, which is the mathematical rule that determines
where exactly the histogram boundaries will fall based on the source parameter. Both the sort and
the source parameters are functions of the attribute-value/frequency pairs in the data distribution.
Examples include the attribute value itself, the frequency itself, and the area. The partition constraints
include the following.

e Equi-sum: In an equi-sum histogram (with S buckets), the sum of the source values in each
bucket is approximately the same and equal to 1/ times the sum of all the source values in the
histogram.

o V-Optimal: The V-Optimal histogram on an attribute is the histogram with the least variance
among all the histograms using the same number of buckets. Here, the variance of a histogram
is the weighted sum of its source parameters values in each bucket, with the weights being equal
to the number of values in that bucket.

e MazDiff: In a MazDiff histogram, there is a bucket boundary between two source parameter
values that are adjacent (in sort parameter order) if the difference between these values is one of
the 8 — 1 largest such differences.

o (Compressed: In a Compressed histogram, the n highest source values are stored separately in n

20

singleton buckets; the rest are partitioned as in an equi-sum histogram. Often n is the number
of source values that (a) exceed the sum of all source values divided by the number of buckets
and (b) can be accommodated in a histogram with 8 buckets.

o Spline-based: In a spline-based histogram, the maximum absolute difference between a source
value and the average of the source values in its bucket is minimized.

We refer to a histogram with ¢, u, and s as the partition constraint, source parameter, and sort
parameter as the c(s,u) histogram. Figure 4 provides an overview of the new combinations that were
introduced in [PTHS96] together with the traditional combinations. Efficient sampling-based techniques
exist for computing all classes of histograms and are given in [PTHS96).

SORT SOURCE PARAMETER
PARAMETER SPREAD (S) | FREQUENCY (F) AREA (A) CUM. FREQ (C)
EQUI-SUM EQUI-SUM
e A el R o
VALUE (V) } V-OPTIMAL } } V-OPTIMAL } } V-OPTIMAL |
| MAX-DIFF | | | MAX-DIFF | | SPLINE BASED
| COMPRESSED!| | | COMPRESSED! |~~~ ~~~~~~
I, J I, J
| V-OPTIMAL |

FREQUENCY (F) \

F———————

AREA (A) \

Figure 4: Augmented Histogram Taxonomy.

Most of the work on histograms is in the context of evaluating their accuracy in estimating the result
sizes of queries containing selections [Koo80, PSC84] and joins [IC93, I0a93, IP95a]. Multi-dimensional
histograms have also been studied in detail [MD88, P197]. By building histograms on multiple attributes
together, these techniques are able to capture dependencies between those attributes. Incremental
maintenance techniques for histograms and samples have also been investigated [GMP97], as has the
use of histograms in parallel-join load balancing [PI96]. Finally, there are several sources where one may
find extensive discussions of histogram-based estimation techniques [Koo80, IP95b, MCS88, Poo97].

In the following sections, the effectiveness of histograms in approximating different kinds of data is
studied.

6.2 Distance-Only Data

The current histogram techniques cannot approximate such data, because they rely on information
about the placement of data in a multi-dimensional space. A possible solution would be to identify
new choices for the parameters of the taxonomy that are based on distance and a new value domain
approximation technique that does not rely on data placement.

6.3 Multi-Dimensional Data

1. Ordered: Histograms are well suited for approximating ordered data (discrete or continuous
domains, finite or infinite intervals). Most of the research so far on the accuracy of histograms
has focussed on ordered data and has shown that the most accurate classes of histograms for
ordered data in fact preserve the order in grouping values into buckets.

21

2. Unordered: Histograms that do not use the attribute value as the sort parameter assume that
there is no inherent ordering among the attribute values. Hence, these histograms can also be
used to approximate unordered flat data. On the other hand, all techniques for approximating
the value domain within a bucket rely on an inherent order among those values. As a result, a
histogram on unordered data needs to keep track of all values falling within each bucket, which
is clearly impractical for large value domains. In summary, it is unclear how histograms can be
used to efficiently approximate unordered data. This discussion applies to hierarchical unordered
data as well, with an important exception. Often the hierarchy structure can be used to group
values into buckets (e.g., bucket per each week), in which case the values inside a bucket (often)
need not be stored (e.g., days of the week) and the above problem disappears.

6.3.1 Sparse Data

Histograms have been shown in earlier work to be highly effective in approximating sparse and dense
data [PTHS96]. Specifically, histograms making the uniform spread assumption work for both kinds of
data while the older continuous value assumption works well only for dense data.

6.3.2 Skewed Data

Histograms have been shown to be most effective in approximating highly skewed data (frequency
and value domain skews) as well as nearly uniform data. For high skews, there are a few significant
attribute values (or frequencies) that can be captured accurately by the histograms using an appropriate
choice for its sort and source parameters. For nearly uniform data, most histograms are likely to be
highly accurate because the uniformity assumptions within the bucket will not result in high errors.
Surprisingly, histograms perform relatively the poorest on data that is moderately skewed. For example,
when several values have high but dissimilar frequencies, grouping them into a bucket will incur high
errors because of the dissimilarities, and hence one needs more buckets to be accurate in this case.

6.3.3 High-Dimensional Data

Research has shown that multi-dimensional histograms are highly effective in approximating data in
multiple (scalar) attributes of a relation. In all these studies, however, the number of attributes has
been less than 5. More work needs to be done to effectively use histograms for very high dimensions.
The same applies to approximating multi-dimensional data within a single attribute as well (e.g.,

polygons).

6.4 Aspects of histogram usage

e Accuracy: Although histograms are used in many systems, many of the histograms proposed in
earlier works are not always effective or practical. For example, equi-depth histograms [Koo80,
MD88, PSC84] work well for range queries only when the data distribution has low skew, while
V-Optimal(F,F) histograms [IC93, Toa93, IP95a] have only been proven optimal for equality joins
and selections when a list of all the attribute values in each bucket is maintained. Earlier work
has shown that the most accurate and practical histograms belong to the V-Optimal(V,A) and
MazDiff(V,A) classes [Poo97]. Briefly, these histograms group contiguous ranges of values into
buckets and avoid grouping attribute values with highly different areas. These histograms have
been shown to be highly accurate for both join and selection queries [Poo97].

e Progressive resolution refinement: A histogram on flat (non-hierarchical) data can not be used
to provide different levels of resolution. On the other hand, histograms built on hierarchical data

22

can be used at various levels of the hierarchy (if the buckets were also constructed based on the
hierarchy) to provide progressive resolution refinement.

e Incremental maintenance: The common approach taken by all commercial systems is to peri-
odically recompute the histogram from the updated data. This approach leads to inaccurate
estimates from outdated histograms and can be quite expensive when used on a database with
very large number of relations. Recent work has shown that some classes of histograms can be
maintained efficiently and accurately using incremental techniques [GMP97]. These techniques
make use of a (possibly disk-resident) backing sample, which is also incrementally maintained as
a uniformly random representative of the underlying data. The histograms are kept in main-
memory and are updated frequently to preserve their accuracy while the sample is accessed very
infrequently - basically when the histogram becomes too inaccurate.

6.5 End-biased histograms (Outliers)

End-biased histograms are a special case of histograms that have only singleton buckets - i.e., each
bucket has a single attribute-value/frequency pair. As a result, the value and its frequency are accu-
rately captured. Obviously, due to limited space, not all values in the relation can be stored in this
manner. Even these limited number of buckets, however, often provide highly accurate estimates -
either directly or by supplementing other statistics. Hence, these outlier isolation techniques can be
employed alongside any of the data reduction techniques described in this report.

There has been lot of work on storing and using outlier information in databases. Some of the
research on histogram-based join result size estimation has shown the benefits of storing values with
extreme frequencies. The class of end-biased histograms contains a few high-frequency values and a
few low-frequency values in singleton buckets and the rest in a single large bucket [I0a93].2. These
histograms are less expensive to construct than the general class of histograms, occupy less space, and
often offer equally high accuracies for join queries. A few commercial systems also employ singleton
buckets for selectivity estimation purposes. For example, DB2 stores a small number of attribute
values with the highest frequencies in the relation. For a highly skewed relation with a few very high
frequencies, this information by itself may be enough to provide accurate estimates. When enhanced
with a usual histogram on the remaining data, the combined set of statistics has been shown to be
highly accurate. These combined statistics are in fact also used in DB2 and are known as Compressed
histograms [PTHS96].

In the following sections, the effectiveness of using singleton buckets is discussed. In practice, these
statistics are almost always used in conjunction with other forms of statistics, which eliminates most
of the deficiencies below.

6.5.1 Distance-Only, Ordered, Unordered Data

End-biased histograms are not affected by these properties of the data because they store each value
individually in a singleton bucket and do not assume anything about the relation between various data
values.

6.5.2 Sparse Data

End-biased histograms are very well suited for sparse data because there are fewer values that need
to be captured. On the other hand, they are incapable of approximating dense data because of the

3Storing lowest frequency values in singleton buckets is useful if the distribution has several high frequencies that are
equal and a few much smaller frequencies. But, often, one only stores high frequencies in singleton buckets.

23

limited number of (singleton) buckets.

6.5.3 Skewed Data

End-biased histograms are most effective in approximating highly skewed data (both frequency and
value domain skews). The reason is that skewed data often contains very few values that cause the skew
(e.g., values with extreme frequencies) which can be captured accurately using the singleton buckets.
These histograms, however, fail to capture lower to medium skews because of the large number of
significant values to capture.

6.5.4 High-Dimensional Data

End-biased histograms function the same in capturing significant values in data of any dimensionality.

6.6 Aspects of end-biased histogram usage

e Accuracy: Although singleton buckets are used in some commercial systems, their accuracy has
not been studied much in the literature. It has been shown that end-biased histograms are quite
accurate in estimating join results sizes, particularly when the data is skewed [IP95a]. On the
other hand, since they do not approximate the entire data distribution, they can not be used
effectively for estimating the result sizes of selection predicates. There are two ways to increase
the accuracy of end-biased histograms: adding more singleton buckets, and carefully choosing the
values to be preserved in singleton buckets (which need not always be the high frequency values).

e Progressive resolution refinement: End-biased histograms directly provide the finest partitioning
of data (into individual values) and hence can not provide further resolution.

e Incremental maintenance: Gibbons and Matias have designed efficient techniques with theoretical
bounds on accuracy to incrementally maintain the highest frequency values in a database relation
[GM96].

7 Clustering Techniques

In the past 30 years, cluster analysis has been widely studied in statistics. The objective is to identify
clusters embedded in the data. Intuitively, a cluster is a collection of data objects that are “similar” to
one another, thus legitimizing the treatment of all the objects collectively as one group. Similarity is
expressed in terms of a distance function, which is typically, though not necessarily, a metric. In other
words, for each pair of data objects p1,p2, the distance D(p1,ps2) is known. In addition to a distance
function, there is a separate “quality” function that measures the “goodness” of a cluster. One example
of a quality function is the centroid distance, i.e., the average over {D(p1,c)|p1 € Cl}, where c is the
centroid of all the objects in cluster C'I. Another example is the diameter, i.e., the maximum over
{D(p1,p2)|p1,p2 € Cl}.

Even though similarity between objects and goodness of clusters can be defined, it is much harder
to define “similar enough” and “good enough”. The fundamental question here is: how many natural
clusters there are in the given dataset. The answer to this question are typically highly subjective and
remains an open issue in cluster analysis [KR90]. Existing clustering algorithms deal with this issue in
one of two ways.

24

7.1 Overview of Existing Algorithms
7.1.1 Statistical Methods

The first way is to avoid answering the question entirely by giving a complete clustering of the dataset.
That is, if there are n objects in the dataset, a clustering algorithm of this type specifies how to group
the objects in 1, 2, ..., n clusters. Clustering algorithms of this type are called hierarchical methods.
They are either agglomerative (i.e., “bottom-up” in computer science jargon), or divisive (i.e., “top-
down”). Given n objects to be clustered, an agglomerative method begins with n clusters (i.e., all
objects are apart). In each step, based on the distance and quality functions, it chooses two clusters to
merge. This process continues until it puts all objects into one group. Conversely, a divisive method
begins by putting all objects in one cluster. In each step, it picks a cluster to split into two. This process
continues until it produces n clusters. While hierarchical methods have been successfully applied to
many biological applications (e.g., for producing taxonomies of animals and plants, and classification
of diseases [KR90]), they are well known to suffer from the weakness that they can never undo what
was done previously. Once an agglomerative method merges two objects, these objects are always in
one cluster. And once a divisive method separates two objects, these objects are never re-grouped
into the same cluster. More importantly, for large datasets, producing all n clusters is excessive and
computationally prohibitive.

The second way to answer the question of how many natural clusters there are in the dataset
is to ask the human user — not the clustering algorithm — to determine that number and to feed
the number as input to the algorithm. Given the number, denoted as k, a partitioning clustering
method tries to find the best k partitions of the n objects, i.e., each object is assigned to exactly one
group. * However, the task of finding the best k partitions amounts to solving a nonconvex discrete
optimization problem. Exhaustive enumeration of all partitions appears to be the only way to find
the global optimal solution. Thus, the development of partitioning methods focuses on heuristics that
try to strike as good a balance as possible between efficiency and finding solutions close to the global
optimum. The k-means and k-medoids algorithms are well-known examples of partitioning methods.
They have found many successful application areas, including social studies (e.g., for classification of
statistical findings), manufacturing (e.g., garment) and chemical analysis.

7.1.2 Databases Methods

In recent years, some database researchers have re-visited the clustering problem. For them, there is the
additional focus that the datasets may be a lot larger than the typical sizes used for statistical clustering
(i.e., hundreds of thousands, if not millions, versus only hundreds or thousands). Furthermore, because
the data may be mainly disk-resident, there is also the emphasis of minimizing I/O cost.

Based on randomized search, CLARANS can be viewed as an extension to the k-medoids algo-
rithm [NH94, KR90]. It is highly tunable, depending on how much CPU time the user can afford.
Focusing techniques based on spatial access methods (e.g., R* trees, Voronoi diagrams) are later devel-
oped to reduce the I/O cost required by CLARANS [EKX95]. By employing a balanced tree structure
called CF tree, BIRCH makes explicit and takes full advantage of the amount of available buffering
space [ZRL96]. A single scan of the dataset gives a basic clustering, and additional scans can be used
to improve the quality further. Relying on the parameters of the size of the neighborhood and the
minimum number of data points in the neighborhood, DBSCAN connects regions of sufficiently high
densities into clusters [EKXS96). As such, it does a better job finding elongated clusters than most of
the algorithms mentioned above. It uses an R* tree to achieve good performance. Finally, STING is

“There are a few methods that tolerate a limited degree of overlap between clusters. See [KR90] for more details.

25

a hierarchical cell structure that stores statistical information (e.g., density) about the objects in the
cells [WYM97]. Thus, with only one scan of the dataset, clustering can be achieved by using the stored
information but without recourse to the individual objects.

7.1.3 Machine Learning Methods

There are a few clustering methods developed in the machine learning community. They are mostly
probability-based approaches [Fis87]. And typically, they make the assumption that the probability
distributions on different attributes are independent of each other. In practice, this is often too strong
an assumption, because correlation may exist between attributes. In fact, as far as data reduction is
concerned, correlation is exactly what is being searched for.

7.2 Distance-Only Data

As discussed above, all clustering methods require the specification of a distance function. Distance-
only datasets, thus, pose no additional problem to clustering methods. Many clustering methods (e.g.,
k-medoids, CLARANS) can even handle non-metric distance functions.

In our evaluation of all data reduction methods, we measure (i) the accuracy and space/time
tradeoff, and check whether (ii) progressive resolution refinement and (iii) incremental maintenance are
supported. As far as clustering methods are concerned, the first criterion is the key. Once clustering
methods are considered to be applicable and provide good accuracy, the other two criteria of progressive
resolution refinement and incremental maintenance are automatic. For example, CLARANS, BIRCH
and DBSCAN all provide various parameters for tuning and incremental maintenance. Thus, in the
sequel, we only focus on the first criterion.

7.3 Multi-Dimensional Data
7.3.1 Ordered and Unordered Attributes

1. Ordered:
For ordered datasets, clustering algorithms should work well. This is because the underlying
order provides a natural distance function for the clustering algorithms to use. For instance,
if age is the ordered attribute under consideration, then the distance between A and B is the
difference between the ages of A and B.

2. Unordered (Flat/Hierarchical):
For flat datasets, clustering algorithms do not work. This is because clustering algorithms require
the existence of a distance function. If equality is the only meaningful comparison operation for
the dataset, there is not enough discrimination of the objects for the algorithms to reason with.
Consequently, there is only one trivial clustering structure: the equivalent classes of the objects,
i.e., objects are in the same cluster if and only if they are equal to each other.

For hierarchical datasets, the answer to the question of whether clustering algorithms work well is
not as clear-cut as in the ORDERED and FLAT cases. On the one hand, the underlying domain
is unordered and provides no distance function for the clustering algorithms. On the other hand,
the structure of the hierarchy can be used to provide candidate distance functions. For example,
the distance between two objects p; and po can be defined by the path length between p; and
anc, and the path length between py and anc, where anc is the smallest common ancestor of py
and po, and an ancestor is the smallest if it is farthest away from the root. For some applications,

26

candidate distance functions of this nature provide reasonable clustering quality; for others, they
do not.

7.3.2 Sparse Data

For sparse datasets, clustering algorithms should work well. The sparsity is translated to discrimination
between objects. Clustering algorithms should be the most effective when the sparsity is localized
corresponding to distinct clustering structures. In this case, clustering algorithms that can be tuned
are the most preferred because the great discrimination between some objects renders a coarse-grained,
but efficient, analysis to be sufficient.

For dense datasets, the embedded clustering structures are less distinct and crisp. Clustering
algorithms still work, but their effectiveness is weakened. One of the reasons is that most clustering
algorithms produce groups that do not overlap. For DENSE datasets, this requirement is restrictive.
Algorithms that allow overlap perform better under this circumstance.

7.3.3 Skewed Data

For datasets that are skewed in the value domain, clustering algorithms should work very well. This
situation is very similar to the localized sparsity scenario discussed above. As for datasets that are
skewed in the frequency domain, clustering algorithms are not affected. This is because all data objects
having the same attribute value behave identically as far as clustering is concerned. Thus, it is sufficient
to pick one representative per attribute value to participate in the clustering.

7.3.4 High-Dimensional Data

For high dimensional datasets, the situation for clustering algorithms is mixed. First, from an effec-
tiveness point of view, the algorithms are not affected by the dimensionality — so long as the distance
function has already captured the relationships that may exist between the dimensions. From an ef-
ficieny standpoint, in theory, a larger number of dimensions only implies a larger cost in computing
the distance function. Thus, clustering algorithms should scale linearly with the number of dimen-
sions. However, in practice, the situation is not as rosy, particularly for those algorithms that rely on
various kinds of indexing to facilitate processing. For instance, for algorithms relying on trees (e.g.,
BIRCH [ZRL96] and DBSCAN [EKXS96]) the O(logn) factor degrades to O(n) as the dimensional-
ity increases. Similarly, for algorithms using a grid structure (e.g., STING [WYMO97]), processing is
exponential with respect to the number of dimensions.

8 Index Trees

8.1 Descriptions and References

Index trees of various types are widely used to organize and access large data sets. Typically they
are used to speed up selection queries on one-dimensional data sets ordered on a single key attribute.
B+-trees are the most common and significant form of index tree for disk-resident one-dimensional
data [BM72, Com79]. For data sets of higher dimension (i.e., those organized and accessed on the
basis of values of two or more attributes in combination), a variety of other types of disk-based index
trees have been developed and used. The most common example is the R-tree [Gut84] and its vari-
ants: the R*-tree [BKSS90] and R+-tree [SRF87]. Other multidimensional search trees include quad-
trees [FB74], k-D-B-trees [Rob81], hB-trees [L.S90], and TV-trees [LJF94]. Multidimensional data can
also be transformed into unidimensional data using a space-filling curve [Jag90]; after transformation, a

27

Internal Nodes (directory)
Leaf Nodes (linked list)

Figure 5: Sketch of a database index tree.

B+-tree can be used to index the resulting unidimensional data. A survey of multidimensional indexes
is given by Gaede and Gunther [GG97].

8.2 A Generalized Picture of Index Trees

The canonical rough picture of a database index tree appears in Figure 5. It is typically a balanced
tree, with high fanout. The internal nodes are used as a directory. The leaf nodes contain pointers to
the actual data, and are stored as a linked list to allow for partial or complete scanning.

Within each internal node is a series of keys and pointers. In the typical application of index trees,
the keys are used to guide tree traversal for finding all data items satisfying a selection predicate gq.
Traversal starts at the root node, and for each pointer on the node, if the associated key is found to be
consistent with ¢ — i.e., the key does not rule out the possibility that data stored below the pointer
may match ¢ — then traversal continues in the subtree below the pointer. This is repeated recursively
down all consistent subtrees until all the matching data are found.

In B+-trees, queries are in the form of range predicates (e.g., “find all i such that ¢; < i < ¢”),
and keys logically delineate a range in which the data below a pointer is contained. If the query range
and a pointer’s key range overlap, then the two are consistent and the pointer is traversed. In R-trees,
queries are in the form of region predicates (e.g., “find all 4 such that (z1,y1,z2,y2) overlaps i”), and
keys delineate the bounding box in which the data below a pointer is contained. If the query region
and the pointer’s key box overlap, the pointer is traversed.

Note that in the above description the only restriction on a key is that it must logically describe
the set of data stored below it, so that the consistency check does not miss any valid data. In B4-
trees and R-trees, keys are essentially “containment” predicates: they describe a contiguous region in
which all the data below a pointer are contained. Containment predicates are not the only possible
key constructs, however. For example, the key “purple, cardinality = 516" is perfectly acceptable,
indicating that there are 516 data items below the pointer, all of which are all purple. In general, keys
on a node may “overlap”, i.e., two keys on the same node may hold simultaneously for some data item
in the data set.

In essence, a database index tree is a hierarchy of clusterings of a dataset, in which each cluster
has a label that holds for the data contained in the cluster. The grouping of data into clusters may be
controlled by a variety of tree insertion and node splitting algorithms. The main variations among index
trees are the way they represent keys, and the algorithms for insertion and node splitting. Although
index trees have typically been used for accelerating selection queries, their structure is amenable for
use in data reduction, as we shall see below.

28

/ 731/ 1623/ 1942 | 2978 \ 3258 \9643\

22 R R T

Figure 6: The root of a B+-tree

8.3 Data vs. Space Partitioning

Multidimensional index trees recursively subdivide a underlying k-dimensional space. The root node
corresponds to the entire space. Each internal node corresponds to a portion of the space of its parent,
and that portion is further subdivided among the children of the node. The leaf nodes consist of pointers
to individual records (or the records themselves) that lie in the region of k-space corresponding to the
node.

Data partitioning index trees divide the space based on the specific records or groups of records
that are loaded or inserted into the tree. Examples of data partitioning trees include R-trees, TV-trees
and hB-trees. Space partitioning trees divide the space along predetermined lines of division that are
independent of the particular records represented in the trees (e.g., recursive binary splitting of the
attribute ranges in each dimension). Examples of space partitioning trees include the various versions
of quad trees, and k-D-B-trees. For both data and space partitioning trees, the splitting is propagated
to a sufficiently deep level in each part of the tree that the leaf nodes can hold all the data or pointers
to data assigned to them. Most space-parititoning trees are not balanced, which renders them less
useful for disk-based storage; typically they are mapped to another representation when saved to disk.

Though there are many variations of index trees for both one-dimensional and multi-dimensional
data, they all have shared properties. The Generalized Search Tree (GiST) [HNP95] is a template index
tree that provides a common basis for describing and easily implementing a variety of index trees. In our
discussion here, we focus on properties that tend to be shared by many if not all index tree variants.
For one-dimensional data, we assume B-+-trees as the prototypical index tree; for multidimensional
data, we choose R-trees (or the very similar R*-trees).

8.4 Using Index Trees for Representing Aggregate or Summary Data

Index trees are used primarily for their benefits in organizing and supporting access to data. However, it
is also possible to make direct use of the nodes of index trees to obtain and exploit aggregate or summary
information about a data set; this has been observed by numerous researchers and implemented in some
database products [ACD+88, Ant93b, Aok97]. The information stored in an index node can be used
for such purposes as providing approximate answers to queries or making choices in query optimization.

As an example, consider looking only at the upper levels of an existing hierarchical index tree.
They reveal a great deal of distributional information about the data. Typically, assuming branching
factors found in practice in modern database systems, the root index node alone provides information
equivalent to an approximately equi-depth histogram of one hundred to two hundred buckets. To see
this consider the small example pictured in Figure 6. Assume that a B+ tree contains 10,000 records
with keys in the range 1 to 99,999. Assuming that the root node is as shown in Figure 6 we can
conclude that the data in the tree can be approximated by an equi-depth histogram of seven buckets,
each containing 10000/7 items, split at the values 1, 731, 1623, 1942, 2978, 3258, 9643.

More and more detailed aggregate and summary information can be obtained by examining lower
and lower levels of the index tree, which involves reading more and more index tree nodes. In essence,

29

an index tree can be thought of as a hierarchical histogram. This is complicated somewhat if keys are
allowed to overlap as they are in R-trees; this becomes analogous to a hierarchical histogram in which
the “buckets” overlap.

A great deal of distribution information can be obtained from an index tree without traversing it
very deeply. During query processing, it is common for blocks corresponding to the uppermost nodes
in the tree to be consistently found in main memory, while those at lower levels usually require one
block read from disk each for access.

Note that much summary and aggregate information is available from index trees with no modifi-
cation beyond how they are used to organize and access data. However, some minor extensions that
involve only modest overhead can increase the accuracy and precision of the summary and aggregate
information that can be extracted from the index tree structure:

e One can store a count with each pointer that represents the precise number of data records in all
the descendents of the node pointed to. Trees with such counts are said to be ranked [Knu73].
Ranked trees with non-overlapping keys truly are hierarchical histograms, and allow for arbitrary
refinement of buckets by traversing pointers. The advantages of ranking do not come without
cost. The space requirement for the counters associated with each pointer can reduce tree fanout
by a significant factor, and maintenance of counters on a complete path from root to leaf is
required on each record insertion or deletion. The overhead of handling insertion and deletion
can be ameliorated by using pseudo-ranking [Ant93b], which allows counters to diverge a certain
amount from the accurate values.

e While counters are the most natural “decoration” that one can add to index entries, there is
no reason one can not store additional statistics in the entries, though additional statistics can
consume space and further reduce the tree fanout. Generalized Search Trees [HNP95] support
arbitrary keys of this nature, and Aoki’s extensions to them [Aok97] extend the idea of psuedo-
ranking to support extensible “divergence control” for arbitrary statistics.

8.5 Indexes and Histograms

It is asserted above that indexes can be viewed as hierarchical histograms, but not all flavors of
histograms can be conveniently supported in index trees. Typically, index trees are balanced, meaning
they are a hierarchy of roughly equi-depth histograms. This may or may not be appropriate for data
reduction. In order to coerce index trees to serve as non-equi-depth histograms, one must tolerate
index trees that are unbalanced either in height or node occupancy.

8.6 Distance-Only Data

Index trees provide no special advantage over other methods for dealing with distance-only data.
Distance-only data can be stored using a multidimensional index tree only after the data is converted
to positional data by embedding the points in a space of sufficiently high dimension.

8.7 Multi-Dimensional Data
8.7.1 Ordered and Unordered Attributes

Multidimensional index trees rely on the ordering of the attribute values in each dimension. Unordered
attribute domains must have some ordering (perhaps an arbitrary one) imposed on them before they
can be represented in a multidimensional index tree structure.

30

1. Ordered:

Given an ordered attribute domain, the domain is usually normalized or mapped (preserving
order) onto a canonical range, such as the unit interval. Some types of index trees rely on
recursive binary splitting of the unit interval in order to keep the occupancy of each multi-
dimensional sub-range of the space below some prespecified limit (e.g., reflecting the capacity of
a single page of storage). In a manner similar to that used for B+-trees, occupancy information
(either exact or approximate) can be associated with each pointer to a hyperrectangular area in
the multi-dimensional index tree structure, see e.g., [WYM97].

2. Unordered (Flat/Hierarchical)

The Generalized Search Tree was designed expressly to handle “flat” or “encapsulated” data. In
GiSTs, user-defined operations may be implemented to choose an insertion location for new data,
to partition data when nodes fill, and to label pointers with keys. A domain expert need not
require ordering or hierarchical structure of the data per se to implement these operations, and
the index itself can remain oblivious to the domain semantics. Moreover, it may be possible for
the tree to automatically organize itself based on observing queries, to see which data items are
often fetched together. Clustering such items into subtrees increases the efficiency of selection,
and (more interestingly for our purposes here) provides a query-driven notion of data reduction
that requires no semantic understanding of the data set. The application of GiSTs to such
encapsulated flat data is an active area of research, but as of yet the results are preliminary. In
the remainder of this section we focus on the more traditional multi-dimensional search trees,
whose properties are currently better understood.

Hierarchical relationships of values in each dimension of a multi-dimensional space are not con-
ventionally represented within index trees. However, for index trees in which split points can be
selected flexibly, placing the split points at major breaks in the hierarchy of values would have the
advantage of tending to localize in storage elements that are more closely related in the hierarchy.

8.7.2 Sparse Data

Index trees generally handle sparse data well, in that the structure of a tree for a specific set of data
adapts automatically to the distributional characteristics of the data. In some cases, problems arise
if two or more attributes are so highly correlated that the effective dimensionality of the embedding
space is reduced.

8.7.3 Skewed Data

As with sparse data, index trees generally adapt well to skewed data by either allowing deeper devel-
opment of the tree in locally dense regions of the space, or by placing split boundaries in the dense
areas to retain some balance in the populations associated with various tree nodes.

8.7.4 High-Dimensional Data

Some index trees have been developed explicitly to address high dimensional problems (e.g., TV-
trees [LJF94] and X-trees [BKK96]). The efficacy of these structures remains in doubt, especially in
light of recent results on the hardness of indexing high-dimensional space [HKP97]. Most known suc-
cessful approaches involve projecting (based on some heuristics) to a space of lower, more manageable
dimensionality.

31

9 Sampling

The notion that a large set of data can be represented by a small random sample of the data elements
goes back to the end of the nineteenth century and has led to the development of a large body of survey-
sampling techniques [Coc77, SSW92, Sud76]. Over the past fifteen years, there has been increasing
interest in the application of sampling ideas to database management systems (DBMS’s). Some existing
and proposed applications of sampling include the following.

o Query optimization Given a query in an object-relational DBMS, the query optimizer estimates
the cost of alternative query execution plans and attempts to select a low-cost plan. Current
optimizers estimate costs based on summary statistics about the base relations; these statistics
are stored in the system catalog. Specifically, the catalog statistics are used to estimate the sizes
of intermediate query results via “selectivity formulas,” and the resulting “selectivity estimates”
are then substituted into cost formulas to yield the final cost estimates. Sampling is currently used
in DBMS’s such as DB2 V2 and Oracle 7 SQL Server to estimate a variety of catalog statistics
from samples of the base relations, and there is ongoing research into sampling-based methods
for estimating such key catalog statistics as quantiles and “column cardinality” (the number
of distinct values of an attribute in a relation); see [GMP97, HNSS95, PTHS96]. Sampling is
much less expensive than exact computation of catalog statistics from entire relations; such cost
reduction is important since catalog statistics must be recomputed periodically as the database
changes over time. Even when the catalog statistics are exact, selectivity estimates can be highly
inaccurate because the selectivity formulas incorporate assumptions, such as lack of statistical
correlation between attributes of a relation, that are in fact violated by the data. Unreliable
selectivity estimates can lead to inaccurate cost estimates, which in turn can cause the optimizer
to select an expensive query execution plan. In an effort to avoid these problems, a number
of researchers have considered approaches in which selectivities and costs are estimated directly
from a sample; see, for example, [GGMS96, HNSS96, HS92, HS95, HOD91, LNS90, LNSS93,
NS90]. Several authors have outlined complete sampling-based approaches to query optimization
[Ant93a, SBM93, Wil91].

o Parallel processing of queries Balancing the workload between processors is a critical objective
of any parallel query-processing algorithm. Typically, records are assigned to processors based
on the attribute values of the records. The goal is to determine a rule that assigns approximately
the same number of records to each processor. Sampling can be used to estimate the distribution
of attribute values and hence obtain good assignment rules. The parallel join-algorithms in
[DNSS92] and the algorithms for efficient loading of parallel grid files in [LRS93], for example,
use sampling in this manner.

o Support for auditing Various types of auditing require retrieval of a random sample of the records
in a database or, in relational DBMS’s, a random sample from the tuples in the output relation
of a query. Examples of auditing applications include financial records auditing, fissile materials
auditing, statistical quality control, and epidemiological studies. Other applications, such as
market research and secure statistical DBMS’s also require retrieval of random record sets; see
[01k93, Section 1.6] for further examples and references. Olken [Olk93, Section 1.5.2] has made
the case that the most efficient approach to obtaining a random sample of records is to incorporate
sampling into the DBMS, thereby avoiding both unnecessary record fetches and the overhead of
passing data across the application/DBMS interface. Techniques for obtaining simple random
samples (SRS’s) from databases are developed in [Ant92, OR86, OR89, OR93, ORX90].

32

o Approzimate answers to aggregation queries The answer to an aggregation query consists of a
small set of summary statistics, such as COUNT, AVERAGE, or MAXIMUM, that is computed
from a specified set of records. Sampling provides a means of obtaining quick, approximate
answers to a variety of aggregation queries. Sampling techniques for aggregation queries in object-
relational DBMS’s have been studied in [HOD91, HOT88, HOT89, ODT+91]. These techniques
also have been studied in the context of online-aggregation systems [Haa96, Haa97, HHW97]. In
such a system, the user can observe the progress of an aggregation query and control execution on
the fly; the records observed so far are viewed as a random sample of the set of all records in the
database. Online application processing (OLAP) systems compute many aggregate statistics of
interest, and several OLAP products now support sampling-based estimation; see, for example,
[Inf97].

e Data mining Data mining algorithms typically are applied to extremely large data sets. Several
authors have suggested that certain data mining algorithms can yield satisfactory approximate
results when applied to a random sample of the data [Cat92, JLI6, KM94].

There are many different types of samples. If a sample of n records is drawn from a set of N records
(N > n) such that all possible samples of size n are equally likely, then the sample is a simple random
sample without replacement (SRSWOR) of size n. If records are sampled randomly and uniformly
from the record set, but a sampled record is replaced before the next sample is drawn, then we obtain
a simple random sample with replacement (SRSWR). Sometimes the record set is grouped into M
mutually disjoint “clusters” and a SRS of m clusters (m < M) is obtained. In this case the selected
records form a cluster sample. For example, records in a database system usually are retrieved a page
at a time, and the records obtained by retrieving a SRSWOR of pages form a cluster sample. A
related type of sample is obtained by partitioning the data set into mutually disjoint “strata” and then
obtaining a SRS from each stratum. The selected records then form a stratified sample. In a “shared-
nothing” parallel DBMS, for example, a stratum might correspond to the records stored at a specified
processing node; see [SN92] for a discussion of why, in parallel DBMS’s, stratified sampling usually is
preferable to simple random sampling. Other types of samples abound [Coc77, DC72, SSW92, Sud76];
we focus on simple, cluster, and stratified samples since these are the most common types of reduced
data sets found in DBMS’s.

Sampling is well-suited to the progressive refinement of a reduced data set: to “refine” the data set
further, simply take more samples. Note, however, that if the sample is a SRSWOR, then adding new
records to the sample may require checking for duplicates, which can become expensive as the sample
size becomes large. Of course, for purposes of data reduction one usually is interested in small samples,
and the hashing method given in [EN82] can be used to update a small to medium sized SRSWOR
efficiently.

The ease of producing and maintaining a random sample depends on the available sampling frame,
that is, the available mechanism for randomly accessing elements of the record set. For example,
if records are stored in a Bt-tree or a hash file, then SRS’s can be obtained using the techniques
described in [Ant92, OR89] or [ORX90], respectively. In many file systems, pages of records are
stored in contiguous blocks called extents, and a main memory data structure called an extent map
provides access to the extents and the pages within the extents. This data structure can be exploited
to efficiently obtain a SRSWR of pages by repeatedly generating a random number between 1 and
the number of pages and then using the extent map to retrieve the corresponding page [DNSS92]. If
a SRS of records (rather than pages) is required, then extent-map sampling can be combined with
an acceptance/rejection (A/R) technique as described, for example, in [Olk93]. The idea behind A/R
sampling is to accept a sampled page with a probability equal to the number of records on the page
divided by the maximum number of records on a page; otherwise the page is rejected. If the page is

33

accepted, then a record is selected from the page randomly and uniformly. Suppose that there are M
pages with n,, records on page p,, (1 < m < M) and consider a specified record r on a specified page
Pm- Then, at each sampling step,

P{r included in sample}

= P{page pp, selected}
x P{page p,, accepted | page p,, selected}
x P{record r selected | page p,, selected and accepted}

1 N 1
m n* Nm
1
- omn*

where n* = maxi<m,<m Ny. Thus, all of the records in the file have the same inclusion probability
(namely 1/mn*) at each sampling step. Since successive records are selected independently, we obtain
a SRSWR. The efficiency of the algorithm can be improved by first generating the (random) number
of records to be selected from each page and then retrieving only those pages from which at least
one record is to be selected. Moreover, the algorithm can easily be modified to produce a SRSWOR.
The A/R approach described above lies at the heart of most algorithms for producing samples from
complex data structures and from output relations in object-relational DBMS’s. For many sampling
algorithms, the cost of obtaining a sample is proportional to the size of the sample, and not the size of
the database; this is in contrast to other data reduction techniques that require at least one complete
pass through the data. (Sometimes, as in the case of histograms [GMP97, PIHS96], sampling can be
combined with another data reduction technique, yielding an approximate reduction of the data that
is relatively cheap to obtain.) It is also relatively inexpensive to update a sample as the underlying
data changes; see [GMP97, OR92] for some updating methods.

The adequacy of sampling as a data-reduction technique depends crucially on how the sample is
to be used. We focus on perhaps the most common use of a sample: estimation of the answer to
an aggregation query. The simplest example of such an estimation problem is as follows: given a set
R={r1,r,...,r§ } of N records, estimate the quantity 8(f) = (1/N) X, f(r;) based on a SRSWR
of size n < N, where f is a specified real-valued function. (If n is sufficiently small with respect to N,
as is typically the case, then the distinction between an SRSWR and a SRSWOR is unimportant.) An
unbiased estimate 6, (f) of the unknown quantity 6(f) is obtained by averaging the function f over
the n records in the sample. Denote by z, the (p + 1)/2 quantile of the standard normal distribution
and denote by o?(f) the variance of the function f over all of the records in the database:

1Y 2
o(f) = %= 2 _(f(r:) = 6(f))".
N =
The standard Central Limit Theorem asserts that when n is large the distribution of the estimator
0,(f) is approximately normal with mean 0(f) and variance o2(f)/n. It follows that, for a sample size

of
= (52 @

records, the estimator én(f) estimates 6(f) to within a factor of 1 + € with probability approximately
equal to 100p%. This approximate result is valid when ¢ is small. Conservative sample-size formulas can
be derived from inequalities developed by Hoeffding [Hoe63]. For example, suppose that | < f(r;) <wu

34

for 1 <3< N and set

1 2
2 _
=3 (i)

= (M) .

is sufficient to ensure that 8,,(f) estimates 6(f) to within a factor of 1+ ¢ with probability greater than
or equal to p; there are no restrictions on € save that ¢ > 0. The power of sampling-based estimation
derives from the fact that the sample-size formulas do not depend explicitly on the size N of the
database so that, if that data are well-behaved, the sampling fraction required to achieve reasonable
precision can be extremely small when N is very large. For example, given a set of N = 10® records
such that f(r;) =1 for 1 <i < 108, it follows from 27 that a sample size of approximately 220 records
(0.0002% of the database) is sufficient to ensure that, with 99% probability, §n(f) estimates 0(f) to
within 10%. Similarly, it follows from 28 that a sample size of 1060 records is sufficient to ensure that,
with probability at least 99%, én(f) estimates 6(f) to within 10%. In practice, either two-phase or
sequential procedures can be used to estimate o(f) and control the sample size automatically; see, for
example, [HS92, HOD91]. Similarly, a priori bounds on the function f often are available in practice,
so that 28 can be used to determine the required sample size. The above calculations also can be
turned around to yield estimates of the precision of §n for a specified sample size n. For example, fix
n (with n relatively large) and p, and denote by S2(f) the variance of the function f over the records
in the sample. It follows from 27 that the random interval

_|n N Zpsn(f) szn(f)
In = |0n(f) ~n V-

contains the point 8(f) with probability approximately equal to p. The interval I, is called a (large
sample) 100p% confidence interval for 6(f); the width of the interval indicates the precision of the
estimator §n In a similar manner, a conservative confidence interval can be derived from 28.

The basic methodology outlined above has been extended in several different directions.

for 0 < p < 1. Then a sample size of

O (f) +

e For SRS’s, central limit theorems (and hence sample-size formulas and confidence intervals) have
been established for large classes of summary statistics other than population averages, for ex-
ample, population moments [Cra46, Chapter 28], maximum likelihood estimators [Cra46, Chap-
ter 33], and U-statistics [Hoe48]. Moreover, the “delta method” can be used to derive new
central limit theorems from old. The idea is that if én estimates @ and the distribution of én is
approximately normal with mean 6 and standard deviation o, then the distribution of f(é\n) is
approximately normal with mean f(#) and standard deviation o f’(#) for any function f that is
continuously differentiable and positive at the point 8. With appropriate modifications, the delta
method extends to the case in which 9\” is a k-tuple of estimators for some k& > 1.

e For samples with a more complex structure, such as cluster or stratified samples, point estimators
and confidence intervals are available for population sums of the form u(f) = SN | f(r;) and (via
the delta method) smooth functions of such sums, e.g., ratios, averages, and central moments such
as variance and skewness. The idea is as follows. Let R be a collection of records as above and
S be a sample of records from R (not necessarily simple). Suppose that the inclusion probability
7; for record r; is known a priori for each i. Then it is not hard to show that the estimator

;€S i

35

is unbiased for p(f), provided that each 7; is positive. See [SSW92] for a comprehensive discussion
of such “Horvitz-Thompson” estimators and their associated confidence intervals.

e Estimation methods also are available when the summary statistic of interest is computed from
the tuples in the output relation formed by executing a relational query over a set of base relations.
One method is to materialize a SRS of the tuples in the output relation (using A/R techniques
as described above and in [Olk93]) and then compute the estimate of the summary statistic. An
alternative method is to maintain a SRS from each base relation, execute the query on the sample
base-relations to obtain a sample version of the output relation, and then compute the summary
statistic over the tuples in the sample version of the output relation. Two advantages of the latter
approach are that it is easier to obtain a SRS of each base relation than to obtain a SRS of the
output relation using A /R sampling, and the base-relation samples can be reused for subsequent
aggregation queries. A potential difficulty is that in many cases, such as when the output relation
is a join of two or more base relations, the tuples in the sample version of the output relation are
not mutually independent (as in a SRS from the output relation). This difficulty has been at least
partially overcome: formulas for estimators, large sample confidence intervals, and conservative
confidence intervals corresponding to a variety of complex aggregation queries can be found in
[Haa96, Haa97]. These formulas explicitly take into account the statistical dependence between
the tuples in the sample version of the output relation. Procedures that exploit existing indexes
on the base relations also are developed in order to handle the case in which straightforward
execution of a query on the sample base-relations yields a sample version of the output relation
that contains too few tuples.

The summary statistics discussed above can be estimated accurately from a small sample. Other
summary statistics, however, are inherently difficult to estimate. Roughly speaking, these are “needle-
in-a-haystack” type statistics, which cannot be estimated accurately unless one or more members of a
very small subset of the records are included in the sample; the probabilities of such inclusion typically
are extremely small. An example of such a statistic is max;<;<n f(r;), where R = {r,72,...,ry } is a
set of records as before and f is a real-valued function. If, say, f(r1) > f(r;) for i > 1, then an estimate
of the maximum function value will be extremely inaccurate unless record 7 is included in the sample.
To provide acceptably accurate estimates of such summary statistics, a hybrid approach is needed in
which the sample is supplemented by additional information. Some examples of the hybrid approach
are given in subsequent sections; development of hybrid methods is an active area of research.

We conclude by discussing the accuracy of sampling methods in the context of some specific types
of data.

9.1 Distance-Only Data

Assuming that an efficient sampling frame is available, there is no particular difficulty in producing
and maintaining a sample of distance-only data elements. The applicability of sampling for estimation
of summary statistics, however, depends heavily on the type of statistic desired. Suppose, for example,
that the statistic of interest is the average distance # between data elements in the population and that
a SRSWR { X1, Xo,..., X, } of n > 1 data elements is available. Then 6 can be estimated by

-1 5
~ n
6, = <2> > Z d(Xi, X;),

1=1j5=1+1

where d is the distance function. The estimator 0, is a U-statistic [Hoe48], and therefore is unbiased
and consistent for 6. (An estimator 0, is consistent for a parameter 0 if 6, converges to 0 as n

36

increases.) Moreover, there is a well-developed methodology for obtaining confidence intervals for §n
Other summary statistics such as the average distance of a data element to its nearest neighbor can be
much harder to estimate. If the data is partitioned into clusters and entire clusters can be sampled,
then summary statistics defined in terms of clusters (such as the average distance between the points
in a cluster) can be estimated using the methods described previously.

9.2 Multi-Dimensional Data

One strength of sampling as a data reduction technique is that multidimensional data, especially with
statistical correlation between the attributes, can be handled gracefully. For example, the storage
requirement for a d-dimensional histogram typically increases exponentially in d, while the correspond-
ing storage requirement for a fixed-size sample increases only linearly. We consider various types of
multidimensional data below.

9.2.1 Ordered and Unordered Attributes

As indicated above, one common use of a sample is to estimate some aggregate quantity that is
computed by applying a real-valued function f to individual records or k-tuples of records. Thus, there
is not much difference between ordered and unordered attributes in terms of estimation. On the other
hand, whether or not the attributes are ordered can influence the way in which the data is stored, and
hence the sampling frame. For example, data values having a linear ordering can be stored in a B
tree or a ranked B™ tree, so that SRS’s can be obtained using the methods in [Ant92, OR89].

9.2.2 Sparse Data

Depending on how the data is stored, sparseness of data may or may not have a detrimental effect on
sample-based estimates. If, for example, there is an index on the data elements, then it is straight-
forward to compute and maintain a sample of these elements, and estimates can be computed using
standard techniques. If, however, a sample must be obtained by randomly selecting attribute values,
testing to see if there are one or more data points having those attribute values, and then retrieving
such a data point if it exists (perhaps with an A/R step to ensure equal inclusion probabilities), then it
is extremely expensive to form a sample. Typically, however, there will be data structures that permit
efficient retrieval of data points, and this structure also can be used to obtain a sample.

Another form of sparseness occurs when the summary statistic of interest is computed over a very
small qualifying subset of the records. (This is the needle-in-a-haystack problem again.) In this case,
the sample needs to be augmented with additional information. For example, if there is a combined
index on the attributes of interest, then additional samples from the qualifying subset can efficiently
be obtained by sampling from the index. As another example, Haas and Swami [HS95] describe a
method for estimating the selectivity of a join in which the sample is augmented with frequency counts
for certain join-attribute values that are frequent in some relations and infrequent in other relations.
Regression techniques [SSW92, Part II| can provide an effective means of combining information in the
sample with other available information; see also [RKM90, Kuk93].

9.2.3 Skewed Data

Data that is skewed in frequency but not in value does not cause problems when a sample is used to
estimate summary statistics that are sums, averages, or smooth functions of sums and averages. On
the other hand, it can be extremely hard to estimate statistics such as the number of distinct values of
a specified attribute when the data is skewed in frequency. Some distinct-value estimation procedures

37

that can deal with moderate skew are discussed in [HNSS95, HS96]; a drawback of these procedures is
that the sample size required for a specified degree of accuracy depends on the size of the data set.

Even sums or averages can be hard to estimate when the data is skewed in value. For example,
consider a set of 108 records and a function f such that f(r;) = 10° and f(r;) = 0 for 1 < i < 106,
so that the average of the function f over all of the records is equal to 1000. Unless the sample
contains record 71, the usual estimate of the population average will be equal to zero. On the average,
about 500,000 records must be sampled before r; is encountered. Even when the degree of skew is
not as extreme, estimates of sums and averages can be highly variable and the actual probability
that a confidence interval contains the population parameter of interest can be much less than the
nominal probability. Several approaches have been developed in an attempt to handle this situation.
One approach is to try and redefine the original estimation problem so that the summary statistic of
interest is resistant to skew. For example, rather than trying to estimate the average of a function over
a set of records, we can try to estimate the median value of the function instead. Alternatively, the
sample can be supplemented with a small set of records having highly nonstandard function values.
These values can be combined with the sample-based estimate in a manner similar to that in [HS95].
Finally, for data sets with moderate skew, “corrected” confidence intervals with improved coverage
properties can in principle be computed using an extension (to the setting of discrete data values) of
the “second-order pivotal transformations” discussed in [Gly82].

9.2.4 High-Dimensional Data

One potential difficulty caused by high-dimensional data is the large amount of space required to store
a sample of a given size. If storage is limited, then the size of the sample may be too small to provide
sufficiently accurate estimates. As mentioned previously, this problem occurs with other data reduction
methods.

Another potential problem is that observations may be expensive to compute; that is, the function f
that is to be applied to a record r; might be expensive to evaluate if r; is of extremely high dimension.
For example, the “record” r; might in fact be an entire document and f might require a complex
pattern-matching operation as part of its evaluation. If it is possible to quickly rank a small set of
records in approximate order of increasing value of f without actually evaluating f itself, then ranked
set sampling techniques can be used to estimate averages, quantiles, and other summary statistics
using many fewer function evaluations than are required by simple random sampling; see, for example,
[DCT72, SS88] and references therein. In a similar vein, Luo et al. [LSS97] provide estimation methods
that require accurate evaluations of f on a small subset of the sample and cheap, inaccurate measures
of f on the remainder of the sample.

10 Conclusions

Database technology, as a field, may have matured in contexts such as banking and payroll, where
providing complete accuracy and consistency are central requirements. With the emphasis today on
data warehousing and data analysis, there is a pressing need for quick approximate answers from very
large data sets.

Data reduction is invaluable in this context, and we believe is going to be widely used in databases
of the future. There already exist a rich variety of data reduction techniques, many of which have been
described above, with different characteristics and different areas of applicability. A summary of our
findings is given in Table 2.

Most techniques do best given a low-dimensional, roughly uniform, dense data set with all attributes
ordered. (There are a few exceptions — clustering does not work too well on dense data, and some

38

S &
s &5 & E SIS
g & v & & s~ 9
& & & &5 & ¢ £
N LN R R
Data Type o N & 3 L o £ 9
Distance Only N N N N D Y M Y
Unordered Flat Y N N Y D N M Y
Unordered Hierarchical Y M N Y M M M Y
Sparse B F F F F B F D
Skewed F F B F F F F D
High Dimensional N F W W M D W W

Secondary Metrics
Progressive Resolution Y Y Y N M D
Incremental Computation | N Y M N M M Y Y

Y = Yes ; N = No ; M = Maybe;
F = Fine ; B = Better ; W = Worse ;
D = Depends (on further specification, could be better or worse).

Table 2: Applicability of data reduction techniques to different types of data

techniques, such as log-linear, do not make any use of the ordering). We take this as the base case,
and mark a technique “Fine” if it does approximately as well in a stress-case as in the base case. Most
of the other other entries in the table are self-explanatory.

Entries marked “Depends” have a more complex dependence, and the reader is referred to the
corresponding section above to get more details. For instance, clustering can give progressive resolution,
if hierarchical clustering is used, but cannot if it is a one-level clustering. Entries marked “Maybe” are
ones for which no definitive answer could be agreed upon, and are typically indicative of areas that
could benefit from additional research.

Acknowledgments

The authors would like to thank David Lomet and Nick Koudas for their input on this article. We also
acknowledge the support provided by AT&T in providing a forum to bring so many of us together for
this venture.

Faloutsos is on leave from the University of Maryland, and Ioannidis is on leave from the Univer-
sity of Wisconsin. Faloutsos’ work was partially funded by the National Science Foundation under
grants No. EEC-94-02384, TRI-9205273 and TRI-9625428. Hellerstein’s work was supported in part
by NASA grant 1996-MTPE-00099, NSF grant TRI-9703972, and support from Informix and the Cal-
ifornia MICRO program. Ioannidis’ work was supported in part by the National Science Foundation
under Grants TRI-9700799 and IRI-9157368, and by grants from DEC, IBM, HP, AT&T, Oracle, and
Informix. Ng’s work was partially supported by NSERC Grants OGP0138055 and NCE IRIS-2 Grants
HMI-5 and IC-5. Sevcik’s work was supported in part by grants from the Centre for Advanced Studies,
IBM Canada, and the Natural Sciences and Engineering Research Council of Canada.

References

[ACD+88] M. J. Anderson, R. L. Cole, W. S. Davidson, W. D. Lee, P. B. Passe, G. R. Ricard and L. W.

39

[Agr9o]
[Ant92]

[Ant93a)
[Ant93b]
[Aok97]
[Ben75]
[Ber92]
[BFHT5]
[Bir63]
[BKK96]

[BKSS90]

[BM72]

[BS97]

[Cat92]

[CocT7)
[ComT9]
[CRY4]

[Crad6]
[Cra94]
[Dau92]

[DC72]

[DHT73)]

Youngren, Index Key Range Estimator. U. S. Patent 4,774,657, IBM Corp., Armonk, NY, Sep. 1988.
Filed June 6, 1986.

A. Agresti. Categorical Data Analysis. Wiley-Interscience 1990.

G. Antoshenkov. Random sampling from pseudo-ranked BT trees. In Proc. 19th Intl. Conf. Very
Large Data Bases, pages 375-382. Morgan Kaufmann, 1992.

G. Antoshenkov. Dynamic query optimization in Rdb/VMS. In Proc. Eleventh Intl. Conf. Data
Engrg., pages 538-547. IEEE Computer Society Press, 1993.

Gennady Antoshenkov. Query Processing in DEC Rdb: Major Issues and Future Challenges. IEEE
Data Engineering Bulletin 16(4):42-45, 1993.

P. M. Aoki. Generalizing “Search” in Generalized Search Trees. Proc. 14th Int’l Conf. on Data
Engineering, Orlando, FL, Feb. 1998. To appear.

J. L. Bentley. Multidimensional binary search trees used for associative searching. Comm ACM,
18(9):509-517, September 1975.

Michael W. Berry. Large-scale sparse singular value computations. The International Journal of
Supercomputer Applications, 6(1):13-49, Spring 1992.

Y. Bishop, S. Fienberg, and P. Holland. Discrete Multivariate Analysis: Theory and Practice. MIT
Press, 1975.

M. Birch. Maximum Likelihood in Three-way Contingency Tables. J. Roy. Statist. Soc., B25:220-233,
1963.

S. Berthold, D. Keim, and H. P. Kriegel. X-Tree: An Indexing Structure for High Dimensional Data.
Proc. 22nd VLDB, pages 10-21, August 1996. Mumbai, India.

N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An Efficient and Robust
Access Method For Points and Rectangles. In Proc. ACM-SIGMOD International Conference on
Management of Data, pages 322-331, Atlantic City, May 1990.

Rudolf Bayer and Edward M. McCreight. Organization and Maintenance of Large Ordered Indices.
Acta Informatica, pages 173-189, January 1972.

D. Barbara and M. Sullivan. Quasi-Cubes: A space-efficient way to support approximate multidimen-
sional databases. Technical Report, Department of Information and Software Systems Engineering,
George Mason University, 1997.

J. Catlett. Peepholing: Choosing attributes efficiently for megainduction. In Proc. Ninth Intl. Work.
Machine Learning, pages 49-54. Morgan Kaufmann, 1992.

W. G. Cochran. Sampling Techniques. Wiley, New York, third edition, 1977.
D. Comer. The Ubiquitous B-Tree. Computing Surveys, 11(2):121-137, June 1979.

C.M. Chen and N. Roussopoulos. Adaptive Selectivity Estimation Using Query Feedback. In Pro-
ceedings of the ACM-SIGMOD International Conference on Management of Data, Minneapolis, Min-
nesota, May 1994.

H. Cramér. Mathematical Methods of Statistics. Princeton University Press, 1946.
Richard E. Crandall. Projects in Scientific Computation. Springer-Verlag New York, Inc., 1994.

Ingrid Daubechies. Ten Lectures on Wawelets. Capital City Press, Montpelier, Vermont, 1992. Society
for Industrial and Applied Mathematics (STAM), Philadelphia, PA.

T. R. Dell and J. L. Clutter. Ranked set sampling theory with order statistics background. Biometrics,
28:545-555, 1972.

R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. Wiley, New York, 1973.

40

[DNSS92]

[DS40]

[Dum94]

[EKX95]

[EKXS96]

[EN82]
[Fal96]
[FD92]

[Fie93)]

[FB74]

[Fis87]
[FL95]

[GGYT]

D. DeWitt, J. F. Naughton, D. A. Schneider, and S. Seshadri. Practical skew handling algorithms
for parallel joins. In Proc. 19th Intl. Conf. Very Large Data Bases, pages 27-40. Morgan Kaufmann,
1992.

W. Deming and F. Stephan. On a least squares adjustment of a sampled frequency table when the
expected marginal totals are known. Annals Math. Stat., 11:427-444, 1940]

Susan T. Dumais. Latent semantic indexing (lsi) and trec-2. In D. K. Harman, editor, The Second
Text Retrieval Conference (TREC-2), pages 105-115, Gaithersburg, MD, March 1994. NIST. Special
publication 500-215.

M. Ester, H.P. Kriegel and X. Xu. (1995) Knowledge Discovery in Large Spatial Databases: Focusing
Techniques for Efficient Class Identification, Proc. Fourth International Symposium on Large Spatial
Databases.

M. Ester, H.P. Kriegel, J. Sander and X. Xu. (1996) A Density-based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise, Proc. Second International Conference on Knowledge
Discovery and Data Mining, pp. 226-231.

J. Ernvall and O. Nevalainen. An algorithm for unbiased random sampling. Comput. J., 25:45-47,
1982.

Christos Faloutsos. Searching Multimedia Databases by Content. Kluwer Academic Inc., 1996. ISBN
0-7923-9777-0.

Peter W. Foltz and Susan T. Dumais. Personalized information delivery: an analysis of information
filtering methods. Comm. of ACM (CACM), 35(12):51-60, December 1992.

D.J. Field. Scale-invariance and self-similar ‘wavelet’ transforms: an analysis fo natural scenes and
mammalian visual systems. In M. Farge, J.C.R. Hunt, and J.C. Vassilicos, editors, Wavelets, Fractals,
and Fourier Transforms, pages 151-193. Clarendon Press, Oxford, 1993.

R. A. Finkel and J. L. Bentley. Quad-Trees: A Data Structure For Retrieval On Composite Keys.
ACTA Informatica, 4(1):1-9, 1974.

D. Fisher. (1987) Acquisition via Incremental Conceptual Clustering, Machine Learning, 2, 2.

C. Faloutsos and K. Lin. FastMap: a Fast Algorithm for Indexing, Data-Mining and Visualization
of Traditional and Multimedia Datasets. InProc. 1995 ACM SIGMOD Intl. Conf. Management of
Data, pages 163-174.

V. Gaede and O. Gunther. Multidimensional Access Methods. ACM Computing Surveys, 1997. To
appear.

[GGMS96] S. Ganguly, P. B. Gibbons, Y. Matias, and A. Silberschatz. Bifocal sampling for skew-resistant join

[Glys2]
[GM96]
[GMP97]
[Gut84]

[Haa96]

size estimation. In Proc. 1996 ACM SIGMOD Intl. Conf. Management of Data, pages 271-281. ACM
Press, 1996.

P. W. Glynn. Asymptotic theory for nonparametric confidence intervals. Technical Report 63, De-
partment of Operations Research, Stanford University, Stanford, CA, 1982.

Phillip Gibbons and Yossi Matias. Space efficient maintenance of top sellers list in large databases.
Unpublished manuscript, Bell Labs, 1996.

Phillip B. Gibbons, Yossi Matias, and Viswanath Poosala. Fast incremental maintenance of approxi-
mate histograms. Proc. of the 23rd Int. Conf. on Very Large Databases, August 1997.

A. Guttman. R-Trees: A Dynamic Index Structure For Spatial Searching. In Proc. ACM-SIGMOD
International Conference on Management of Data, pages 47-57, Boston, June 1984.

P. J. Haas. Hoeffding inequalities for join-selectivity estimation and online aggregation. IBM Research
Report RJ 10040, IBM Almaden Research Center, San Jose, CA, 1996.

41

[Haa97]

[HHW97]

[HKP97]

[HNP95]

[FAINSS95]

[HNSS96]

[HODY1]

[Hoe48]
[Hoe63]

[HOTSS]

[HOTS9]

[HS92]

[HS95]

[HS96]
[1C93]
[T0f97]
[T0a93]
[IP95a]

[IP95b]

P. J. Haas. Large-sample and deterministic confidence intervals for online aggregation. In Proc. Ninth
Intl. Conf. Scientific and Statist. Database Management, pages 51-63. IEEE Computer Society Press,
1997.

J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In Proc. 1997 ACM SIGMOD
Intl. Conf. Managment of Data. ACM Press, 1997. To appear.

Joseph M. Hellerstein, Elias Koutsoupias, and Christos H. Papadimitriou. On the Analysis of Indexing
Schemes. In Proc. 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, pages 249-256, Tucson, May 1997.

J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized Search Trees for Database Systems
(Extended Abstract). In Proc. 21st International Conference on Very Large Data Bases, Zurich,
September 1995.

P. J. Haas, J. F. Naughton, S. Seshadri, and L. Stokes. Sampling-based estimation of the number
of distinct values of an attribute. In Proc. 21st Intl. Conf. Very Large Data Bases, pages 311-322.
Morgan Kaufmann, 1995.

P. J. Haas, J. F. Naughton, S. Seshadri, and A. N. Swami. Selectivity and cost estimation for joins
based on random sampling. J. Comput. System Sci., 52:550-569, 1996.

W. Hou, G. Ozsoyoglu, and E. Dogdu. Error-constrained COUNT query evaluation in relational
databases. In Proc. 1991 ACM SIGMOD Intl. Conf. Managment of Data, pages 278-287. ACM
Press, 1991.

W. Hoeffding. A class of statistics with asymptotically normal distribution. Ann. Math. Statist.,
19:293-325, 1948.

W. Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer. Statist.
Assoc., 58:13-30, 1963.

W. Hou, G. Ozsoyoglu, and B. Taneja. Statistical estimators for relational algebra expressions. In
Proc. Seventh ACM SIGACT-SIGMOD-SIGART Symp. Principles of Database Sys., pages 276—287.
ACM Press, 1988.

W. Hou, G. Ozsoyoglu, and B. Taneja. Processing aggregate relational queries with hard time con-
straints. In Proc. 1989 ACM SIGMOD Intl. Conf. Managment of Data, pages 68-77. ACM Press,
1989.

P. J. Haas and A. N. Swami. Sequential sampling procedures for query size estimation. In Proc. 1992
ACM SIGMOD Intl. Conf. Managment of Data, pages 1-11. ACM Press, 1992.

P. J. Haas and A. N. Swami. Sampling-based selectivity estimation using augmented frequent value
statistics. In Proc. Eleventh Intl. Conf. Data Engrg., pages 522-531. IEEE Computer Society Press,
1995.

P. J. Haas and L. Stokes. Estimating the number of classes in a finite population. IBM Research
Report RJ 10025, IBM Almaden Research Center, San Jose, CA, 1996.

Yannis Ioannidis and Stavros Christodoulakis. Optimal histograms for limiting worst-case error
propagation in the size of join results. ACM TODS, 1993.

Informix Corporation. Technical Brief: Informix Metacube Ezplorer, 1997.
http://www.informix.com/informix/products/techbrfs/metacube.

Yannis Ioannidis. Universality of serial histograms. Proc. of the 19th Int. Conf. on Very Large
Databases, pages 256267, December 1993.

Yannis Ioannidis and Viswanath Poosala. Balancing histogram optimality and practicality for query
result size estimation. Proc. of ACM SIGMOD Conf, pages 233—-244, May 1995.

Yannis Ioannidis and Viswanath Poosala. Histogram-based solutions to diverse database estimation
problems. IEEE Data Engineering Bulletin, 18(3):10-18, December 1995.

42

[Jag90]
[JL96]

[Jol86]
[KD8O]

[KIF97]

[KM94]
[Knu73]
[K0080]
[KK69]
[KR90]
[Kuk93]
[LIF94]

[LNS90]

[LNSS93]
[LRS93]
[LS90]
[LSS97]
[Malg9]
[Mal91]
[MCS88]

[MDS8S]

H. V. Jagadish. Linear Clustering of Objects With Multiple Attributes. In Proc. ACM-SIGMOD
International Conference on Management of Data, pages 332-342, Atlantic City, May 1990.

G. H. John and P. Langley. Static versus dynamic sampling for data mining. In Proc. Second Intl.
Conf. Knowledge Discovery and Data Mining, pages 367-370. AAAT Press, 1996.

I.T. Jolliffe. Principal Component Analysis. Springer Verlag, 1986.

P. M. Kroonenberg and J. De Leeuw. Principal Component Analysis of Three-Mode Data By Means
of Alternating Least Squares Algorithms. Psychometrika, 45:69-97, 1980.

F. Korn, H.V. Jagadish and C. Faloutsos. Efficiently Supporting ad Hoc Queries in Large Datasets of
Time Sequences. In Proc. ACM-SIGMOD International Conference on Management of Data, pages
289-300, Tucson, 1997.

J. Kivinen and H. Mannila. The power of sampling in knowledge discovery. In Proc. Thirteenth ACM
SIGACT-SIGMOD-SIGART Symp. Principles of Database Sys., pages 77-85. ACM Press, 1994.

D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming. Addison-Wesley
Publishing Co., 1973.

R. P. Kooi. The optimization of queries in relational databases. PhD thesis, Case Western Reserver
University, Sept 1980.

H. Ku and S. Kullback. Approximating discrete probability distributions. IEEE Trans. Inform.
Theory, IT-15:444-447, 1969.

L. Kaufman and P.J. Rousseeuw. (1990) Finding Groups in Data: an Introduction to Cluster Analysis,
John Wiley & Sons.

A.Y. C. Kuk. A kernel method for estimating finite population distribution functions using auxilliary
information. Biometrika, 80:385-392, 1993.

King-Ip Lin, H. V. Jagadish, and Christos Faloutsos. The TV-tree: An Index Structure for High-
Dimensional Data. VLDB Journal 3(4):517-542, September 1994.

R. J. Lipton, J. F. Naughton, and D. A. Schneider. Practical selectivity estimation through adaptive
sampling. In Proc. 1990 ACM SIGMOD Intl. Conf. Managment of Data, pages 1-11. ACM Press,
1990.

R. J. Lipton, J. F. Naughton, D. A. Schneider, and S. Seshadri. Efficient sampling strategies for
relational database operations. Theoret. Comput. Sci., 116:195-226, 1993.

J. Li, D. Rotem, and J. Srivastava. Algorithms for loading parallel grid files. In Proc. 1993 ACM
SIGMOD Intl. Conf. Managment of Data, pages 347-356. ACM Press, 1993.

D. B. Lomet and B. Salzberg. The hB-Tree: A Multiattribute Indexing Method. ACM Transactions
on Database Systems, 15(4):625-58, December 1990.

M. Luo, S. L. Stokes, and T. W. Sager. Estimation of the CDF of a finite population using a calibration
sample. Environ. Ecol. Statist., 1997. To appear.

F. Malvestuto. Computing the maximum-entropy extension of discrete probability distributions.
Comput. Statist. Data Anal., 8:299-311, 1989.

F. Malvestuto. Approximating Discrete Probability Distributions with Decomposable Models. Trans.
Systems, Man, Cybernetics, 21(5):1287-1294, 1991.

M. V. Mannino, P. Chu, and T. Sager. Statistical profile estimation in database systems. ACM
Computing Surveys, 20(3):192-221, Sept 1988.

M. Muralikrishna and David J Dewitt. Equi-depth histograms for estimating selectivity factors for
multi-dimensional queries. Proc. of ACM SIGMOD Conf, pages 28-36, 1988.

43

[NH94]

[NS90]

R. Ng and J. Han. (1994) Efficient and Effective Clustering Method for Spatial Data Mining, Proc.
1994 VLDB, pp. 144-155.

J. F. Naughton and S. Seshadri. On estimating the size of projections. In Proc. Third Intl. Conf.
Database Theory, pages 499-513. Springer-Verlag, 1990.

[ODT+91] G. Ozsoyoglu, K. Du, A. Tjahjana, W. Hou, and D. Y. Rowland. On estimating COUNT, SUM,

[01k93]
[ORS6]
[OR89]
[OR92]
[OR93]
[ORX90]
[Peags]
[PT96]
[PT97]

[PIHS96]

[P0097]
[PSC84]
[PTVF96]
[RKM90]
[Rob81]
[SBM93]

[Sch81]

and AVERAGE relational algebra queries. In D. Dimitris Karagiannis, editor, Database and Ezpert
Systems Applications, Proceedings of the International Conference in Berlin, Germany, 1991 (DEXA
91), pages 406-412. Springer-Verlag, 1991.

F. Olken. Random Sampling from Databases. Ph.D. Dissertation, University of California, Berkeley,
CA, 1993. Available as Tech. Report LBL-32883, Lawrence Berkeley Laboratories, Berkeley, CA.

F. Olken and D. Rotem. Simple random sampling from relational databases. In Proc. 12th Intl. Conf.
Very Large Data Bases, pages 160-169, 1986.

F. Olken and D. Rotem. Random sampling from B¥ trees. In Proc. 15th Intl. Conf. Very Large Data
Bases, pages 269-277, 1989.

F. Olken and D. Rotem. Maintenance of materialized views of sampling queries. In Proc. Eighth Intl.
Conf. Data Engrg., pages 632-641. IEEE Computer Society Press, 1992.

F. Olken and D. Rotem. Sampling from spatial datatbases. In Proc. Ninth Intl. Conf. Data Engry.,
pages 199-208. IEEE Computer Society Press, 1993.

F. Olken, D. Rotem, and P. Xu. Random sampling from hash files. In Proc. 1990 ACM SIGMOD
Intl. Conf. Managment of Data, pages 375-386. ACM Press, 1990.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kauffman, Palo Alto, 1988.

Viswanath Poosala and Yannis Ioannidis. Estimation of query-result distribution and its application
in parallel-join load balancing. Proc. of the 22nd Int. Conf. on Very Large Databases, September
1996.

Viswanath Poosala and Yannis Ioannidis. Selectivity estimation without the attribute value indepen-
dence assumption. Proc. of the 23rd Int. Conf. on Very Large Databases, August 1997.

V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita. Improved histograms for selectivity
estimation of range predicates. In Proc. 1996 ACM SIGMOD Intl. Conf. Managment of Data, pages
294-305. ACM Press, 1996.

Viswanath Poosala. Histogram-based estimation techniques in databases. PhD thesis, Univ. of
Wisconsin-Madison, 1997.

Gregory Piatetsky-Shapiro and Charles Connell. Accurate estimation of the number of tuples satis-
fying a condition. Proc. of ACM SIGMOD Conf, pages 256-276, 1984.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes in C, The Art
of Scientific Computing. Cambridge University Press, Cambridge, MA, 1996.

J. N. K. Rao, J. G. Kovar, and H. J. Mantel. On estimating distribution functions and quantiles from
survey data using auxilliary information. Biometrika, 77:365-375, 1990.

J.T. Robinson. The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes.
Proceedings ACM SIGMOD, pages 10-18, 1981.

K. D. Seppi, J. W. Barnes, and C. N. Morris. A Bayesian approach to database query optimization.
ORSA J. Comput., 5:410-419, 1993.

M. Scholl. New File Organizations Based on Dynamic Hashing. ACM Transactions on Database
Systems, 6(1):194-211, March 1981.

44

[SN92]

[SRF87]

[S588]
[SSW92]

[Str80)
[Sud76]
[TP91]

[VM]
[Wil91]
[WS93]

[WW85]
[WYM97]

[You84]
[ZRLY6]

S. Seshadri and J. F. Naughton. Sampling issues in parallel database systems. In Advances in Database
Technology- EDBT 92, 3rd Intl. Conf. Extending Database Technology, Lecture Notes in Computer
Science, pages 328-343. Springer-Verlag, 1992.

T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-Tree: A Dynamic Index For Multi-Dimensional
Objects. In Proc. 18th International Conference on Very Large Data Bases, pages 507518, Brighton,
September 1987.

S. L. Stokes and T. W. Sager. Characterization of a ranked-set sample with application to estimating
distribution functions. J. Amer. Statist. Assoc., 83:374-381, 1988.

C.-E. Sarndal, B. Swensson, and J. Wretman. Model Assisted Survey Sampling. Springer-Verlag, New
York, 1992.

Gilbert Strang. Linear Algebra and its Applications. Academic Press, 1980. 2nd edition.
S. Sudman. Applied Sampling. Academic Press, New York, 1976.

M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1):71-86,
1991.

Brani Vidakovic and Peter Mueller. Wawvelets for Kids. Duke University, Durham, NC.
ftp:/ /ftp.isds.duke.edu/pub/Users/brani/papers/.

D. E. Willard. Optimal sample cost residues for differential database batch query problems. J. ACM,
38:104-119, 1991.

Kuansan Wang and Shihab Shamma. Spectral shape analysis in the central auditory system. NNSP,
September 1993.

R.J. Wonnacott and T.H. Wonnacott. Introductory Statistics. John Wiley, New York, 1985.

Wei Wang, Jiong Yang, and R. Muntz. STING: A Statistical Information Grid Approach to Spatial
Data Mining . Proc. 23rd VLDB, pages 186-195, August 1997. Athens, Greece.

P. Young. Recursive estimation and time-series analysis. Springer-Verlag, New York, 1984.

T. Zhang, R. Ramakrishnan and M. Livny. (1996) BIRCH: an Efficient Data Clustering Method for
Very Large Databases, Proc. 1996 SIGMOD, pp. 103-114.

45

