Discretization: An Enabling Technique

F. Hussain, H. Liu, C. L. Tan, and M. Dash
School of Computing, National University of Singapore, Singapore.
{farhad, liuh, tancl, manoranj}@comp.nus.edu.sg

Abstract

Discrete values have important roles in data mining and knowledge discovery. They are
about intervals of numbers which are more concise to represent and specify, easier to use and
comprehend as they are closer to a knowledge-level representation than continuous values.
Many studies show induction tasks can benefit from discretization: rules with discrete val-
ues are normally shorter and more understandable and discretization can lead to improved
predictive accuracy. Furthermore, many induction algorithms found in the literature require
discrete features. All these prompt researchers and practitioners to discretize continuous
features before or during a machine learning or data mining task. There are numerous
discretization methods available in the literature. Tt is time for us to examine these seem-
ingly different methods for discretization and find out how different they really are, what
are the key components of a discretization process, how we can improve the current level
of research for new development as well as the use of existing methods. This paper aims
at a systematic study of discretization methods with their history of development, effect on
classification, and trade-off between speed and accuracy. Contributions of this paper are an
abstract description summarizing existing discretization methods, a hierarchical framework
to categorize the existing methods and pave the way for further development, concise discus-
sions of representative discretization methods, extensive experiments and their analysis, and
some guidelines as to how to choose a discretization method under various circumstances.
We also identify some issues yet to solve and future research for discretization.

Keywords: Discretization, Continuous Feature, Data Mining, Classification.

1 Introduction

Data usually comes in a mixed format: nominal, discrete, and/or continuous. Discrete and
continuous data are ordinal data types with orders among the values, while nominal values do
not possess any order amongst them. Discrete values are intervals in a continuous spectrum
of values. While the number of continuous values for an attribute can be infinitely many, the
number of discrete values is often few or finite. The two types of values make a difference
in learning classification trees/rules. One example of decision tree induction can further
illustrate the difference between the two data types. When a decision tree is induced, one
feature is chosen to branch on its values. With the coexistence of continuous and discrete
features, normally, a continuous feature will be chosen as it has more values than features
of other types do. By choosing a continuous feature, the next level of a tree can quickly
reach a “pure” state - with all instances in a child/leaf node belonging to one class. In
many cases, this is tantamount to a table-lookup along one dimension which leads to poor
performance of a classifier. Therefore it is certainly not wise to use continuous values to
split a node. There is a need to discretize continuous features either before the decision tree
induction or during the process of tree building. Widely used systems such as C4.5 [35] and
CART [2] deploy various ways to avoid using continuous values directly. There are many
other advantages of using discrete values over continuous ones. Discrete features are closer

to a knowledge-level representation [40] than continuous ones. Data can also be reduced and
simplified through discretization. For both users and experts, discrete features are easier
to understand, use, and explain. As reported in a study [11], discretization makes learning
more accurate and faster. In general, obtained results (decision trees, induction rules) using
discrete features are usually more compact, shorter and more accurate than using continuous
ones, hence the results can be more closely examined, compared, used and reused. In addition
to the many advantages of having discrete data over continuous one, a suite of classification
learning algorithms can only deal with discrete data. Discretization is a process of quantizing
continuous attributes. The success of discretization can significantly extend the borders of
many learning algorithms.

This paper is about reviewing existing discretization methods, standardizing the dis-
cretization process, summarizing them with an abstract framework, providing a convenient
reference for future research and development. The remainder of the paper is organized as
follows. In the next section, we summarize the current status of discretization methods. In
Section 3, we provide a unified vocabulary for discussing various methods introduced by many
authors, define a general process of discretization, and discuss different ways of evaluating
discretization results. In Section 4, we propose a new hierarchical framework for discretiza-
tion methods; describe representative methods concisely; while describing a representative
method, we also provide its discretization results for a commonly used benchmark data set
(Tris). Section 5 shows the results of comparative experiments among various methods and
some analysis. The paper concludes in Section 6 with guidelines of choosing a discretization
method and further work.

2 Current Status

In earlier days simple techniques were used such as equal-width and equal-frequency (or,
a form of binning) to discretize. As the need for accurate and efficient classification grew,
the technology for discretization develops rapidly. Over the years, many discretization al-
gorithms have been proposed and tested to show that discretization has the potential to
reduce the amount of data while retaining or even improving predictive accuracy. Discretiza-
tion methods have been developed along different lines due to different needs: supervised
vs. unsupervised, dynamic vs. static, global vs. local, splitting (top-down) vs. merging
(bottom-up), and direct vs. incremental.

As we know, data can be supervised or unsupervised depending on whether it has
class information. Likewise, supervised discretization considers class information while un-
supervised discretization does not; unsupervised discretization is seen in earlier methods like
equal-width and equal-frequency. In the unsupervised methods, continuous ranges are di-
vided into subranges by the user specified width (range of values) or frequency (number of
instances in each interval). This may not give good results in cases where the distribution
of the continuous values is not uniform. Furthermore it is vulnerable to outliers as they
affect the ranges significantly [4]. To overcome this shortcoming, supervised discretization
methods were introduced and class information is used to find the proper intervals caused
by cut-points. Different methods have been devised to use this class information for finding
meaningful intervals in continuous attributes.

Supervised and unsupervised discretization have their different uses. If no class infor-
mation is available, unsupervised discretization is the sole choice. There are not many
unsupervised methods available in the literature which may be attributed to the fact that
discretization is commonly associated with the classification task. One can also view the
usage of discretization methods as dynamic or static. A dynamic method would discretize
continuous values when a classifier is being built, such as in C4.5 [35] while in the static ap-
proach discretization is done prior to the classification task. There is a comparison between
dynamic and static methods in [11]. The authors reported mixed performance when C4.5
was tested with and without discretized features (static vs. dynamic).

Another dichotomy is local vs. global. A local method would discretize in a localized
region of the instance space (i.e. a subset of instances) while a global discretization method
uses the entire instance space to discretize [8]. So, a local method is usually associated
with a dynamic discretization method in which only a region of instance space is used for
discretization.

Discretization methods can also be grouped in terms of top-down or bottom-up.Top-
down methods start with an empty list of cut-points (or split-points) and keep on adding new
ones to the list by ‘splitting’ intervals as the discretization progresses. Bottom-up methods
start with the complete list of all the continuous values of the feature as cut-points and
remove some of them by ‘merging’ intervals as the discretization progresses.

Another dimension of discretization methods is direct vs. incremental. Direct methods
divide the range of k intervals simultaneously (i.e., equal-width and equal-frequency), needing
an additional input from the user to determine the number of intervals. Incremental methods
begin with a simple discretization and pass through an improvement process, needing an
additional criterion to know when to stop discretizing [5].

As shown above, there are numerous discretization methods and many different dimen-
sions to group them. A user of discretization often finds it difficult to choose a suitable
method for the data on hand. There have been a few attempts [11, 5] to help alleviate the
difficulty. We carry on with this key objective to make a comprehensive study that includes
the definition of a discretization process, performance measures, and extensive comparison.
Contributions of this work are:

1. An abstract description of a typical discretization process,

2. A new hierarchical framework to categorize existing discretization methods in the lit-
erature,

3. A systematic demonstration of different results by various discretization methods using
a benchmark data set,

4. A comparison of nine representative discretization methods chosen from the framework
along two dimensions: times and error rates of a learning algorithm for classification
over publically available benchmark data sets,

5. Detailed examination of comparative results, and

6. Some guidelines as to which method to use under different circumstances, and directions
for future research and development.

3 Discretization Process

We first clarify some terms used in different works followed by an abstract description of a
typical discretization process.

3.1 Terms and Notations

Feature: “Feature” or “Attribute” or “Variable” refers to an aspect of the data. Usually
before collecting data, features are specified or chosen. Features can be discrete, continuous,
or nominal. In this paper we are interested in the process of discretizing continuous features.
Hereafter M stands for the number of features in the data.

Instance: “Instance” or “Tuple” or “Record” or “Data point” refers to a single collection
of feature values for all features. A set of instances makes a data set. Usually a data set
is in a matrix form where a row corresponds to an instance and a column corresponds to a
feature. Hereafter N is the number of instances in the data.

Cut-Point: The term “cut-point” refers to a real value within the range of continuous
values that divides the range into two intervals, one interval is less than or equal to the
cut-point and the other interval is greater than the cut-point. For example, a continuous
interval [a, b] is partitioned into [a, ¢] and (e, b], where the value ¢ is a cut-point. Cut-point
is also known as split-point.

Arity: The term “arity” in the discretization context means the number of intervals or
partitions. Before discretization of a continuous feature, arity can be set to k - the number
of partitions in the continuous features. The maximum number of cut-points is k£ — 1.
Discretization process reduces the arity but there is a trade-off between arity and its effect
on the accuracy of classification and other tasks. A higher arity can make the understanding
of an attribute more difficult while a very low arity may affect predictive accuracy negatively.

3.2 A Typical Discretization Process

By “typical” we mean univariate discretization. Discretization can be univariate or multivari-
ate. Univariate discretization quantifies one continuous feature at a time while multivariate
discretization considers simultaneously multiple features. We mainly consider univariate dis-
cretization throughout this paper and discuss more about multivariate discretization briefly
at the end as an extension of univariate discretization.

A typical discretization process broadly consists of four steps (seen in Figure 1): (1)
sorting the continuous values of the feature to be discretized, (2) evaluating a cut-point
for splitting or adjacent intervals for merging, (3) according to some criterion, splitting or
merging intervals of continuous value, and (4) finally stopping at some point. In the following
we discuss these four steps in more detail.

3.2.1 Sorting

The continuous values for a feature is sorted in either descending or ascending order. Sort-
ing can be computationally very expensive if care is not taken in implementing it with
discretization. It is important to speed up the discretization process by selecting suitable
sorting algorithms. Many sorting algorithms can be found in classic data structures and
algorithms books. Among these “Quick-sort” is an efficient sorting algorithm with a time
complexity of O(N log N).

Another way to improve efficiency is to avoid sorting a feature’s values repeatedly. If
sorting is done once and for all at the beginning of discretization, it is a global treatment and
can be applied when the entire instance space is used for discretization. If sorting is done at
each iteration of a process, it is a local treatment in which only a region of entire instance
space is considered for discretization.

3.2.2 Choosing a cut-point

After sorting, the next step in the discretization process is to find the best “cut-point” to
split a range of continuous values or the best pair of adjacent intervals to merge. One typical
evaluation function is to determine the correlation of a split or a merge with the class label.
There are numerous evaluation functions found in the literature such as entropy measures and
statistical measures. More about these evaluation functions and their various applications is
discussed in the following sections.

3.2.3 Splitting/Merging

As we know, in a top-down approach, intervals are split while for a bottom-up approach
intervals are merged. For splitting it is required to evaluate ‘cut-points’ and to choose the
best one and split the range of continuous values into two partitions. Discretization continues

Continuous Attribute

Sort Attribute

Y

No

= Adjacent Intervals

Get Cut Point /

Y

Evaluation
Measure

Measure
Satisfied

Y Yes

Split / Merge
Attribute

Y

Stopping
Criterion

Discretized Attribute

// Sorting continuous attribute

// Selects a candidate cutpoint
// or adjacent intervals

// Invokes appropriate measure

// Checks the outcome

// Discretize by splitting or
// merging adjacent intervals

// Controls the overall discretization

// based on some measure

Figure 1: Discretization Process.

Sorting

Evaluation

Splitting/M er ging

Stopping

with each part (increased by one) until a stopping criterion is satisfied. Similarly for merging,
adjacent intervals are evaluated to find the best pair of intervals to merge in each iteration.
Discretization continues with the reduced number (decreased by one) of intervals until the
stopping criterion is satisfied.

3.2.4 Stopping Criteria

A stopping criterion specifies when to stop the discretization process. It is usually governed
by a trade-off between lower arity with a better understanding but less accuracy and a higher
arity with a poorer understanding but higher accuracy. We may consider k to be an upper
bound for the arity of the resulting discretization. In practice the upper bound & is set much
less than N, assuming there is no repetition of continuous value for a feature. A stopping
criterion can be very simple such as fixing the number of intervals at the beginning or a more
complex one like evaluating a function. We describe different stopping criteria in the next
section.

3.3 Result evaluation for discretization

Assuming we have many methods and each provides some kind of discretized data, which
discretized data is the best? This seemingly simple question cannot be easily dealt with a
simple answer. This is because the result evaluation is a complex issue and depends on a
user’s need in a particular application. It 1s complex because the evaluation can be done
in many ways. We list three important dimensions: (1) The total number of intervals -
intuitively, the fewer the cut-points, the better the discretization result; but there is a limit
imposed by the data representation. This leads to the next dimension. (2) The number
of inconsistencies (inconsistency is defined later) caused by discretization - it should not be
much higher than the number of inconsistencies of the original data before discretization. If
the ultimate goal is to generate a classifier from the data, we should consider yet another
perspective. (3) Predictive accuracy - how discretization helps improve accuracy. In short,
we need at least three dimensions: simplicity, consistency, and accuracy. Ideally, the best
discretization result can score highest in all three departments. In reality, it may not be
achievable, or necessary. To provide a balanced view of various discretization methods in
terms of these measures is one of the objectives of this paper.

Simplicity is defined by the total number of cut-points. Accuracy is usually obtained
by running classifier in cross validation mode. Consistency is defined by having the least
inconsistency count which is calculated in three steps: (in the following description a pattern
is a set of values for a feature set while an instance is a pattern with a class label) (1) two
instances are considered inconsistent if they are the same in their attribute values except for
their class labels; for example, we have an inconsistency if there are two instances (0 1, a)
and (0 1, @) - class label is separated by “” - because of different classes a and a@. (2) the
inconsistency count for a pattern is the number of times it appears in the data minus the
largest number of class label: for example, let us assume there are n instances that match
the pattern, among them, ¢; instances belong to labely, ¢ to labels, and cg to labelg where
¢1 + ca + c3 = n. If ¢z is the largest among the three, the inconsistency count is (n — ¢3).
(3) the total inconsistency count is the sum of all the inconsistency counts for all possible
patterns of a feature subset.

4 Discretization Framework

There are numerous discretization methods available in the literature. These methods can
be categorized in several dimensions as discussed earlier. We restate them here: dynamic
vs. static, local vs. global, splitting vs. merging, direct vs. incremental, and supervised vs.
unsupervised. One can construct different combinations of these dimensions to group the

Distretization (level)

Merging Spliting (v)

| | N y
Supervissd Unsupervised — Unsupervised Supervised (levd 2)
Dependency <Null> Binning Entropy Biming Dependency Accurary (level 3:

‘ ‘ Disc. Megsure)
| | | HT

ChiMerge Eq Width EqFreg D3 Mataas IR Magind Ent Zeta Adgptive level &
Chi2 02 Digance Quantizer Disc. Method)
ConMerge MDLP

Contrst

Figure 2: A Hierarchical Framework for Discretization Methods.

methods. But arbitrary combinations will not help in advancing the research of discretiza-
tion. We wish to create a hierarchical framework that is systematic and expandable, and
attempts to cover all existing methods. Each discretization method found in the literature
discretizes a feature by either splitting the interval of continuous values or by merging the
adjacent intervals. Both splitting and merging categories can further be grouped as super-
vised or unsupervised depending on whether class information is used. To repeat, supervised
discretization methods use the available class information while the unsupervised methods
do not.

With these considerations in mind, we propose a hierarchical framework in Figure 2. We
describe different discretization measures according to two approaches: splitting and merging
(level 1). We then consider whether a method is supervised or unsupervised (level 2). We
further group together methods that use similar discretization measures (level 3) eg. binning
and entropy. Asissuggested in Figure 2, the supervised and unsupervised division determines
different (non-overlapping) measures used. Hence this conceptually useful division will not be
discussed in detail below. We will discuss the use of various measures under the categories of
splitting and merging as shown in the table below (X indicates that a measure is not available
in the category. We may find variations of these measures like Mantaras distance [5] which
we categorize under entropy measure for their similarity.)

| Splitting | Merging |

binning X

entropy X
dependency | dependency

accuracy X

In the following two subsections, some representative methods are chosen for in depth
discussion. Their related or derived measures are also briefly mentioned. For each measure

we give: (1) the definition of the measure; (2) its use in some discretization methods; (3) the
stopping criteria used; and (4) its discretization results for the Iris data: cut-points for each
attribute, how many of them, and how many inconsistencies resulted from discretization.
The Tris data is used as an example in illustrating results of different discretization methods.
The data is obtained from the UC Irvine data repository [29]. Tt contains 150 instances with
four continuous features and three class labels.

4.1 Splitting methods

We start with a generalized algorithm for splitting discretization methods.

Splitting Algorithm
S = Sorted values of feature f

Splitting(S){
if StoppingCriterion(}) == SATISFIED
Return
T = GetBestSplitPoint(S)
S1 = GetLeftPart(S, T)
Sy = GetRightPart(S, T)
Splitting(S1)
Splitting(S2)

The splitting algorithm above consists of all four steps in the discretization process, they
are: (1) sort the feature values, (2) search for a suitable cut-point, (3) split the range of
continuous values according to the cut-point, and (4) stop when a stopping criterion satisfies
otherwise go to (2). Many splitting discretization measures are found in the literature: for

example, binning [18], entropy [33, 4, 13, 43, 5], dependency [17], and accuracy [6].

4.1.1 Binning

It is the simplest method to discretize a continuous-valued attribute by creating a specified
number of bins. The bins can be created by equal-width and equal-frequency.

Equal width or frequency: Tn both methods, arity k is used to determine the number
of bins. Each bin is associated with a distinct discrete value. In equal-width, the continuous
range of a feature is evenly divided into intervals that have an equal-width and each interval
represents a bin. In equal-frequency, an equal number of continuous values are placed in each
bin.

The two methods are very simple but are sensitive for a given k. For equal-frequency, for
instance, many occurrences of a continuous value could cause the occurrences to be assigned
into different bins. One improvement can be after continuous values are assinged into bins,
boundaries of every pair of neighboring bins are adjusted so that duplicate values should
belong to one bin only. Another problem is outliers that take extreme values. One solution
can be to remove the outliers using a threshold.

Stopping criterion: as the number of bins is fixed there is no need for any other stopping
criterion.

Results: We discretized the Iris data using equal-width and equal-frequency methods with
arity k = 4. Thus we obtained three cut-points for each attribute using both methods as
shown in the following tables.

Equal-Width
Feature | Cut Points | # Points

F | 5.26.1,7.0 3
F, | 26,32 358 3
Fs 1.9,3.9,5.4 3
Fs | 06,13,19 3

Equal-Frequency
Feature | Cut Points | # Points

Fi | 51,58, 64 3
F, | 28,30,3.3 3
Fs | 1.6,44,5.1 3
Fa |03,13,18 3

As values are not evenly distributed, in most cases, cut-points obtained by the two
methods are different.

1R: Binning methods mentioned above do not use class information even if it is available.
1R [18] is a supervised discretization method using binning. After sorting the continuous
values, IR divides the range of continuous values into a number of disjoint intervals and
adjusts the boundaries based on the class labels associated with the continuous values. Each
interval should contain a minimum of 6 instances with the exception for the final interval
which would contain the remaining instances not yet grouped in any interval. The adjustment
at the boundary does not allow to terminate an interval if the next instance has the same
class label as the majority class label seen until then in that interval. This can be made
clearer with the following simple example. The first row in the example is the values of a
feature after sorting while the second row stands for the class label (R or C).

11 14 15 18 19 20 21|22 23 25 30 31 33 35|36
R ¢ ¢ R C¢C R C|R €C C R C R C|R
c | c =
1R would form an interval of class C stretching from 11 to 21, another interval of class C from
22 to 35, and the last of class R including just 36. The two leftmost intervals would then be
merged, as they predict the same class based on row 3 above. There are 6 misclassifications
after discretization.
Stopping criterion: The stopping criterion is indirectly specified by the minimum number
of instances each interval should contain. The default value is 6.
Results: Discretization results of the Iris data set are shown below:

Feature Cut Points # Points
Fy 4.9,5.5,6.1,6.6,7.7, 7.9 6
Fy 2.7,3.2,4.2,4.4 4
F3 1.9,6.9 2
Fy 0.6, 1.6, 2.5 3

Summary: Equal-width and equal-frequency are simple and easy to implement. This
does not come without a price. First, arity k& has to be specified beforehand. Because we
usually do not know what a proper value k is, we need to resort to trial-and-error or specify
a value randomly as we did for the Tris data. Second, even if class information is available,
these two measures cannot make use of it. 1R is one way to improve in this regard. Tt
relies on class information to overcome such problems that occur with equal-frequency which
forces to put two instances with the same class label in two different intervals. Mazimum

marginal entropy [11] is another way to improve equal-frequency by using class information
when adjusting boundaries of neighboring bins.

For the Iris data, we provide the discretization results for equal-width, equal-frequency,
and 1R. The three methods give different cut-points. Their numbers of inconsistency are
also different. The measures (number of cut-points and number of inconsistencies) are sum-
marized in the following table. For the Iris data with & = 4, equal-frequency seems the best.
For other k values more investigation will be needed.

| Methods | Inconsistency | # Points |

Equal-width 10 12
Equal-freq 6 12
1R 7 15

4.1.2 Entropy Measure

Entropy is one of the most commonly used discretization measures in the literature. Shannon
defines entropy of a sample variable X as [39, 41]:

H(X) == pslogp:

where x represents a value of X and p, its estimated probability of occurring. It is the
average amount of information per event where information of an event is defined as:

I(z) = —log p,.

Information is high for lower probable events and low otherwise. Hence, entropy H is the
highest when each event is equi-probable, i.e., p,;, = pg; for all i, j; and it is the lowest
when p, = 1 for one event and 0 for all other events. Entropy measure is used in various
applications. When used in discretization, entropy is usually used in a supervised manner.

ID3 type: 1ID3 [33] and C4.5 [35] are two popular algorithms for decision tree induction
that use entropy measure. They construct an inductive decision tree by selecting a feature
if its branching results in the overall minimum entropy at the next layer of the decision tree.
A continuous feature has to be discretized to avoid creating too many branches for a node.
ID3 employs a greedy search to find the potential cut-points within the existing range of
continuous values using the following formula:

H = —piejt Z;-n:l Djleft lOgDjleft — Pright Z;-n:l Dj,right 08 Pj right.

In this equation, m is the number of classes, piey: and prign: are probabilities that an instance
is on the left or right side of a cut-point respectively. p; siqe denotes the probability that an
instance in the side (left or right) belongs to class j. The cut-point with the lowest entropy
is chosen to split the range into two parts. Splitting continues with the each part until a
stopping criterion is satisfied. In fact, it binarizes a range at every split.

Stopping criterion: When every leaf node is pure (all instances in the node belong to
one class), it stops. The condition can be relaxed based on the needs.

Results: We do not provide discretization results here for two reasons. One is that
classification algorithms like TD3 and C4.5 do discretization (binarization) for continuous

features under any circumstances. They do that at each branching node. The other reason
is that the cut-points thus obtained are usually only good for the classification algorithm.
We discuss this discretization method (binarization) here because it is a base for its many
successors such as D2, MDLP.

D2: This discretization method [4] applies entropy measure to find a potential cut-point
to split a range of continuous values into two intervals. Unlike ID3 which binarizes a range of
values while building a decision tree, D2 is a static method that discretizes the whole instance
space. Instead of finding only one cut-point, it recursively binarizes ranges or subranges until

10

a stopping criterion is met 1. The discretized data is then used for building a classifier. So, D2
is a successor of TD3 discretization. A stopping criterion is essential to avoid over-splitting.
Stopping criterion: The stopping conditions used in D2 can be one of the following:

1. Stop if the number of instances to split is less than 14,

2. Stop if the number of intervals is more than §,

3. Stop if the information gains on all cut-points are the same, or

4. Stop if all instances in the interval to be split belong to the same class.

One of the problems is that these stopping conditions are rather ad hoc. The next method
(MDLP) provides a more principled way of determining when the recursive splitting should
stop.

Results: For the Iris data, D2 gave the following results:

Feature Cut Points 7+ Points
Fy 4.9,5,5.5,5.6,58,6.3,7,7.9 8
Fy 2.3,25,2.8,29,3,3.3,34,4.4 8
F3 1.9,4.5,4.8,5.1,6.9 5
Fy 0.6,1.4,1.5,1.8,2.5 5

Entropy (MDLP): In [14], they propose that potential cut-points are those that form
boundaries between classes after sorting the continuous feature values. Using the example
for 1R, we can see that the number of boundaries is 12 which is less than (k — 1 = 14).
Therefore, its efficiency increases as fewer potential cut-points need to be checked.
11114 15|18 |19 120 |21 |22|23 25|30 |31|33]|35] 36
mlc clnlcln|elR|e CR]|C|R]T]R
However, not all boundaries are needed to serve as cut-points for discretization. A min-
imum description length principle (MDLP) is used to choose useful cut-points. When the
selection is done, the discretization process completes. A generalization of this measure is
used for discretizing continuous features while learning Bayesian networks in [15].
Stopping criterion: MDLP is used as stopping criterion. MDLP is usually formulated
as a problem of finding the cost of communication between a sender and a receiver. It is

assumed that the sender has the entire set of instances while the receiver has the class labels
of the instances. The sender needs to convey the proper class labeling of the instances to the
receiver. It says that the partition induced by a cut-point for a set of instances is accepted if
and only if the cost or length of the message required to send before partition is more than
the cost or length of the message required to send after partition. A detailed account how
this is done can be found in [14].

Results: Entropy (MDLP) discretized the Iris data as shown below.

Feature | Cut Points | # Points
Fy 5.4,6.1 2
Fy 44 1
F3 1.9,4.9,6.9 3
Fy 0.6, 1.6, 2.5 3

Mantaras distance: Cerquides and Mantaras [5] introduced a distance measure (Man-
taras Distance [28]) to evaluate the cut-points. Let us consider two partitions P, and P,
on a range of continuous values, each containing n and m number of classes. The Mantaras
distance between two partitions due to a single cut-point is given below.

"Without a stopping criterion, it could reach a status that each distinct value is a cut-point.

11

Dist(P,, Py,) = [PalP)+1(Po|Pa)

T(P.NPy)
Since,
I(Py|Py) = I(Py N Py) — I(P,)
Dist(P,, Py) = 2 — LFlt I
where,

[(Pa) = _Z?zl Pilog, P;
I(Py) = =301, Pjlogy P
[(Pa N Pb) = - Z?:l ;nzl PZ] 10g2 PU

p=1

|C;| = total count of class ¢

|N| = total number of instances
Pij = Pi X Pj

It chooses the cut-point that minimizes the distance.

Stopping criterion: It also uses the minimum description length principle discussed in
Entropy (MDLP) as its stopping criterion to determine whether more cut-points should be
introduced.

Results: Using this distance, we obtained results for the Tris data below.

Feature Cut Points # Points
I 5.7,7.9 2
Fy 3,44 2
Fs | 1.9,44,51,690 7
Fy 0.6,1.3,1.8,25 4

Summary: ID3 type applies binarization to discretize continuous values while building
a tree. D2 does better by separating discretization from tree building and by recursively
binarizing ranges and/or subranges. Its problem is that there is no principled way to stop
its recursive process of binarization. Entropy (MDLP) uses the minimum description length
principle to determine when to stop discretization. It also suggests that potential cut-points
are those that separate different class values. Based on the summary of results in the fol-
lowing table for the Iris data, MDLP is an obvious winner as it produces comparatively low
inconsistencies and cut-points.

| Methods | Inconsistency | # Points |

D2 1 26
MDLP 3 9
Mantaras 8 12

Another work using entropy can be found in [43]. A contrast measure is introduced that
uses the clustering concept to get the cut-point to induce a decision tree. The idea is to search
for clusters that are contrasted as much as possible from the instance space proximity point
of view. The cut-point for the maximum contrast is chosen. But the cut-point selected must
be an informative one, i.e., it is uninformative to select a cut-point that separates instances
belonging to the same class. So, an entropy measure is proposed to select cut-points further.
As 1t is mainly suggested in the context of tree building, we stop short of discussing it here
and refer the interesting reader to [43] for more details.

4.1.3 Dependency

Zeta: Tt is a measure of strength of association between the class and a feature. In [17],
it 1s defined as the maximum accuracy achievable when each value of a feature predicts a

12

different class value. We use a simple case to illustrate how Zeta is calculated. Assume
that there is a continuous feature X with two classes (C1 and C3). The task is to find one
cut-point (two intervals) at a time with the highest Z (zeta) value.

Feature | X; | X5
C1 ni1 | niz
Cs nay | Na2

A modal class in interval 7 is determined as follows:

C is the modal class, if maxz(ny;, ne;) = ny;

C5 is the modal class, if maz(ny;, ne;) = na;
where

i takes a value (1 or 2) if there are two intervals, and

n1; i1s the number of instances in interval ¢ that belong to Cf.
A Zeta value for a cut-point is:

k
4= Z"f(i),i
1=1

where
k = number of prespecified intervals (2 by default),
f() = a class index that has the highest count of instances in interval ¢, and
ny(;),; = number of instances in interval 7 with class index f(i) (modal class index).

For a feature with arity k, there could be k — 1 potential cut-points. A cut-point with the
highest 7 value is selected if no neighboring pair of partitions predicts the same class (or
two distinct class values should be predicted). This method continues binarizing subranges
in the same spirit until the stopping criterion is met. A more complicated version of this
method is when k& > 2 which may incur an intractable discretization process [17]. Therefore,
in practice k is set to 2.

Stopping criterion: The process stops when the specified number of intervals is reached
for each continuous feature.

Results: The number of final intervals of a feature was specified as 4 (i.e., 3 cut-points).
Zeta discretized the Iris data as follows:

Feature | Cut Points | # Points
Fy 5.4,6.1,7.9 3
7y 29,3, 44 3
F3 1.9,4.7,6.9 3
Fy 0.6, 1.6, 2.5 3

| Method | Inconsistency | 7t Points |
| Zeta | 3 | 12 |

Zeta obtained reasonable discretization results for this data. Clearly, with a different
number of final intervals, the results will certainly change. We could also allow different
features to have different final intervals if we have some prior knowledge about them.

4.1.4 Accuracy

Accuracy measure usually means the accuracy of a classifier. An example of using accuracy
for discretization is Adaptive Quantizer [6]. Tt considers how well one attribute predicts the
class at a time. For each attribute, its continuous range is split into two partitions either
by equal-frequency or by equal-width. The splitting is tested by running a classifier to see
if the splitting helps improve accuracy. It continues binarizing subranges and the cut-point

13

which gives the minimum rate is selected. As it involves training a classifier, it is usually
more time consuming than those without using a classifier.
Stopping criterion: For each attribute, the discretization process stops when there is no

improvement in accuracy.
Results: We used C4.5 as the classifier to see the improvement while splitting the attribute
values using equal-width.

Feature Cut Points # Points
7 5.20, 6.10 2
Fy 2.60, 3.20 2
F3 2.47,3.95, 5.42 3
Fy 0.70, 1.30, 1.90 3

| Method | Inconsistency | # Points |
| Accuracy | 10 | 10 |

The choice of a classifier depends on a user’s preferences. However, as the classifier
need to be trained many times, it is necessary to choose one with small time complexity.
For example, C4.5 runs reasonably fast with time complexity O(N log N) where N is the
number of instances.

4.2 Merging methods

We start with a generalized algorithm for discretization methods adopting the merging or
bottom-up approach.

Merging Algorithm
S = Sorted values of feature f
Merging(S
iof StoppingCriterion(}) == SATISFIED
Return
T = GetBestAdjacentIntervals(S)
S = MergeAdjacentIntervals(S, T)
Merging(S)
}

The above algorithm consists of the four important steps in the discretization process.
They are: (1) sorting the values, (2) finding the best two neighboring intervals, (3) merging
the pair into one interval, and (4) stop when the chosen stopping criterion satisfies. Methods
in this category [21, 25, 44] use the x? statistic as one of the evaluation measures. Hence,
we describe the measure first.

x? measure: y? is a statistical measure that conducts a significance test on the relation-

ship between the values of a feature and the class. Kerber [21] argues that in an accurate
discretization, the relative class frequencies should be fairly consistent within an interval
(otherwise the interval should be split to express this difference) but two adjacent intervals
should not have similar relative class frequency (in that case the adjacent intervals should
be merged into one). The x? statistic determines the similarity of adjacent intervals based
on some significance level. Tt tests the hypothesis that two adjacent intervals of a feature are
independent of the class. If they are independent, they should be merged; otherwise they
should remain separate. The formula for computing the x? value is:

2 _ 2 P (Aij—Eij)®
X* =201 2=

14

where:
p = number of classes,
Aj;; = number of distinct values in the ith interval, jth class,
R; = number of examples in ith interval = Zg-:l Aij,
C; = number of examples in jth class = Y70, A,
N = total number of examples = Zgzl C; and
F;; = expected frequency of A;; = (R; x C;)/N .

ChiMerge: Tt is a supervised, bottom-up discretization procedure [21]. Tnitially each dis-
tinct value of the attribute is considered to be one interval. x? tests are performed for every
pair of adjacent intervals. Adjacent intervals with the least x? value are merged together till
the chosen stopping criterion satisfies. A higher value of significance level for x? test causes
over discretization while a lower value causes under discretization. The recommended proce-
dure is to set the significance level between 0.90 to 0.99 and have a maz-interval parameter
set to 10 or 15. This maz-interval parameter can be included to avoid the excessive number
of intervals from being created.

Stopping criterion: The merging of adjacent intervals is repeated until x? values of all
pairs of adjacent intervals are smaller than a specified threshold value which is determined
by a chosen significance level. The parameter maz-interval is used to impose a constraint
that the number of discretized intervals should be less than or equal to maz-interval.

Results: Discretization results over all four features of the ITris data set are shown below:

Feature Cut Points # Points
Fy 4.3,4.9,5.0,5.5,5.8,6.3, 7.1 7
Fs 2.0, 2.5,2.9,3.0,34 5
Fs 1.0, 3.0, 4.5, 4.8, 5.0, 5.2 6
Fy 0.1,1.0, 1.8 3

Chi2: Tt is an automated version of ChiMerge. Tn Chi2 [26], the statistical significance
level keep changing to merge more and more adjacent intervals as long as the inconsistency
criterion [25] is satisfied. By inconsistency, it means that two patterns match but belong
to different categories. The algorithm not only discretizes the continuous data set but also
selects a subset of relevant features. Like ChiMerge, x? statistic is used to discretize the
continuous features until some inconsistencies are found in the data. Doing so some features
are removed as irrelevant and hence a subset of relevant features is retained that is consistent.

Stopping criterion: The merging continues until the inconsistency is not more than the

set limit. The inconsistency limit is 0 by default.
Results: Discretization results over all four features of the Iris data set with 0 inconsistency
are shown below:

Feature Cut Points # Points
Fy 4.3,4.9,5.5,5.8 6.1, 7.1 6
s 2.0,24,29,3.2 34,39 6
F3 1.0, 1.9, 3.0, 3.6, 4.8, 5.2, 5.4 7
Fy 0.1,1.0, 1.3, 1.8 4

One distinct feature of Chi2 is its capability to remove irrelevant attributes that do not help
in classification. If we are allowed to tolerate some inconsistency, it is possible to merge the
whole range of some attributes which are completely independent to the class. The following
table shows that, by allowing 3% inconsistency, we could merge the first two attributes that
are irrelevant.

15

Feature Cut Points # Points
Fy Merged 0
Fy Merged 0
Fs 1.0, 3.0, 4.8, 5.2 4
Fa 0.10, 1.00, 1.80 3

A method very similar to Chi2 is ConMerge [44] which also uses the y? statistic and the
inconsistency measure. Instead of considering one attribute at a time, ConMerge chooses
the lowest y? value among the intervals of all continuous features. It requires more dynamic
space.

Summary: ChiMerge is one of the first methods that moves away from a splitting ap-
proach. It specifically considers the relations between a feature and the class using the y?
statistic. The basic idea is that if a merge of two continuous values or two intervals does not
affect the differentiation of class values, the merge should be approved. y? statistic allows
some noise tolerance. The problem is how to set a proper threshold for each feature. Chi2
suggests to automate the threshold tuning via the inconsistency measure. Another advan-
tage of using Chi2 is to allow noise tolerance which leads to removal of irrelevant features.
As seen in the case of allowing 3% inconsistency in the Iris data, the values of its first two
features are merged into one value only. This means these two features take a constant value
and can thus be removed. The following table summarizes the discretization results. In this
particular case, Chi2 with 3% inconsistency yields the best results: 4 inconsistencies and 7
cut-points.

| Method | Inconsistency | # Points |

ChiMerge 4 21
Chi2 0 23
Chi2(3%) 4 7

4.3 Remarks

We have reviewed representative discretization methods under two categories: splitting and
merging. The majority of methods are found in the splitting category. We used the Iris
data as an example to show the different results obtained by various discretization methods
without resorting to any classification algorithms. An intuitive relation between the two
evaluation measures (number of inconsistencies and number of cut-points) is that the more
the cut-points, the fewer the inconsistencies. So a good set of results should be the one with
low values in both evaluation measures. We indeed observe that some methods did better
than others for the Iris data: for example, Entropy (MDLP) was the best in the category of
splitting; Chi2 in the category of merging showed that it is possible for a trade-off between
the two measures. That is, in addition to discretization, Chi2 can also remove features if
some level of inconsistency is allowed.

The proposed framework has served one purpose so far: it helps us organize many dis-
cretization methods so that we can describe the methods in groups and observe their perfor-
mance. Its other aspects are:

1. providing an overall picture of various methods and indicating their relations among
them;

2. suggesting what is missing according to this framework and what methods are more
similar than others; and

3. offering a starting point to think of new measures or methods; in other words, we hope
that this framework makes the design of new methods easier.

If we reorganize the discretization methods according to the five different dimensions
reviewed in Section 2, namely, global ws. local, supervised vs. unsupervised, direct ws.

16

Global/ | Supervised/ Direct/ Splitting/ | Static/
Methods Local | Unsupervised | Incremental | Merging | Dynamic
Equal-width Global | Unsupervised Direct Splitting Static
Equal-frequency Global | Unsupervised Direct Splitting Static
| 1R | Global | Supervised | Direct | Splitting | Static |
D2 Local Supervised | Incremental | Splitting Static
Entropy (MDLP) | Local Supervised | Incremental | Splitting Static
Mantaras Local Supervised Incremental | Splitting Static
| D3 | Local | Supervised | Incremental | Splitting | Dynamic |
Zeta Global Supervised Direct Splitting Static
Accuracy Global Supervised Direct Splitting Static
ChiMerge Global Supervised | Incremental | Merging Static
Chi2 Global Supervised Incremental | Merging Static
ConMerge Global Supervised Incremental | Merging Static

Table 1: Representative discretization methods in multiple dimensions. Double horizontal lines
separate different combinations.

incremental, splitting vs. merging, and static vs. dynamic, we obtain another type of
groupings in a multi-dimensional view as seen in Table 1.

5 Experiments and Analysis

Using the Iris data, we clearly see that discretization simplifies data (continuous values are
quantized into intervals) without sacrificing the data consistency much (only a few inconsis-
tencies occur after discretization). We are now ready to evaluate the ultimate objective of
discretization - whether discretization helps improve the performance of learning and under-
standing of the learning result. The improvement can be measured in three aspects through
before/after discretization comparison: (1) accuracy, (2) time for discretization and for learn-
ing, and (3) understandability of the learning result. Thus, we need a classification learning
algorithm. A critical constraint for choosing such a learning algorithm is that it should be
able to run with both data types, i.e., continuous as well as discrete. Not every learning
algorithm can do so. Naive Bayes Classifier [10, 22], as an example, can only run on discrete
data. C4.5 [35] is chosen for experiments because it can handle both data types and it is
conveniently available and widely used so that a reader can easily repeat the experiments
here. Furthermore, C4.5 has become a de facto standard for comparison in machine learn-
ing. We have reimplemented the discretization methods used in the experiments based on
the descriptions of the published papers. The programs of these discretization algorithms are
available through ftp or web access free of charge upon request. We will examine the effect of
discretization on C4.5 through comparisons before/after discretization. Before doing so, we
outline the specific meaning of each aspect of evaluation.

e Accuracy - we wish to see if discretization would result in the decrease or increase of
accuracy. The usual 10-fold cross validation procedure will be used.

e Time for discretization - we wish to see if a discretization method that takes more time
would result in better accuracy.

e Time for learning with different data types of the same data - with which data types
the learning requires more time to complete.

e Understandability - the learning result of C4.5 is a decision tree. This aspect is indi-

rectly measured through the number of nodes in a tree.

17

Data Total#Instances F#Features
1 Australian 690 14
2 Breast, 699 9
3 Glass 214 10
4 Heart 270 13
5 Vehicle 846 18
6 Iris 150 4
7 Wine 178 13
8 Pima 768 8
9 Bupa 345 6
10 Thyroid 215 5
11 Tonos 351 34

Table 2: Summary of data sets.

5.1 Experiment set-up

Eleven data sets are selected from the UC Irvine machine learning data repository [29] with
all numeric features and varying data sizes. A summary of data sets can be found in Table 2.
A total of 8 discretization methods excluding TD3 type are chosen to compare according
to Table 1 excluding Equal-width, and Accuracy. Accuracy method takes too long time
as every selection of a cut-point evokes a decision tree learning. 1D3 type is used as the
base for comparison, as we use C4.5 (an improved version of ID3) to provide the figures
of performance before discretization. Equal-width is similar to Equal-Freq. We choose the
latter based on our experience gained in Section 4.
Each experiment is conducted as follows:

e for each data set

— test each discretization method by 10-fold cross validation of C4.5
1. take every 9/10 of the data in each round (10 in total)
2. run a discretization method to get cut-points, measure the time needed
3. use these cut-points to discretize the rest 1/10 data
4. use the above 9/10 data for training and the rest data for testing

— report the average error rate and time of C4.5.

For the results without discretization, we skip steps 2 and 3 in the above procedure.

5.2 Results and analysis

(C4.5 results are shown in Tables 3 and 4. Each result consists of mean and deviation of the
reported error rates of 10-fold cross validation. The results of C4.5 without discretization are
listed in the column “Continuous” in Tables 3 for comparison with the results after applying
various discretization methods. The results are grouped in terms of the characteristics of
discretization methods for easy comparison. Averages at the last rows of Tables 3 and 4 give
an indication how the discretization methods affect predictive accuracy. Most discretization
methods do not significantly increase error rates. In the meantime, we also need to look at
other dimensions for performance evaluation.

Table 5 reports the time taken by each discretization method. Tt is clear that each method
takes varying amount of time. This also serves only as an indication because of the flexibility
shown in each method’s stopping criterion. What is interesting to us is whether the more
time spent on discretization for a method, the less error rate for C4.5. Figure 3 suggests
that there is such a relation. A similar finding is reported in [17]: we measure the time only
taken by the discretization step while they measure the time taken by discretization and by

18

Data Continuous | Zeta ChiMerge Chi2
Australian | 15.28+5.84 | 15.60+4.13 | 14.42+5.42 | 13.50+5.14
Breast 4.7241.25 13.05+5.83 | 4.92+£2.75 | 5.01+2.43
Glass 1.86+2.28 | 2.314+4.20 | 1.90+2.28 | 3.2041.22
Heart 22.16+4.14 | 16.85+£4.66 | 20.21+4.10 | 20.00£4.12
Vehicle 26.87+4.57 | 29.00+3.54 | 30.87+4.57 | 33.33£2.13
Iris 4.34+2.84 | 8.24+6.67 | 5.02+£3.48 | 4.01+£3.32
Wine 6.22+6.84 | 6.82+6.58 | 7.92+5.80 | 6.90+4.04
Pima 26.2242.65 | 37.70+£5.97 | 27.31+4.43 | 26.91+3.12
Bupa 33.134£5.70 | 34.73+£6.45 | 33.9948.39 | 32.09+5.55
Thyroid 8.00£4.31 | 23.77+£9.16 | 8.914+4.43 | 9.21+2.22
Tonos 9.144£3.78 | 11.374£6.29 | 8.944+4.52 | 8.52+3.22
Average 14.36 18.13 14.95 14.79

Table 3: C4.5 error rates and standard deviations. For the column “Continuous”, C4.5 obtained
results without any static discretization. Average error rates of all data sets are shown at the
last row (continued in Table 4).

Data Eq-Freq 1R D2 MDLP Mantaras
Australian | 14.51+6.08 | 13.00+5.47 | 14.134+5.96 | 14.00£5.90 | 13.8245.64
Breast 7.651+3.59 13.27£3.32 | 5.30+3.09 | 6.37+£4.07 | 7.79£3.03
Glass 22.43£11.09 | 18.79£8.04 | 2.79+4.18 | 2.31£3.08 | 2.77+4.27
Heart 22.86+£6.42 | 20.00£7.17 | 22.13£4.71 | 20.35%5.75 | 16.07£4.29
Vehicle 31.39+£5.00 | 28.57+3.97 | 27.90+4.26 | 29.47+5.03 | 29.81+£6.44
Iris 8.144+5.75 6.07+£6.73 | 5.13+5.79 | 4.254+4.58 | 10.23+5.10
Wine 7.96+5.17 6.84+6.67 | 6.784+5.49 | 7.95+7.27 | 7.534£8.35
Pima 27.68+4.67 | 25.17+4.20 | 24.42+4.32 | 25.214+4.23 | 22.91£8.65
Bupa 43.96+£8.96 | 36.32+6.40 | 34.324+6.07 | 34.294+8.27 | 31.9048.39
Thyroid 12.69+8.90 | 6.444+3.08 | 8.98+6.00 | 4.23+4.44 | 7.90£5.11
Tonos 9.67+5.74 11.9846.23 | 8.58+5.10 | 9.15+5.38 | 10.6945.32
Average 18.99 16.95 14.59 14.33 14.69

Table 4: C4.5 error rates and standard deviations (continued from Table 3).

Data Eq-Freq | 1R | D2 | MDLP | Mantaras | Zeta | ChiMerge | Chi2
Australian | 0.87 0.68 | 1.43 | 1.51 5.97 0.72 | 1.16 2.01
Breast 0.79 0.78 | 0.92 | 0.74 1.85 0.77 | 0.72 0.92
Glass 0.29 0.28 | 0.45 | 0.71 1.40 0.36 | 0.37 0.41
Heart, 0.33 0.37 | 0.51 | 0.45 0.93 0.34 | 0.46 0.55
Vehicle 1.85 1.88 | 2.74 | 1.90 16.55 2.04 | 2.08 2.10
Iris 0.71 0.76 | 1.00 | 0.65 2.25 0.80 | 0.96 1.02
Wine 0.29 0.30 | 0.42 | 0.45 1.76 0.33 | 0.43 0.55
Pima 0.70 0.75 1 0.92 | 0.91 5.62 0.73 | 0.55 0.61
Bupa 0.24 0.26 | 0.33 | 0.33 0.46 0.28 | 0.29 0.31
Thyroid 0.13 0.15 | 0.21 | 0.22 0.80 0.18 | 0.19 0.21
lonos 1.62 1.75 | 2.10 | 1.87 7.41 1.79 | 2.08 2.32
Average 0.71 0.72 | 1.00 | 0.89 4.09 0.76 | 0.84 1.00
Table 5: Time taken for discretization.

19

T T T
'Eq-Freq’ —+
IR’ >
‘D2’ >
'MDLP’ [
|| ‘Mantaras’ ||
4 ‘Zeta’ O —
‘ChiMerge’ [J
‘Chi2’ N
3.5
3
=y
D
|25
> 25
£
=
2
1.5
1
U e
O 1
0.5

14 14.5 15 15.5 16 16.5 17 17.5 18 18.5 19
Error Rate(%0)

Figure 3: Error rate of C4.5 vs. Time of Discretization Methods. Error rates and times are
shown as average values over data sets.

classification. The values in this figure are averaged over all data sets and taken from the
last rows of Tables 3, 4, and 5. The idea is to see if there is any trade off between error rate
of C4.5 on discretized data ws. speed of a discretization method. The three methods that
spent least amount of time produced highest average error rates on the data sets. As seen in
Figure 3, in general, the extra amount of time is worthy for the sake of keeping error rates
low, except for the case of Mantaras. Other things being equal, a user may choose a method
that gives less error rates.

How discretization affects the learning of a decision tree? As we suggested earlier, in
addition to error rates, we can check learning time of C4.5 on the discretized data and
number of nodes of a resulted decision tree with respect to one built from the original data.
Tables 6 and 7 summarize the experimental results in these two aspects. The learning time
is reduced to as much as less than half of the time on learning from continuous data. All
discretization methods contribute to time saving in learning. This is consistent with some
theoretical findings in [42, 30] that numeric data typically requires repetitive sorting, so it
needs a log N factor at each node for C4.5; but not so for discrete data. The average number
of nodes in a decision tree for all the data sets is also reduced.

In order to facilitate our understanding of different discretization methods in their groups,
we show the eight discretization methods in Figures 4 (a), (b) and (c) using the result of
C4.5 without discretization as the reference. A negative difference means an improvement
in accuracy. Several points can be noted from Figure 4: (1) similar discretization methods
show the same trend of increase or decrease of error rates for the 11 data sets. Eqg-Freq
and 1R, D2 and MDLP, ChiMerge and Ch2 behave similarly in pairs with the exception
that Mantaras and Zeta have their distinct behaviors. (2) some methods change drastically
(exceeding 7% difference) - Eq-Freq, 1R, Mantaras, and Zeta. Some change mildly (withing
7% difference) - Chi2. Some change a little (within 5% difference) - D2, MDLP, ChiMerge.

20

Data Continuous || Eq-Freq | 1R D2 | MDLP | Mantaras || Zeta | ChiMerge | Chi2
Australian | 0.43 0.31 0.27 || 0.27 | 0.31 0.26 0.22 | 0.28 0.10
Breast 0.13 0.06 0.09 || 0.15 | 0.10 0.10 0.14 | 0.13 0.15
Glass 0.10 0.03 0.07 || 0.04 | 0.06 0.06 0.06 | 0.10 0.05
Heart 0.19 0.04 0.08 || 0.12 | 0.11 0.09 0.08 | 0.12 0.04
Vehicle 0.89 0.46 0.57 || 0.53 | 0.85 0.54 0.57 | 0.71 0.82
Tris 0.01 0.02 0.02 || 0.01 | 0.01 0.03 0.02 | 0.01 0.01
Wine 0.12 0.06 0.07 || 0.05 | 0.06 0.04 0.04 | 0.09 0.02
Pima 0.31 0.23 0.21 {| 0.20 | 0.20 0.30 0.10 | 0.16 0.11
Bupa 0.11 0.12 0.12 || 0.07 | 0.15 0.11 0.04 | 0.11 0.09
Thyroid 0.05 0.04 0.02 || 0.06 | 0.04 0.02 0.02 | 0.09 0.02
Tonos 1.12 0.75 0.34 || 0.24 | 0.34 0.75 0.22 | 0.20 0.24
Average 0.31 0.19 0.16 || 0.15 | 0.20 0.20 0.13 | 0.18 0.15
Table 6: Time required to learn by C4.5 before and after discretization.
Data Continuous || Eq-Freq | 1R || D2 | MDLP | Mantaras || Zeta | ChiMerge | Chi2
Australian | 63 30 57 || 35 | 35 27 23 60 30
Breast 11 23 5 17 | 21 11 19 21 15
Glass 11 23 17 11 11 11 11 11 18
Heart 23 4 25 || 35 | 33 13 37 35 11
Vehicle 195 157 189 || 143 | 149 156 187 | 190 185
Iris 9 9 5 9 7 7 5 9 4
Wine 9 13 9 13 | 15 10 15 9 15
Pima 43 19 35 || 31 |27 57 17 39 40
Bupa 51 61 51 29 51 51 19 51 51
Thyroid 17 11 17 17 15 15 13 17 19
Tonos 35 31 35 25 19 29 15 27 20
Average 42 34 40 33 | 34 35 32 42 37

Table 7: Number of nodes in C4.5 before and after discretization.

21

In this regard, D2 is the most stable with a difference less than 2% for all data sets. (3) No
one discretization method can ensure a negative difference for all data sets. Combining the
findings in Figures 3 and 4, we recommend D2, MDLP for a splitting approach and ChiMerge
and Chi2 for a merging approach.

Data Set #MethodBetter Method #DataBetter
1. Australian 7/8 Eq-Freq 1/11
2. Breast 0/8 1R 4/11
3. Glass 0/8 D2 4/11
4. Heart 7/8 MDLP 6/11
5. Vehicle 0/8 Mantaras 5/11
6. Iris 2/8 Zeta 1/11
7. Wine 0/8 ChiMerge 3/11
8. Pima 4/8 Chi2 5/11
9. Bupa 2/8

10. Thyroid 3/8

11. Tonos 4/8

(a) (b)

Table 8: Summary of results for C4.5: Table (a) shows the number of methods for each data
set for which C4.5 performs better than without discretization. Table (b) shows the number of
data sets for each method for which C4.5 performs better than without discretization.

Table 8 shows the summary of results across the data sets and across the discretization
methods. As per Table 8, in 29 out of a total of 88 cases (11 ‘data sets’ times 8 ‘methods’) the
error rate was less than or equal to that of C4.5 without discretization. The Entropy (MDLP)
method gave the best results for error rate (6 out of 11 data sets) whereas Equal-freq and
Zeta methods gave the worst results (1 out of 11 data sets). Similarly among the data sets,
Australian and Heart showed most improvement after discretization (7 out of 8 methods)
while Breast, Glass, Vehicle, and Wine showed least improvement (0 out of 8 methods).

6 Conclusion and Future Work

We present a survey of discretization methods and discuss various dimensions in which dis-
cretization methods can be categorized. A typical discretization process is described after
introducing some common terms and notations. We then propose a hierarchical frame-
work for discretization methods by considering some important dimensions. Representative
methods are given from the perspective of splitting and merging and are further discussed
according to the measures used. For each method, we discuss the method and the stopping
criterion used, and present the discretization results for the Iris data in terms of number of
inconsistencies and number of cut-points.

Experiments for chosen discretization methods have been conducted on 11 data sets with
C4.5. The performance of discretization methods is evaluated with several dimensions: time
for discretization and for learning, C4.5 error rates on discretized data with reference to
C4.5 on original data, and number of nodes in a decision tree. Tt is observed that in general,
more time on discretization leads to better accuracy for C4.5. Our findings in Sections 4 and
5 are pretty consistent as both point toward Entropy (MDLP) being identified as the first
choice. However, choosing a suitable discretization method is generally a complex matter,
and largely depends on a user’s need and other considerations of discretization, as well as
on what kind of data to be discretized. If the data does not have class information, only
unsupervised methods can be applied. When class information is available, a supervised

22

25

20

15

10

Error Rate Diff (%)

‘D2 ———
MDLP —--3<-—-

Mantaras ----*---
4
2
£ o
=
a
@ /
< ;
o /
g
i} -2 v 7
it y
¥ \/
N/
-4
-6
-8
5 6 7 9 10 11 1 2 3 4 5 6 7 8 9 10 11
Data Sets Data Sets
(a) (b)
20 T T T
Zeta ———
ChiMerge ---><-—-
Chi2 ----%----
15
10
=
= *
@
= 5
=53
s
i}
K
o e
-7 sk
[
-5
-10
1 2 3 a

5 6 7 8 9 a0 11
Data Sets

()

Figure 4: Error rates of C4.5 Classifier before and after discretization. The error rates are shown
relative to the classification error before discretization. The serial number of data sets are as
given in Table 2. The results are summarized in Table 8.

23

method should be employed. Do we wish to remove redundant /irrelevant features? If so,
Chi2 is a choice. If we need to incorporate discretization into a learning process, dynamic
discretization methods such as ID3, Contrast should be considered. To reiterate, if we simply
want to discretize data, other things being equal, Entropy (MDLP) should be the first choice
to consider.

A reader may notice that every discretization method discussed takes it for granted
that each feature independently determines the class. Therefore, all these methods are
univariate methods for the sake of efficiency. As we know, the assumption may not be
valid. When we discretize, we may need to consider multiple features at a time, the so-
called multivariate discretization. Doing so would inevitably increase time complexity for
discretization. Using the inconsistency measure in Chi2 is one effort towards taking into
account the joint contribution of features. With the availability of more powerful parallel
computers or computer clusters, we may investigate the possibility of using these computers
for multivariate discretization. Parallel discretization algorithms are surely welcome when
a large number of continuous features should be quantized. Can we extend the methods
here to parallelized versions? With the feature independence assumption, it seems practical.
Sometimes, a data set consists of various types of features. In Chi2, concepts of over/under
discretization are suggested to account for mixed types of features [26]. Again, mixed types
of features would not cause a problem if the feature independence assumption is acceptable.
It is obviously not the case in the context of multivariate discretization. Noise handling is
another important issue of discretization in practice. To allow a certain degree of tolerance
via thresholding is a common practice for noise handling in the methods discussed here.
Chi2 suggests to use the number of inconsistencies as a way to handle one type of noise.
However, it seems an impasse when no prior knowledge about noise is available. All in all,
this paper is not about a conclusion of discretization research. Instead, it is about a start of
a new phase of discretization research. As we can see, a lot of work has been done, still many
issues remain unsolved, and new methods are needed. We hope that this paper will provide
a reference point to facilitate researchers and practitioners to embark on further research,
development and application.

Acknowledgment

The authors wish to thank Jian Shu for his help in implementing some discretization methods
and making the present form of experiments possible.

References

[1] T. L. Bailey and C. Elkan. Estimating the accuracy of learned concepts. In Proceed-
ings of International Joint Conference on Artificial Intelligence, pages 95-112. Morgan
Kaufmann Publishers, 1993.

[2] L.Breiman,J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression
Trees. Wadsworth International Group, 1984.

[3] L. Breiman and P. Spector. Submodel selection and evaluation in regression the x-
random case. International Statistical Review 60(3), pages 291-319, 1992.

[4] J. Catlett. On changing continuous attributes into ordered discrete attributes. In Proc.
Fifth European Working Session on Learning, pages 164=177. Berlin: Springer-Verlag,
1991.

[5] J. Cerquides and R. L. Mantaras. Proposal and empirical comparison of a parallelizable
distance-based discretization method. In KDD97: Third International Conference on
Knowledge Discovery and Data Mining, pages 139-142, 1997.

24

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

C.-C. Chan, C. Batur, and A. Srinivasan. Determination of quantization intervals in
rule based model for dynamic. In Proceedings of the IEEE Conference on Systems, Man,
and Cybernetics, pages 1719-1723. Charlottesvile, Virginia, 1991.

D.K.Y Chiu, B. Cheung, and A.K.C Wong. Information synthesis based on hierarchical
maximum entropy discretization. Journal of Erxperimental and Theoretical Artificial

Intelligence, 2:117-129, 1990.

M. R. Chmielewski and J. W. Grzymala-Busse. Global discretization of continuous
attributes as preprocessing for machine learning. In Third International Workshop on

Rough Sets and Soft Computing, pages 294-301, 1994.

P. Chou. Optimal partitioning for classification and regression trees. IEEE Trans.

Pattern Anal. Mach. Intell, 4:340-354, 1991.

B. Domingos and M. Pazzani. Beyond independence: Conditions for the optimality of
the simple Bayesian classifier. In L. Saitta, editor, Machine Learning: Proceedings of
Thirteenth International Conference, pages 105-112. Morgan Kaufmann Internationals,

Inc., 1996.

J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretization
of continuous features. In Proc Twelfth International Conference on Machine Learning,

pages 194-202. Morgan Kaufmann, Los Altos, CA, 1995.

B. Efron. Estimating the error rate of a prediction rule: improvement on cross-
validation. Journal of the American Statistical Association 78(382), pages 316-330,
1983.

U. Fayyad and K. Irani. On the handling of continuous-valued attributes in decision
tree generation. Machine Learning. 8, pages 87-102, 1992.

U. Fayyad and K. Trani. Multi-interval discretization of continuous-valued attributes for
classification learning. In Proc. Thirteenth International Joint Conference on Artificial
Intelligence pp, pages 1022-1027. San Mateo, CA: Morgan Kaufmann, 1993.

U. Fayyad and K. Irani. Discretizing continuous attributes while learning bayesian
networks. In Proc. Thirteenth International Conference on Machine Learning, pages

157-165. Morgan Kaufmann, 1996.

T. Fulton, S. Kasif, and S. Salzberg. Efficient algorithms for finding multi-way splits for
decision trees. In Proc Twelfth International Conference on Machine Learning, pages
244-251. San Francisco, CA: Morgan Kaufmann, 1995.

K.M. Ho and P.D. Scott. Zeta: A global method for discretization of continuous vari-
ables. Tn KDD97: 3 rd International Conference of Knowledge Discovery and Data
Mining, pages 191-194. Newport Beach, CA, 1997.

R.C Holte. Very simple classification rules perform well on most commonly used
datasets. Machine Learning, 11:63-90, 1993.

R.C. Holte, L. Acker, and B.W. Porter. Concept learning and the problem of small
disjuncts. In Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence, pages 813-818. San Mateo, CA: Morgan Kaufmann, 1989.

G. John, R. Kohavi, and K. Pfleger. Trrelevant features and the subset selection problem.
In Proceedings of the Eleventh International Machine Learning Conference, pages 121-
129. New Brunswick, NJ: Morgan Kaufmann, 1994.

R. Kerber. Chimerge: Discretization of numeric attributes. In Proc AAAI-92, Ninth
National Confrerence Articial Intelligence, pages 123-128. AAAI Press/The MIT Press,
1992.

P. Kontkaren, P. Myllymaki, T. Silander, and H. Tirri. Bayda: Software for bayesian
classification and feature selection. In 4th International Conference on Knowledge Dis-
covery and Data Mining, pages 254-258, 1998.

25

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31]

32]

(33]
[34]

[35]
[36]

[37]

[38]

[39]
[40]
[41]

[42]

P. Langley, W. Tba, and K. Thompson. An analysis of bayesian classifiers. In Proceedings
of the tenth national conference on artificial intelligence, pages 223-228. AAAT Press
and MIT Press, 1992.

P. Langley and S. Sage. Induction of selective bayesian classifiers. In Proceeding Con-
ference on Uncertainty in Al pages 255-261. Morgan Kaufmann, 1994.

H. Liu and R. Setiono. Chi2: Feature selection and discretization of numeric attributes.
In J.F. Vassilopoulos, editor, Proceedings of the Seventh IEEFE International Conference
on Tools with Artificial Intelligence, November 5-8, 1995, pages 388-391, Herndon,
Virginia, 1995. TEEE Computer Society.

H. Liu and R. Setiono. Feature selection and discretization. IEEE Transactios on
Knowledge and Data Engineering, 9:1-4, 1997.

W. Maass. Efficient agnostic pac-learning with simple hypotheses. In Proc Seventh
Annual ACM Conference on Computational Learning Theory, pages 67-75. New York,
NY: ACM Press, 1994.

R. L. Mantaras. A distance based attribute selection measure for decision tree induction.
Machine learning, pages 103-115, 1991.

C.J. Merz and P.M. Murphy. UCI repository of machine learning databases.
http://wuw.ics.uci.edu/"mlearn/MLRepository.html. Trvine, CA: University of
California, Department of Information and Computer Science, 1996.

T. Oates and D. Jensen. Large datsets lead to overly complex models: An explanation

and a solution. In Proceedings of the Fourth International Conference on Knowledge
Discovery and Data Mining (KDD-98), pages 294 — 298. AAAT Press / The MIT Press,
1999.

B. Pfahringer. Compression-based discretization of continuous attributes. In Proc
Twelfth International Conference on Machine Learning, pages 456-463. San Francisco,
CA: Morgan Kaufmann, 1995.

B. Pfahringer. A new mdl measure for robust rule induction. ITn FECML95: European
Conference on Machine Learning (Extended abstract), pages 331-334, 1995.

J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.
J. R. Quinlan. Decision trees and multi-valued attributes. Machine Intelligence 11:
Logic and the Acquisition of Knowledge, pages 305-318, 1988.

J. R. Quinlan. C4.5 : Programs for Machine Learning. Morgan Kaufmann, San Mateo,
California, 1993.

J. R. Quinlan. Improved use of continuous attributes in c.45. Artificial Intelligence

Research, 4:77-90, 1996.

M. Richeldi and M. Rossotto. Class-driven statistical discretization of continuous at-
tributes. In Proc Of European Conference on Machine Learning, pages 335-338. Springer
Verlag, 1995.

C. Schaffer. A conservation law for generalization performance. In Machine Learning:
Proceedings of the FEleventh International Conference, pages 259-265. Morgan Kauf-
mann, 1994.

C. Shannon and W. Weaver. The Mathmatical Theory of Information. Urbana: Uni-
versity of Illinois Press, 1949.

H.A. Simon. The Sciences of the Artificial. Cambridge, MA: M.I.T. Press, 2 edition,
1981.

C.J. Thornton. Techniques of Computational Learning: an introduction. Chapman and

Hall, 1992.

P. Utogoff. Incremental induction of decision trees. Machine Learning, 4:161 — 186,
1989.

26

[43] T. Van de Merckt. Decision trees in numerical attribute spaces. Machine Learning,

pages 1016-1021, 1990.

[44] K. Wang and B. Liu. Concurrent discretization of multiple attributes. In Pacific-Rim
International Conference on Al pages 250-259, 1998.

[45] S. M. Weiss and N. Indurkhya. Decision tree pruning : Biased or optimal. In Proceedings

of the twelfth national conference on artificial intelligence, pages 626—-632. AAAT Press
and MIT Press, 1994.

27

