
Beyond Market Baskets: Generalizing Association Rules to Correlations 

Sergey Brin” Rajeev Motwanit 
Department of Computer Science Department of Computer Science 

Stanford University Stanford University 
Stanford,CA 94305 Stanford, CA 94305 
brinOcs.stanford.edu motwaniQcs.stanford.edu 

Craig Silverstein+ 
Department of Computer Science 

Stanford University 
Stanford,CA 94305 

csilversOcs.stanford.edu 

Abstract 

One of the most well-studied problems in data mining is min- 
ing for association rules in market basket data. Association 
rules, whose significance is measured via support and confid- 
ence, are intended to identify rules of the type, “A customer 
purchasing item A often also purchases item B.” Motivated 
by the goal of generalizing beyond market baskets and the 
association rules used with them, we develop the notion of 
mining rules that identify correlations (generalizing associ- 
ations), and we consider both the absence and presence of 
items as a basis for generating rules. We propose measur- 
ing significance of associations via the cm-squared test for 
correlation from classical statistics. This leads to a measure 
that is upward closed in the itemset lattice, enabling us to re- 
duce the mining problem to the search for a border between 
correlated and uncorrelated itemsets in the lattice. We de- 
velop pruning strategies and devise an efficient algorithm for 
the resulting problem. We demonstrate its effectiveness by 
testing it on census data and finding term dependence in a 
corpus of text documents, as well as on synthetic data. 

1 Introduction 

The term “data mining” has been applied to a broad range 
of activities that attempt to discover new information from 
existing information, where usually the original information 
was gathered for a purpose entirely different from the way it 
is used for data mining. Typically, the applications involve 
large-scale information banks such as data warehouses [30] 
or datacubes [13]. One of the more well-studied problems 
in data mining is the search for association rules in market 
basket data [2, 3, 17, 20, 5, 15, 16, 24, 28, 27, 4, 291. In this 
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setting, the base information consists of register transactions 
of retail stores. The goal is to discover buying patterns such 
as two or more items that are bought together often.’ The 
market basket problem has received a great deal of atten- 
tion in the recent past, partly due to its apparent utility and 
partly due to the research challenges it presents. The past 
research has emphasized techniques for improving the per- 
formance of algorithms for discovering association rules in 
large databases of sales information. There has also been 
some work on extending this paradigm to numeric and geo- 
metric data [ll, 121. 

While Piatetsky-Shapiro and Frawley [26] define an “as- 
sociation problem” as finding recurring patterns in data, 
much of the recent work on mining of large-scale databases 
has concerned the important special case of finding associ- 
ation rules. Association rules, whose significance is meas- 
ured via support and confidence as explained below, are 
primarily intended to identify rules of the type, “A customer 
purchasing item X is likely to also purchase item Y.” In gen- 
eral, the development of ideas has been closely linked to the 
notion of associations expressed via the customer preference 
example. 

Our work is motivated by the goal of generalizing bey- 
ond market baskets and association rules used with them. 
We develop techniques to mine generalized baskets, which 
are defined to be a collection of subsets from an item space, 
such as a corpus of text documents (where the items are 
words) or census data (where the items are boolean or nu- 
meric answers to questions). In this more general setting, 
the type of association rule described above is but one of 
the many types of recurring patterns that could or should 
be identified by data mining. Consequently, we develop the 
notion of mining rules that identify correlations (generalizing 
associations) and we also take into consideration the absence 
of items as a basis for generating rules. 

We propose measuring significance of rules via the chi- 
squared test for correlation from classical statistics. This 
leads to a measure that is upward closed in the lattice of sub- 
sets of the item space, enabling us to reduce the mining prob- 
lem to the search for a border between correlated and un- 
correlated itemsets in the lattice. Based on this observation 
and some pruning strategies we developed, we present effi- 
cient algorithms for the resulting problem. We also demon- 
strate the effectiveness of our algorithms by experiments on 
census data and finding term dependency in a corpus of text 
documents. 

‘A classic example is the rule that people who buy diapers in the 
afternoon are particularly likely to buy beer at the same time [8]. 
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1.1 Association Rules 

In order to place our work in the context of earlier work, it 
will be helpful to first review some of t,he details of the past 
work on association rules in the market basket application. 
For this purpose, we define basket data in general terms. 
Let I = {;I,..., ik} be a set of Ic elements, called items. 
Let B = {bl,. . . ,bn} be a set of n subsets of I. We call 
each b, C I a basket of items. For example, in the market 
basket application, the set Z consists of the items stocked by 
a retail outlet and each basket is the set of purchases from 
one register transaction; on the other hand, in the document 
basket application, the set Z contains all dictionary words 
and proper nouns, while each basket is a single document 
in the corpus (for now let us ignore the frequency and or- 
dering of the words in a document). While it is clear that 
the simple notion of basket data is powerful and captures a 
wide variety of settings amenable to data mining, it should 
be kept in mind that there could be structure in the data 
(e.g., word ordering within documents) that is lost in this 
general framework. 

An association rule [z] is intended to capture a certain 
type of dependence among items represented in the database 
B. Specifically, we say that il + iz if 

1. il and iz occur together in at least s% of the n baskets 
(the support); 

2. and, of all the baskets containing il, at least c% also 
contain iz (the confidence). 

This definition extends easily to I j .Z, where Z and J are 
disjoint sets of items instead of single items. Since it is pos- 
sible to have alternate definitions of association rules, we 
will henceforth refer to the above definition as the support- 
confidence framezvork for association rules. It should be 
noted that the symbol + is a bit misleading since such a 
rule does not correspond to real implications; clearly, the 
confidence measure is merely an estimate of the conditional 
probability of iz given il. 

Consider applying the above definition to market bas- 
ket data from a grocery store. Association rules are then 
statements of the form: “When people buy tea, they are 
also likely to buy coffee.” The confidence statistic ensures 
that the statement is true often enough to make a market- 
ing campaign effective or to justify changing product place- 
ment in the store. The support statistic, on the other hand, 
justifies financing the marketing campaign or product place- 
ment - these products generate enough sales to be worthy 
of attention. Support is also used to help ensure statistical 
significance, because if items are rare, the variance of the 
significance statistic may be too large to draw any useful 
conclusions. 

Association rules, and the support-confidence framework 
used to mine them, are well-suited to the market basket 
problem. Other basket data problems, while seemingly sim- 
ilar, have requirements that the support-confidence frame- 
work does not address. For instance, the support-confidence 
framework does not support negative implications of the 
type: “When people buy batteries, they do not usually also 
buy cat food.” While perhaps not as useful to the market- 
ing staff of supermarkets, such implications can be helpful 
in many other settings. For example, fire code inspectors 
trying to mine useful fire prevention measures might like to 
know of any negative correlations between certain types of 
electrical wiring and the occurrence of fires. 

A bigger problem is the support-confidence framework 

does not work well when correlation is the appropriate meas- 
ure 

Example 1 Suppose we have market basket data from a 
grocery store, consisting of n baskets. Let us focus on the 
purchase of tea and coffee. In the following table, rows t 
and t correspond to baskets that do and do not, respectively, 
contain tea, and similarly columns c and C correspond to 
coffee. The numbers represent percentage of baskets. 

I C C Crow 
t 11 20 5125 1 

I t II 70 5 I 75 I 
cc,1 11 90 10 1 100 

Let us apply the support-confidence framework to the po- 
tential association rule t =+ c. The support for this rule 
is 20%, which is fairly high. The confidence is defined to be 
the conditionalprobability that a customer buys coffee, given 
that she buys tea, i.e., P[t A c]/Z’[t] = 20/25 = 0.8 or SO%, 
which too is pretty high. At this point, we may conclude that 
the rule t =+ c is a valid rule. 

However, consider now the fact that the a priori probab- 
ility that a customer buys coffee is 90%. In other words, a 
customer who is known to buy tea is less likely to buy coffee 
(by 10%) than a customer about whom we have no informa- 
tion. Of course, it may still be interesting to know that such 
a large number of people who buy tea also buy coffee, but 
stating that rule by itself is at best incomplete information 
and at worst misleading. The truth here is that there is a 
negative correlation between buying tea and buying coffee; at 
least that information should be provided along with the as- 
sociation rule t * c. One way of measuring correlation is 
to compute P[t A c]/(P[t] x P[c]) = 0.2/(0.25 x 0.9) = 0.89. 
The fact that this quantity is significantly less than I indic- 
ates negative correlation, since the numerator is the actual 
likelihood of seeing a customer purchase both tea and coffee, 
and the denominator is what the likelihood would have been 
in the case when the two purchases are completely independ- 
ent. 

In the coffee and tea example, we calculated a correl- 
ation value but could not tell whether it was statistically 
significant. Testing for significant correlation is a problem 
statisticians have been studying for over a century; refer to 
Lancaster [18] for the theory and a history of this problem. 
The preferred test for correlation involves the chi-squared 
statistic, which is both easy to calculate and reliable under 
a fairly permissive set of assumptions. This test is useful 
because it not only captures correlation (as in the tea and 
coffee example) but can also detect negative implication (as 
in the tie code example). 

In the rest of this paper, we develop our notion of correla- 
tion rules based on the chi-squared statistic by describing the 
theoretical underpinnings, efficient algorithms, implementa- 
tions, and experiments with real basket data. In Section 2 
we discuss the generalization of association rules to correl- 
ations. We also study some properties of correlation rules, 
particularly closure properties with respect to the itemset 
lattice. Consequently, we reduce the data mining task as the 
problem of computing a border (consisting of the minimally 
correlated itemsets) in the lattice. In Section 3 we study the 
chi-squared test for the correlation rules and provide some 
illustrative examples. We point out that the &i-squared 
test needs to be augmented with a measure of interest and 
provide a plausible candidate. We also contrast our approach 
with the support-confidence framework for association rules 
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and discuss the the limitations of our framework. In Section 4 
we describe level-wise algorithms for performing the task of 
identifying correlation rules. A pruning strategy is developed 
to increase the efficiency of the algorithm. We present the 
results from our experiments with two extremely different 
real world basket data sets in Section 5. Finally, in Sec- 
tion 6 we make concluding remarks. Appendix A gives some 
of the theoretical basis for the chi-squared test in statistics. 

2 Correlation Rules 

Let p(A) be the probability that event A occurs and p(x) = 
1 -p(A) the probability that event A does not occur. Like- 
wise, p(AB) is the probability that both event A and event 
B occur together, while p(%) is the probability that B oc- 
curs but A does not. The events A and Z? are said to be 
independent if p(AB) = p(A)p(B). Similarly, if p(ABC) = 
p(A)p(B)p(C), then A, B, and C are 3-way independent. If 
a set of events is not independent, it is dependent. If any of -- 
AB, XB, AB, AB are dependent, then A and B are said to 
be correlated. Likewise, if any of the eight combinations of 
A, B, C, and their complements are dependent, then A, B, 
and C are correlated. 

If we have a series of n trials, we denote the number 
of times event A occurs as O,(A), or just O(A) when n is 
understood. We can estimate p(A) by O,(A)/n. We can 
also estimate whether p(AB) # p(A)p( B); our confidence 
in this estimate depends on n and, to a lesser extent, the 
observed counts. 

To put this in the context of mining association rules, let 
Z be a set of items, and B be a set of subsets of 1. We say 
Ii al,.“, ia,,,} is a correlation rule if the occurrences of the 
items i,,, . . . , i,, are correlated. 

One important property of correlation is that it is upward 
closed: If a set of items S is correlated, so is every superset 
of S. Intuitively, it is clear that adding items to a correlated 
set cannot magically “cancel out” the correlation. This is 
easy to show formally by contradiction. Suppose A and B 
are correlated but A, B, and C are not. Then p(AB) = 

p(ABC) + P(AB~) = P(A)P(B)P(C) + P(A)P(B)P(~) = 
p(A)p(B), where the middle equality follows because A, B, 
and C are independent. We can derive similar formulas for 
p(AB), p(AB), and p(m). Together these imply A and B 
are not correlated, which is a contradiction. Of course, if 
n < co we can never be certain S is actually correlated. 
However, the closure property also holds at any significance 
level cr, in that if S is correlated with significance level cr, 
any superset of S is also correlated with significance level 
cr.’ (See Appendix A for a proof.) 

2.1 The Closure Property 

To understand the significance of closure, let us examine 
how mining for association rules is implemented. Using the 
support-confidence test, the problem is usually divided into 
two parts: First finding supported itemsets, and then discov- 
ering rules in those itemsets that have large confidence. Al- 
most all research has focused on the first of these tasks. One 
reason is that finding support is usually the more expensive 
step, but another reason is that rule discovery does not lend 
itself as well to clever algorithms. This is because confidence 
possesses no closure property. Support, on the other hand, 
is downward closed: If a set of items has support, than all its 

‘A significance level of a means that, under the null hypothesis (in 
this case, that S is not correlated), x: < xi with probability a. 

subsets also have support. Researchers have taken advantage 
of this closure property in devising algorithms. Level-wise 
algorithms [2] find all items with a given property among 
itemsets of size i (i-itemsets), and use this knowledge to ex- 
plore itemsets of size i + 1 ((i + 1)-itemsets). Another class of 
algorithms, random walk algorithms [14], generated a series 
of random walks, each of which explores the local structure 
of the border. A random walk is a walk up the itemset lat- 
tice. It starts with the empty itemset and adds items one at 
a time to form a larger itemset. It is also possible to walk 
down the itemset lattice by deleting items from an initial, 
full itemset. (It turns out that the random walk algorithm 
has a natural implementation in terms of a datacube [l3]; 
a connection we intend to explore in a later paper.) Both 
level-wise and random walk algorithms use knowledge of a 
set and its closure properties to make inferences about its 
supersets. 

Downward closure is a pruning property. To use it, we 
start out with the assumption that all (i + l)-itemsets are 
supported (to use a concrete example of a downward closed 
property). A s we examine i-itemsets, we cross out some 
(i + I)-itemsets that we know cannot have support. We are, 
in effect, using the contrapositive of the support definition, 
saying, “If any subset of an (i + 1)-itemset does not have 
support, then neither can the (i + 1)-itemset .” After crossing 
out some items, we go through the remaining list, checking 
each (i -+ I)-itemset to make sure it actually does have the 
needed support. 

Upward closure, on the other hand, is constructive. We 
start with the assumption that no (i + 1)-itemset is, say, 
correlated. Looking at an i-itemset, we can say that if it is 
correlated, all its supersets are also correlated. This gives 
us a list of correlated (i + 1)-itemsets. Unlike in the pruning 
case, where we generate false positives ((i + I)-itemsets that 
do not really have support), here we generate false negatives 
(ignored correlated (i+l)-itemsets). Because of this, upward 
closure is most useful if the property we are looking for is an 
unwanted one. Then, we are finding (i+l)-itemsets to prune, 
and all that happens if we miss some correlated itemsets is 
that our pruning is less effective. It is for this reason we 
concentrate on minimal correlated itemsets, that is, itemsets 
that are correlated though no subset of them is correlated. 
Then, finding correlation is really a pruning step: We prune 
all the parents of a correlated i-itemset because they are not 
minimal. 

2.2 The Border of Correlation 

An advantage of upward closure is that it means the itemsets 
of interest form a border. That is, we can list a set of item- 
sets such that every itemset above (and including) the set in 
the item lattice possesses the property, while every itemset 
below it does not. Because of closure, the border encodes all 
the useful information about the interesting itemsets. There- 
fore, we can take advantage of the border property to prune 
based on correlation data as the algorithm proceeds. This 
time- and space-saving shortcut does not work for confid- 
ence, which is not upward closed. If we combine correlation 
with support, we can prune using both tests simultaneously. 
In support-confidence, on the other hand, confidence testing 
has to be a post-processing step. 

To show that confidence does not form a border, we 
present an example where an itemset has sufficient confid- 
ence while a superset of it does not. 

Example 2 Below we summarize some possible market bas- 
ket data for coffee, tea, and doughnuts. The first table is for 
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baskets including doughnuts, while the second is for baskets 
lacking doughnuts. 

Observe that P[c A d] = 48, P[c] = 93, so the rule c j d 
has confidence 0.52. On the other hand, P[t A c A dj = 8, 
P[t A c] = 18, so the rule c, t j d has confidence 0.44. For 
a reasonable confidence cutoff of 0.50, c j d has confidence 
but its superset c, t + d does not. 

The border property is incredibly useful. Level-wise al- 
gorithms can stop early if the border is low (as is often the 
case in practice). Random walk algorithms hold promise, 
since a given walk can stop as soon as it crosses the bor- 
der. It can then do a local analysis of the border near the 
crossing. 

While upward closure seems superior to downward clos- 
ure because of the border property, in reality it is not neces- 
sary to choose between them. We discuss efficient ways of 
combining the two closure properties in Section 4. 

3 The Chi-squared Test for Independence 

Let R be {il,G} x ... x {ik,c} and r = rl...rk E R. 
Here R is the set of all possible basket values, and r is a 
single basket value. Each value of r denotes a cell - this 
terminology comes from viewing R as a k-dimensional table, 
called a contingency table. Let O(r) denote the number 
of baskets falling into cell r. To test whether a given cell is 
dependent, we must determine if the actual count in cell r 
differs sufficiently from the expectation. 

In the chi-squared test, expectation is calculated under 
the assumption of independence. Thus, E[i3] = O,(i,) for a 
single item, E[c] = n - O,(i,), and E[r] = n x E[rl]/n x 
... x E[rk]/n. Then the chi-squared statistic is defined as 
follows: 

x2 =c (O(r) - EbV 
rER H.rl ’ 

In short, this is a normalized deviation from expectation. 
Refer to Appendix A for a discussion of the theoretical un- 
derpinnings of the chi-squared statistic which leads to the 
above formula. 

The &i-squared statistic as defined will specify whether 
all Ic items are k-way independent. In order to determine 
whether some subset of items are correlated, for instance il , 
i2, and i7, we merely restrict the range of r to {il , G} x 
{iz,g} x {iT,G}. 

No matter how r is restricted, the chi-squared test works 
as follows: Calculate the value of the chi-squared statistic. 
If all the variables were really independent, the chi-squared 
value would be 0 (allowing for fluctuations if n < co). If it 
is higher than a cutoff value (3.84 at the 95% significance 
level) we reject the independence assumption. Note that the 
cutoff value for any given significance level can be obtained 
from widely available tables for the chi-squared distribution. 

In Theorem 1 (Appendix A), we prove that the chi-squared 
test at a given significance level is upward closed. 

Example 3 Consider the census data presented in Table 1. 
The contingency table for is and is would be as follows: 

Now E[ig] = O(ig) = 3, while E[is] = O(is) = 5; note that 
E[ig] is the sum of row 1, while E[is] is the sum of column 
1. The chi-squared value is 

(1 - 3 x 5/9)2 
+ 

(2 - 3 x - 5)/9)2 (9 
3 x 519 3 x (9 - 5)/9 

(4 - x x - - - - + (9 3) 5/9)2 + (2 (9 3) (9 5)/9)2 
(9 - 3) x 5/9 (9 - 3) x (9 - 5)/9 

= 0.267 + 0.333 + 0.133 + 0.167 = 0.900 

Since 0.900 is less than 3.84, we do not t-eject the independ- 
ence assumption at the 95% confidence interval. 

The next example, also based on census data detailed 
in Section 5, helps to indicate how correlation rules may be 
more useful than association rules in certain settings. 

Example 4 Consider the census data presented in Table 1. 
We focus on testing the relationship between military service 
and age.3 This corresponds to items i2 and i7. Using the 
full census data, with n = 30370, we obtain the following 
contingency table: 

We can use row and column sums to obtain expected values, 
and we get a chi-squared value of 2006.34, which is signific- 
ant at the 95% significance level. Furthermore, the largest 
contribution to the x2 value comes from the bottom-right cell, 
indicating that the dominant dependence is being a veteran 
and being over 40. This matches our intuition. 

For comparison, let us try the support-confidence frame- 
work on this data, with support at 1% (i.e., count 304) and 
confidence at 5070, All possible rules pass the support test, 
but only half pass the confidence test. These are z G+ G;, 
i2 + i7, G + i2, and i7 j i2. This allows for the following 
claims: “Many people who have served in the military are 
over 40, ” ‘Many people who have never served in the mil- 
itary are 40 or younger,” “Many people over 40 have never 
served in the military, ” and “Many people 40 or younger 
have never served in the military.” Taken together, these 
statements do not carry much useful information. A tradi- 
tional way to rank the statements is to favor the one with 
highest support. In this example, such Q ranking leaves the 
first statment - the one which the chi-squared test identified 
as dominant - in last place. 

3In reality we would mine this data rather than query for it. We 
present the material in this way in order to compare two testing tech- 
niques, not to indicate actual use. 
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item attribute 1 possible non-attribute values 
i0 II drives alone I does not drive, carnools 
il 

i2 

i3 

id 

is 

i6 

i7 

is 

i9 

male or less than 3 children 
never served in the military 
native speaker of English 
not a U.S. citizen 
born in the U.S. 
married 
no more than 40 years old 
male 
householder 

3 or more children ’ 
veteran 
not a native speaker 
U.S. citizen 
born abroad 
single, divorced, widowed 
more than 40 years old 
female 
denendent. boarder. renter 

basket II items 
r 

Table 1: I and B for a collection of census data. We formed I by arbitrarily collapsing a number of census questions into 
binary form. B actually has size 30370, but we show only the first 9 entries here. Person 1, for instance, either does not drive 
or carnools. is male or has less than 3 children. is not a veteran, speaks English natively, and so on. Person 5 fits the same set 
of attiibutes, so O(il, i2, is, c, is, z, i7, g, ig) = 2. 

3.1 Measures of Interest 

In the last example, as indeed in the first example on coffee 
and tea, we wanted to find the dependence of a given cell, in 
order to determine the cause of correlation. The statistical 
definition of dependence of two sets A and B is 

P[A A B] 

PM WI ’ 
with the obvious extension to more than two sets. The fur- 2. The chi-squared statistic simultaneously and uniformly 
ther the value is from 1, the more the dependence. Note that takes into account all possible combinations of the pres- 
dependence applies to a single cell of a contingency table, ence and absence of the various attributes being ex- 
while correlation applies to the entire table. amined as a group. 

In the context of contingency tables, we define the de- 
pendence of a cell r to be its interest, denoted I(r). In con- 
tingency table notation, Z(r) = O(r)/E[r] (since P[A]P[B] = 
E[AB]/n and P[A A B] = O(AB)/n). The farther I(r) is 
from 1, the higher the dependence of items in cell r. In 
fact, the r with the most extreme interest value is the one 
that contributes most to the x2 value. By construction, this 

cell maximizes 1% - 11 = 1 w I, and thus maxim- 

3. The interest measure is preferable as it directly cap- 
tures correlation, as opposed to confidence which con- 
siders directional implication (and treats the absence 
and presence of attributes non-uniformly). 

4. The experimental data suggests that using chi-squared 
tests combined with interest yields results that are more 
in accordance with our a priori knowledge of the struc- 
ture in the data being analyzed. 

This is exactly the contribution of cell r to 

Interest values above 1 indicate positive dependence, while 
those below 1 indicate negative dependence. 

Example 5 Consider the census data from Example 4. The 
corresponding interest values are 

The bottom-right cell has the most extreme interest, agree- 
ing with the conclusion from Example 4 based on contribu- 
tion to x2. The other cell values are meaningful as well; for 
instance, there is a large negative dependence (0.44) between 
being 40 or younger and being a veteran. 

Looking back at the raw cell counts in Example 4, we 
see that the cells with high interest have low counts. Never- 
theless, since the chi-squared value for this example is well 
above the 95% significance threshold, we have confidence that 
these interest values are statistically significant. 

3.2 Contrast with Support-Confidence Framework 

Example 4 demonstrated how the chi-squared test could be 
more useful than support-confidence for a wide range of 

problems involving correlation. We list some of the advant- 
ages of the x*-interest framework over the support-confidence 
framework. 

1. The use of the chi-squared significance test is more 
solidly grounded in statistical theory. In particular, 
there is no need to choose ad-hoc values of support 
and confidence. 

3.3 Limitations of the Chi-squared Test 

The chi-squared statistic is easy to calculate, which in the 
world of statistics is a sure tip-off that it is an approxima- 
tion. In this case, the chi-squared test rests on the normal 
approximation to the binomial distribution (more precisely, 
to the hypergeometric distribution). This approximation 
breaks down when the expected values are small. As a rule 
of thumb, statistics texts (such as Moore [22]) recommend 
the use of chi-squared test only if 

l all cells in the contingency table have expected value 
greater than 1; 

l and, at least 80% of the cells in the contingency table 
have expected value greater than 5. 

For association rules, these conditions will frequently be 
broken. For a typical application, III may be 700 while 
n = 1000000. Even a contingency table with as few as 3 
dimensions will have 343 million cells, and, as the sum of the 
expected cell values is only n = 1 million, not all cells can 
have expected value greater than 1. 

The solution to this problem is to use an exact calcula- 
tion for the probability, rather than the x2 approximation. 
The establishment of such a formula is still, unfortunately, 

269 



a research problem in the statistics community, and more 
accurate approximations are prohibitively expensive. In the 
meantime, we merely ignore cells with small expected value. 
We justify this with a support argument: If a set of items 
would have been correlated because of the contribution of the 
very small cell, then the correlation would involve very rare 
events. In many applications, an event that has expectation 
less than 1 can be ignored as uninteresting. See Section 4 
for a discussion of combining x2 with support. 

4 Algorithms for Correlation Rules 

As we have mentioned, finding correlation rules is equivalent 
to finding a border in the itemset lattice. How big can this 
border be? In the worst case, when the border is in the 
middle of the lattice, it is exponential in the number of items. 
Even in the best case the border is at least quadratic. If 
there are 1000 items, which is not unreasonable, finding the 
entire border can be prohibitively expensive. Thus, it is 
necessary to provide some pruning function that allows us to 
ignore “uninteresting” itemsets in the border. This pruning 
function cannot merely be a post-processing step, since this 
does not improve the running time. Instead, it must prune 
parts of the lattice as the algorithm proceeds. 

Consider the set of level-wise algorithms, which first de- 
termine the significant (and interesting) nodes among the 
itemsets of size 2, and then considers the itemsets of size 3, 
and so on. Then for the pruning criterion to be effective, it 
must be closed, so we can determine potentially interesting 
nodes at the next level based on nodes at the current level. 
An obvious pruning function fitting this criterion is support. 

We need a different definition of support, however, than 
the one used in the support-confidence framework, because 
unlike in the support-confidence framework we mine for neg- 
ative dependence. In other words, the support-confidence 
framework only looks at the top-left cell in the chi-squared 
contingency table. We extend this definition of support as 
follows: A set of items S has support s at the p% level if 
at least p% of the cells in the contingency table for S have 
value s. By requiring that p be a percent, rather than an 
absolute number, we make our definition of support down- 
ward closed. Note that values in the contingency table are 
observed values, not expected values. 

One weakness of this support definition is that, unless p 
is larger than 50%, all items have support at level 1. Thus, 
pruning at level 1 is never productive, and a quadratic al- 
gorithm looms. If p is larger than 25%, though, we can do 
special pruning at level 1. p > 0.25 means that at least two 
cells in the contingency table will need support s. If neither 
item ii or is occurs as often as s, this amount of support 
is impossible: only iliz could possibly have the necessary 
count. If there are many rare items - a similar argument 
holds if there are many very common items - this pruning 
is quite effective. 

Other pruning algorithms may be used, besides support. 
One possibility is anti-support, where only rarely occurring 
combinations of items are interesting. This may be appropri- 
ate in the fire code example mentioned in Section 1, for in- 
stance, since fires - and the conditions leading up to them - 
are rare. Anti-support cannot be used with the chi-squared 
test at this time, however, since the chi-squared statistic is 
not accurate for very rare events. Another possible pruning 
method is to prune itemsets with very high x2 values, under 
the theory that these correlations are probably so obvious 
as to be uninteresting. Since this property is not downward 
closed, it would not be effective at pruning in a level-wise al- 

gorithm. A random walk algorithm, for instance [14], might 
be appropriate for this kind of pruning. 

Combining the chi-squared correlation rule with pruning 
via support, we obtain the algorithm in Figure 1. We say 
that an itemset is significant if it is supported and minim- 
ally correlated. The key observation is that an itemset at 
level i + 1 can be significant only if all its subsets at level 
i have support and none of its subsets at level i are cor- 
related. Thus, for level i + 1, all we need is a list of the 
supported but uncorrelated itemsets from level i. This list 
is held in NOTSIG. The list SIG, which holds the supported 
and correlated itemsets, is the output set of interest. 

The final list is CAND, which builds candidate itemsets 
for level i + 1 from the NOTSIG list at level i. Let S be a set 
of size i + 1 for which every subset of size i is in NOTSIG. 
Then S is not ruled out by either support pruning or signi- 
ficance pruning and is added to CAND. Once CAND has been 
constructed, we are done processing itemsets at level i. To 
start level i + 1, we examine each set S E CAND to see if it 
actually does have the necessary support. If so, we add it 
to either SIG or NOTSIG for level i + 1, depending on its x2 
value. 

The most expensive part of the algorithm is Step 8. We 
propose an implementation based on perfect hash tables (see 
[lo, 71 for a description of the perfect hash function we used). 
In these hash tables, there are no collisions, and insertion, 
deletion, and lookup all take constant time. The space used 
is linear in the size of the data. Both NOTSIG and CAND are 
stored in hash tables. Elements of SIG can be stored in an 
array, or output as they are discovered and not stored at all. 

To construct candidates for CAND using hash tables, we 
consider each pair of elements in NOTSIG. Suppose A and 
B are itemsets in NOTSIG. lf IA U B] = i + 1, A U B might 
belong in CAND. To test this, we consider all i - 1 remaining 
subsets of A U B which have size i. We can test each one 
for inclusion in NOTSIG in constant time. If all subsets are 
in NOTSIG, we add A U B to CAND, otherwise we ignore it. 
The total time for this operation is o(]NOTSIG12i). 

Calculation of x2, at first blush, seems to take time O(2’) 
at level i’, since we need to consider every cell in the contin- 
gency table. We can reduce the time to O(min{n, 2’)) by 
storing the contingency table sparsely, that is, by not stor- 
ing cells where the observed count is 0. The problem is that 
cells with count 0 still contribute to the x2 value. Thus we 
massage the x2 formula as follows: 

c (OCr) - E[r1)2 = c qo(r) - 2E[r]) + c E[r]. 

rER ELI-1 r Eb-1 7 

Now c, E[r] = n, and #(O(r) - 2E[r]) is 0 if O(r) is 

0. We can calculate x2 values based only on occupied cells, 
and there can be at most n of these. 

One expensive operation remains. To construct the con- 
tingency table for a given itemset, we must make a pass over 
the entire database. In the worst case, this requires k’ passes 
at level i. An alternative is to make one pass over the data- 
base at each level, constructing all the necessary contingency 
tables at once. We need one conti,ngency table for each ele- 
ment of CAND. This requires O(k’) space in the worst case, 
though pruning will reduce the space requirements signific- 
antly. At level 2, which usually requires the most space 
in practice, the space requirement of O(k’) is probably not 
onerous, especially since storing an entire 2-dimensional con- 
tingency table requires only 4 words. The time required at 
level i is, in both cases, O(~]CAND]) E O(nk’). 
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Algorithm x2-support 
Input: A chi-squared significance level LY, support s, support fraction p > 0.25. Basket data B. 
Output: A set of minimal correlated itemsets, from B. 

1. For each item i E I, do count O(i). We can use these values to calculate any necessary expected value, as explained in 
Section 3. 

2. InitialiZe CAND t 8, SIG t 8, NOTSIG t 8. 

3. For each pair of items i,, ib E 1 such that o(i,) > s and O(ib) > s, do add {ia, ib} to CAND. 

4. NOTSIG t 8. 

5. If CAND is empty, then return SIG and terminate. 

6. For each itemset in CAND, do construct the contingency table for the itemset. If less than p percent of the cells have count 
s, then goto Step 8. 

7. If the x2 value for the contingency table is at least xi, then add the itemset to SIG, else add the itemset to NOTSIG. 

8. Continue with the next itemset in CAND. If there are no more itemsets in CAND, then set CAND to be the set of all sets S 
such that every subset of size ISI - 1 of S is in NOTSIG. Goto Step 4. 

Figure 1: The algorithm for determining significant (i.e., correlated and supported) itemsets. It hinges on the fact that 
significant itemsets at level i + 1 are supersets of supported but uncorrelated sets at level i. Step 8 can be implemented 
efficiently using hashing. 

Overall, the running time for level i is O(n . ICAND~ . 
min{n, 2’) + i. INOTSIG~‘). 

It is instructive to compare the algorithm in Figure 1 to 
the hash-based algorithm of Park, Chen, and Yu [24] for the 
support-confidence framework. Their algorithm also uses 
hashing to construct a candidate set CAND, which they then 
iterate over to verify the results. One difference is that veri- 
fication is easier in their case, since they only need to test 
support. We also need to test chi-squared values, a more ex- 
pensive operation that makes careful construction of CAND 
more important. Another difference is we use perfect hash- 
ing while Park, Chen, and Yu [24] allow collisions. While 
collisions reduce the effectiveness of pruning, they do not af- 
fect the final result. The advantage of allowing collisions is 
that the hash table may be smaller. Hashing with collisions 
is necessary when the database is much larger than main 
memory. Our algorithm fails if we allow collisions, since we 
need hash table lookup; it is an open problem to modify our 
algorithm for very large databases. 

5 Experimental Results 

There is a wide range of problems for which correlation 
is the measure of interest and correlation rules are appro- 
priate. In this section, we describe the results of the ex- 
periments we performed with three different kinds of data: 
boolean/numeric census data (Section 5.1), text data from 
newsgroups (Section 5.2), and synthetic data (Section 5.3). 
The first two are useful for illustrating the conceptual aspect 
of the correlation tests, and the last shows the effect of our 
pruning strategies on the performance of the algorithm. 

Census data, such as that in Table 1, readily lends it- 
self to correlation calculations. Since the chi-squared test 
extends easily to non-binary data, we can analyze correla- 
tions between multiple-choice answers such as those found 
in census forms.4 Even when collapsing the census results 
to binary data, as we have chosen to do, we can find useful 

4A danger is that as the number of cells increases, problems with 
accuracy of the ,yz statistic increase as well. 

correlations (see Example 4). 
Another important application is the analysis of text data. 

In this case, each basket is a document, and each item is a 
word that occurs in some document. If the documents are 
newspaper articles, for instance, mining may turn up two 
company names that occur together more often than would 
be expected. We could then examine these two compan- 
ies and see if they are likely to merge or reach an operating 
agreement. Negative correlations may also be useful, such as 
the discovery that a document consisting of recipes contains 
the word “fatty” less often than would be expected. 

5.1 Census Data 

The first data set we tested was the census data set, with 
n = 30370 baskets and k = 10 binary items. The items are 
as in Table 1 and are reproduced below for convenience. We 
show results for both the x*-interest test (Table 2) and the 
support-confidence test (Table 3). 

To generate the x2 values for this data, we ran the al- 
gorithm in Figure 1 on a 90 MHz. Pentium running Linux 
1.2.13. The machine has 32 Meg. of main memory. The 
program was written in C and compiled using gee with the 
-06 compilation option. The entire database fit into main 
memory. The program took 3.6 seconds of CPU time to 
complete. 

Let us illustrate how data mining could be performed on 
the results in Table 2. Since so many pairs are correlated, 
we are struck by {il, i4) and {il, is}, which are not. We are 
even more surprised when we see that il concerns number 
of children and id and is concern markers for immigrants. 
This is surprising because conventional wisdom has it that 
immigrants are much more likely to have large families than 
native-born Americans. Perhaps, we conjecture, we are led 
astray by the category definition, since males are lumped 
together with women having few children. Perhaps it is not 
that immigrants have few children, but rather that they are 
preponderantly male. We look at the data for (i4, is} and 
{is, i8) to explore this. These are both significant, and the 
interest figures show there is indeed a dependency between 
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I a b I 
,\I \I I, \I 

a b x2 1 I(ab) I(iib) I(ab) I(sib) ] 
1.025 0.995 0.773 1.050 i4 is 11 18504.81 1 0.000 1.071 9.602 0.391 1 io il 

io i2 
io is 
io i4 

i0 i5 

io i6 
io i7 
io ia 
io ig 
Y--T-- 
11 v2 
i, iJ 

i, i4 

i, i5 

il ilj 

il i7 

il i8 

i, ig 
- 
22 23 
i-2 i4 
i2 is 
i2 is 
i2 in 
i2 ie 
i2 ig - 
23 24 
i3 is 
is i6 
i3 i7 

i3 i8 
i3 ig 

X‘ 
37.15 

244.47 
0.94 

4.57 
0.05 

737.18 
153.11 
138.13 
746.20 
296.55 

24.00 
1.60 
1.70 

352.31 
2010.07 
2855.73 

229.07 
82.02 

190.71 
176.05 
993.31 

2006.34 
3099.38 

819.90 
9130.58 

11119.28 
110.31 

62.22 
21.41 

0.10 

0.934 1.015 1.554 0.879 
1.004 0.999 0.966 1.007 

0.901 1.022 1.007 0.998 
0.999 1.000 1.008 0.998 

1.574 0.874 0.807 1.042 
0.880 1.026 1.192 0.958 

1.155 0.966 0.866 1.029 

i4 i6 

i4 i7 
i4 is 
i4 ig 
v 
25 26 
is i7 
is ia 

is ig v 
26 $7 
i6 is 

189.66 
76.04 
14.48 

3.27 
312.15 

10.62 
12.95 

2.50 
2913.05 

66.49 

1.512 0.964 0.828 1.012 
1.148 0.989 0.762 1.017 

1.088 0.994 0.924 1.005 
0.953 1.003 1.032 0.998 
0.940 1.512 1.020 0.827 
0.995 1.043 1.008 0.930 
0.992 1.065 1.007 0.944 
0.996 1.032 1.003 0.978 
0.579 1.142 1.677 0.772 

1.087 0.971 0.925 1.025 

1.404 0.912 0.722 1.061 
0.989 1.104 1.094 0.135 
0.997 1.030 1.026 0.759 
1.009 0.917 0.999 1.006 
0.999 1.008 1.007 0.933 
0.939 1.562 1.021 0.811 
1.067 0.385 0.892 1.988 
1.109 0.000 0.906 1.863 
0.965 1.317 1.024 0.782 
0.994 1.053 1.051 0.576 
1.103 0.140 0.993 1.061 
0.991 1.075 1.077 0.355 
0.892 1.901 1.036 0.697 
1.070 0.414 0.887 1.942 
0.881 1.994 1.103 0.142 
0.931 1.573 1.047 0.606 
0.271 6.823 1.052 0.588 
1.073 0.417 0.372 6.016 
0.963 1.294 1.012 0.901 
0.987 I.101 1.020 0.838 
0.990 1.081 1.009 0.930 
1.001 0.994 0.999 1.004 

i6 ig 186.28 1.163 0.945 0.888 1.038 
i7 is 98.63 1.048 0.922 0.958 1.067 
i7 ig 4285.29 0.643 1.574 1.246 0.605 
it7 is 12.40 1.026 0.977 0.982 1.016 

item 
- 

20 

il 

i2 

i3 

i4 

is 

i6 

i7 

is 

i9 

attribute values 
drives alone 
male or less than 3 children 
never served in the military 
native speaker of English 
not a U.S. citizen 
born in the U.S. 
married 
no more than 40 years old 
male 
homeowner 

non-attribute values 
does not drive, carpools 
3 or more children 
veteran 
not a native speaker 
U.S. citizen 
born abroad 
single, divorced, widowed 
more than 40 years old 
female 
dependent, boarder, renter 

Table 2: We consider all possible pairs of census items for the x2-interest test. Bold x2 values are significant and the significance 
level is 95%. Bold interest values are the most extreme values; there is no bold interest value if x2 is not significant. 

being male and being born abroad or not being a U.S. citizen. 
The interest values are fairly close to 1, though, indicating 
the bias is not strong. It does not seem strong enough to ac- 
count for the non-correlation we observed. A further jarring 
note for our explanation is the pair {il, is}. This pair in- 
cludes native language, another marker of immigration. But 
{il, is} is significant, which would lead us to believe immig- 
ration is correlated with family size. Furthermore, i3 is just 
as dependent on is (sex) as the other two markers of im- 
migration. Perhaps, then, our assumption that is, id, and is 
are good markers of immigration is flawed. Table 2 gives us 
much to mull on. 

We invite the reader to attempt a similar analysis with the 
support-confidence data in Table 3. For a special challenge, 
ignore the last seven columns, which are not typically mined 
in support-confidence applications. We find that it is much 
harder to draw interesting conclusions about census data 
from the support-confidence results. 

Another interesting result is that is and is are correl- 
ated, and the dependence is between being married and driv- 
ing alone. Does this imply that non-married people tend 
to carpool more often than married folk? Or is the data 
skewed because children cannot drive and also tend not to 
be married? Because we have collapsed the answers “does 
not drive” and “carpools,” we cannot answer this question. 
A non-collapsed chi-squared table, with more than two rows 
and columns, could find finer-grained dependency. Support- 
confidence cannot easily handle multiple item values. 

The magnitude of the x2 value can also lead to fruitful 
mining. The highest x2 values are for obvious correlations, 
such as being born in the United States and being a U.S. 
citizen. These values often have interest levels of 0, indicat- 
ing an impossible event (for instance, having given birth to 

more than 3 children and being male). 
Results from support-confidence framework tend to be 

harder to understand. Considering is and is, we have both 
the rules, “If you are married you are likely to be male” and 
“If you are male you are likely not to be married.” These 
two statements are not inconsistent, but they are confus- 
ing; among other things, they seem to imply not very many 
people are married. What is more worrisome, every pair 
of items has the maximum four supported rules. Someone 
mining this data using support-confidence would conclude 
that all item pairs have all sorts of valid associations, when 
a look at the x2 values shows that some associations cannot 
be statistically justified. Furthermore, some of the pairs with 
the largest support and confidence values, such as il and id, 
turn out not to be correlated. 

Note that, for this data set, no rule ever has adequate 
confidence but lacks support. This is not surprising since we 
examine only itemsets at level 2, where support is plentiful. 

5.2 Text Data 

We analyzed 91 news articles from the clari.world.africa news 
hierarchy, gathered on 13 September 1996. We chose only 
articles with at least 200 words (not counting headers), to fil- 
ter out posts that were probably not news articles. A word 
was defined to be any consecutive sequence of alphabetic 
characters; thus “s” as a possessive suffix would be its own 
word while numbers would be ignored. To keep the exper- 
iment a reasonable size, we pruned all words occurring in 
less than 10% of the documents; this is a more severe type 
of pruning than the special level 1 pruning discussed in Sec- 
tion 4. This left us with 416 distinct words. 

One would expect words to be highly correlated, and 
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a b SaUb %Ub sa,lT; n,,h s- - a-tb Z+b a+b Z+b b+a b+E b-ta b+Z 

io il 16.6 73.6 1.4 8.5 0.92 0.90 0.08 0.10 0.18 0.82 0.14 0.86 
io i2 15.0 74.3 3.0 7.7 0.83 0.91 0.17 0.09 0.17 0.83 0.28 0.72 
io i3 16.0 72.9 1.9 9.2 0.89 0.89 0.11 0.11 0.18 0.82 0.17 0.83 
io i4 1.1 5.5 16.9 76.5 0.06 0.07 0.94 0.93 0.16 0.84 0.18 0.82 
io is 16.1 73.5 1.9 8.5 0.90 0.90 0.10 0.10 0.18 0.82 0.18 0.82 
io i6 7.1 18.1 10.8 64.0 0.40 0.22 0.60 0.78 0.28 0.72 0.14 0.86 
io i7 9.7 51.9 8.2 30.2 0.54 0.63 0.46 0.37 0.16 0.84 0.21 0.79 
io is 9.6 36.7 8.3 45.3 0.54 0.45 0.46 0.55 0.21 0.79 0.16 0.84 
io ig 10.3 30.5 7.7 51.6 0.57 0.37 0.43 0.63 0.25 0.75 0.13 0.87 
il iz 79.6 9.7 10.6 0.1 0.88 0.99 0.12 0.01 0.89 0.11 0.99 0.01 
il i3 79.9 9.0 10.3 0.8 0.89 0.92 0.11 0.08 0.90 0.10 0.93 0.07 
il id 6.0 0.6 84.2 9.2 0.07 0.06 0.93 0.94 0.91 0.09 0.90 0.10 
il is 80.7 8.9 9.5 1.0 0.90 0.90 0.10 0.10 0.90 0.10 0.91 0.09 
il is 21.3 3.9 68.9 6.0 0.24 0.39 0.76 0.61 0.85 0.15 0.92 0.08 
il i7 59.3 2.3 30.9 7.5 0.66 0.24 0.34 0.76 0.96 0.04 0.80 0.20 
il i8 46.3 0.0 43.8 9.8 0.51 0.00 0.49 1.00 1.00 0.00 0.82 0.18 
il is 35.5 5.3 54.7 4.6 0.39 0.54 0.61 0.46 0.87 0.13 0.92 0.08 
i2 i3 78.9 10.0 10.4 0.7 0.88 0.94 0.12 0.06 0.89 0.11 0.94 0.06 
i2 id 6.5 0.1 82.8 10.6 0.07 0.01 0.93 0.99 0.99 0.01 0.89 0.11 
iz is 79.3 10.3 10.0 0.4 0.89 0.96 0.11 0.04 0.89 0.11 0.96 0.04 
i2 i6 20.1 5.1 69.2 5.6 0.22 0.48 0.78 0.52 0.80 0.20 0.93 0.07 
i2 i7 58.9 2.7 30.4 8.0 0.66 0.26 0.34 0.74 0.96 0.04 0.79 0.21 
i2 i3 36.5 9.9 52.9 0.8 0.41 0.92 0.59 0.08~ 0.79 0.21 0.98 0.02 
i2 ig 33.9 6.9 55.4 3.8 0.38 0.64 0.62 0.36 0.83 0.17 0.94 0.06 
i3 i.j 1.6 5.0 87.3 6.1 0.02 0.45 0.98 0.55 0.24 0.76 0.93 0.07 
i3 is 85.4 4.2 3.4 7.0 0.96 0.37 0.04 0.63 0.95 0.05 0.33 0.67 
i3 i6 21.6 3.6 67.3 7.5 0.24 0.33 0.76 0.67 0.86 0.14 0.90 0.10 
i3 iT 54.1 7.6 34.8 3.6 0.61 0.68 0.39 0.32 0.88 0.12 0.91 0.09 
i3 is 40.8 5.6 48.1 5.6 0.46 0.50 0.54 0.50 0.88 0.12 0.90 0.10 
i3 ig 36.2 4.5 52.6 6.6 0.41 0.40 0.59 0.60 0.89 0.11 0.89 0.11 
id is 0.0 89.6 6.6 3.8 0.00 0.96 1.00 0.04 0.00 1.00 0.64 0.36 
id i6 2.5 22.7 4.1 70.7 0.38 0.24 0.62 0.76 0.10 0.90 0.05 0.95 
id i, 4.7 57.0 1.9 36.4 0.71 0.61 0.29 0.39 0.08 0.92 0.05 0.95 
id i3 3.3 43.0 3.3 50.4 0.50 0.46 0.50 0.54 0.07 0.93 0.06 0.94 
iq ig 2.6 38.2 4.0 55.2 0.39 0.41 0.61 0.59 0.06 0.94 0.07 0.93 
is i6 21.2 4.0 68.4 6.4 0.24 0.38 0.76 0.62 0.84 0.16 0.91 0.09 
is i7 54.9 6.7 34.6 3.7 0.61 0.64 0.39 0.36 0.89 0.11 0.90 0.10 
is i3 41.2 5.1 48.4 5.3 0.46 0.49 0.54 0.51 0.89 0.11 0.90 0.10 
is ig 36.4 4.4 53.2 6.0 0.41 0.42 0.59 0.58 0.89 0.11 0.90 0.10 
i6 i7 9.0 52.7 16.2 22.2 0.36 0.70 0.64 0.30 0.15 0.85 0.42 0.58 
i6 i8 12.7 33.6 12.5 41.2 0.50 0.45 0.50 0.55 0.27 0.73 0.23 0.77 
i6 i!J 11.9 28.8 13.3 46.0 0.47 0.39 0.53 0.61 0.29 0.71 0.22 0.78 
i7 i8 29.9 16.4 31.7 22.0 0.49 0.43 0.51 0.57 0.65 0.35 0.59 0.41 
i7 ig 16.1 24.6 45.5 13.8 0.26 0.64 0.74 0.36 0.40 0.60 0.77 0.23 
i,3 ig 19.4 21.4 27.0 32.3 0.42 0.40 0.58 0.60 0.48 0.52 0.45 0.55 

Table 3: We consider all possible pairs of census items for the support-confidence test. Bold values are significant. Support 
values are given in percents and the support cutoff is 1%. The confidence cutoff is 0.5. Note that confidence values are not 
bold unless the corresponding support value is significant. 
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indeed this turned out to be the case. Of the (“i”) = 86320 
word pairings, there were 8329 correlated pairs, i.e., 10% of 
all word pairs are correlated. More than 10% of all triples 
of words are correlated. Because of the huge amount of data 
generated, thorough analysis of the results is very difficult. 
We provide some anecdotal analysis, however, to give a taste 
of the effectiveness of the chi-squared test on text data. 

A list of 12 correlated itemsets is presented in Table 4. 
We show not only the correlated words but the major de- 
pendence in the data. We see some obvious correlations: 
“area” appears often with “province,” which is not surpris- 
ing since the two terms are clearly related. The largest single 
x2 value relates “Nelson” to “Mandela,” again hardly sur- 
prising. 

While some pairs of words have large x2 values, no triple 
has a x2 value larger than 10. Remember that we report 
minimal correlated itemsets, so no subset of a triple is it- 
self correlated. Thus “Burundi,” “commission,” and “plan” 
are 3-way correlated, though “commission” and “plan,” say, 
are not. Since the major dependence has “commision” and 
“plan” but lacks “Burundi,” we might suspect that there 
are fewer commission making plans in Burundi than other 
African nations. Likewise, “African,” “men,” and “Nel- 
son,” are correlated, though “African” and “men” alone are 
not, leading us to posit that articles including Nelson Man- 
dela might disproportionately refer to African men. Another 
major dependence has “official” and “authorities” occurring 
without the word “black.” Could that be because race is 
not mentioned when discussing authority figures, or perhaps 
because non-black authority figures are given more promin- 
ence? 

We include the threesome ‘Lgovernment,” ‘%,” and “num- 
ber” because it has the highest x2 value of any triple of 
words. Like many of the correlated triples, of which there 
are well over a million, this itemset is hard to interpret. Part 
of the difficulty is due to the word “is,” which does not yield 
as much context as nouns and active verbs. In practice, it 
may make sense to restrict the analysis to nouns and active 
verbs to prune away such meaningless correlates. 

5.3 Synthetic Data 

The real data presented above suffers from a Goldilocks 
problem. The census data is too small, and its border too 
low, to study the effectiveness of the pruning techniques. 
The text data is too big; we were forced to prune words with 
low support even before starting our mining algorithm. To 
get data that is just right for exploring the effectiveness of 
our algorithm, we turn to synthetic data from IBM’s Quest 
group PI. 

We generated market basket data with 99997 baskets and 
870 items. We set the average basket size to be 20, and the 
average size of large itemsets to be 4. To generate the x2 
values for this data, we ran the algorithm in Figure 1 on 
a Pentium Pro with a 166 MHz. processor running Linux 
1.3.68. The machine has 64 Meg. of memory and the entire 
database fit into main memory. The program took 2349 
seconds of CPU time to complete. 

To analyze the effectiveness of the pruning, we look at 
several factors. One is the number of itemsets that exist 
at each level, i.e., the number of itemsets we would have 
to examine without pruning. The next is the size of CAND; 
this is the number of itemsets we actually examine. Each 
itemset in CAND is either added to SIG, added to NOTSIG, or 
discarded. The smaller the number of items discarded, the 
more effective our pruning techniques. We summarize these 

figures for the Quest data in Table 5. 
Note that unlike with the text data, the number of cor- 

relations at level 3 is much smaller than the number of cor- 
relations at level 2. Though we do not show the numbers, 
it is again the case that the 3-way correlations have much 
lower x2 values than the average 2-way correlation, with no 
3-way correlation having x2 > 8.7. In this case, both sup- 
port and significance provide pruning, though the effect of 
support seems to be much more pronounced. 

6 Conclusions 

We have introduced a generalization of association rules, 
called correlation rules, that are particularly useful in ap- 
plications going beyond the standard market basket setting. 
In addition, these rules have some advantages over the use 
of standard association rules. Correlation rules seem useful 
for analyzing a wide range of data, and tests using the chi- 
squared statistic are both effective and efficient for mining. 

Our work raises many important issues for further re- 
search. First, there is the question of identifying other meas- 
ures and rule types that capture patterns in data not already 
captured by association rules and correlation rules. For ex- 
ample, in the case of documents, it would be useful to formu- 
late rules that capture the spatial locality of words by paying 
attention to item ordering within the basket. In addition, it 
would be interesting to explore the class of measures and 
rules that lead to upward closure or downward closure in 
the itemset lattice, since closure appears to be a desirable 
property both from the conceptual and the efficiency points 
of view. We have also suggested another algorithmic idea, 
random walks on the lattice, for correlated rules that may 
apply in other settings. It is easy to verify that a random 
walk algorithm has a natural implementation in terms of a 
datacube of the count values for contingency tables, and we 
hope to explore this connection in a later paper. 

With regard to the chi-squared test itself, a significant 
problem is the increasing inaccuracy of the chi-squared test 
as the number of cells increase. An efficient, exact test for 
correlation would solve this problem, though other computa- 
tional solutions may be possible. In lieu of a solution, more 
research is needed into the effect of ignoring cells with low 
expectation. Though ignoring such cells can skew results ar- 
bitrarily on artificially constructed data sets, it is not clear 
what the impact is in practice. 

Another area of research is in pruning criteria besides 
support. If these criteria are not downward closed, a non- 
level-wise algorithm will probably be necessary to keep the 
computation efficient. For example, it would be interesting 
to experiment with the random walk algorithm. 

All of the data we have presented have small borders be- 
cause most small itemsets are correlated. It might be fruitful 
to explore the behavior of data sets where the border is ex- 
ponential in the number of items. 
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A The Theory of Chi-squared Distributions 

Intuitively, the chi-squared statistic attempts to measure the 
degree of independence between different attributes by com- 
paring their observed patterns of occurrence with the expec- 
ted pattern of occurrence under the assumption of complete 
independence and a normal distribution on the occurrence of 
each attribute. Note that the normal distribution assumption 
is justified for a large value of m, as a reasonable distribution 
will approach normality asymptotically. 

We briefly review the theoretical justification for employ- 
ing the chi-squared statistic in this setting. This is classical 
work in statistics that goes back at least to the last century. 
Refer to the book by Lancaster [18] for the history and theory 
of the chi-squared test for independence. 

Let X be a Bernoulli random variable that denotes the 
number of successes in N independent trials where the prob- 
ability of success in any given trial is p. The expected num- 
ber of successes is Np and the variance is Np(1 - p). The 
classical work of de Moivre [21] and Laplace [19] has estab- 
lished that the random variable x = X-Np follows the 

dxT=ii 
standard normal distribution. The square of this random 
variable x is given by 

x* = (X - Np12 

NP(~ -P) 

= (X --NP)~ + ((N -X) - NC1 - P))~ 

NP NC1 - P) 

= (Xl - NP)~ + (Xo - N(1 -P))~ 

NP NC1 -P) 

= (Xl - E[Xl])” + (X0 - E[Xol)2 

E[Xll E[Xo] ’ 

where X1 denotes the number of successes and XO denote the 
number of failures in the N trials. Note that, by definition, 

the x2 random variable is asymptotically distributed as the 
square of a standard normal variable. 

Pearson [25] extended the definition to the multinomial 
case, where X can take on any value in a set U. The modified 
formula is 

x2 =c 
(Xv - E[Xr])2 

rclJ ELI 
and yields a x2 distribution with u-l degrees of freedom (we 
lose one degree of freedom due to the constraint rrEU X, = 

W 
We can further generalize the x2 variable to the case of 

multiple random variables. We consider the binomial case, 
though the multinomial case extends in the expected way. 
Let X’, . , Xk denote k independent, binomially distrib- 
uted random variables. We can define a contingency table 
or count table CT that is a k-dimensional array indexed by 
(0, l}k. Each index refers to a unique cell of the contingency 
table. The cell CT(r) in the table is a count of the num- 
ber of trials, out of N independent trials, where the event 
(X’ = rl , . . . , Xk = rk) occurs. We define the x2 value as 

x2= c (CT(r) - EW(r)l)2 
rc{O,l)k ED”(r)1 

This has 1 degree of freedom - we have two values in each 
row of the contingency table and one constraint in that the 
row sum is fixed. In the general multinomial case, if X’ can 
have U; different values, there are (~1 - l)(uz - 1). . (uk - 1) 
degrees of freedom. 

We now show that in the binomial case, the chi-squared 
statistic is upward closed. 

Theorem 1 In the binomial case, the &-squared statistic 
is upward closed. 

Proof: The key observation in proving this is that no 
matter what k is, the chi-squared statistic has only one de- 
gree of freedom. Thus, to show upward closure it is sufficient 
to show that if a set of item has x2 value S, then any su- 
perset of the itemset has x2 value at least S. We show this 
for itemsets of size 2, though the proof easily generalizes to 
higher dimensions. 

Consider events A, B, and C. The x2-statistic for the 
events A and B is defined as follows: 

SAB = 
(E[AB] - O(AB))* 

E WI 

+ (E[AB] - O(A@)2 

E[AB] 

+ (E[xB] - O(?iB))’ + (E[m] - O(m))’ 

E[;;IB] E[m] 

Now, let E denote the value E[AB] and 0 the value 
O(AB). Define z = E[ABC] and y = E[ABc]. Like- 
wise, define X = O(ABC) and Y = O(ABc). Note that 
E = x + y and 0 = X + Y. Then, in the x*-statistic SABC 
for the triple A, B, and C, the expression for SAB changes 
as follows: 

(E - 0)’ 

E 
~ (X-W’ ; (Y-Y)“. 

X Y 

Therefore, in SABC - SAB, we have the terms p-X)2 I 2 

e-w which, after some manipulation, simplifies 

to ‘w, which is always positive. This implies SABC 
is always greater than SAB. 

0 
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