
On the Computation of Multidimensional Aggregates

&meet Agarwal Rakesh Agrawal Prasad M. Deshpande Ashish Gupta
Jeffrey F. Naughton Raghu Ramakrishnan Sunita Sarawagi

Abstract

At the heart of all OLAP or multidimensional
data analysis applications is the ability to si-
multaneously aggregate across many sets of
dimensions. Computing multidimensional ag-
gregates is a performance bottleneck for these
applications. This paper presents fast algo-
rithms for computing a collection of group
bys. We focus on a special case of the aggre-
gation problem - computation of the CUBE
operator. The CUBE operator requires com-
puting group-bys on all possible combina-
tions of a list of attributes, and is equiva-
lent to the union of a number of standard
group-by operations. We show how the struc-
ture of CUBE computation can be viewed in
terms of a hierarchy of group-by operations.
Our algorithms extend sort-based and hash-
based grouping methods with several .opti-
mizations, like combining common operations
across multiple groupbys, caching, and using
pre-computed group-by8 for computing other
groupbys. Empirical evaluation shows that
the resulting algorithms give much better per-
formance compared to straightforward meth-
OdS.

This paper combines work done concurrently
on computing the data cube by two different
teams as reported in [SAG961 and [DANR96].

1 Introduction

The groupby operator in SQL is typically used to
compute aggregates on a set of attributes. For busi-

Pennisoion to copy without fee all or part of thir material is
grunted provided that the copier on not made or distributed for
dinet wmmcnzial aduontogc, the VLDB copyright notice and
the title of the publication and itr date appear, and notice is
given that copying io by permission of the Very Large Dota Base
Endowment. To wpy otherwise, or to republish, rrquinr a jcc
and/or special permission jrvm the Endowment.
Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

ness data analysis, it is often necessary to aggre-
gate data across many dimensions (attributes) FINK,
WELD95]. For example, in a retail application, one
might have a table Transactions with attributea
Product (PI, Date(D), Customer(C) and Sales (S).
An analyst could then query the data for finding:

. sum of sales by P, C:
For each product, give a breakdown on how much
of it was sold to each customer.

l sum of sales by D, C:
For each date, give a breakdown of sales by cus
tomer.

l sum of sales by P:
For each product, give total sales.

Speed is a primary goal in these class of applica-
tions called On-Line Analytical Processing (OLAP)
applications [CODD93]. To make interactive analysis
(response time in seconds) possible, OLAP daMases
often precompute aggregates at various levels of detail
and on various combinations of attributes. Speed is
critical for this precomputation as well, since the cost
and speed of precomputation influences how frequently
the aggregates are brought up&date.

1.1 What is a CUBE?

Recently, [GBLP96] introduced the CUBE opera-
tor for conveniently supporting multiple aggregates
in OLAP databases. The CUBE operator is the n-
dimensional generalization of the groupby operator.
It computes groupbys corresponding to all possible
combinations of a list of attributes. Returning to our
retail example, the collection of aggregate queries can
be conveniently expressed using the cube-operator as
follows:

SELECT P, D, C, Sum(S)
FRCIH Transactions
CUBE-BY P, D, C

This query will result in the computation of 2s = 8
groupbys: PDC, PD, PC, DC, D, C, P and all, where
all denotes the empty groupby. The straightforward
way to support the above query is to rewrite it as a
collection of eight groupby queries and execute them

separately. There are several ways in which this simple
solution can be improved.

In this paper, we present fast algorithms for com-
puting the data cube. We assume that the aggre-
gating functions are distributive [GBLP96], that is,
they allow the input set to be partitioned into dii-
joint sets that can be aggregated separately and later
combined. Ejramples of distributive functions include
max, min, count, and sum. The proposed algorithms
are also applicable to the olgebrcric aggregate functions
[GBLP96], such as average, that can be expressed in
terms of other distributive functions (sum and count
in the case of average). However, as pointed out in
[GBLP96], there are some aggregate functions (holis-
tic functions of [GBLPSS]) e.g., median, that cannot
be computed in parts and combined.

Related Work

Methods of computing single group-bys have been
well-studied (see [G&3] for a survey), but little work
has been done on optimizing a collection of related ag-
gregates. [GBLP96] gives some rules of thumb to be
used in an efEcient implementation of the cube oper-
ator. These include the smallest parent optimization
and partitioning of data by attribute values, which we
adopt in our algorithms. However, the primary focus
in [GBLP96] is on defining the semantics of the cube
operator [GBLP96]. There are reports of on-going re
search related to the data cube in directions comple
mentary to ours: [HRU96, GHRU96] presents alge
rithms for deciding what groupbys to pm-compute
and index; [SIX961 and [JS96] discuss methods for
indexing pre-computed summaries to allow efficient
querying.

Aggregate pre-computation is quite common in
statistical databases [Sho82]. Research in this
area has considered various aspects of the prob-
lem starting from developing a model for aggre-
gate computation [CM89], indexing pre-computed
aggregates [STLSS] and incrementally maintaining
them [Mic92]. However, to the best of our knowledge,
there is no published work in the statistical database
literature on methods for optimizing the computation
of related aggregates.

This paper is in two parts and combines work done
concurrently on computing the data cube. Part I
presents the methods proposed by [SAG96], whereas
the methods proposed by pANR96] are described in
Part II. Section 10 presents a summary and brief com-
parison of the two approaches.

Part 11
‘This part presents work done by Sunita Sarawagi, Fbkesh

Agrawal and Ashish Gupta at IBM Almaden Researdx Center,
San Jose.

2 Optimizations Possible

There are two basic methods for computing a group
by: (1) the sortrbased method and (2) the hash-based
method [G&3]. We will adapt these methods to com-
pute multiple groupbys by incorporating the following
optimizations:

1.

2.

3.

4.

5.

Smallest-parent: This optimization, first pro
posed in [GBLP96], aims at computing a groupby
from the smallest previously computed groupby.
In general, each groupby can be computed from
a number of other groupbys. Figure 1 shows a
four attribute cube (ABCD) and the options for
computing a groupby from a groupby having one
more attribute called its parent. For instance, AB
can be computed from ABC, ABD or ABCD.
ABC or ABD are clearly better choices for com-
puting AB. In addition, even between ABC and
ABD, there can often be big difference in size
making it critical to consider size in selecting a
parent for computing AB.
Cache-reeults: This optimization aims at
caching (in memory) the results of a groupby
from which other groupbys are computed to re
duce disk I/O. For instance, for the cube in Fig-
ure 1, having computed ABC, we compute AB
from it while ABC is still in memory.
Amortize-scans: This optimization aims at
amortizing disk reads by computing as many
groupbys as possible, together in memory. For in-
stance, if the groupby ABCD is stored on disk,
we could reduce disk read costs if all of ABC,
ACD, ABD and BCD were computed in one scan
of ABCD.
Share-sorts: This optimization is specific to the
sort-based algorithms and aims at sharing sorting
cost across multiple groupbys.
Share-partitions: This optimization is specific
to the hash-based algorithms. When the hash-
table is too large to fit in memory, data is parti-
tioned and aggregation is done for each partition
that fits in memory. We can save on partitioning
cost by sharing this cost across multiple group
bys.

For OLAP databases, the size of the data to be aggre-
gated is usually much larger than the available main
memory. Under such constraints, the above optimiza-
tions are often contradictory. For computing B, for
instance, the first optimization will favor BC over AB
if BC is smaller but the second optimization will favor
AB if Al3 is in memory and BC.is on disk.

Contributions In this part of the paper, we will
present two algorithms for computing the data cube:
the sort-based algorithm PipeSort (Section 3) and the
hash-based algorithm PipeHash (Section 4) that in-
cludes the optimizations listed above. We have ex-

507

Level

0

Figure 1: A search lattice for the cube operator

tended these algorithms to two important real-life
OLAP cases. The first deals with the useful case of
computing a specified subset of the group-bys in a
cube. For this case, we identify a reduction of the
problem to the minimum Steiner tree [GJ79] problem.
This enables us to find plans that consider computa-
tion of intermediate groupbys that are not part of the
specified subset but can lead to smaller total cost. The
second extension handles the case in which attributes
have hierarchies de&red on them. Due to space limi-
tation, we have not included these extensions in this
paper, and we refer the reader to [SAG961 for them.

3 Sort-based methods

In this section, we present the sort-based algorithm
that incorporates the optimizations listed earlier. We
include the optimization share-sort by using data
sorted in a particular order to compute all groupbys
that are prefixes of that order. For instance, if we
sort the raw data on attribute order ABCD, then
we can compute groupbys ABCD, ABC, AB and A
without additional sorts. However, this decision could
conflict with the optimization smallest-parent. For
instance, the smallest parent of AB might be BDA
although by generating AB from ABC we are able to
share the sorting cost. It is necessary, therefore, to do
global planning to decide what groupby is computed
from what and the attribute order in which it is com-
puted. We propose an algorithm called PipeSort that
combines the optimizations sharesorts and smallest-
parent to get the minimum total cost.

The PipeSort algorithm also includes the optimize
tions cache-results and amortize-scans to reduce
diik scan cost by executing multiple groupbys in a
pipelined fashion. For instance, consider the previous
example of using data sorted in the order ABCD to
compute prefixes ABCD, ABC, AB and A. Instead of
computing each of these groupbys separately, we can
compute them in a pipelined fashion as follows. Hav-
ing sorted the raw data in the attribute order ABCD,
we scan the sorted data to compute groupby ABCD.
Every time a tuple of ABCD is computed, it is prop
agated up the pipeline to compute ABC; every time
a tuple of ABC is computed, it is propagated up to

compute AB, and so on. Thus, each pipeline is a list
of groupbys all of which are computed in a single scan
of the sort input stream. During the course of execu-
tion of a pipeline we need to keep only one tuple per
groupby in the pipeline in memory.

Algorithm PipeSort

Assume that for each groupby we have an estimate of
the number of distinct values. A number of statistical
procedures (e.g., pNSS95]) can be used for this pur-
pose. The input to the algorithm is the search lattice
defined as follows.

Search Lattice A search lattice [HRU96] for a data
cube is a graph where a vertex represents a group-by
of the cube. A directed edge connects group-by i to
groupby j whenever j can be generated from i and
j has exactly one attribute less than i (i is called the
parent of j). Thus, the out-degree of any node with
Ic attributes is k. Figure 1 is an example of a searc
lattice. Level k of the search lattice denotes all group-
bys that contain exactly k attributes. The keyword
all is used to denote the empty groupby (Level 0).
Each edge in the search lattice eij is labeled with two
costs. The flmt CO& S(eij) is the cost of computing
j from i when i is not already sorted. The second
cost A(ej) is the cost of computing j from i when i is
already sorted.

The output, 0 of the algorithm is a subgraph of the
search lattice where each groupby is connected to a
single parent groupby from which it will be computed
and is associated with an attribute order in which it
will be sorted. If the attribute order of a groupby j
is a prefix of the order of its parent i, then j can be
computed from i without sorting i and in 0, edge eij is
marked A and incurs cost A(eij). Otherwise, i has to
be sorted to compute j and in 0, eij is marked S and
~IXWS cost S,. Clearly, for any output 0, there can
be at most one out-edge marked A from any group
by i, since there can be only one prefix of i in the
adjacent level. However, there can be multiple out-
edges marked S from i. The objective of the algorithm
is to find an output 0 that has minimum sum of edge
costs.

Algorithm The algorithm proceeds level-by-level,
starting from level k = 0 to level k = N - 1, where
N is the total number of attributes. For each level k,
it 6nds the best way of computing level k from level
k + 1 by reducing the problem to a weighted bipartite
matching problem2 p’s821 as follows.

lThe weighted bipartite matching problems is defined as fol-
lowe: We are given a gaph with two disjoint sets of vertices
VI and VZ and a set of edges E that connect vertices in set
VI to vertices in set Vs. Each edge is associated with a fixed
weight. The weighted matching problem selects the maximum
weight subset of edges from E such that in the selected subgraph
each vertex in VI is connected to at moet one vertex in fi and

508

We first transform level k + 1 of the original search
lattice by making k additional copies of each group-by
in that level. Thus each level k + 1 group-by has k -I- 1
vertices which is the same as the number of children
or out-edges of that group-by. Each replicated vertex
is connected to the same set of vertices as the origi-
nal vertex in the search lattice. The cost on an edge
eij from the ori@~~al vertex i to a level k V~I+XX j is
set to A(eij) whereas all replicated vertices of i have
edge cost set to S(cj). We then find the minimum 3
co& matching in the bipartite graph induced by this
transformed graph. In the matching so found, each
vertex h in level k will be matched to some vertex g
in level k + 1. If h is connected to g by an A() edge,
then h determines the attribute order in which g will
be sorted during its computation. On the other hand,
if h is connected by an S() edge, g will be re-sorted for
computing h.

For illustration, we show how level 1 group-by8 are
generated from level 2 group-bys for a three attribute
search lattice. As shown in Figure 2(a), we rirst make
one additional copy of each level 2 group-by. ,Solid
edges represent the A() edges whereas dashed edges
indicate the 5’0 edges. The number underneath each
vertex is the cost of all out-edges from this vertex. In
the minimum cost matching (Figure 2(b)), A is con-
nected to AI? with an S() edge and B by an A() edge.
Thus at level 2, group-by AI3 will be computed in
the attribute order BA so that B is generated from it
without sorting and A is generated by resorting BA.
Similarly, since C is connected to AC by an A() edge,
AC will be generated in the attribute order CA. Since,
BC is not matched to any level-l group-by, BC can
be computed in any order.

(a) Transformed scrrch Imice (b) Minimum cost matching

Figure 2: Computing level 1 group-bys from level 2 group-
bys in a 3 attribute cube

We u8e the algorithm in [pS82] for finding the min-
imum cost matching in a bipartite graph4. The com-
plexity of this algorithm is O(((k + l)&+~)~), where
Mk+l is the number of group-bys.in level k + 1.

PipeSort:
(Input: search lattice with the A() and S() edges costs)
For level k = 0 to N - 1

SNote we can covert a minimum weight matching to a max-
imum weight matching defined earlier by replacing each edge
weight UJ by w(w) - w where moo(w) is the m&mum edge
Cost.

‘The code fok the matching algorithm is available from
ftp-r~qu~~tQthoory.~t~ord.odu

/* find how to generate level k from level k + 1 */
Generate-Plan(k + 1 + k);
For each groupby g in level k + 1

Fix the sort order of g a8 the order of the
group-by connected to g by an A() edge;

Generate-Plan(k + 1+ k)
Make k additional copies of each level k + 1 vertex;
Connect each copy vertex to the same set
of level k vertices a8 the original vertex;
Assign cost A(eij) to edge eij from the original
vetiex and S(e,) to edge fi-om the copy vertex;
Find the minimum cost matching on the
transformed levels.

Example: We illustrate the PipeSort algorithm for
the four attribute lattice of Figure 1. For simplicity,
assume that for a given group-by g the costs A() and
S() are the same for all group-bys computable from
g. The pair of numbers underneath each group-by in
Figure 3 denote the A() and S() costs. Solid edges
denote A() edges and dashed edge8 denote S() edges.
For these costs, the graph in Figure 3(a) show8 the f?nal
minimum co& plan output, by the PipeSort algorithm.
Note that the plan in Figure 3(a) is optimal in terms
of the total cost although the total number of sorts is
suboptimal. For most real-lie datasets there could be
a big difference in the sizea of group-bys on a level.
Hence, optimizing for the number of sorts alone could
lead to poor plans.

In Figure 3(b) we show the pipelines that are ex-
ecuted. Sorts are indicated by ellipses. We would
first sort data in the order CBAD. In one scan of
the sorted data, CBAD, CBA, CB, C and all would
be computed in a pipelmed fashion, Then group-by
ABCD would be sorted into the new order BADC
and thereafter BAD, BA and B would be computed
in a pipeiined fashion.
We can make the following claims about algorithm
PipeSort.

Claim 3.1 Generate-plan0 finds the best plan to get
level k from level k + 1.

PROOF. Follow8 by construction assuming a cost func-
tion where the cost of sorting a groupby does not de-
pend on the order in which the groupby is already
sorted.

Claim 3.2 Generat&plan(k + 1 + k) does not pre
vent Generat+pla.n(k + 2 + k + 1) from finding the
best plan.

PROOF. After we have fixed the way to generate level
k from level k + 1 the only constraint we have on level
k -I- 1 is the order in which the group-by8 should be
generated. This ordering does not afIect the minimum
matching solution for generating level & + 1 from k + 2.

509

CBA BAD ACD DBC
10 so 1540 6 20 45 130

.7

9 <-----’
-:c_l

,<:=-

CBAD
50 150

4
I

Rar d.11

(a) The minimum cost sort plan (b) The pipelines that are executed

Figure 3: Sort-based method for computing a four attribute cube

After finding the best solution for generating level k+l
from level k + 2, we can always change the order in
which each group-by should be generated (as,dictated
by level k solution) without affecting the minimum
cost.

Note that PipeSort computes each group-by from
a group-by occurring only in the immediately preced-
ing level. Although the level-by-level approach is not
provably optimal, we have not been able to find any
case where generating a group-by from a group-by not
in the preceding level leads to a better solution. Our
experiments reported in Section 5 also show that our
solution is very close to empirically estimated lower
bounds for several datasets.

Further Enhancements Our implementation of
PipeSort includes the usual optimizations of aggre-
gating and removing duplicates while sorting, in-
stead of doing aggregation as a different phase after
sorting[Gra93]. Often we can reduce the sorting cost
by taking advantage of the partial sorting order. For
instance, in Figure 3 for sorting ACD in the attribute
order AD, we can get a sorted run of D for each dis-
tinct value of AC and for each distinct A we can merge
these runs of D. Also, after the PipeSort algorithm has
fixed the order in which each group-by is generated we
can modify the sort-edges in the output search lattice
to take advantage of the partial sorting orders when-
ever it is advantageous to do so.

4 Hash-based methods

We now discuss how we extend the hash-based method
for computing a data cube. For hash-based meth-
ods, the new challenge is careful memory allocations
of multiple hash-tables for incorporating optimizations
,cache-results and amortize-scans. For instance, if
the hash tables for AB and AC fit in memory then
the two group-bys could be computed in one scan of
ABC. After AB is computed one could compute A
and B while AB is still in memory and thus avoid the

disk scan of AB. If memory were not a limitation, we
could include all optimizations stated in Section 2 as
follows.

For k = N to 0
For each k + 1 attribute groupby, g

Compute in one scan of g all k attribute group-by
for which g is the smallest parent;

Save g to disk and destroy hash table of g;

However, the data to be aggregated is usually too
large for the hash-tables to fit in memory. The stan-
dard way to deal with limited memory when construct-
ing hash tables is to partition the data on one or
more attributes. When data is partitioned on some
attribute, say A, then all group-bys that contain A
can be computed by independently grouping on each
partition - the results across multiple partitions need
not be combined. We can share the cost of data par-
titioning across all group-bys that contain the parti-
tioning attribute, leading to the optimization share-
partitions. We present below the PipeHash algo-
rithm that incorporates this optimization and also in-
cludes the optimizations cache-results, amortize-
scans and smallest-parent.

Algorithm PipeHash

The input to the algorithm is the search lattice de-
scribed in the previous section. The PipeHash algcF
rithm frrst chooses for each group-by, the parent group-
by with the smallest estimated total size. The outcome
is a minimum spanning tree (MST) where each vertex
is a group-by and an edge from group-by o to b shows
that u is the smallest parent of ii. In Figure 4 we show
the MST for a four attribute search lattice (the size of
each group-by is indicated below the group-by).

In general, the available memory will not be suf-
ficient to compute all the group-bys in the MST to-
gether, hence the next step is to decide what group-bys
to compute together, when to allocate and deallocate
memory for different hash-tables, and what attribute

510

Raw hu

fa) Minimum spanning tree

1 R.v D.,. j

(b) First subtrec: partitioned on

Figure 4: PipeHash on a four attribute groupby

to choose for partitioning data. We conjecture this
problem to be NP-complete because solving thii prob-
lem optimally requires us to solve the following sub-
problem optimally: Divide the MST into smaller sub-
trees each of which can be computed in one scan of the
group-by at the root of the MST such that the cost of
scanning (from disk) the root group-by is minimized.
This problem is similar to well-known NP-complete
partitioning problems [GJ79]. Hence, we resort to us-
ing a heuristic solution. Later (in Section 5) we show
that our solution is very close to empirically estimated
lower bounds for several datasets.

Optimizations cache-results and amortizescans are
favored by choosing as large a subtree of the MST as
possible so that we can use the method above to com-
pute together the group-bys in the subtree. However,
when data needs to be partitioned baaed on some at-
tribute, the partitioning attribute limits the subtree to
only include group-bys containing the partitioning at-
tribute. We therefore, choose a partitioning attribute
that allows the choice of the largest subtree as shown
in the pseudo-code of the PipeHash algorithm below.

This leaves T - T,, a forest of smaller trees; add
this to the worklist;

return T,;

Compute-subtree
M = memory available;
numParts = memory required by T’*fudgefactor/M;
Partition root of T’ into numparts;
For each partition of root(T’)

For each node, n in T’
(scanned in a breadth first manner)

Compute all children of n in one scan;
If n is cached, save it to disk and
release memory occupied by its hash-table;

PipeHash:
Input: search lattice with group-by estimated sizes
Initialize worklist with MST of the search lattice;
While worklist is not empty

Pick any tree T from the workliit;
T’ = Select-subtree of T to be executed next;
Compute-subtree T’;

Select-subtree
If memory required by T < available, return T
Else, let S be the attributes of root(T)

(We will pick s c S for partitioning root(T).
For any s we get a subtree T. of T also rooted at

T including all group-bys that contain 3.)
Let P. = maximum number of partitions of root(T)
possible if partitioned on s c S;
We choose s c S such that

memory required by T./P, < memory available,
and T, is the largest over all subsets of S;

Remove T, from T;

Example: Figure 4 illustrates the PipeHash algo-
rithm for the four attribute search lattice of Figure 1.
The boxed group-bys represent the root of the sub-
trees. Figure 4(a) shows the minimum spanning tree.
Assume there is not enough memory to compute the
whole tree in one pass and we need to partition the
data. Figure 4(b) shows the first subtree TA selected
when A is chosen as the partitioning attribute. After
removing TA from the MST, we are left with four sub-
trees as shown in Figure 4(c). None of the group-bys in
these subtrees include A. For computing TA, we first
partition the raw data on A. For each partition we
compute first the group-by ABCD; then scan ABCD
(while it is still in memory) to compute ABC, ABD
and ACD together; save ABCD and ABD to disk;
compute AD from ACD; save ACD and AL) to disk;
scan ABC to compute AB and AC; save ABC and
AC to disk; scan AB to compute A- and save AB and
A to disk. After TA is computed, we compute each of
the remaining four subtrees in the worklist.

Note that PipeHash incorporates the optimization
share-partitions by computing from the same partition
all group-bys that contain the partitioning attribute.
Also, when computing a subtree we maintain all hash-
tables of group-bys in the subtree (except the root)
in memory until all its children are created. Also, for
each group-by we compute its children in one scan of
the group-by. Thus PipeHash also incorporate the op-

A (c) Remaining subtrees

511

Dataset # grouping # tuples size
attributes (in millions) (in MB)

Data&-A 3 5.5 110
Data&-B 4 7.5 121
Data&X 5 9 180
Dataset-D 5 3 121
Data&-E 6 0.7 18

Table 1: Description of the datasets

timisations amortize-scans and cache-results. 6
PipeHash is biased towards optimizing for the

smallest-parent. For each group-by, we first fix the
smallest parent and then incorporate the other opti-
mizations. For instance, in Figure 4(c), we could have
computed BC from BCD instead of its smallest parent
ABC and thus saved the extra scan on ABC. However,
in practice, saving on sequential disk scans .is less im-
portant than reducing the CPU cost of aggregation by
choosing the smallest parent.

5 Experimental evaluation

In this section, we present the performance of our
cube algorithms on several real-lie datasets and an-
alyze the behavior of these algorithms on tunable syn-
thetic datasets. These experiments were performed on
a RS/SOOO 250 workstation running AIX 3.2.5. The
workstation had a total physical memory of 256 MB.
We used a buffer of size 32 MB. The datasets were
stored as flat files on a local 2GB SCSI 3.5” drive with
sequential throughput of about 1.5 MB/second.

Datasets Table 1 lists the five real-lie datasets used
in the experiments. -These datasets were derived from
sales transactions of various department stores and
mail order companies. A .brief description is given
next. The datasets differ in the number of transac-
tions, the number of attributes, and the number of
distinct values for each attribute. For each attribute,
the number within brackets denotes the number of its
distinct valuea.

l Dataset-A: This data is about supermarket pur-
chases. Each transaction has three attributes:
store id(73), date(16) and item identifier(48510).
In addition, two attributes cost and amount are
used as aggregation columns.

l Dataset-B: This data is from a mail order com-
pany. A sales transaction here consists of four
attributes: the customer identifier(213972), the
order date(2589), the product identifier(l5836),
and the catalog used for ordering(214).

%fer [SAG961 for a diacuwion of how we handle the prob-
lems of data skew and incorrect size estimates in allocating hash-
t ahles

NH:NaiveHash PH:PipeHash NS:NaiveSort PS:PipeSort

q Low*r.bo”nd cl EXlfl
ii

01carreA oamree DalaraeC DlIlI@I-D DIIUOI-E

Figure 5: Performance of the cube computation algorithms
on the five real life data&s. The y-&s denotes the total
time normalized by the time taken by the NaiveHash algo-
rithm for each dataset.

Dataset-C: This is data about grocery pur-
chases of customers from a supermarket. Each
transaction has five attributes: the date of pur-
chase(1092), the shopper type(195), the store
code(415), the state in which the store is lo
cated(46) and the product group of the item pur-
chased(ll8).
DataseeD: This is data from a department
store. Each transaction has five attributes: the
store identifier(l7), the date of purchase(l5), the
UPC of the product(85161), the department num-
ber(44) and the SKU number(63895).
Dataset-E: This data is also from a department
store. Each transaction has total of six attributes:
the store, number(ri), the date of purchase(l5),
the item number(26412), the business center(g),
the merchandising group(22496) and a sequence
number(255). A seventh attribute: the quantity
of purchase was used as the aggregating column.

Algorithms compared For providing a basis of
evaluation, we choose the straightforward method
of computing each groupby in a cube as a sepa-
rate group-by resulting in algorithms NaiveHash and
NaiveSort depending on whether group-bys are com-
puted using hash-based or sort-based methods. We
further compare our algorithms against easy but pos-
sibly unachievable lower-bounds.

For the hash-based method the lower bound is ob-
tained by summing up the following operations: Com-
pute the bottom-most (level-N) groupby by hashing
raw-data stored on disk; include the data partitioning
cost if any. Compute all other group-bys by hashing
the smallest parent assumed to be in memory; ignore
data partitioning costs. Save all computed group-bys
to disk.

512

001 0.01 0.1 1 10 100
% density (Decreasing sparistyl

(a) Ratio 1:2:4:20:300 (b) Ratio 1:l:l:l:l

Figure 6: Effect of sparseness on relative performance of PipeSort and PipeHash for a 5 attribute synthetic dataset.

For the sort-based method the lower bound is ob-
tained by summing up the following operations: Com-
pute the bottom-most (level-N) group-by by sorting
the raw-data stored on disk. Compute all other group
bys from the smallest parent assumed to be in memory
and sorted in the order of the group-by to be com-
puted. Save all computed groupbys.

Performance results Figure 5 shows the perfor-
mance of the proposed PipeHash and PipeSort relative
to the corresponding naive algorithms and estimated
lower bounds. The total execution time is normalized
by the time taken by the NaiveHash algorithm for each
dataset to enable presentation on the same scale. In
[SAG961 we discuss the methods we used for estimat-
ing the size of each group-by and the hashing function
used with NaiveHash and PipeHash. We can make the
following observations.

better than the sort-based method. Careful scrutiny
of the performance data revealed that this deviation is
because after some parent groupby is sorted we com-
pute more than one group-by from it whereas for the
hash-based method we build a different hash table for
each group-by. Even though we share the partition-
ing cost for the hash-based method, the partitioning
cost is not a dominant fraction of the total cost unliie
sorting.

l Our algorithms are two to eight times faster than
the naive methods.

l The performance of PipeHash is very close to our
calculated lower bound for hash-based algorithms.
The maximum difference in performance is 8%.

l PipeSort is also close to the calculated lower
bound for sort-based method in most cases. The
maximum gap between their performance is 22%.

l For most of the datasets, PipeHash is inferior to
the PipeSort algorithms. We suspected this to
be an artifact of these datasets. To further in-
vestigate the difference between them, therefore,
we did a series of experiments on a synthetically
generated dataset described next.

We conjectured that the hash-based method can
perform better than the so&based method when each
group-by results in a considerable reduction in the
number of tuples. This is because the cost of hashing
at higher levels of aggregations can become a negligible
fraction of the total cost when the number of tuples re
duces rapidly. To validate our conjecture that the per-
formance difference between the hash-based method
and sort-based method is mainly due to the rate of de-
crease in the number of tuples as we’aggregate along
more and more attributes, we took a series of measure-
ments on synthetic datasets described below.

5.1 Comparing PipeSort and PipeHash

For the datasets in Table 1, the sort-based method
performs better than the hash-based method. For
Data&-D, PipeSort is almost a factor of two better
than PipeHash. Based on results in [GLS94], we had
expected the hash-based method to be comparable or

Synthetic datasets Each dataset is characterized
by four parameters:

1. Number of tuples, T.

2. Number of grouping attributes, N.
3. Ratio amongst the number of distinct values of

each attribute dl : & : . . . : dN.

4. A parameter, p, denoting the degree of sparsity
of the data. It is defined as the ratio of T to the
total number of possible attribute value combi-
nations. Thus, if Di denotes the number of .dis-
tinct values of attribute i, then p is defined as
T/(DlxDp... DN). Clearly, higher the degree of
spar&y (lower value of p), lower the reduction in
the number of tuples after aggregation.

Given these four parameters, the dataset is generated
as follows. We first determine the total number of

513

values Di along each dimension i as:

Di= T
0

k di
P (dl x do x . . . x d&’

Then, for each of the T tuples, we choose a value for
each attribute i randomly between 1 and Di.

Results We show the results for two sets of synthetic
datasets with T is 5 million, N is 5. For dataset in
Figure 6(a) the ratio between the number of distinct
values of each attribute is 1:2:4:20:300 (large variance
in number of distinct values). We vary the sparsity
by changing p. The X-axis denotes decreasing levels
of sparsity and the Y-axis denotes the ratio between
the total running time of algorithms PipeHash and
PipeSort. We notice that as the data becomes less
and less sparse the hash-based method performs bet-
ter than the sort-based method. We repeated the same
set of measurements for datasets with a different r&
tio, 1:l:l:l:l (Figure 6(b)): We notice the same trend
for datasets with very different characteristics, empir-
ically confirming that sparsity indeed is a p’redictor of
the relative performance of the PipeHash and PipeSort
algorithms.

Part 116

6 Contributions of this Part

We present a class of sorting-based methods for com-
puting the CUBE that try to minimize the number of
disk accesses by overlapping the computation of the
various cuboids. They make use of partially matching
sort orders to reduce the number of sorting steps re
quired. Our experiments with an implementation of
these methods show that they perform well even with
limited amounts of memory. In particular, they always
perform substantially better than the Independent and
Parent method of computing the CUBE by a sequence
of groupby statements, which is currently the only
option in commercial relational database systems.

7 Options for Computing the CUBE

Let R be a relation with k + 1 attributes
{&&,... , Ak+l}. Consider the computation of a
CUBE on k attributes X = {Al, As,. . . , Ak} of rela-
tion R with aggregate function F(e) applied on Ak+r .
AcuboidonjattributesS=(.&,,A~,...,&j}isde-
fined as a groupby on the attributes Ai,, 4,. . . ,.&,
using the aggregate function F. This cuboid can

6This part presents work done by Prasad M. Dsshpande,
Same& AgarwaI, Jeffrey F. Naughton and Rpghu Ramabish-
nan; {pmd, samefst, naughton, w&u} Bcr.wi8c.edu, University
of Wisconsin-Madison.
It wan supported by a grant from IBM under the University
Partnership Programand NSF grant IIU-9167367

be represented as a k + 1 attribute relation by us-
ing the special value ALL for the remaining k - j at-
tributes [GBLP96]. The CUBE on attribute set X
is the union of cuboids on all subsets of attributes of
X. The cuboid (or group-by) on all attributes in X is
called the base cuboid

To compute the CUBE we need to compute all
the cuboids that together form the CUBE. The base
cuboid has to be computed from the original relation.
The other cuboids can be computed from the base
cuboid due to the distributive nature of the aggrega-
tion. For example, in a retail application relation with
attributes (Product, Yeor, Customer, Sales), sum of
a&a by (product, customer) can be obtained by using
sum of sales by (product, year, customer). There are
different ways of scheduling the computations of the
cuboids:

Multiple Independent Group-By Queries (In-
dependent Method)

A straightforward approach (which we call Indepen-
dent) is to independently compute each cuboid from
the base cuboid, using any of the standard group-by
techniques. Thus the base cuboid is read and pro
cessed for each cuboid to be computed, leading to poor
performance.

Hierarchy of GroupBy Queries (Parent
Method)

Consider the computation of different cuboids for the
CUBE on attributes {A, B, C, D}. The cuboid {A, C}
can be computed from the cuboid (A, B,C} or the
cuboid {A, C, D}, since the aggregation function is
distributive. In general, a cuboid on attribute set X
(called cuboid X) can be computed from a cuboid on
attribute set Y iff X C Y. One optimiiation is to
choose Y to be as small as possible to reduce cost
of computation. We use the heuristic of computing
a cuboid with k - 1 attributes from a cuboid with k
attributes, since cuboid size is likely to increase with
additional attributes. For example, it is better to com-
pute sum of sales by (product) using sum of sales by
(product, customer) rather than sum of sales by (prod-
uct, year, cwtomer).

We can view this hierarchy as a DAG where the
nodes are cuboids and there is an edge from a k at-
tribute cuboid to a k-l attribute cuboid iff the k-l at-
tribute set is a subset of the k attribute set. The DAG
captures the “consider-computing-from” relationship
between the cuboids. The DAG for the CUBE on
{A, B, C, D} is shown in Figure 7.

In the P&t method each cuboid is computed from
one of its parents in the DAG. This is better than
the Independent method since the parent is likely to
be much smaller than the base cuboid, which is the
largest of all the cuboids.

514

Overlap Method

This is a further extension of the idea behind the Par-
ent method. While the Independent and Parent meth-
ods are currently in use by Relational OLAP tools, the
Overlap method cannot be used directly by a standard
SQL database system and to our knowledge it has not
appeared in the literature to date. As in the Parent
method, the Overlap method computes each cuboid
from one of its parents in the cuboid tree. It tries to
do better than Parent by overiapping the computa-
tion of different cuboids and using partially matching
sort orders. This can significantly reduce the num-
ber of I/OS required. The details of this scheme are
explained in Section 8.

7.1 Computing the Group-bys using Sorting

In relational query processing, there are various meth-
ods for computing a group-by, such as sorting or hash-
ing [EPST79, Gra93, SN95]. These methods can be
used to compute one cuboid from another. We concen-
trate on sorting based methods in this paper, though
we believe that hashing could also be used similarly.
Computing a CUBE requires computation of a num-
ber of cuboids (group-bys). Sorting combined with
Overlap seems to be a good option due to the follow-
ing observations which help in reducing the number of
sorting steps.

l Cuboids can be computed from a sorted cuboid
in sorted order.

l An existing sort order on a cuboid can be used
while computing other cuboids from it. For exam-
ple, consider a cuboid X = {A, B, D} to be com-
puted from Y = {A, B, C, D}. Let Y be sorted
in ABCD order which is not the same as ABD
order needed to compute X. But Y need not be
resorted to compute X. The existing order on Y
can be used. The exact details are explained in
Section 8.

8 The Overlap Method

The method we propose for CUBE computation is a
sort-based overlap method. Computations of different
cuboids are overlapped and all cuboids are computed
in sorted order. In this paper we give only a short
description of our method. More details can be found
in [DANR96]. We first define some terms which will
be used frequently.

Sorted Runs :
Consider a cuboid on j attributes {Al, AZ,. . . , Aj}.

We use (Al,Az,..., Aj) to denote the cuboid sorted
on the attributes Al, AQ, . . ., Aj in that order. Con-
sider the cuboid S = (A1,Az,...,AI_1,Al+1,...,Aj)
computed using B = (Al, AQ, . . . , Aj). A sorted
run R of S in B is defined as follows: R=

flAl,Al,..., A,-,,A,+, ,..., Aj (Q) where Q is a maximal se-
quence of tuples T of B such that for each tuple in Q,
the first I columns have the same value. Informally a
sorted run of S in B is a maximal run of tuples in B
whose ordering is consistent with their ordering in the
sort order associated with S.

For example, consider
[(a, 1,2), (a, 1,3), (a, 2,2), (b, 1,3), (b, 3,2),?c 3 111. =
Let S be the cuboid on the first and third ‘atkribute.
i.e., S = [(a, 2), (a,3), (b,3), (b,2), (c, l)], The sorted
runs for S are Ka,2),(a,3)1, Ka,2)1, Kh3)1, [@,2)1 ad

Kc7 111.
Partitions :

BandShaveacommonprefixofAi,A~ ,..., AL-~.
A partition of the cuboid S in B is a union of sorted
runs such that the first 1 - 1 columns (the common
prefix) of all the tuples of the sorted runs have the
same value. In the above example, the partitions for
S in B will be [(a, 2), (o,3)], [(h 2), (4 3)] ad [(c, I)].

This definition implies that all tuples of one parti-
tion are either less or greater than all tuples of any
other partition. Tuples from different partitions will
not merge for aggregation. Thus partition becomes a
unit of computation and each partition can be com-
puted independently of the others.

8.1 Overview of the Overlap Method

The overlap method is a muti-pass method. In each
pass, a set of cuboids is selected for computing under
memory constraints. These cuboids are computed in a
overlapped manner. The tuples generated for a cuboid
are used to compute its descendents in the DAG. This
pipelining reduces the number of scans needed. The
process is repeated until all cuboids get computed.

The algorithm begins by sorting the base cuboid.
All other cuboids can be directly computed in sorted
order without any further sorting. Instead of re-sorting
for each cuboid, the existing sorted runs are merged to
create the cuboid. This reduces the number of compar-
isons as well. Suppose the base cuboid for the CUBE
on (A, B, C, D} is sorted in the order (A, B, C,D).
This decides the sort order in which the other cuboids
get computed. The sort orders for the other cuboids
of {A, B, C, D} are shown in the Figure 7. A few
heuristics for choosing this sort order are mentioned
in [DANR96].

Computation of each cuboid requires some amount
of memory. If there is enough to memory to hold all
the cuboids, then the entire CUBE can be computed
in one scan of the input relation. But often, this is not
the case. The,aMilable memory may be insufficient
for large CUBEs. Thus, to get the maximum overlap
across computations of diierent cuboids, we could try
to reduce the amount of memory needed to compute
a particular cuboid. Since partition can be a unit of
computation, while computing a cuboid from another

515

(A.w CD) mm (CD)
(11 (401

Figure 7: Sort orders enforced on the cuboids

(Am cw

0

Figure 8: Cuboid ‘Bee obtained from the cuboid DAG

sorted cuboid we just need memory sufficient to hold a
partition of the cuboid. As soon as a partition is com-
pleted, the tuples can be pipelined into the computa-
tion of descendant cuboids, or written out to disk; the
same memory can then be used to start computation
of the next partition. This is a significant reduction
since for most cuboids the partition size is much less
than the size of the cuboid. For example, while com-
puting (A, B, C) and (A,B,D) from (A, B, C,D) the
partition size for (A, B, C) is 1 tuple (since (A, B, C)
sort order matches (A, B,C, D) sort order) whereas
the partition size for (A, B, 0) is bounded by the num-
ber of distinct values of D. So for computing these we
just need space su&ient to hold a partition. Thus.
computation of many cuboids can be overlapped in
the available memory effectively reducing the number
of scans.

8.2 Details

8.2.1 Choosing a Parent to Compute a
Cuboid

Each cuboid in the cuboid DAG has more than one
parent from which it could be computed. We need to
choose one of these parents thus converting the DAG
to a rooted tree. The root of the tree is the base cuboid
and each cuboid’s parent is the cuboid to be used for
computing it. For example, one possible tree for com-
puting the DAG in Figure 7 is as shown in Figure 8.

There are many possible trees. The goal in choos-
ing a tree is to minimize the size of the partitions of

0
[...I indicates estimated partition size in number of pages

Figure 9: Estimates of Partition Sizes

a cuboid so that minimum memory is needed for its
computation. For example, it is better to compute
(A, C) from (A, C,D) rather than (A, B, C). This is
because (A, C, D) sort order matches the (A, C) sort
order and the partition size is 1. This is general-
ized to the following heuristic: Consider the cuboid
S = (Ail,A,,*.*>Aij), where the base cuboid is
(AI,&,..., &). S can be computed from any cuboid
with one additional attribute, say AI. Our heuristic
is to choose the cuboid with the largest value of 1 to
compute S. Maximizing the size of the common pre-
fit minimizes the partition size. The tree in Fiie 8
is obtained by using this heuristic. Note that among
the children of a particular node, the partition sizes
increase from left to right. For example, partition size
for computing (A, B, C) from (A, B, C, II) is 1 whereas
the partition size for (B, C, D) is the maximum (equal
to size-of the cuboid (B, C, D) itself).

8.2.2 Choosing a Set of Cuboids for
Overlapped Computation

The next step is to choose a set of cuboids that can
be computed concurrently within the memory con-
straints. To compute a cuboid in memory, we need
memory equal to the size of its partition. We assume
that we have estimates of sizes of the cuboids. The
partition sizes can be estimated from these using uni-
form distribution assumption [DANR96]. If this much
memory can be allocated, the cuboid will be marked to
be in Partition state. For some other cuboids it may
be possible to allocate one page of memory. These
cuboids will be SortRun state. The allocated page can
be used to write out sorted runs for this cuboid on disk.
This will save a scan of the parent when the cuboid has
to be computed. These sorted runs are merged in fur-
ther passes to complete the computation.

Given any subtree of a cuboid tree and the size
of memory M, we need to mark the cuboids to be
computed and allocate memory for their computation.
When a cuboid is in Partition state, its tuples can be
pipelined for computing the descendent cuboids in the

516

same pass. This is not true for SortRun state. Thus
we have the following constraints:

Cl: A cuboid can be considered for computation if
either its parent is the root of the subtree (this
means either the parent cuboid itself or sorted-
runs for the parent cuboid have been materialized
on the disk), or the parent has been marked as
being in the Partition state.

C2: The total memory allocated to all the cuboids
should not be more than the available memory M.

There are a large number of options for selecting which
cuboids to compute and in what state. The cost of
computation depends critically on the choices made.
When a cuboid is marked in SortRun state there is
an additional cost of writing out the sorted runs and
reading them to merge and compute the cuboids in the
subtree rooted at that node. We have shown that find-
ing an overall optimal allocation scheme for our cuboid
tree is NP-hard [DANR96] . So, instead of trying to
find the optimal allocation we do the allocation by us-
ing the heuristic of traversing the tree in a breadth
first- (BF) search order:

l Cuboids to the left have smaller partition sizes,
and require less memory. So consider these before
considering cuboids to the right.

l Cuboids at a higher level tend to be bigger. Thus,
these should be given higher priority for allocation
than cuboids at a lower level in the tree.

Because of the constraints there may be some sub-
trees that remain uncomputed. These are considered
in subsequent passes, using the same algorithm to al-
locate memory and mark cuboids. Thus, when the al-
gorithm terminates, all cuboids have been computed.

8.2.3 Computing a Cuboid From its Parent

This section describes the actual method of compu-
tation for the chosen cuboids. Every cuboid (say S)
other than the base cuboid is computed from its par-
ent in the cuboid tree (say B). If a cuboid has been
marked in Partition state it means that we have s&i-
cient memory to fit the largest partition of S in mem-
ory. We can compute the entire cuboid S in one pass
over B and also pipeline the tuples generated for fur-
ther computation if necessary. However, if the cuboid
is marked to be in S&Run state, we can write out
sorted runs of S in this pass. Writing out the sor$,ed
runs requires just one page of memory. The algorithm
for computing a cuboid is specified below :

Output: The sorted cuboid S.

foreach tuple T of B do
if (state == Partition) then

process-partition(r)
else

processsortedrun(r)

endif
end-of-cuboid()

endfor

The process-partition0 procedure is as follows:
l If the input tuple starts a new partition, output

the current partition at the end of the cuboid,
start a new one and make it current.

l If the input tuple matches with an existing tuple
in the partition then recompute the aggregate of
the existing tuple using the old aggregate value
and the input tuple.

l If the input tuple is not the same as any existing
tuple then insert the input tuple into the current
partition at the appropriate location to maintain
the sorted order of the partition.

The processsort_run() procedure is as follows:
l If the input tuple starts a new sorted run, flush all

the pages of the current sorted run, start a new
sorted run and make it current.

l If the input tuple matches with the last tuple in
the sorted run then recompute the aggregate of
the last tuple using the old aggregate value and
the input tuple.

l If the input tuple does not match with the last
tuple of the sorted run, append the tuple to the
end of the existing run. If, there is no space in
the allocated memory for the sorted run, we flush
out the pages in the memory to the end of the
current sorted run on disk. Continue the sorted
run in memory with the input tuple.

The end-of-cuboid() processing writes the final par-
tition or sorted run currently in memory to disk. For
the case of the Partition state, the cuboids get com-
puted completely in the first pass. For SortRun, we
now have a set of sorted runs on disk. We compute
such a cuboid by merging these runs, like the merge
step of external sort, aggregating duplicates if neces-
sary. This step is combined with the computation of
cuboids that are descendants of that cuboid. The runs
are merged and the result pipelined for further com-
putation (of descendants). Note that computation of
a cuboid in the SortRun state involves the additional
cost of writing out and merging the runs. Further,
the child cuboids cannot be computed during the run-
creation phase, and must be computed during the sub-
sequent merging phase, as noted above.

8.3 Example computation of a CUBE

Consider the CUBE to be computed on {A, B, C, II}.
The tree of cuboids and the estimates of the partition
sizes of the cuboids are shown in Figure 9. If the mem-
ory available is 25 pages, BF allocation will generate
three subtrees, each of which is computed in one pass.
These subtrees are shown in Figure 10. In the second

Figure 10: Steps of the algorithm

and third steps the cuboids (B,C,D) and (C,D) are
allocated 10 pages as there are 9 sorted runs to merge.

Comparison with Independent and Parent
method

The cost of writing out the computed cuboids is com-
mon to all the schemes. The only additional cost in
this case was of writing the sorted runs of (B, C, D)
and (C, 0) and merging these sorted runs. The Inde-
pendent scheme would have required 16 scans and sorts
of the base cuboid (once for each cuboid to be com-
puted) and the Parent scheme would require a number
of scans and sorts of each non-leaf cuboid in the tree
(one for each of its children). Thus our scheme incurs
fewer I/OS and less computation compared to these
two.

9 Implementation and Results

To test how well our algorithm performs, we imple-
mented a stand-alone version of the algorithm and
tested it for varying memory sizes and data distri-
butions. All the experiments were done on a Sun
SPARC 10 machine running SUN-OS or Solaris. The
implementation uses the file system provided by the
OS. All reads and writes to the files were in terms of
blocks corresponding to the page size. Performance
was measured in terms of I/OS by counting the num-
ber of page read and page write requests generated by
the algorithm and is thus independent of the OS. A
detailed performance study is described in [DANR96].
We mention only a few important experiments here.

Unless otherwise mentioned, the data for the in-
put relation was generated randomly. The values for
each attribute is independently chosen uniformly from
a domain of values for that attribute. Each tuple has
six attributes and the CUBE is computed on five at-
tributes with the aggregation (computing the sum) on
the sixth attribute. Each CUBE attribute has 40 dis-
tinct values. Each tuple is 24 bytes wide. The page
size used was 1K.

0

Figure 11: Uniform Data : Varying Memory : Input Size
2.4M, CUBE Size 27.lM

9.1 Comparison with Independent and
Parent methods

To illustrate the gains of our algorithm over other
methods, we compare the performance of our algo-
rithm with the Independent and Parent methods de-
scribed before. We varied different parameters like
memory size, relation size, data distribution and the
number of attributes on which the CUBE is computed.

9.1.1 Different data distributions

In order to run experiments that finished in a reason-
able amount of time, for the bulk of our experiments
the relation size was kept constant at 100,000 tuples
(2.4 MByte). While this is quite small, the important
performance parameter in our algorithm is the ratio of
the relation size and the memory size. To compensate
for an artificially small input relation size, we used
very small memory sizes, varying from a low of 100
pages (100 KByte) to a high of 3000 pages (3 MB).
Section 9.1.2 shows that the performance characteris-
tics of the algorithms we tested are unchanged if you
scale the memory and data size to more realistic lev-
els. For each of the methods, we plotted the sum of
the number of reads and writes.

The graph in Figure 11 shows the performance of
the three algorithms for uniform data. Figure 12 is for
non-uniform data which is generated using zipf dis-
tribution for the attribute values. Values for A and B
were chosen with a zipf factor of 2, C with a factor of 1,
and D and E with a factor of 0 (uniform distribution)

The graphs in Figures 11 and 12 show that our
method achieves a significant improvement over the
lndependent and Parent methods for both uniform and
non-uniform data. There are some spikes in the graph
in Figure 12. For example, the I/O performance at
memory size 15OOK is worse than that at 1250K for

Figure 12: Non-uniform Data : Zipf Distribution : Input
Size 2.4M, CUBE Size 10M

our algorithm. This only shows that the breadth-first
heuristic that we are using for memory allocation is
not always optimal.

The graphs also show that choosing a proper sort
order is important. For non-uniform data, sort order
‘EDCBA’ is better than the order ‘ABCDE’. This is
due to different degrees of skewness in diierent at-
tributes.

9.1.2 Scaleup Experiments

We performed some experiments to check how our
method scales for larger input sizes with proportion-
ately larger memory sizes. The relation size was varied
from 100,000 (2.4M) to 1000,000 tuples (24 M). The
memory used for each case was about 10% of the re-
lation size. The graph in Figure 13 shows that the
performance characteristics of the algorithms we con-
sider are unchanged when the data sets axe scaled to
more realistic levels.

9.2 Relation between Memory and Input size
for Overlap method

We performed some experiments to study how our
method performs for different ratios of memory to the
input size.

9.2.1 Varying Memory

Figure 14 plots the number of Heads and Writes for
computing CUBE for a input size of 100,000 tuples
(2.4MB). The memory is varied from 1OOK to 3MB.
From the graphs in Figure 14, it is clear that the I/OS
decrease with increasing memory since more and more
cuboids are computed simultaneously, avoiding excess
reading and writing of sorted runs. We observe that
even for very low memory sizes, the number of writes
is only slightly more than the size of CUBE and the

t 1

Figure 14: Varying memory : Relation : 2.4M; CUBE size
: 27.1M

number of reads is within two times the input rela-
tion size. This shows that we are getting near optimal
performance with respect to number of I/OS.

9.2.2 Varying Relation size

In the other experiment, the memory was kept con-
stant at 500 pages (500K). The input relation size was
varied from 10000 to 100,000 tuplea. Each attribute
has 20 distinct values. The graph is shown in the Fig-
ure 15. The X axis represents the size of the relation
in bytes. On the Y axis, we plot the following ratios.

1. s Number of Write.
ire of the CUBE in Page8

2. Number of Reads
Size of the Input Relation in Pages

Any algorithm to compute the cube has to scan the
input and write out the results. Hence these ratios
give an idea of how close the algorithm is to ideal.
Since the memory size is 500K, for relations of size up

519

data. Thus, we can choose between the PipeHash and
PipeSort algorithms for a particular data& based on
estimated sparsity of the dataset.

We extended the cube algorithms to compute a
specified subset of the 2N group-bys instead of all of
them. Our proposed extension considers intermediate
group-bys that are not in the desired subset for gener-
ating the best plan. We also extended our algorithms
for computing aggregations in the presence of hierar-
chies on attributes. These extensions are discussed in
[SAG96].

El
In this part we have examined various schemes to im-

b”:’ . IJ. L arying relation sizes: Memory : 500K plement the CUBE operator. Sorting-based methods

to 500K, the performance is ideal. For bigger relations,
exploit the existing ordering to reduce the number of

the performance degrades slowly as the partitions no
sorts. Also, pipelining can be used to save on reads.

longer fit in memory and sorted runs have to be written
out for many cuboids. The spikes show that the BF
allocation may be non-optimal in some cases.

10 Conclusions and Summary

10.1 Summary of part I

We presented two algorithms for computing the data
cube. Our algorithms extend the sort-baaed and hash-
based methods for computing group-bys with five op-
timizations: smallest-parent, cache-results, amortize-
acans, share-aorta and share-partitions. These opti-
mizations are often conflicting. Our proposed algo-
rithms combine them so as to reduce the total cost.
The sort-baaed algorithm, called PipeSort, develops a
plan by reducing the problem to a minimum weight
matching problem on a bipartite graph. The hash-
based algorithm, called PipeHaah, develops a plan
by first creating the minimum spanning tree showing
what group-by should be generated from what and
then choosing a partitioning that takes into account
memory availability.

Measurements on five real-life OLAP datasets
yielded a factor of two to eight improvement with our
algorithms over straightforward methods of computing
each group-by separately. Although the PipeHash and
PipeSort algorithms are not provably optimum, com-
parison with conservatively calculated lower bounds
show that the PipeHash algorithm was within 8%
and the PipeSort algorithm was within 22% of these
lower bounds on several datasets. We further exper-
imented with the PipeHash and PipeSort algorithms
using a tunable synthetic dataset and observed that
their relative performance depends on the sparsity of
data values. PipeHash does better on low sparsity
data whereas PipeSort does better on high sparsity

520

l We have presented one particular sorting based
scheme called Overlap. This scheme overlaps the
computation of different cuboids and minimiies
the number of scans needed. It uses estimates
about cuboid sizes to determine a “good” schedule
for the computation of the cuboids if the estimates
are fairly accurate.

l We implemented the Overlap method and com-
pared it with two other schemesFrom the per-
formance results, it is clear that our algorithm is
a definite improvement over the Independent and
the Parent methods. The idea of partitions allows
us to overlap the computation of many cuboids
using minimum possible memory for each. By
overlapping computations and making use of par-
tially matching sort orders, our algorithms will
perform much better than the Independent and
Parent method, irrespective of what heuristic is
used for allocation.

l The Overlap algorithm gives reasonably good per-
formance even for very limited memory. Though
these results are for relatively small relations, the
memory used was also relatively small. Scaleup
experiments show that similar results should hold
for larger relations with more memory available.
Very often we may not want to compute all the
cuboids. This can be handled in our algorithm by
deleting nodes which are not to be computed from
the cuboid tree. Results show that the algorithm
gives good performance even for thii case.

l We have shown that the optimal allocation prob-
lem is NP-hard. We have therefore used a heuris-
tic allocation (BF) in our algorithm. The results
suggest that the heuristics yield performance close
to that of optimal allocation in most cases.

10.3 Comparison of PipeSort and Overlap

The PipeSort method takes into account the size of a
group-by while selecting a parent with the aim of re-
ducing both scanning cost and sorting cost. It views
this as a matching problem to choose the optimal par-
ent and sort order for each group-by. It may thus use
more than one sort order.

The Overlap method on the other hand uses a single
sort order. This helps in setting up multiple pipelines
(as against the single pipeline of the PipeSort method)
to achieve more overlap using Partitions. While choos-
ing a parent, it tries to get maximum match in their
sort orders. However, unlike PipeSort, it does not con-
sider the size of the group-bys.

We have not compared the performance of these
two methods. As future work, we plan to study their
relative merits, and consider how their best features
can be combined.

References
[CM891

[GBLP96]

[GJ79]

[GLS94]

[G&3]

[BNSS95]

[JS96)

[PS82]

[FELL571

M.C. Chen and L.P. McNamee. The data model
and access method of summary data manage
ment. IEEE Iltcmsoctions on Knowledge and
Data Engineering, 1(4):51+29, 1989.
Jim Gray, Adam Bosworth, Andrew Layman
and Hamid Piiahesh. Data Cube: A I&l*
tionai Operator Generaiiiing Group-By, Crow
‘Ibb and Sub-lbtals. PTVC. of the 18th Int.
Conf. on Data Engineering, pp 152-159, 1996.
MB.. Garey and D.S. Johnson. Computera and
Intractability, pagea 45-76,65,96,206-209,247.
w. H. Fkeemau, San hallcisco, 1979.
G. Grade, A. Lmviiie, and L. D. Shapiro.
Sort versus hash revisited. IEEE lltowactiow
on Knowledge and Data Engineering, 6(1):93d
944,1994.
G. Graefe. Query evaluation techniques for
large databases. ACM Computing Surveys,
25(2):73-170, Jun 1993.
P.J. Haas, J.F. Naughton, S. Seshadri, and
L. Stokes. Sampling-b& estimation of the
number of distinct values of an attribute. In
Proceedings of the Eighth International Confer-
ence on Very Large Databases (VLDB), pages
311-22, Zurich, Switzerland, September 1995.
T. Johnson and D. Shasha. Hierarchicaily split
cube forests for decision support: description
and tuned design, 1996. Working Paper.
C.H. Papadimitriou and K. St&&z. Combi-
natorial Optimization: Algorithms and Com-
plea+, chapter 11, pages 247-254. Englewood
Ciiis, N.J., Prentice Hali, 1982.
Willii Feller. An Introduction to PmbabiZit&
Theory and Its Applicationa, Vol. I, page 241.
John Wiley & Sons, 1957.
Vex&y Harinarayan, Anand Bajaraman and Jeff
Uiiman. Implementing Data Cubes EfEciently.

In Proc. of the 1996 ACM-SIGMOD Confer-
ence, 1996.

[GHBU96] Himanshu Gupta, Venky Harinruayen, Anand
Rajaraman end JefFrey D. Uliman. Index Se-

@PST791

[SN95]

[SDNB96]

[SAG961

&ion for OLAP Working Paper, 1996.
Robert Epsteinr. Techniques for Processing
of Aggregates in Relational Databwe Systems.
Memo UCB/ERL M79/8, E.R.L., College of
Engg., U. of Cdiiomla, Berkeley, Feb 1979.
Ambuj Shatdai and J&ey F. Naughton. Adap
tive Parallel Aggregation Algorithms. Proc. of
the 1995 ACM-SIGMOD Conference, San Jose,
CA, May 1995.
Amit Shukia, Prasad M. .Deshpande, Jeffrey
F. Naughton and Karthii Bamasamy. Storage
Estimation for Multidimensional Aggregates in
the Presence of Hierarchies. To appear in Proc.
of the 88nd VLDB Conference, 1996.
Sunita Sarawagi, Bakesh Agrawai, and Ashiih
Gupta. On computing the data cube. Besearch
Beport Rl16626, IBM Almaden Research Cen-
ter, San Jose, California, 1996. Available from
http://wu.almaden.ibn.com/cr/qu~et.

[DANB96] Prasad M. Deshpande, Sameet Agarwai, Jef-
frey F. Naughton and Baghu Bamakrish-
nan. Computation of Muitidimensional Ag-
gregates. Technical Report-ISll, University of
Wisconsin-Madison, 1996.

[Mic92] Z. Michalewice. Statitied and Scientific
Dotaboses. Eiiii Horwood, 1992.

[NC951 Pendse, Nigei and Richard Creeth. The OLAP
Report. Business Intelligence, London, Eng-
land, 1995.

[CODD93] E. F. Codd. Providing OLAP: An IT Man-
date Unpublished Ma&script, E.F. Codd and
Associates, 1993.

[Sho82]

P-9’31

[STG95]

[STL89]

Richard Fmkelstein. Understanding the Need
for On-Line Analytical Servers. Unpublished
Manuscript, Performance Computing, Inc.
A. Shoshani. Statistical databases: Character-
istics, problems and some solutions. In Proceed-
ings of the Eighth International Conference on
Vev Large Databases (VLDB), pages 208-213,
Mexico City, Mexico, September 1982.
B. Saizberg and A. Beuter. Indexing for aggre
gation, 1996. Working Paper.
Designing the Data Warehouse on Relational
Databases. Unpublished Manuscript, Stanford
‘Ibchnology Group, Inc, 1995.
J. Srivsstava, J.S.E. T&n, and V.Y. Lum. TB-
SAM: An access method for efficient process-
ing of statistical queries. IEEE !‘ka~actio~ on
Knowledge and Data Engineering, l(4), 1989.

wLD95] Jay-Louise Weldon. Managing Muitidimen-
sionai Data: Herneasing the Power. Unpub-
lished Manuscript, 1995.

521

