
An Array-Based Algorithm for Simultaneous Multidimensional
Aggregates *

Yihong Zhao Prasad M. Deshpande
Computer Sciences Department Computer Sciences Department

University of Wisconsin-Madison University of Wisconsin-Madison

zhaoOcs.wisc.edu pmdOcs.wisc.edu

Jeffrey F. Naughton
Computer Sciences Department

University of Wisconsin-Madison

naughtonQcs.wisc.edu

Abstract

Computing multiple related group-bys and aggregates is one
of the core operations of On-Line Analytical Processing
(OLAP) applications. Recently, Gray et al. [GBLP95] pro-
posed the “Cube” operator, which computes group-by aggre-
gations over all possible subsets of the specified dimensions.
The rapid acceptance of the importance of this operator has
led to a variant of the Cube being proposed for the SQL
standard. Several efficient algorithms for Relational OLAP
(ROLAP) have been developed to compute the Cube. How-
ever, to our knowledge there is nothing in the literature
on how to compute the Cube for Multidimensional OLAP
(MOLAP) systems, which store their data in sparse arrays
rather than in tables. In this paper, we present a MOLAP
algorithm to compute the Cube, and compare it to a leading
ROLAP algorithm. The comparison between the two is in-
teresting, since although they are computing the same func-
tion, one is value-based (the ROLAP algorithm) whereas
the other is position-based (the MOLAP algorithm.) Our
tests show that, given appropriate compression techniques,
the MOLAP algorithm is significantly faster than the RO-
LAP algorithm. In fact, the difference is so pronounced that
this MOLAP algorithm may be useful for ROLAP systems
as well as MOLAP systems, since in many cases, instead of
cubing a table directly, it is faster to tist convert the table
to an array, cube the array, then convert the result back to
a table.

1 Introduction

Computing multiple related group-bys and aggregates is one
of the core operations of On-Line Analytical Processing
(OLAP) applications. Recently, Gray et al. [GBLP95] pro-
posed the “Cube” operator, which computes group-by aggre-
gations over all possible subsets of the specified dimensions.
The rapid acceptance of the importance of this operator has
led to a variant of the Cube being proposed for the SQL

‘This work supported by NSF grant IRI-9157357, a grant un-
der the IBM University Partnership Program, and ARPA contract
DAAB07-91-C-Q518

Permission to make digital/hard copy of part or all this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGMOD ‘97 AZ,USA
0 1997 ACM O-89791-91 l-4/97/0005...$3.50

standard. Several efficient algorithms for Relational OLAP
(ROLAP) have been developed to compute the Cube. How-
ever, to our knowledge there is nothing to date in the lit-
erature on how to compute the Cube for Multidimensional
OLAP (MOLAP) systems.

For concreteness, consider a very simple multidimensional
model, in which we have the dimensions product, store, time,
and the “measure” (data value) sales. Then to compute the
“cube” we will compute sales grouped by all subsets of these
dimensions. That is, we will have sales by product, store,
and date; sales by product and store; sales by product and
date; sales by store and date; sales by product; sales by
store; sales by date; and overall sales. In multidimensional
applications, the system is often called upon to compute all
of these aggregates (or at least a large subset of them), either
in response to a user query, or as part of a “load process”
that precomputes these aggregates to speed later queries.
The challenge, of course, is to compute the cube with far
more efficiency than the naive method of computing each
component aggregate individually in succession.

MOLAP systems present a different sort of challenge in
computing the cube than do ROLAP systems. The main
reason for this is the fundamental difference in the data
structures in which the two systems store their data. RO-
LAP systems (for example, MicroStrategy [MS], Informix’s
Metacube [MC], and Information Advantage [IA]) by defini-
tion use relational tables as their data structure. This means
that a “cell” in a logically multidimensional space is repre-
sented in the system as a tuple, with some attributes that
identify the location of the tuple in the multidimensional
space, and other attributes that contain the data value cor-
responding to that data cell. Returning to our example, a
cell of the array might be represented by the tuple (shoes,
WestTown, 3-July-96, $34.00). Computing the cube over
such a table requires a generalization of standard relational
aggregation operators [AADN96]. In prior work, three main
ideas have been used to make ROLAP computation efficient:

1. Using some sort of grouping operation on the dimen-
sion attributes to bring together related tuples (e.g.,
sorting or hashing),

2. Using the grouping performed on behalf of one of the
sub-aggregates as a partial grouping to speed the com-
putation another sub-aggregate, and

3. To compute an aggregate from another aggregate, rather
than from the (presumably much larger) base table.

By contrast, MOLAP systems (for example, Essbase from
Arbor Software [CCS93, RJ, AS], Express from Oracle [OC],

159

and Lightship from Pilot [PSW]) store their data as sparse
arrays. Returning to our running example, instead of stor-
ing the tuple (shoes, WestTown, 3-July-1996, $34.00),
a MOLAP system would just store the data value $34.00;
the position within the sparse array would encode the fact
that this is a sales volume for shoes in the West Town store
on July 3, 1996. When we consider computing the cube on
data stored in arrays, one can once again use the ROLAP
trick of computing one aggregate from another. However,
none of the other techniques that have been developed for
ROLAP cube computations apply. Most importantly, there
is no equivalent of “reordering to bring together related tu-
pies” based upon their dimension values. The data values
are already stored in fixed positions determined by those
dimension values; the trick is to visit those values in the
right order so that the computation is efficient. Similarly,
there is no concept of using an order generated by one sub-
aggregate in the computation of another; rather, the trick
is to simultaneously compute spatially-delimited partial ag-
gregates so that a cell does not have to be revisited for each
sub-aggregate. To do so with minimal memory requires a
great deal of care and attention to the size of the dimen-
sions involved. Finally, all of this is made more complicated
by the fact that in order to store arrays efficiently on disk,
one must “chunk” them into small memory-sized pieces, and
perform some sort of “compression” to avoid wasting space
on cells that contain no valid data.

In this paper, we present a MOLAP algorithm incorpo-
rating all of these ideas. The algorithm succeeds in overlap-
ping the computation of multiple subaggregates, and makes
good use of available main memory. We prove a number of
theorems about the algorithm, including a specification of
the optimal ordering of dimensions of the cube for reading
chunks of base array, and an upper bound on the memory
requirement for a one-pass computation of the cube that it
is in general much smaller than the size of the original base
array.

We have implemented our algorithm and present perfor-
mance results for a wide range of dimension sizes, data densi-
ties, and buffer-pool sizes. We show that the algorithm per-
forms significantly faster than the naive algorithm of com-
puting aggregates separately, even when the “naive” algo-
rithm is smart about computing sub-aggregates from super-
aggregates rather than from the base array. We also com-
pared the algorithm with an implementation of a previously-
proposed ROLAP cube algorithm, and found that the MO-
LAP algorithm was significantly faster.

Clearly, this MOLAP cube algorithm can be used by a
multidimensional database system. However, we believe it
may also have some applicability within relational database
systems as part of support for multidimensional database
applications, for two reasons. First, as relational database
systems provide richer and richer type systems, it is be-
coming feasible to implement arrays as a storage device for
RDBMS data. In another paper [ZTN], we explored the
performance implications of such an approach for “consoli-
dation” operations; the study in this paper adds more weight
to the conclusion that including array storage in relational
systems can significantly enhance RDBMS performance for
certain workloads.

The second application of this algorithm to ROLAP SYS-

terns came as a surprise to us, although in retrospect perhaps
we should have foreseen this result. Simply put, one can al-
ways use our MOLAP algorithm in a relational system by
the following three-step procedure:

1. Scan the table, and load it into an array.

2. Compute the cube on the resulting array.

3. Dump the resulting cubed array into tables.

The result is the same as directly cubing the table; what
was surprising to us was that this three-step approach was
actually faster than the direct approach of cubing the table.
In such a three-step approach, the array is being used as an
internal data structure, much like the hash table in a hash
join in standard relational join processing.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the chunked array representation, and
then discuss how we compressed these arrays and our algo-
rithm for loading chunked, compressed arrays from tables.
We then present a basic array based algorithm in Section 3.
Our new algorithm, the Multi- Way Array method, is de-
scribed in Section 4, along with some theorems that show
how to predict and minimize the memory requirements for
the algorithm. We present the performance results in Sec-
tion 5, and we conclude in Section 6.

2 Array Storage Issues

In this section we discuss the basic techniques we used to
load and store large, sparse arrays efficiently. There are
three main issues to resolve. First, it is highly likely in a
multidimensional application that the array itself is far too
large to fit in memory. In this case, the array must be split
up into “chunks”, each of which is small enough to fit com-
fortably in memory. Second, even with this “chunking”, it is
likely that many of the cells in the array are empty, meaning
that there is no data for that combination of coordinates.
To efficiently store this sort of data we need to compress
these chunks. Third, in many cases an array may need to
be loaded from data that is not in array format (e.g., from a
relational table or from an external load file.) We conclude
this section with a description of an efficient algorithm for
loading arrays in our compressed, chunked format.

2.1 Chunking Arrays

As we have mentioned, for high performance large arrays
must be stored broken up into smaller chunks. The stan-
dard programming language technique of storing the array
in a row major or column major order is not very efficient.
Consider a row major representation of a two-dimensional
array, with dimensions Store and Date, where Store forms
the row and Date forms the column. Accessing the array
in the row order (order of Stores) is efficient with this rep-
resentation, since each disk page that we read will contain
several Stores. However, accessing in the order of columns
(Dates) is inefficient. If the Store dimension is big, each disk
page read will only contain data for one Date. Thus to get
data for the next Date will require another disk access; in
fact there will be one disk access for each Date required.
The simple row major layout creates an asymmetry among
the dimensions, favoring one over the other. This is because
data is accessed from disk in units of pages.

To have a uniform treatment for all the dimensions, we
can chunk the array, as suggested by Sarawagi [SM94]. Chunk-
ing is a way to divide an n-dimensional array into small size
n-dimensional chunks and store each chunk as one object
on disk. Each array chunk has n dimensions and will cor-
respond to the blocking size on the disk. We will be using
chunks which have the same size on each dimension.

160

2.2 Compressing Sparse Arrays

For dense chunks, which we define as those in which more
than 40% of the array cells have a valid value, we do not
compress the array, simply storing all cells of the array as-
is but assigning a null value to invalid array cells. Each
chunk therefore has a fixed length. Note that storing a dense
multidimensional data set~in an array is already a significant
compression over storing the data in a relational table, since
we do not store the dimension values. For example, in our
running example we do not store product, store, or date
values in the array.

However, for a sparse chunk, that is one with data den-
sity less than 40%, storing the array without compression is
wasteful, since most of the space is devoted to invalid cells.
In this case we use what we call “chunk-offset compression.”
In chunk-offset compression, for each valid array entry, we
store a pair, (offsetInChunk,data). The offsetInChunk in-
teger can be computed as follows: consider the chunk as a
normal (uncompressed) array. Each cell c in the chunk is
defined by a set of indices; for example, if we are working
with a three-dimensional chunk, a given cell will have an
“address” (i, j, k) in the chunk. To access this cell in mem-
ory, we would convert the triple (i, j,lc) into an offset from
the start of the chunk, typically by assuming that the chunk
is laid out in memory in some standard order. This offset is
the “offsetlnChunk” integer we store.

Since in this representation chunks will be of variable
length, we use some meta data to hold the length of each
chunk and store the meta data at the beginning of the data
file.

We also experimented with compressing the array chunks
using a lossless compression algorithm (LZW compression
[We184]) but this was far less effective for a couple of rea-
sons. First, the compression ratio itself was not as good
as the “chunk-offset compression.” Intuitively, this is be-
cause LZW compression uses no domain knowledge, whereas
“chunk-offset compression” can use the fact that it is storing
array cells to minimize storage. Second, and perhaps most
important, using LZW compression it is necessary to materi-
alize the (possibly very sparse) full chunk in memory before
it can be operated on. By contrast, with chunk-offset com-
pression we can operate directly on the compressed chunk.

2.3 Loading Arrays from Tables

We have designed and implemented a partition-based load-
ing algorithm to convert a relational tabIe or external load
file to a (possibly compressed) chunked array. As input the
algorithm takes the table, along with each dimension size
and a predehned chunk size. Briefly, the algorithm works as
follows.

Since we know the size of the full array and the chunk
size, we know how many chunks are in the array to be loaded.
If the available memory size is less than the size of the re-
sulting array, we partition the set of chunks into partitions
so that the data in each partition fits in memory. (This par-
titioning is logical at this phase. For example, if we have
8 chunks 0 - 7, and we need two partitions, we would put
tuples corresponding to cells that map to chunks O-3 in par-
tition one, and those that map to chunks 4-7 in partition
two.)

Once the partitions have been determined, the algorithm
scans the table. For each tuple, the algorithm calculates the
tuple’s chunk number and the offset from the first element
of its chunk. This is possible by examining the dimension
values in the tuple. The algorithm then stores this chunk

number and offset, along with the data element, into a tuple,
and inserts the tuple into the buffer page of the correspond-
ing partition. Once any buffer page for a partition is full,
the page is written to the disk resident file for this partition.
In the second pass, for each partition, the algorithm reads
in each partition tuple and assigns it to a bucket in memory
according to its chunk number. Each bucket corresponds to
a unique chunk. Once we assign all tuples to buckets, the al-
gorithm constructs array chunks for each bucket, compresses
them if necessary using chunk-offset compression, and writes
those chunks to disk. One optimization is to compute the
chunks of the first partition in the first pass. After we al-
locate each partition a buffer page, we allocate the rest of
available memory to the buckets for the first partition. This
is similar to techniques used in the Hybrid Hash Join algo-
rithm [DKOS84] to keep the “first bucket” in memory.

3 A Basic Array Cubing Algorithm

We first introduce an algorithm to compute the cube of a
chunked array in multiple passes by using minimum mem-
ory. The algorithm makes no attempt to overlap any com-
putation, computing each “group by” in a separate pass. In
the next section, we modify this simple algorithm to mini-
mize the l/O cost and to overlap the aggregation of related
group-bys.

First consider how to compute a group-by from a simple
non-chunked array. Suppose we have a three dimensional
array, with dimensions A, B, and C. Suppose furthermore
that we want to compute the aggregate AB, that is, we
want to project out C and aggregate together all these val-
ues. This can be seen as projecting onto the AB plane;
logically, this can be done by sweeping a plane through the
C dimension, aggregating as we go, until the whole array
has been swept.

Next suppose that this ABC array is stored in a number
of chunks. Again the computation can be viewed as sweep-
ing through the array, aggregating away the C dimension.
But now instead of sweeping an entire plane of size (A((B(,
where IAl and IBI are the sizes of the A and B dimensions,
we do it on a chunk by chunk basis. Suppose that the A
dimension in a chunk has size A,, and the B dimension in a
chunk has size B,. If we think of orienting the array so that
we are looking at the AB face of the array (with C going
back into the paper) we can begin with the chunk in the
upper left-hand portion of the array, and sweep a plane of
size A,B, back through that chunk, aggregating away the C
values as we go. Once we have finished this upper left-hand
chunk, we continue to sweep this plane through the chunk
immediately behind the one on the front of the array in the
upper left corner. We continue in this fashion until we have
swept all the way through the array. At this point we have
computed the portion of the AB aggregate corresponding to
the upper-left hand sub-plane of size A,B,. We can store
this plane to disk as the first part of the AB aggregate, and
move on to compute the sub-plane corresponding to another
chunk, perhaps the one immediately to the right of the ini-
tial chunk.

Note that in this way each chunk is read only once, and
that at the end of the computation the AB aggregate will be
on disk as a collection of planes of size A,B,. The memory
used by this computation is only enough to hold one chunk,
plus enough to hold the A,B, plane as it is swept through
the chunks. This generalization of this algorithm to higher
dimensions is straight-forward; instead of sweeping planes
through arrays, in higher dimensions, say k dimensional ar-

161

rays, one sweeps k - 1 dimensional subarrays through the
array.

Up to now we have discussed only computing a single
aggregate of an array. But, as we have mentioned in the in-
troduction, to “cube” an array requires computing all aggre-
gates of the array. For example, if the array has dimensions
ABC, we need to compute AB, BC, AC, and A, B, C, as
well as the overall total aggregate. The most naive approach
would be to compute all of these aggregates from the initial
ABC array. A moment’s thought shows that this is a very
bad idea; it is far more efficient to compute A from AB than
it is to compute A from ABC. This idea has been explored
in the ROLAP cube computation literature [AADN96]. If
we look at an entire cube computation, the aggregates to
be computed can be viewed as a lattice, with ABC as the
root. ABC has children AB, BC, and AC; AC has children
A and C, and so forth. To compute the cube efficiently we
embed a tree in this lattice, and compute each aggregate
from its parent in this tree.

One question that arises is which tree to use for this
computation? For ROLAP cube computations this is a dif-
ficult question, since the sizes of the tables corresponding
to the nodes in the lattice are not known until they are
computed, so heuristics must be used. For our chunk-based
array algorithm we are more fortunate, since by knowing
the dimension sizes of the array and the size of the chunks
used to store the array, we can compute exactly the size of
the array corresponding to each node in the lattice, and also
how much storage will be needed to use one of these arrays
to compute a child. Hence we can define the “minimum
size spanning tree” for the lattice. For each node n in the
lattice, its parent in the minimum size spanning tree is the
node n’ which has the minimum size and from which n can
be computed.

We can now state our basic array cubing algorithm. We
first construct the minimum size spanning tree for the group-
bys of the Cube. We compute any group-by D,, D,,..D,, of
a Cube from the “parent” Di, Di2..Dib+l, which has the
minimum size. We read in each chunk of D,, Di2..Di,+,
along the dimension D,,

6
1 and aggregate each chunk to a

chunk of D,, Di,..Di,. nce the chunk of Di, D,,..D,, is
complete, we output the chunk to disk and use the memory
for the next chunk of D,, Di,..Dt,. Note that we need to
keep only one D,, D,, . . Di, chunk in memory at any time.

In this paper, we will use a three dimensional array as
an example. The array ABC is a 16 x 16 x 16 array with
4 x 4 x 4 array chunks laid out in the dimension order ABC
(see Figure 1). The order of layout is indicated by the chunk
numbers shown in the figure. The chunks are numbered from
1 to 64. The Cube of the array consists of the group-bys AB,
AC, BC, B, C, A, and ALL. For example, to compute the
BC group-by, we read in the chunk number order from 1 to
64, aggregate each four ABC chunks to a BC chunk, output
the BC chunk to disk, and reuse the memory for the next
BC chunk.

While this algorithm is fairly careful about using a hi-
erarchy of aggregates to compute the cube and using min-
imal memory for each step, it is somewhat naive in that it
computes each subaggregate independently. In more detail,
suppose we are computing AB, AC, and BC from ABC in
our example. This basic algorithm will compute AB from
ABC, then will re-scan ABC to compute AC, then will scan
it a third time to compute BC. In the next few sections we
discuss how to modify this algorithm to compute all the
children of a parent in a single pass of the parent.

4 The Multi-Way Array Algorithm

We now present our multi-way array cubing algorithm. This
algorithm overlaps the computations of the different group-
bys, thus avoiding the multiple scans required by the naive
algorithm. Recall that a data Cube for a n-dimensional
array contains multiple related group-bys. Specifically, it
consists of 2” group-bys, one for each subset of the dimen-
sions. Each of these group-bys will also be represented as
arrays. Ideally, we need memory large enough to hold all
these group-bys so that we can overlap the computation of
alI those group-bys and finish the Cube in one scan of the
array. Unfortunately, the total size of the group-bys is usu-
ally much larger than the buffer pool size. Our algorithm
tries to minimize the memory needed for each computation,
so that we can achieve maximum overlap. We will describe
our algorithm in two steps. Initially we will assume that
there is sufficient memory to compute all the group-bys in
one scan. Later we will extend it to the other case where
memory is insufficient.

4.1 A Single-pass Multi-way Array Cubing Algorithm

As we showed in the naive algorithm, it is not necessary
to keep the entire array in memory for any group-by -
keeping only the relevant part of the array in memory at
each step will suffice. Thus we will be reducing memory
requirements by keeping only parts of the group-by arrays
in memory. When computing multiple group-bys simultane-
ously, the total memory required depends critically on the
order in which the input array is scanned. In order to reduce
this total amount of memory our algorithm makes use of a
special logical order called “dimension order”.

4.1.1 Dimension Order

A dimension order of the array chunks is a row major order
of the chunks with the n dimensions DI, Dz, .., D, in some
order c3 = (DJ1, DJ2, .., DJn). Different dimension orders (3’
lead to different orders of reading the array chunks. Note
that this logical order of reading is independent of the ac-
tual physical layout of the chunks on the disk. The chunks
of array may be laid out on the disk in an order different
from the dimension order. We will now see how the dimen-
sion order determines the amount of memory needed for the
computation.

4.1.2 Memory Requirements

Assuming that we read in the array chunks in a dimension
order, we can formulate a general rule to determine what
chunks of each group-by of the cube need to stay in memory
in order to avoid rescanning a chunk of the input array.
We use the above 3-D array to illustrate the rule with an
example.

The array chunks are read in the dimension order ABC,
i.e., from chunk 1 to chunk 64. Suppose chunk 1 is read
in. For group-by AB, this chunk is aggregated along the C
dimension to get a chunk of AB. Similarly for AC and BC,
this chunk is aggregated along B and A dimensions respec-
tively. Thus the first chunk’s AB group-by is aggregated to
the chunk asbs of AB; the first chunk’s AC is aggregated
to the chunk asco of AC; the first chunk’s BC is aggre-
gated to the chunk boco of BC. As we read in new chunks,
we aggregate the chunk’s AB, AC and BC group-by to the
corresponding chunks of group-bys AB, AC and BC. To
compute each chunk of AB, AC, and BC group-by, we may

162

b3

b2

bl

b0

Dimension B

Dimension C

a0 al a2 a3

Dimension A

Figure 1: 3 D array

naively allocate memory to each chunk of those group-bys
in memory. However, we can exploit the order in which each
chunk is brought in memory to reduce the memory required
by each group-by to the minimum so that we can compute
the group-bys AC, AB, and BC in one scan of the array
ABC.

Let us look into how we compute each chunk of those
group-bys in detail. Notice that we read the chunks in di-
mension order (A, B, C) layout, which is a linear order from
chunk 1 to chunk 64. For the chunk 1 to chunk 4, we com-
plete the aggregation for the chunk boco of BC after aggre-
gating each chunk’s BC group-by to the chunk boco of BC.
Once the &co chunk is completed, we write out the chunk
and reassign the chunk memory to the chunk blco, which is
computed from the next 4 chunks of ABC i.e. the chunk 4
to chunk 8. So we allot only one chunk of BC in memory
to compute the entire BC group-by. Similarly, we allocate
memory to the chunks UOCO, cllco, CQCO, and asco of the AC
group-by while scanning the first, 16 chunks of ABC. To
finish the aggregation for the chunk 00~0, we aggregate the
AC of the chunks 1, 5, 9, and 13, to the chunk aoco. After
we aggregate the first 16 chunks of AC to those chunks of
AC, the aggregation for those AC chunks are done. We out-
put those AC chunks to disk in order of (A, C) and reassign
those chunks’ memory to the aocl, alcl,azcl, and ~3~1 of
the AC group-by. To compute the AB group-by in one scan
of the array ABC, we need to allocate memory to each of
the 16 chunks of AB. For the first 16 chunks of ABC, we ag-
gregate each chunk’s AB to the corresponding AB chunks.
The aggregation for those AB is not complete until we ag-
gregate all 64 chunks’ AB to those AB chunks. Once the
aggregation for AB chunks is done, we output those chunks
in (A, B) order.

Notice that we generate each BC chunk in the dimension
order (B,C). So, before we write each BC chunk to disk,
we use the BC chunks to compute the chunks of B or C as
if we read in each BC chunk in the dimension order (B, C).
Generally, the chunks of each group-bys of the Cube are gen-
erated in a proper dimension order. In fact, this is the key
to apply our general memory requirement rule recursively to
the nodes of the minimum memory spanning tree (MMST)
and overlap computation for the Cube group-bys. We will
explain this idea in detail when we discuss the MMST.

In this example, for computing BC we need memory

to hold 1 chunk of BC, for AC we need memory to hold 4
chunks of AC and for AB we need memory to hold 4*4 = 16
chunks of AB. Generalizing, we allocate IBcllC,lu memory
to BC group-by, l&llCclu to AC group-by, and l&ll&lu to
AB group-by, where IXdl stands for the size of dimension X,
]Y,l stands for the chunk size of dimension Y, and u stands
for the size of each chunk element. The size of the chunk
element is same as the array element size which depends
on the type of the array. For an integer array, each array
element takes four bytes. There is a pattern for allocating
memory to AB, AC, and BC group-bys for the dimension
order (A, B, C). If XY contains a prefix of ABC with the
length p, then we allocate 16p x 42-p x u memory to XY
group-bys. This is because each dimension is of size 16 and
each chunk dimension has size 4. To generalize this for all
group-bys of a n-dimensional array, we have the following
rule.
Rule 1 Foragroup-~J~(D,,,..,D,,,-~) ofthe array(D~,..,D,)
read in the dimension order 0 = (DI, .., D,), if (D,, , .., Djnml)
contains a prefix of (01, .., Dn) with length p, 0 5 p < n - 1,
we allocate ny=, ID,1 ~ljyli+, IC,j units of array element to

(DJ1, .., Dj,-,) group-by, vrhere IDil is the size of dimension
i and (CiJ is the chunk size of dimension i.

ICi I is much smaller than I Di I for most dimensions. Thus,
according to the Rule 1, we allocate an amount of memory
less than the size of the group-by for many of the group-
bys. The benefit of reducing the memory allocated to each
group-by is to compute more group-bys of the Cube simul-
taneously and overlap the computation of those group-bys
to a higher degree. We need some kind of structure to co-
ordinate the overlapped computation. A spanning tree on
the lattice of group-bys can be used for this purpose. For a
given dimension order, different spanning trees will require
different amounts of memory. We define a minimum mem-
ory spanning tree in the next section.

4.1.3 Minimum Memory Spanning Tree

A MMST for a Cube (01, .., D,) in a dimension order 0 =
(41, .., D3,,) has n + 1 levels with the root (DJ1, .., DJn)
at level n. Any tree node N at level i below the level n
may be computed from those nodes at one level up whose
dimensions contain the dimensions of node N. For any node
N at level i, there may be more than one node at level i + 1
from which it can be computed. We choose the node that
makes the node N require the minimum memory according
to the Rule 1. In other words, the prefix of the parent
node contained in node N has the minimum length. So a
MMST, for a given dimension order, is minimum in terms of
the total memory requirement for that dimension order. If
node N contains the minimum prefix for several upper level
nodes, we use the size of those nodes to break the tie and
choose the node with the minimum size as the parent of the
node N.

Once we build the MMST for the Cube in a dimension
order 0 we can overlap the computation of the MMST sub-
trees. We use the same example, the array ABC, to explain
how to do it. Let us assume that we have enough memory to
allocate each node’s required memory. The MMST for the
array ABC in a dimension order (A, B, C) is shown in Fig-
ure 2. As mentioned before, chunks of BC, AC, and AB are
calculated in dimension orders (B, C), (A, C), and (A, B)
in memory since we read ABC chunks in dimension order
(A, B, C) to produce each chunk of BC, AC, and AB. To
each node A, B,and C, this is equivalent to reading in chunks
of group-by AB and AC in the dimension order (A, B) and

163

ABC Level 3

AB
16x16

AC
16x4

BC
4x4

Level 2

A
16

Level 1

ALL
1

Level 0

Figure 2: 3-D array MMST in dimension order (A, B, C)

(A, C). Similar to the nodes of the level 2, the chunks of
the nodes A, B, and C are generated in the proper dimen-
sion orders. To generalize for any MMST, the nodes from
the level n to the level 0, the chunks of each tree node are
generated in a proper dimension order. Therefore, we can
recursively apply the Rule 1 to the nodes from the level n
to the level 0 so that we allocate minimum number of chunks
to each nodes instead of all chunks. Furthermore, we can
compute the chunks of each tree node simultaneously. For
example, we can aggregate the chunk sacs of AC along C
dimension to compute the chunk CO of C after we aggregate
the chunk 1, 5, 9, 13 of ABC to the chunk aecs and before
we write the chunk (10~0 to disk. Generally, if we allocate
each MMST node its required memory we can compute the
chunks of the tree nodes from the top level to the level 0
simultaneously.

We now give a way of calculating the memory required
for the MMST of any given dimension order c3 = (01, D2,-
. . . , Dn). We will assume that each array element takes u
bytes. In addition, all the numbers used for the memory size
in the following sections are in units of the array element
size.
Memory requirements for the MMST
Let us assume that the chunk size is the same for each di- . .
mensron, i.e., for all i, lC;l = c. We can calculate the
memory required by each tree node at each level of the
MMST using Rule 1. We have the root of the MMST
at the level n and allocate cn to the root D1..Dn. At the
level n - 1, which is one level down from the root D1 ..D,,
we have the nodes: D1..Dn-2Dn--l, D1..Dn--lDn, ..., and
DzDs..d,. Each node omits one dimension of the root di-
mensions Dl.. D,. So each node contains a prefix of the root
(01 ..Dn). The length of the prefix for each above node is
n - 1, n - 2, . . ., and 0. According to the Rule 1, the sum
of memory required by those nodes is

n-1 n-2 n-3

n (D,I + (n JDil)c + (n lDil)c2 + ... f C”--l.

t=l i=l i=l

At level n - 2, we classify the tree nodes into the follow-
ing types according to the length of the prefix of the root

contained in those nodes: D1..Dn-2, D1..Dn--3Wl, . . .
LAW1 W2..Wn-2, and W1W2..Wn-2. For the type Dl..Dki
Wl..Wn-2-kr the nodes start with the prefix Dl..Dk of the
root and followed by W,, which are those dimensions not
included in D1 , D2, . . . , Dk and Dk+ 1. So there are C(n -
(k + l), n - 2 - k) nodes belonging to this type, i.e. we
are choosing n - 2 - k dimensions from n - (k + 1) dimen-
sions . We use n - (k + 1) since we should not choose the
dimension Dk+l for Wi. If we do so, the node will become
the type of Dl..Dk+lW~..W,_2-(k+1) instead of the type of
Dl..DkWl ..Wn-2-k. Hence the sum of the memory required
by the nodes at this level is:

n-2 n-3 n-4

I-J IDil + C(2, l)(n IDil)c + C(3,2)(n JDiJ)c2
i=l i=l *=1

+ ... + C(n - 1, n - 2)cne2.

Similarly, we calculate the total memory required by the
nodes at the level n - 3. We have the sum:

n-3 n-4 n-5

n IDil + C(3,l)(n IDiJ)c + C(4, ~)(n ID;l)c’
i=l i=l i=l

+ .-s + C(n-1,n-3)cnM3.

In general we get the following rule.
Rule 2 The total memory requirement for level j of the
MMST for a dimension order c3 = (01, .., Dn) is given by :

n--J n-1-1 n-j -2

I-J. IDil + C(j, I)(n IDtl)c + C(j + l,2)(n lDil)c’
i=l i=l t=l

+ . . . + C(n - 1, n - j)c+-j.

As a further example, the sum of the memory for level
1 nodes is D1 + C(n - 1,l)c. At the level 0, there is one
node “ALL” and it requires c amount of memory.

For different dimension orders of the array (DI , .., Dn),
we may generate different MMSTs, which may have pro-
foundly different memory requirements. To illustrate this,
we use a four dimension array ABCD which has 10x10x10x10
chunks. The sizes of dimensions A, B, C, and D are 10,
100, 1000, and 10000. The MMSTs for the dimension or-
der (A, B, C, D) and for the dimension order (D, B, C, A)
are shown in Figures 3 and 4. The number below each
group-by node in the figures is the number of units of array
element required by the node. Adding up those numbers for
each MMST, we find the MMST for the order (0, B, C, A)
requires approximately 4GB for a one-pass computation,
whereas the tree for the order (A, B, C, D) requires only
4MB. On investigating the reason for this difference between
the two trees, we find that switching the order of A and D
changes the amount of memory required by each tree node.
Clearly, it is important to determine which dimension order
will require the least memory.

4.1.4 Optimal Dimension Order

The optimal dimension order is the dimension order whose
MMST requires the least amount of memory. We prove that
the optimal dimension order 0 is (01, Dz, . . . , D,), where
l&l < ID21 5 ... 5 ID,J. Here, IDi/ denotes size of the
dime&on Di. So the dimensions are ordered incrementally
in the dimension order 0.

164

ABCD
10x10x10x10

DBCA

ABC ABD ACD BCD
10x100x1000 10x100x10 10x10x10 10x10x10

/I\\\\

AB AC BC AD BD CD
10x100 10x10 10x10 10x10 10x10 10x10

A B C D
10 10 10 10

ALL

Figure 3: MMST for Dimension Order ABCD (Total Mem-
ory Required 4 MB)

Theorem 1 Consider a chunked multidimensional array A
of size ny=, (Dil and hawing chunks of size fly=, ICi 1, where
EJe;;f”r all i(1 5 i 5 n). If we read the chunks in logical

where 0 = (01, Dz,,,Dn) and ID11 5 IDzl <
I D31 . . . < JD,I, the total amount of memory required to
compute the Cube of the array in one scan of A is minimum.

The question that naturally follows is “What is the upper
bound for the total amount of memory required by MMST
70 ?” The next theorem and corollary answer this question.

Theorem 2 For a chunked multidimensional array A with
the size n:=, IDi(, where IDil = d for all i, and each array

chunk has the size n:=, ICiJ, tuhere ICil = c for all i, the
total amount of memory to compute the Cube of the array
in one scan of A is less than cn + (d + 1 + c)“-‘.

Corollary 1 For a chunked multidimensional array with
the size ny=, IDil, where IDI! 2 IDzl++. 5 ID,], and each

array chunk has the size ny=, ICil, where ICiJ = c for all
i, the total amount of memory to compute the Cube of the
array in one scan is less than c” + (d + 1 + c)~-‘, where

d = (JJy=;’ IDiI)“(n-‘)-

Note that this indicates that the bound is independent of
the size of the largest dimension D,. The single-pass multi-
way algorithm assumes that we have the memory required
by the MMST of the optimal dimension order. If we have
this memory, all the group-bys can be computed recursively
in a single scan of the input array (as described previously
in the example for ABC). But if the memory is insufficient
we need multiple passes. We need a multi-pass algorithm to
handle this case, as described in the next section.

4.2 Multi-pass Multi-way Array Algorithm

Let 7 be the MMST for the optimal dimension ordering 0
and MT be the memory required for 7, calculated using

10x10x10x10

d \I
DBC DBA DCA BCA

~Kny.m ‘~yy’ymqMO loxlor

DC BC DB DA BA CA
1oooox10 10x10 loocoxloo 1cooox10 10x10 10x10

/I\ /

C B D A
10 10 10000 10

ALL

Figure 4: MMST for Dimension Order DBCA (Total Mem-
ory Required 4 GB)

Rule 2. If M 5 MT, we cannot allocate the required mem-
ory for some of the subtrees of the MMST. We call these
subtrees “incomplete subtrees.” We need to use some extra
steps to compute the group-bys included in the incomplete
subtrees.

The problem of allocating memory optimally to the dif-
ferent subtrees is similar to the one described in [AADN96]
and is likely to be NP-hard. We use a heuristic of allocating
memory to subtrees of the root from the right to left order.
For example, in Figure 1, the order in which the subtrees
are considered is BC, AC and then AB. We use this heuris-
tic since BC will be the largest array and we want to avoid
computing it in multiple passes. The multi-pass algorithm
is listed below:

(1) Create the MMST T for a dimension order 0
(2) Add T to the Tobecomputed list.
(3) For each tree T ’ in Tobecomputed list

c
(3.1)

(3.2)
(3.3)

(3.3.1)

(3.3.2)
(3.3.3)
(3.3.4)

(3.4)

(3.4.1)

(3.4.2)
(3.4.3)

3

Create the working subtree W and
incomplete subtrees Is

Allocate memory to the subtrees
Scan the array chunk of the root of T’

in the order 0
c

aggregate each chunk to the groupbys
in W

generate intermediate results for Is
write complete chunks of W to disk
write intermediate results to the

partitions of Is
3
For each I
{

generate the chunks from the
partitions of I

write the completed chunks of I to disk
Add I to Tobecomputed

3

165

The incomplete subtrees Is exist in the the case where
M < ANT. To compute the Cube for this case, we need
multiple passes. We divide T into a working subtree and
a set of incomplete subtrees. We allocate each node of
the working subtree the memory required by it and fin-
ish aggregation for the group-bys contained in the work-
ing subtree during the scan of the array. For each incom-
plete subtree DJ1, Dj2, .., Dlmdl, we allocate memory equal
to a chunk size of the group-by D,,, DJ2, .., D3,-1, aggregate
each input array chunk to the group-by DJ1, DJ2, .., Dj,,-,
and write the intermediate result to disk. Each intermediate
result is aggregation of the D,, , Dj2, .., D3,-1 group-by for
each chunk of DI , Dz, .., D,. But, each of the intermediate
result is incomplete since the intermediate results for dif-
ferent D1 , Dz, .., D, chunks map to the same chunk of the
DJ1, DJ2, .., DJ,-l group-by.

We need to aggregate these different chunks to produce
one chunk of the Djl, D,, , .., DJ,-l group-by. It is possible
that the amount of memory required by the DJ1, DJ2, .., D3,,-,
group-by is larger than M. Therefore, we have to divide
the chunks of the DJ1, DJ2, .., Djnvl group-by into parti-
tions according to the dimension order so that the chunks
in each partition fit in memory. When we output the in-
termediate chunks of Djl, Dj2, .., Djnel, we write them to
the partition to which they belong to. For example, the
partition may be decided by the values of DJnml in the
chunk. Different ranges of values of DJ,-l will go to dif-
ferent partitions. In step (3.4.1), for each partition, we read
each intermediate result and aggregate them to the corre-
sponding chunk of the DJ1, Dj2, .., D3,-1 group-by. After
we finish processing each intermediate result, each chunk of
the Djl, Dj2, .., D3,-1 group-by in memory is complete and
we output them in the dimension order Djl, DJa, .., DJnsl.
Once we are done for each partition, we complete the com-
putation for the group-by DJ1, DJ2, .., Djnpl. To compute
the subtrees of the DJ1, DJ2, .., DJ,-l node, we repeat loop 3
until we finish the aggregation for each node of the subtree.

5 Performance Results

In this section, we present the performance results of our
MOLAP Cube algorithm and a previously published RO-
LAP algorithm. All experiments were run on a Sun SPARC
10 machine running SunOS 3.4. The workstation has a 32
MB memory and a 1 GB local disk with a sequential read
speed 2.5 MB/second. The implementation uses the unix
file system provided by the OS.

5.1 Data Sets

We used synthetic data sets to study the algorithms’ per-
formance. There are a number of factors that affect the
performance of a cubing algorithm. These include:

l Number of valid data entries.

That is, what fraction of the cells in a multidimen-
sional space actually contain valid data? Note that
the number of valid data entries is just the number of
tuples in a ROLAP table implementing the multidi-
mensional data set.

l Dimension size.

That is, how many elements are there in each dimen-
sion? Note that for a MOLAP array implementation,
the dimension size determines the size of the array.
For a ROLAP implementation, the table size remains

b Number of dimensions.

constant as we vary dimension size, but the range from
which the values in the dimension attributes are drawn
changes.

This is obvious; here we just mention that by keep-
ing the number of valid data cells constant, varying
the number of dimensions impacts ROLAP and MO-
LAP implementations differently. Adding dimensions
on MOLAP causes the shape of the array to change;
adding dimensions in ROLAP adds or subtracts at-
tributes from the tuples in the table.

Since the data density, number of the array dimensions, and
the array size affect the algorithm performance, we designed
three data sets.
Data Set 1: Keep the number of valid data elements con-
stant, vary the dimension sizes. The data set consists of
three 4-dimension arrays. For those arrays, three of the
four dimensions sizes are fixed at 40, while the fourth di-
mension is either 40 (for the first array), or 100 (for the
second), or 1000 (for the third). Every array has the 640000
valid elements. This results in the data density of the ar-
rays (fraction of valid cells) ranging from 25%, to lo%, to
1%. The size of the input compressed array for the Array
method turned out to be 5.1MB. The input table size for
the ROLAP method was 12.85MB.
Data Set 2: Keep dimension sizes fixed, vary number of
valid data elements.

All members of this data set are logically 4-dimensional
arrays, with size 40x40x40x100. We varied the number of
valid data elements so that the array data density ranges
from 1% to 40%. The input compressed array size varied
from 0.5MB, to 5.lMB, to 12.2MB. to 19.9MB. The corre-
sponding table sizes for the ROLAP tables were 1.28MB,
12.8MB. 32.1MB. 51.2MB.
Data set 3: thii data set contains three arrays, with the
number of dimensions ranging from 3, to 4, to 5. Our goal
was to keep the density and number of valid cells constant
throughout the data set, so the arrays have the following
sizes: 40 x 400 x 4000, 40 x 40 x 40 x 1000, and 10 x 40 x

40 x 40 x 100. For each array, it has the same data density
1%. Hence, each array has 640000 valid array cells. The size
of the input array was 5.1MB. The table size for ROLAP
changed from 10.2MB, to 12.8MB, to 15.6MB, due to added
attributes in the tuples.

We generated uniform data for all three data sets. Since
these data sets are small, we used a proportionately small
buffer pool, 0.5 MB, for most experiments. We will indicate
the available memory size for those tests not using the same
memory size.

5.2 Array-Based Cube Algorithms

In this section, we cor.lpare the naive and the Multi-way Ar-
ray algorithms, study the effect of the compression algorithm
to the performance of the Multi-way algorithm, investigate
its behaviour as the buffer pool size decreases, and test its
scale up as the number of dimensions increases.

5.2.1 Naive vs. Multi-way Array Algorithm

We ran the tests for the naive and the Multi-zuay Array
algorithm on three 4-dimension arrays. Three of the four
dimension sizes are fixed at 40, while the fourth dimension
is varied from 100, to 200, to 300. Each array has the same
data density 10%. In Figure 5, we see that the naive array

166

algorithm is more than 40% slower than the Multi-way Array
algorithm, due to multiple scans of the parent group-bys.

350 - Naive Array Alg uncompressed +- -
Multi-way Array Alg uncompressed ------ p

300 -
/-

50 7

OL
0 60 A0 2;o

The Fourth Dimension size
250

Figure 5: Naive vs. Multi-way Array Alg.

Mult-way Array Alg. with nocomp +-
100 - Mult-way Array Alg. with Offset Comp -+----

+ _._____.___.___._.. + ..__ _ __..._ _ ..__..__.. __ --..--. __+ ..__ _ .._._..._.__....._.....-..- .t
80 ;

0 5 10 15 20 25 30 35 40
Data Density (%)

Figure 6: Two Compression Methods

Compression Performance

In Figure 6, we compare the array with no compression to
the array with offset compression for Data Set 2. It shows
that for data density less than 40% the Multi-way Array al-
gorithm performed on the input array compressed by the
offset algorithm is much faster than on uncompressed input
array. There are two reasons for this. At lower densities,
the compressed array size is much smaller. Hence, it re-
duces the I/O cost for reading the input array. The other
is that the Multi-way Array algorithm only processes the
valid array cells, of the input array during computing the
data Cube if the input array is compressed by the offset al-
gorithm. For the uncompressed input array the Multi-way
Array algorithm has to handle invalid array cells as well.

5.2.3 The Multi-way Array with Different Buffer Sizes

We ran experiments for Data Set 2 at 10% density by
varying the butler pool size. In Figure 7, we see that the
performance of Multi-way Array algorithm becomes a step

function of the available memory size. In this test, we in-
creased the available memory size from 52 KB to 0.5 MB.
The first step on the right is caused by generating two in-
complete subtrees in the first scan of the input array due to
insufficient memory to hold the required chunks for the two
subtrees. The algorithm goes through the second pass to
produce each incomplete subtree and computes the group-
bys contained in the two subtrees. As the available memory
size increases to 300KB, only one incomplete subtree is gen-
erated, which causes the second step on the right. With the
available memory more than 400 KB, the algorithm allo-
cates memory to the entire MMST and computes the Cube
in one scan of the input array. We flushed the OS cache be-
fore we process each working subtrees from their partitions.
Theorem 2 predicts a bound of 570KB for the memory re-
quired for this data. The graph shows that above 420KB
the entire MMST fits in memory. Thus the bound is quite
close to the actual value.

45-t 4 I 1 I I I I I I-

40 -

35 - Multi-way Array Alg. w Offset Comp +- -

30 -

5-

0-8 I 100 200 3;O 4;O Sk 6;O &I 800 9;O 10;
Memory Size (KB)

Figure 7: Multi-way Array Alg. with Various Memory Size

5.2.4 Varying Number of Dimensions

We discuss varying the number of dimensions when we com-
pare the array algorithm with the ROLAP algorithm below.

5.3 The ROLAP vs. the Multi-Way Array Algorithms

In this section, we investigate the performance of our MO-
LAP algorithm with a previously published sort-based RO-
LAP algorithm in three cases. We used the Overlap method
from [AADN96] as a benchmark for this comparison. In
ROLAP the data is stored as tables. Computing the cube
on a table produces a set of result tables representing the
group-bys. On the other hand, in MOLAP data is stored as
sparse multidimensional arrays, The cube of an array will
produce a array for each of the group-bys. Since there are
different formats (Table and Array) possible for the input
and output data, there could be several ways of compar-
ing the two methods. These are described in the following
sections.

5.3.1 Tables vs. Arrays

One way to compare the array vs. table-based algorithms is
to examine how they could be expected to perform in their
“native” systems. That is, we consider how the multi-way
array algorithm performs in a system that stores its data in

167

array format, and how the table based algorithm performs
in a system that stores its data in tables.

One might argue that arrays already order the data in
such a way as to facilitate cube computation, whereas tables
may not do so. Accordingly, in our tests we began with the
table already sorted in the order desired by the table-based
algorithm. This is perhaps slightly unfair to the array-based
algorithm, since unless the table is stored in this specific
order, the table based cube algorithm will begin with a large

250! I I 3 I I I I I 1 I I I I # I _’

ROLAP Alg -

/
Multi-way Array Alg w/o Loading ------

200 -

150 -

100 -

50 -

/ n L +-r --__- i ---____...____._.___.... + ..__..__._.......-..... ------------------------------~
1,,,,,,,,,,,, _1

” 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
Number of valid cells (million)

Figure 8: ROLAP vs. Multi-way Array for Data Set 2

300 r 7

Multi-way Array Alg w/o Loading +-
-+---- 250 - ROLAP Alg.

,,,+ ~__.______.___.._._.~...-.. ------------- _..-A 200 -

,,/
,/

,,/
150 -

,/
,,/

,,/’

100 - ,,/”
,A

,/’ l /’

50 -

OL
3 ;

Number of Dimensions

J
5

Figure 9: ROLAP vs. Multi-way Array for Data Set 3

The graphs in Figures 8, 9 and 10 compare the two meth-
ods for Data Sets 2, 3 and 1. For Data Set 2, as the
density increases, the size of the input table increases. This
also leads to bigger group-bys, i.e. the result table sizes also
increase. The ROLAP method will need more memory due
to this increase in size. Since the memory is kept constant
at 0.5M, the ROLAP method has to do multiple passes and
thus the performance becomes progressively worse. (As we
shall see below, it is the growing CPU cost due to these
multiple passes that dominates rather than the I/O cost.)
For the array method, the array dimension sizes are not
changing. Since the memory requirement for a single pass
computation for the array method depends only on the di-
mension sizes, and not on the number of valid data cells, in

ROLAPAlg +
250 _ Multi-way Array Alg w/o Loading -+----

50 -

c _.__ +- -.-------~----------------

o- ’ 2;O I I 1 I I 100 300 400 500 600 700 8;O 9;O I;00
Size of the Fourth Dimension

Figure 10: ROLAP vs. Multi-way Array w/o Loading for
Data Set 1

o- J 2;O 100 300 4;O 5;O 6;O I 1 700 800 9;O l&O
Size of the Fourth Dimension

Figure 11: ROLAP vs. Multi-way Array with Loading for
Data Set 1

all cases the array method can finish the computation in one
pass. Thus we see a smaller increase in the time required
for the array method.

Similarly for Data Set 1, as the size of the fourth dimen-
sion is increased, the sizes of the group-bys containing the
fourth dimension in the ROLAP computation grow. Though
the input table size is constant, the increase in the size of
the group-bys leads to greater memory requirements. But
due to the memory available being constant at 0.5MB, once
again the ROLAP method reverts to multiple passes and
its performance suffers. Turning to the array algorithm, the
array sizes also increase due to increase in the size of the
fourth dimension. But in the optimal dimension order, as
given by Theorem 4.1.4, the biggest (fourth) dimension is
kept last. Furthermore, by Corollary 4.1.4, the size of this
last dimension does not affect the memory required fo ra
single pass computation. Thus the memory requirements of
the array algorithm remains constant at 0.5MB and it al-
ways computes everything in one pass. Thus the running
time of the array method does not increase significantly.

In Data Set 3, we vary the number of dimensions from
3 to 5. The number of group-bys to be computed is expo-
nential in the number of dimensions. Since both algorithms
compute all of these group-bys, the running time of both the

168

methods increases with the number of dimensions.

5.3.2 The MOLAP Algorithm for ROLAP Systems

Although it was designed for MOLAP systems, the array
method could also be applied to any ROLAP system. Since
the array method is much faster than the table method, it
might be viable to convert the input table first into an array,
cube the array, and then convert back the resulting arrays
into tables. In this approach, rather than being used as
a persistent storage structure, the array is used as a query
evaluation data structure, like a hash table in a join. We did
two experiments to study the performance of this approach.

In the first comparison, the Multi-luay Array method
loads data from an input table into an array as a first step.
The ROLAP method just computes the cube from the input
table as in the previous case. The input table is unsorted, so
the ROLAP method has to specifically sort the input. The
times for Data Set 1 are shown in Figure 11. It can be seen
that the array method with loading is much faster than the
ROLAP method. We then repeated the experiments with
a sorted input table for the ROLAP method, so that the
initial sorting step can be avoided. The times are shown
in the same graph. It turns out that even in this case, the
Multi-way Array method turns out to be faster.

5.4 Drilling Down on Performance

In this section, we try to explain why the Multi-way Array
method performs much better than the ROLAP method.
Our experiments showed for the ROLAP method, about
70% of the time is spent on CPU computations and the
remaining is I/O. The ROLAP method reads and writes
data into tables. These table sizes are significantly bigger
than the compressed arrays used by the Multi-way Array
method. Thus the ROLAP method reads and writes more
data, meaning that the 30% of the running time due to I/O
dominates the I/O time used in the MOLAP algorithm.

Turning to the CPU usage, on profiling the code we found
that a significant percentage of time (about 55-60%/o) is spent
in sorting intermediate results while about (lo-12%) time is
spent in copying data. These sorts are costly, largely due
to a large number of tuple comparisons. Tuple comparisons
incur a lot of cost, since there are multiple fields to be com-
pared. The copying arises because the ROLAP method has
to copy data to generate the result tuples. This copying
is also expensive since the tuples are bigger than the array
cells used in the MOLAP algorithm.

On the other hand, the Multi-way Array method is a
position based method. Different cells of the array are ag-
gregated together based on their position, without incurring
the cost of multiple sorts (the multidimensional nature of
the array captures the relationships among all the dimen-
sions.) Thus once an array has been built, computing differ-
ent group-bys from it incurs very little cost. One potential
problem with the array could be sparsity, since the array size
will grow as the data becomes sparse. However, we found
that the offset compression method is very effective. It not
only compresses the array, but different compressed chunks
can be directly aggregated without having to decompress
them. This leads to much better performance for the array.
It turns out that the Multi-wuy Array method is even more
CPU intensive than the ROLAP algorithm (about 88% CPU
time). Most of this time (about 70%) is spent in doing the
aggregation, while 10% is spent in converting the offset to
the index values while processing the compressed chunks.

6 Conclusion

In this paper we presented the Multi-Way Array based method
for cube computation. This method overlaps the computa-
tion of different group-bys, while using minimal memory for
each group-by. We have proven that the dimension order
used by the algorithm minimizes the total memory require-
ment for the algorithm.

Our performance results show that that the Multi-Way
Array method performs much better than previously pub-
lished ROLAP algorithms. In fact, we found that the per-
formance benefits of the Multi-Way Array method are so
substantial that in our tests it was faster to load an array
from a table, cube the array, then dump the cubed array
into tables, than it was to cube the table directly. This sug-
gests that this algorithm could be valuable in ROLAP as
well as MOLAP systems - that is, it is not necessary that
the system support arrays as a persistent storage type in
order to obtain performance benefits from this algorithm.

References

[AADN96] S. Agarwal, R. Agrawal, P. Deshpande, J.
Naughton, S. Sarawagi and R. Ramakrishnan.
“On the Computation of Multidimensional Ag-
gregates”. In Proceedings of the %?nd Inter-
national Conference on Very Large Databases,
Mumbai (Bombay), 1996.

WI Arbor Software. “The Role of the Multi-
dimensional Database in a Data Warehous-
ing Solution”. White Paper, Arbor Software.
http://www.arborsoft.com/papers/wareTOC.html

[CCS93] E.F. Codd, S.B. Codd, and C.T. Salley.
“Providing OLAP (On-line Analytical Process-
ing) to User-Analysts: An IT Mandate”,
White Paper, E.F. Codd and Associates.
http://www.arborsoft.com/papers/coddTOC.html

[DKOS84] D. Dewitt, R. Katz, G. Olken, L. Shapiro, M.
Stonebraker, D. Wood. “Implementation Tech-
niques for Main Memory Database Systems”. In
Proceedings of SIGMOD, Boston, 1984.

[GBLP951 J.
’ Gray, A. Bosworth, A.Layman, and H.Pirahesh.

“Data Cube: A relational aggregation operator
generalizing group-by, cross-tabs and sub-totals.
Technical Report MSR-TR-95-22, Microsoft Re-
search, Advance Technology Division, Microsoft
Corporation, Redmond, 1995.

[GC96]

PA1

[MCI

WI

G. Co&ad. “OLAP, Relational, and Multidimen-
sional Database Systems”. SIGMOD Record, Vol.
25. No. 3, September 1996.

Information Advantage. “OLAP - Scaling to the
Masses”. White Paper, Information Advantage.
http://www.infoadvan.com/

Stanford Technology Group, Inc. “INFORMIX-
MetaCube” . Product Brochure.
http://www.informix.com/informix/products/
newplo/stgbroch/brochure.html

MicroStrategy Incorporated. “The Case For Re-
lational OLAP”. White Paper, MicroStrategy In-
corporated.
http://www.strategy.com/dwf/wphal.html

169

[OCI Oracle Corporation. “Oracle OLAP Products”.
White Paper, Oracle Corporation.
http:/jwww.oracle.com/products/collatrl/olapwp.pdf

[PSW] Pilot Software. “An Intro-
duction to OLAP”. White Paper, Pilot Software.
http://www.pilotsw.com/rand_t/whtpaper/olap/olap.htm

PJI Arbor Software Corporation, Robert J. Earle,
U.S.Patent # 5359724

[SM94] Sunita Sarawagi, Michael Stonebraker, “Effi-
cient Organization of Large Multidimensional Ar-
rays”. In Proceedings of the Eleventh Interna-
tional Conference on Data Engineering, Houston,
TX, February 1994.

[We1841 T. A. Welch. “A Technique for High-Performance
Data Compression”. IEEE Computer, 17(6),
1984.

K”Nl Y.H. Zhao, K. Tufte, and J.F. Naughton. “On
the Performance of an Array-Based ADT for
OLAP Workloads”. Technical Report CS-TR-96-
1313, University of Wisconsin-Madison, CS De-
partment, May 1996.

170

