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Abstract. Datacube queries compute simple aggregates at multiple gran-
ularities. In this paper we examine the more general and useful problem of
computing a complex subquery involving multiple dependent aggregates
at multiple granularities. We call such queries “multi-feature cubes.” An
example is “Broken down by all combinations of month and customer,
find the fraction of the total sales in 1996 of a particular item due to
suppliers supplying within 10% of the minimum price (within the group),
showing all subtotals across each dimension.” We classify multi-feature
cubes based on the extent to which fine granularity results can be used to
compute coarse granularity results; this classification includes distribu-
tive, algebraic and holistic multi-feature cubes. We provide syntactic
sufficient conditions to determine when a multi-feature cube is either dis-
tributive or algebraic. This distinction is important because, as we show,
existing datacube evaluation algorithms can be used to compute multi-
feature cubes that are distributive or algebraic, without any increase
in 1/O complexity. We evaluate the CPU performance of computing
multi-feature cubes using the datacube evaluation algorithm of Ross and
Srivastava. Using a variety of synthetic, benchmark and real-world data
sets, we demonstrate that the CPU cost of evaluating distributive multi-
feature cubes is comparable to that of evaluating simple datacubes. We
also show that a variety of holistic multi-feature cubes can be evaluated
with a manageable overhead compared to the distributive case.

1 Introduction

Decision support systems aim to provide answers to complex queries posed
over very large databases. The databases may represent business information
(such as transaction data), medical information (such as patient treatments and
outcomes), or scientific data (such as large sets of experimental measurements).
The vast quantities of data contain enough information to answer questions of
importance to the application user. Useful queries in the domains above include:

— Broken down by supplier, month and item, find the total sales in 1996,
including all subtotals across each dimension.

— Broken down by hospital, diagnosis and treatment, find the average life
expectancy, including all subtotals across each dimension.
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Each of these queries is an example of a datacube query [GBLP96]. Datacube
queries allow one to compute aggregates of the data at a variety of granularities.
The first query above would generate aggregate data at eight different gran-
ularities including total sales by (a) supplier, (b) month, (c) item, (d) supplier
and month, () supplier and item, (f) month and item, (g) supplier, month and
item, and (h) the empty set (i.e., the total overall sales). A datacube could be
computed by separately computing the aggregate at each granularity. However,
it is also possible to compute aggregates at several coarser levels of granularity
at the same time as computing aggregates at finer levels of granularity. Such
algorithms are presented in [GBLP96, AADT96, ZDN97, RS97].

A different kind of decision support query has been considered in [CR96],
involving aggregation queries in which multiple dependent aggregates are com-
puted within each group. An example of such a query is the following:

QO: For each item, find its minimum price in 1996, and the total sales among
all minimum price tuples.

[CRY6] presented an extended SQL syntax that allows a succinct representation
of such queries. An experimental study demonstrated that such queries can be ef-
ficiently evaluated. In contrast, standard SQL representations of the same queries
are verbose and redundant, leading to queries that are hard to understand, to
maintain, and to optimize.

In this paper, we consider complex decision support queries in which multiple
dependent aggregates are computed at a variety of granularities. In particular, we
would like to be able to ask queries like that of Query QO above, but replacing
the phrase “For each item” by “Grouping by all subsets of {supplier, month,
item}.” We call such queries multi-feature cubes, and illustrate the practical
utility of such queries using a number of examples. The main contributions of
this paper are the following.

Classification (Section 4) We classify multi-feature cubes based on their de-
gree of incrementality. We extend the notions of distributive, algebraic, and
holistic aggregates from [GBLP96] to our more general context.

Identification (Section 5) We provide syntactic sufficient conditions on multi-
feature cube queries to determine when they are distributive or algebraic.
The evaluation of such queries can be performed particularly efficiently, so
it is important to be able to identify them syntactically. These conditions
admit a large class of multi-feature cube queries beyond those expressible as
simple datacubes.

Evaluation (Section 6) We present an algorithm that incrementally computes
the coarser granularity output of a distributive multi-feature cube using
the finer granularity output of the multi-feature cube. We show that this
algorithm can be used in conjunction with previously proposed techniques
for efficiently evaluating datacubes to evaluate multi-feature cubes that are
distributive or algebraic, with the same I/O complexity. We also discuss
the suitability of previously proposed datacube evaluation techniques for
efficiently evaluating holistic multi-feature cubes.



Performance (Section 7) We evaluate the CPU performance of computing
multi-feature cubes using the datacube evaluation algorithm of Ross and
Srivastava [RS97]. Using a variety of synthetic, benchmark and real-world
data sets, we demonstrate that the CPU cost of evaluating distributive multi-
feature cubes is comparable to that of evaluating simple datacubes. We also
show that a variety of holistic multi-feature cubes can be evaluated with a
manageable overhead compared to the distributive case.

We can hence ask considerably more sophisticated queries than datacube queries
without incurring a significant cost increase! All the examples in this paper will
use the relation SUPPLIES(Supplier, Customer, Item, Year, Month, Day,
Price, Sales, Delay) from a business application database. Suppliers supply
items to customers. The unit price and sales (in dollars) of items ordered by the
customer from the supplier on the given date are stored in Price and Sales.
Orders placed on that date are delivered after Delay days.

2 Background

2.1 The Datacube: Aggregation at Multiple Granularities

In [GBLPY6], Gray et al. present the datacube, which allows the computation of
aggregates of the data at multiple granularities. We refer the reader to [GBLP96]
for the syntax and semantics of such queries in general, and present an example
below to aid intuition.

Example 2.1: Suppose that we want to ask the following datacube query:
grouping by all subsets of {Supplier, Customer, Item, Month}, find the total
sales among all tuples from 1996. One could write this query as:

SELECT Supplier, Customer, Item, Month, SUM(Sales)
FROM SUPPLIES

WHERE Year = 1996

CUBE BY Supplier, Customer, Item, Month

The meaning of this datacube is the union of the results of 16 SQL queries,
obtained as follows: for each subset B of the CUBE BY attributes, the CUBE BY
clause is replaced by GROUP BY B, and any attribute in the SELECT clause not in
B is replaced by the special constant value ALL.* a

2.2 Querying Multiple Features of Groups

In [CR96], Chatziantoniou and Ross present an extension of SQL that allows
one to query multiple features of groups in relational databases. We refer the
reader to [CR96] for the syntax and semantics of such queries, and present an
example below to aid intuition.

* Recall that in standard SQL only attributes in the GROUP BY clause, aggregates and
constant values can appear in the SELECT clause.



Example 2.2: Suppose that we want to ask the following query: for each cus-
tomer, for each item, and for each month in 1996, find the total sales among
all minimum price suppliers of that item for that month. In the SQL extension
of [CRY6], one could write this query as:

SELECT Customer, Item, Month, SUM(R.Sales)
FROM SUPPLIES

WHERE Year = 1996

GROUP BY Customer, Item, Month : R

SUCH THAT R.Price = MIN(Price)

The meaning of this query can be understood as follows. First, all tuples in
the SUPPLIES relation that satisfy the condition “Year = 1996” are selected,
and these tuples are grouped based on their values of the grouping attributes
Customer, Item and Month into multiple groups, say g1, ..., g.. For each group
of tuples g;, the minimum price m,, among the tuples of g; is computed, and
grouping variable R ranges over all tuples in group g; whose price is equal to mg,.
The sum of sales of the tuples in g; that R ranges over is then computed, and
associated with the values of the grouping attributes of g; in the query result. O

3 Multi-Feature Cubes

The work of Chatziantoniou and Ross from Section 2.2 motivates us to try to ask
more general queries at multiple granularities. Consider Example 2.2 once more,
and suppose that we wish to ask the same query at different time granularities.
For example, finding minimum price suppliers over the whole year, and summing
their sales, is commonly called a “roll-up” query. If we wish to find the minimum
price suppliers on each day, and sum their sales, then we would be “drilling down”
to a finer granularity. If we wish to answer this query at all possible granularities
within a given set of grouping variables, then we are performing an operation
analogous to the datacube, which we call a multi-feature cube.

Example 3.1: We shall use the following queries throughout this paper:

Q1: Grouping by all subsets of {Supplier, Customer, Item, Month} find the
minimum price among all tuples from 1996, and the total sales among all
such minimum price tuples.

Q2: Grouping by all subsets of {Supplier, Customer, Item, Month} find the
minimum price among all tuples from 1996, and the fraction of the total sales
due to tuples whose delay is less than 10 days and whose price is within 25%,
within 50% and within 75% of the minimum price.

Q3: Grouping by all subsets of {Supplier, Customer, Item, Month} find the
minimum price among all tuples from 1996, the maximum and minimum
delays within the set of all minimum price tuples, and the fraction of the
total sales due to tuples that have maximum delay within the set of all
minimum price tuples, and the fraction of the total sales due to tuples that
have minimum delay within the set of all minimum price tuples. a



Q: SELECT  Bi, ..., Bx, f1(&1), ..., £,(A,)

FROM Ti, .y Tp
WHERE Cond
CUBEBY Bi, ..., By : Ri, ..., Ry,

SUCH THAT S; AND ... AND S,,

Fig. 1. Syntax for Multi-Feature Cube Queries

Just as the multi-feature queries of [CR96] can be expressed using standard
features of SQL such as views and/or subqueries, multi-feature cubes can also
be expressed using the datacube and views/subqueries. However, as argued
in [CR96], the resulting expressions are both complex and repetitious, leading to
queries that are difficult to understand, maintain, and optimize, Thus, we prefer
to extend the succinct syntax of [CR96] with the CUBE BY clause of [GBLP96].

3.1 A Combined Syntax for Multi-Feature Cubes

A multi-feature cube query Q has the syntax described in Figure 1. The FROM
and the WHERE clauses in the multi-feature cube are identical to the corre-
sponding clauses in the syntactic extensions of [CR96] and [GBLP96], which are
unchanged from standard SQL. The CUBE BY clause in the multi-feature cube
combines the CUBE BY clause from [GBLP96] with the specification of grouping
variables Ry, ..., Ry of the GROUP BY clause from [CR96]. The SELECT and the
SUCH THAT clauses in the multi-feature cube are identical to the corresponding
clauses in the syntactic extension of [CR96]. The meaning of the multi-feature
cube is the union of the results of all 2% queries of the form:

SELECT By, ..., Br, f1(&1), ..., £o(4,)
FROM Ti, ..., Tp

WHERE Cond

GROUPBY B : Ry, ..., Rm

SUCH THAT S; AND ... AND S,,

where B is an arbitrary subset of {B1, ..., Bg}, and any B; not in B that appears
in the SELECT clause is evaluated as the special constant value ALL.

When we require that grouping variable R; ranges over a subset of the tuples
that grouping variable R; (where i < j) ranges over, we simply write “R; in
R;” in the condition S; of the SUCH THAT clause. This notation is a convenient
shorthand for a query in which the conditions in the SUCH THAT clause for S; are
repeated in S; (for R; rather than R;).

Example 3.2: We now express the queries of Example 3.1 using our syntax.

Q1: SELECT Supplier, Customer, Item, Month, MIN(Price), SUM(R.Sales)
FROM SUPPLIES
WHERE Year = 1996
CUBE BY Supplier, Customer, Item, Month : R
SUCH THAT R.Price = MIN(Price)



Q2: SELECT Supplier, Customer, Item, Month, MIN(Price),

SUM(R1.Sales), SUM(R2.Sales), SUM(R3.Sales), SUM(Sales)

FROM SUPPLIES

WHERE Year = 1996

CUBE BY Supplier, Customer, Item, Month : R1, R2, R3

SUCH THAT R1.Price <= 1.25#MIN(Price) AND R1.Delay < 10
AND R2.Price <= 1.50%MIN(Price) AND R2.Delay < 10
AND R3.Price <= 1.75%MIN(Price) AND R3.Delay < 10

Q3: SELECT Supplier, Customer, Item, Month, MIN(Price), MIN(R1.Delay),
MAX(R1.Delay), SUM(R1.Sales), SUM(R2.Sales), SUM(R3.Sales)
FROM SUPPLIES
WHERE Year = 1996
CUBE BY Supplier, Customer, Item, Month : R1, R2, R3
SUCH THAT R1.Price = MIN(Price) AND R2 in R1 AND R2.Delay =
MIN(R1.Delay) AND R3 in R1 AND R3.Delay = MAX(R1.Delay)

4 Classifying Multi-Feature Cubes

To better understand issues arising in the evaluation of multi-feature cubes, we
propose a classification based on the notion of incremental evaluability.

Definition 4.1: (Group, Granularity) Let @ be a multi-feature cube query on a
database D, and let By, ..., Bg be the attributes mentioned in the CUBE BY clause
of @. Each instance v of attributes By, ..., By (including instances involving the
special ALL value) is called a group.

Groups v and v’ are said to be at the same level if they take the value ALL
on exactly the same attributes. The set of all groups at the same level is called a
granularity, and is denoted by its set of non-ALL attributes. Group v’ is coarser
than v (or, v is finer than v') if v/ # v and every non-ALL value of a (grouping)
attribute in v’ is also the value of that attribute in v. Also, the granularity of
such a group v’ is said to be coarser than the granularity of group v. a

Datacubes and multi-feature cubes can be evaluated using multiple passes
over the base data. While such an evaluation technique may be required in gen-
eral, a large number of datacubes (those using distributive aggregate functions,
in the terminology of [GBLPY96]) can be evaluated much more efficiently, by
incrementally computing the output of the datacube at a coarser granularity
using only the output of the datacube at a finer granularity. We capture this
property in our definition of distributive multi-feature cubes.

Definition 4.2: (Distributive Multi—Feature~Cube) Consider the multi-feature
cube @ given by the syntax of Figure 1. Let B; and By denote arbitrary subsets
of the CUBE BY attributes {By,...,Bx}, such that By is a subset of By. Let Q;, i €
{1, 2} denote the query:

SELECT Bi, ..., Bg, f1(41), ..., £,(4y)
FROM Ti, ...r Tp



WHERE Cond
GROUPBY B; : Ry, ..., Rm
SUCH THAT S; AND ... AND S,,

where any B; not in B; appearing in the SELECT clause is evaluated as the constant
value ALL.

Query @ is said to be a distributive multi-feature cube if there is a com-
putable function F' such that for all databases D and all J; and ()2 as above,
output(Q)q, D) can be computed via F' as F(output(Qz, D)). m|

Proposition 4.1: Datacubes that use only distributive aggregate functions are
distributive multi-feature cubes. a

Example 4.1: We show that Query Q1 is a distributive multi-feature cube.
Suppose that we have computed the aggregates for the granularity Supplier,
Customer, Item, Month and have kept both MIN(Price) and SUM(R.Sales)
for each group. We now wish to compute the aggregates for the granularity
Supplier, Customer, Item. We can combine the twelve pairs of values (one
per month) into an annual pair of values, as follows: (a) Compute the minimum
of the monthly MIN(Price) values. This is the annual MIN(Price) value. (b) Add
up the SUM(R.Sales) for those months whose monthly MIN(Price) valueis equal
to the annual MIN(Price) value. This is the annual SUM(R.Sales) value. ad

However, multi-feature cubes may be non-distributive even when each aggre-
gate function in the SELECT and SUCH THAT clauses is distributive. Query Q2 from
Example 3.2 is such a non-distributive cube, as the following example illustrates.

Example 4.2: Consider Query Q2, which determines the fraction of the total
sales due to tuples whose delay is less than 10 days and whose price is within
25%, within 50% and within 75% of the minimum price.

Suppose that we’ve computed these aggregates for the granularity Supplier,
Customer, Item, Month and have kept all of MIN(Price), SUM(R1.Sales),
SUM(R2.Sales), SUM(R3.Sales) and SUM(Sales) for each group. We now wish
to compute the aggregates for the granularity Supplier, Customer, Item. Un-
fortunately, we cannot simply combine the twelve tuples of values (one per
month) into a global tuple of values. Suppose that (for some group) the minimum
price over the whole year is $110, but that the minimum price for January is $120.
Then we do not know how to combine January’s SUM(R2.Sales) of $1000 into
the yearly SUM(R2.Sales) since we do not know what fraction of the $1000 came
from tuples with price at most $165; the figure of $1000 includes contributions
from tuples with price up to $180. a

While not all multi-feature cubes are distributive, it is sometimes possible
to “extend” multi-feature cubes by adding aggregates to the SELECT clause,
such that the modified multi-feature cube is distributive. For example, a dat-
acube that has AVG(Sales), but neither COUNT(Sales) nor SUM(Sales), in its
SELECT clause, can be extended to a distributive multi-feature cube by adding
SUM(Sales) to the SELECT clause. The average sales at coarser granularities can
now be computed from the average sales and the total sales at finer granularities.



Definition 4.3: (Algebraic and Holistic Multi-Feature Cubes) Consider a multi-
feature cube Q. @ is said to be an algebraic multi-feature cube if there exists a @’
obtained by adding aggregates to the SELECT clause, such that @’ is distributive.
Otherwise, @ is said to be a holistic multi-feature cube. a

Query Q2 from Examples 3.2 and 4.2 above, is an example of a holistic multi-
feature cube since no extension of Query Q2 would be distributive.

5 Identifying Distributive Multi-Feature Cubes

In this section, we identify natural syntactic conditions on multi-feature cubes
for them to be distributive. Our first step is to define a binary relation “<” on
the grouping variables Ry, ... ,R;,, based on the pattern of attribute references
in the SUCH THAT clause.

Definition 5.1: (R; < R;) Grouping variable R; is said to be < grouping vari-
able R; if the condition S; (defining R;) in the SUCH THAT clause refers to an
attribute of R;. Define < to be the reflexive, transitive closure of <. a

Note that the syntactic restrictions on the conditions in the SUCH THAT clause of
multi-feature cubes, from Section 3.1, guarantee that “<” is a partial order.

Our next step is to identify the pattern of accesses of different grouping
variables, i.e., the relationships between the tuples within a group over which
the grouping variables range. The following definition identifies an important
access pattern of grouping variables.

Definition 5.2: (R; C R;) Grouping variable R; is [ grouping variable R;, if
R; always ranges over a subset of the tuples that R; ranges over. a

It is important to understand that R; < R; does not necessarily imply that
R; C R;. However, as we show later, such a condition on grouping variables that
are related by the partial order “<” is essential for a multi-feature cube to be
distributive. In general, R; C R; if and only if condition S; (parameterized by the
attributes of R;) implies condition S; (parameterized by the attributes of R;). In
many cases we can identify that R; C R; simply by checking that S; contains the
shorthand “R; in R;.”

The multi-feature cube graph, defined below, captures most of the impor-
tant relationships between grouping variables, and the nature of the defining
conditions in the SUCH THAT clause for the grouping variables.

Definition 5.3: (Multi-Feature Cube Graph) Given a multi-feature cube query
Q, the multi-feature cube graph of ), denoted by MFCG(Q) is a labeled, directed,
acyclic graph defined as follows.

The nodes of MFCG(Q) are the grouping variables Ry, ..., Ry, in the CUBE BY
clause of @), along with an additional node Rg.

There is a directed edge (R;,R;),¢ < j, in MFCG(Q) if R; C R; and there
does not exist Ry different from R; and R;, such that R; C Rx C R;. For every



node Rj, j # 0, such that there is no edge of the form (R;,R;) in MFCG(Q), add
an edge (Ro,R;).

If there is an edge (R;,R;) in MFCG(Q), node R; is referred to as a parent of
node R;. If there is a path from R; to R;, in MFCG(Q), node R; is referred to as
an ancestor of node R;.

Node Ry is associated with the empty label. Each node R;, i # 0, in MFCG(Q)
is labeled with those aggregate conditions that appear in S;, the defining con-
dition for R; in the SUCH THAT clause of (), but are not part of the label of an
ancestor of R; in MFCG(@). O

{= MIN(RLDélay)} {= MAX(R1.Delay)}

, R2 R3
{<= 1.25*MIN(Price)}

{<= L5*MIN(Price)}

R R1 R2 R3 R1
{=MIN(Price)} {= MIN(Price)}
{<=1.75*MIN(Price)}

RO RO RO

Query Q1 Query Q2 Query Q3

Fig. 2. Example Multi-Feature Cube Graphs

Figure 2 presents the multi-feature cube graphs for Queries Q1, Q2 and Q3.
As a final step before identifying conditions for distributivity of multi-feature
cubes, we define what it means for a set of aggregate functions of attributes to
be distributive. This generalizes the characterization, from [GBLP96], of a single
distributive aggregate function.

Definition 5.4: A set F of aggregate functions of attributes £;(41), ...,
f,(4,) is said to be distributive, if (1) each aggregate function £; is either
distributive or algebraic, and (2) for algebraic aggregate functions £;, such that
£;(A;) € F, other aggregate functions of attributes in F provide the necessary
additional information needed for the incremental computation of £; (4;). O

For example, the set {MIN(Price), AVG(R.Sales)} is not distributive, but the
set {MIN(Price), AVG(R.Sales), SUM(R.Sales)} is distributive.

Theorem 5.1: Consider a multi-feature cube query @. Let R denote the set
{R1,...,Rm} of grouping variables in Q. Query @ is distributive if each of the
following conditions is satisfied:

C1. The set of £;(4;)’s in the SELECT clause of @ is distributive.

C2. For any R;,R; € R, R; < R; impliesR; C Rj;.

C3. The multi-feature cube graph MFCG(Q) is a tree with at most one ag-
gregate condition on each node. Further, the aggregate condition (if any)
associated with node R; is of one of the forms® R;.Ar = MAX([R;.]Ag), or

5 Ro.Ay is written simply as Ag.



R;.A; = MIN([R;.]4z), where R; is the parent of R; in MFCG(Q).

C4. For each aggregate of the form MAX([R;.]4;) (or MIN([R;.]4;)) in the
SUCH THAT clause of query @, MAX([R;.14;) (resp. MIN([R;.]4;)) appears in
the SELECT clause of (). a

Example 5.1: Consider Queries Q1, Q2 and Q3 from Example 3.2. The first
and third queries satisfy the conditions of Theorem 5.1, but the conditions in
the SUCH THAT clause of the second query violate Condition C3. a

The conditions of Theorem 5.1 can be easily modified to identify algebraic
multi-feature cubes, as shown in the full version of the paper [RSC97].

6 Evaluating Multi-Feature Cubes

When considering the evaluation of multi-feature cube queries, we consider
only distributive queries which (in a sense) represent the “fully incremental”
queries, and holistic queries which represent the non-incremental queries. Alge-
braic queries can be evaluated by first transforming them to be distributive.

6.1 The Distributive Case: The F Function

The definition of a distributive multi-feature cube (Definition 4.2) requires the
existence of a computable function F' such that for all databases, the output
of the multi-feature cube for a coarser granularity can be computed from the
output of the multi-feature cube for finer granularities via F.°

When the multi-feature cube is just a simple datacube, the computation
of the output for a coarser granularity from the output for a finer granularity
is simple for the standard SQL aggregate functions. For example, the value of
MAX(A) for a coarser group can be computed by taking the maximum of all the
MAX(A) values in its finer groups, and the value of COUNT(A) for a coarser group
can be computed as the sum of all the COUNT(A) values in its finer groups. The
following example presents the F' function for a simple multi-feature cube.

Example 6.1: Consider again Query Q1, which computes the minimum price
among all tuples from 1996, and the total sales among all such minimum price tu-
ples, for all subsets of {Supplier, Customer, Item, Month}. The specification
of Example 3.2 satisfies the conditions of Theorem 5.1.

We now give the function F' to compute coarser granularity results from finer
granularity results on this query. Suppose that {vy,..., v} are all of the groups
at a fine granularity, and v is a coarser group for which we want to generate
the output. The aggregates for each group v; will be a pair of the form (p;,¢;),
where p; is the minimum price, and ¢; is the total sales. We process groups v;
one by one as follows, adjusting the aggregates (p,t) for the coarser group v as
we go. F' has a local flag f that is initially set to false, indicating that no groups
have been processed.

6 Note that the output of the multi-feature cube at the finest granularity cannot
be computed using the function F'. This computation can be performed using the
techniques suggested in [CR96].



If f is false then f is set to true, and (p,t) = (p;, ;)

— else if (p; < p) then (p,t) = (p;.¢;)
else if (p; = p) thent =1t +¢;
— else do nothing.

At the end of the scan, we return (p,t). ad

The multi-feature cube graph of Query Q1 is a simple chain with a single
grouping variable, as can be seen from Figure 2. A general algorithm that is
applicable whenever the conditions of Theorem 5.1 are satisfied has to deal with
many grouping variables and tree-structured multi-feature cube graphs, and is
given as Incremental-Eval in the full version of the paper [RSC97].

6.2 Algorithms for Distributive Multi-Feature Cubes

Several algorithms have been proposed for computing the datacube [GBLP96,
AADT96, ZDN97, RS97]. The details of these algorithms are not important
here. All of these algorithms attempt to compute the datacube by utilizing
the lattice structure of the various granularities. Finer granularity results are
combined to give results at the next coarser granularity. Some of these algorithms
perform optimizations based on the estimated size of answers of groups within
the datacube. There are two crucial features of distributive multi-feature cubes
that allow the algorithms mentioned above to apply:

1. Coarser granularity aggregates can be computed from finer granularity aggre-
gates by distributivity. In particular, the function F' to compute the coarser
aggregates can be automatically derived. This F function plays the role that
addition would play in evaluating a datacube with aggregate SUM.

2. The size of the output for each group is constant (one tuple of fixed size per
group) and is easily derived from the query syntax. Thus one can use the
same estimation techniques as used in the algorithms above to estimate the
size of intermediate results, and employ the same optimization strategies.

As a result of these observations, it becomes clear that each of these algorithms
can also be applied to distributive multi-feature cubes without any increase in
I/0 complexity compared with a simple datacube. Since F' may be harder to
compute than a simple aggregate like SUM, there might be an increase in the
CPU cost. We address this concern in detail in Section 7.

6.3 The Holistic Case

The algorithms that have been proposed for computing the datacube [GBLP96,
AADT96, ZDNI7, RS97] can be divided into two approaches:

— Algorithms that use main memory essentially for storing the input relation,
typically in a partitioned and/or sorted fashion [AADT96, RS97]. Datacube
tuples are computed, and immediately flushed to output buffers.

— Algorithms that use main memory essentially for storing the (partially com-
puted) output, typically as a k-dimensional array [GBLP96, ZDN97].



Of these, the algorithms in the first approach are better suited to computing
holistic multi-feature cubes. The reason is that the first approach lends itself to
the possibility of maintaining all tuples from a group of the input relation simul-
taneously in memory, allowing for the computation of the holistic multi-feature
aggregate over this group. The second approach, on the other hand, maintains
partially computed aggregates, obtained by scanning the input relation; such
incremental computation cannot be performed for holistic multi-feature cubes.

7 Experimental Evaluation

We used the techniques proposed by Ross and Srivastava [RS97] to implement
a variety of multi-feature cube queries. The software used is extensible with
respect to the aggregate functions used; arbitrary distributive or non-distributive
aggregate functions can be written and linked to the cube-computation code.

For distributive aggregates, the software works as follows: First, combine all
tuples that share all CUBE BY attributes into a single tuple using the combination
function F' (which exists for distributive aggregates). After doing so, multiple
sorting and scanning steps compute the cube result, as described in [RS97].

For holistic aggregates, there is no initial combining step. Multiple sorting
and scanning steps compute the cube result. Unlike the case for distributive
cubes, fine granularity results are not used to compute coarse granularity results;
the aggregates are computed separately at each granularity.

The CPU performance measurements given below were generated on an
UltraSparc 2 (200MHZ) running Solaris. The machine used had 128MB of RAM,
and in all cases, the input relations used were able to fit in RAM. We would
expect analogous results for larger tables using the divide and conquer approach
of [RS97]. The reported time is the CPU time reported by the operating sys-
tem, which was always very close to the elapsed time. CPU time measurement
commenced after the input was read, and the writing of the output result was
suppressed in order to avoid introducing I/O cost.

We ran four multi-feature cube queries, numbered B1 through B4. For com-
parison purposes, we also ran two datacube queries, numbered C1 and C2, with
distributive aggregate functions. B1 and B2 are distributive, while B3 and B4 are
holistic. All queries were run over an input with seven attributes, including four
CUBE BY attributes (G1-G4) and three aggregated attributes (A1-A3). We used
three different data sources for the input: (a) a uniform, randomly generated
data set, (b) data generated according to the TPC-D benchmark [Tra95], and
(c) data from real-world measurements of cloud coverage over the globe for a
period of one month [HWL94]. The meaning of each attribute is given below.

[Table [|G1 |G2 |G3 [G4 A1 [A2 [A3 |
TPC-D ||Part Supplier |Date{Return||Discount|Quantity |Price
code
Cloud ||Latitude|Longitude|Day {Hour |Weather [low-cloud|total cloud
code amount |amount
Random Uniformly generated




Query B1 outputs the maximum A1 value, as well as the maximum A3 value
among all tuples having maximum A1 value in the group. Query B2 outputs the
maximum Al value, and then among tuples having maximum A1 value in the
group it selects two subgroups: those with minimum A2 value, and those with
maximum A2 value. (The minimum and maximum A2 values are also output.)
For each of the three groups the maximum A3 value within the group is output.
Query B3 finds (and outputs) the maximum A1l value within the group, and
then computes (and outputs) the maximum A3 value in three subgroups: those
tuples that have an Al value more than 25% of maximum, those tuples that
have an Al value more than 50% of maximum, and those tuples that have an
A1 value more than 75% of maximum. Query B4 finds the maximum A1 value
and the maximum A2 value within a group. It then computes the maximum A3
value for all tuples in the group that have both an A1 value greater than 50% of
maximum, and an A2 value greater than 50% of maximum. The maximum Al
and A2 values, together with the computed maximum A3 value are output; if no
input tuples satisfy the conditions, then no output tuple is generated. Query C1
outputs the maximum A1l and A3 values, and Query C2 outputs the maximum
Al, A2, and A3 values, along with the minimum A1, A2 and A3 values.
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Fig. 3. Performance for Random Datasets

We present four performance graphs. The first two, given in Figure 3 show
the performance on the random datasets.

In the left graph, we fix the input size at 10° tuples, and vary the (uniform)
attribute cardinality. For low cardinality, the cube is dense, since the number of
combinations of input CUBE BY attributes is 10, much smaller than the number
of tuples. For high cardinality, the cube is sparse (50* > 10°). The graph shows
that for sparse data, at the right edge of the graph, the aggregate functions
perform comparably, within a fairly narrow range. However, for dense data, the
distributive functions perform substantially better than the holistic functions.
The reason for this behavior is the initial combining step that is performed
for distributive aggregates but not for holistic aggregates. In the distributive
case, the initial data set will collapse to 10* tuples after combining when the
cardinality is 10, meaning that all of the subsequent work is performed on 10*
tuples rather than 106 tuples.



In the right graph, we show how the performance scales with the number of
tuples when the attribute cardinality is 50. As the number of tuples increases, the
density gradually increases, and so the holistic cubes begin to be more expensive
at the right edge of the graph. If one looks closely, the other curves are divided
into two groups with the curves in each group being very close to one another.
One group consists of Bl and C1, and the other consists of B2 and C2. Both
B1 and C1 have two output aggregates, while both B2 and C2 have six output
aggregates. Thus, the complexity seems to be determined more by the number
of output columns than by whether the distributive aggregate function is simple
or complex. In other words, there is negligible apparent overhead for evaluating
a complex distributive multi-feature cube when compared with a stmple datacube
having the same number of output columns.
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Fig. 4. Performance for TPC-D and Cloud Datasets

The remaining two graphs, given in Figure 4, show the performance on
the TPC-D and Cloud data sets. The TPC-D data has similar performance
characteristics to the random data set. The Cloud data set also shows similar
behavior, with density becoming an issue at the right edge of the graph; at this
point only 70% of the tuples remain after the initial combining step.

While holistic multi-feature cubes are sometimes significantly more expensive
than distributive cubes, we can see that computing them involves a CPU cost
that is relatively manageable.

8 Conclusions

We have considered multi-feature cube queries, a natural class of complex queries
involving multiple dependent aggregates computed at multiple granularities,
that are practically very useful. We have classified multi-feature cube queries
according to the degree of incrementality by which coarser granularity results can
be computed from finer granularity results. We have identified syntactic sufficient
conditions that allow us to recognize multi-feature cubes that are distributive or
algebraic. We have shown that a number of existing algorithms can be used for
the evaluation and optimization of distributive (or algebraic) multi-feature cubes
without any increase in I/O cost, and with a negligible increase in CPU cost. This



is an important subclass of multi-feature cube queries that is no more difficult to
compute than datacube queries, and which includes many sophisticated queries
not easily expressed as datacube queries.

Other authors have introduced new algebraic operators and/or syntaxes
for multidimensional data analysis [AGS97, LW96]. However, none of these
proposals considers the issue of multiple dependent aggregates within a group.
As a result, the specification of most of the examples presented in this paper
using their approaches would require multiple views or subqueries, leading to

the problems outlined in [CR96].
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