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Abstract 

At the heart of all OLAP or multidimensional 
data analysis applications is the ability to si- 
multaneously aggregate across many sets of 
dimensions. Computing multidimensional ag- 
gregates is a performance bottleneck for these 
applications. This paper presents fast algo- 
rithms for computing a collection of group 
bys. We focus on a special case of the aggre- 
gation problem - computation of the CUBE 
operator. The CUBE operator requires com- 
puting group-bys on all possible combina- 
tions of a list of attributes, and is equiva- 
lent to the union of a number of standard 
group-by operations. We show how the struc- 
ture of CUBE computation can be viewed in 
terms of a hierarchy of group-by operations. 
Our algorithms extend sort-based and hash- 
based grouping methods with several .opti- 
mizations, like combining common operations 
across multiple groupbys, caching, and using 
pre-computed group-by8 for computing other 
groupbys. Empirical evaluation shows that 
the resulting algorithms give much better per- 
formance compared to straightforward meth- 
OdS. 

This paper combines work done concurrently 
on computing the data cube by two different 
teams as reported in [SAG961 and [DANR96]. 

1 Introduction 

The groupby operator in SQL is typically used to 
compute aggregates on a set of attributes. For busi- 
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ness data analysis, it is often necessary to aggre- 
gate data across many dimensions (attributes) FINK, 
WELD95]. For example, in a retail application, one 
might have a table Transactions with attributea 
Product (PI, Date(D), Customer(C) and Sales (S). 
An analyst could then query the data for finding: 

. sum of sales by P, C: 
For each product, give a breakdown on how much 
of it was sold to each customer. 

l sum of sales by D, C: 
For each date, give a breakdown of sales by cus 
tomer. 

l sum of sales by P: 
For each product, give total sales. 

Speed is a primary goal in these class of applica- 
tions called On-Line Analytical Processing (OLAP) 
applications [CODD93]. To make interactive analysis 
(response time in seconds) possible, OLAP daMases 
often precompute aggregates at various levels of detail 
and on various combinations of attributes. Speed is 
critical for this precomputation as well, since the cost 
and speed of precomputation influences how frequently 
the aggregates are brought up&date. 

1.1 What is a CUBE? 

Recently, [GBLP96] introduced the CUBE opera- 
tor for conveniently supporting multiple aggregates 
in OLAP databases. The CUBE operator is the n- 
dimensional generalization of the groupby operator. 
It computes groupbys corresponding to all possible 
combinations of a list of attributes. Returning to our 
retail example, the collection of aggregate queries can 
be conveniently expressed using the cube-operator as 
follows: 

SELECT P, D, C, Sum(S) 
FRCIH Transactions 
CUBE-BY P, D, C 

This query will result in the computation of 2s = 8 
groupbys: PDC, PD, PC, DC, D, C, P and all, where 
all denotes the empty groupby. The straightforward 
way to support the above query is to rewrite it as a 
collection of eight groupby queries and execute them 



separately. There are several ways in which this simple 
solution can be improved. 

In this paper, we present fast algorithms for com- 
puting the data cube. We assume that the aggre- 
gating functions are distributive [GBLP96], that is, 
they allow the input set to be partitioned into dii- 
joint sets that can be aggregated separately and later 
combined. Ejramples of distributive functions include 
max, min, count, and sum. The proposed algorithms 
are also applicable to the olgebrcric aggregate functions 
[GBLP96], such as average, that can be expressed in 
terms of other distributive functions (sum and count 
in the case of average). However, as pointed out in 
[GBLP96], there are some aggregate functions (holis- 
tic functions of [GBLPSS]) e.g., median, that cannot 
be computed in parts and combined. 

Related Work 

Methods of computing single group-bys have been 
well-studied (see [G&3] for a survey), but little work 
has been done on optimizing a collection of related ag- 
gregates. [GBLP96] gives some rules of thumb to be 
used in an efEcient implementation of the cube oper- 
ator. These include the smallest parent optimization 
and partitioning of data by attribute values, which we 
adopt in our algorithms. However, the primary focus 
in [GBLP96] is on defining the semantics of the cube 
operator [GBLP96]. There are reports of on-going re 
search related to the data cube in directions comple 
mentary to ours: [HRU96, GHRU96] presents alge 
rithms for deciding what groupbys to pm-compute 
and index; [SIX961 and [JS96] discuss methods for 
indexing pre-computed summaries to allow efficient 
querying. 

Aggregate pre-computation is quite common in 
statistical databases [Sho82]. Research in this 
area has considered various aspects of the prob- 
lem starting from developing a model for aggre- 
gate computation [CM89], indexing pre-computed 
aggregates [STLSS] and incrementally maintaining 
them [Mic92]. However, to the best of our knowledge, 
there is no published work in the statistical database 
literature on methods for optimizing the computation 
of related aggregates. 

This paper is in two parts and combines work done 
concurrently on computing the data cube. Part I 
presents the methods proposed by [SAG96], whereas 
the methods proposed by pANR96] are described in 
Part II. Section 10 presents a summary and brief com- 
parison of the two approaches. 

Part 11 
‘This part presents work done by Sunita Sarawagi, Fbkesh 

Agrawal and Ashish Gupta at IBM Almaden Researdx Center, 
San Jose. 

2 Optimizations Possible 

There are two basic methods for computing a group 
by: (1) the sortrbased method and (2) the hash-based 
method [G&3]. We will adapt these methods to com- 
pute multiple groupbys by incorporating the following 
optimizations: 

1. 

2. 

3. 

4. 

5. 

Smallest-parent: This optimization, first pro 
posed in [GBLP96], aims at computing a groupby 
from the smallest previously computed groupby. 
In general, each groupby can be computed from 
a number of other groupbys. Figure 1 shows a 
four attribute cube (ABCD) and the options for 
computing a groupby from a groupby having one 
more attribute called its parent. For instance, AB 
can be computed from ABC, ABD or ABCD. 
ABC or ABD are clearly better choices for com- 
puting AB. In addition, even between ABC and 
ABD, there can often be big difference in size 
making it critical to consider size in selecting a 
parent for computing AB. 
Cache-reeults: This optimization aims at 
caching (in memory) the results of a groupby 
from which other groupbys are computed to re 
duce disk I/O. For instance, for the cube in Fig- 
ure 1, having computed ABC, we compute AB 
from it while ABC is still in memory. 
Amortize-scans: This optimization aims at 
amortizing disk reads by computing as many 
groupbys as possible, together in memory. For in- 
stance, if the groupby ABCD is stored on disk, 
we could reduce disk read costs if all of ABC, 
ACD, ABD and BCD were computed in one scan 
of ABCD. 
Share-sorts: This optimization is specific to the 
sort-based algorithms and aims at sharing sorting 
cost across multiple groupbys. 
Share-partitions: This optimization is specific 
to the hash-based algorithms. When the hash- 
table is too large to fit in memory, data is parti- 
tioned and aggregation is done for each partition 
that fits in memory. We can save on partitioning 
cost by sharing this cost across multiple group 
bys. 

For OLAP databases, the size of the data to be aggre- 
gated is usually much larger than the available main 
memory. Under such constraints, the above optimiza- 
tions are often contradictory. For computing B, for 
instance, the first optimization will favor BC over AB 
if BC is smaller but the second optimization will favor 
AB if Al3 is in memory and BC.is on disk. 

Contributions In this part of the paper, we will 
present two algorithms for computing the data cube: 
the sort-based algorithm PipeSort (Section 3) and the 
hash-based algorithm PipeHash (Section 4) that in- 
cludes the optimizations listed above. We have ex- 
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Figure 1: A search lattice for the cube operator 

tended these algorithms to two important real-life 
OLAP cases. The first deals with the useful case of 
computing a specified subset of the group-bys in a 
cube. For this case, we identify a reduction of the 
problem to the minimum Steiner tree [GJ79] problem. 
This enables us to find plans that consider computa- 
tion of intermediate groupbys that are not part of the 
specified subset but can lead to smaller total cost. The 
second extension handles the case in which attributes 
have hierarchies de&red on them. Due to space limi- 
tation, we have not included these extensions in this 
paper, and we refer the reader to [SAG961 for them. 

3 Sort-based methods 

In this section, we present the sort-based algorithm 
that incorporates the optimizations listed earlier. We 
include the optimization share-sort by using data 
sorted in a particular order to compute all groupbys 
that are prefixes of that order. For instance, if we 
sort the raw data on attribute order ABCD, then 
we can compute groupbys ABCD, ABC, AB and A 
without additional sorts. However, this decision could 
conflict with the optimization smallest-parent. For 
instance, the smallest parent of AB might be BDA 
although by generating AB from ABC we are able to 
share the sorting cost. It is necessary, therefore, to do 
global planning to decide what groupby is computed 
from what and the attribute order in which it is com- 
puted. We propose an algorithm called PipeSort that 
combines the optimizations sharesorts and smallest- 
parent to get the minimum total cost. 

The PipeSort algorithm also includes the optimize 
tions cache-results and amortize-scans to reduce 
diik scan cost by executing multiple groupbys in a 
pipelined fashion. For instance, consider the previous 
example of using data sorted in the order ABCD to 
compute prefixes ABCD, ABC, AB and A. Instead of 
computing each of these groupbys separately, we can 
compute them in a pipelined fashion as follows. Hav- 
ing sorted the raw data in the attribute order ABCD, 
we scan the sorted data to compute groupby ABCD. 
Every time a tuple of ABCD is computed, it is prop 
agated up the pipeline to compute ABC; every time 
a tuple of ABC is computed, it is propagated up to 

compute AB, and so on. Thus, each pipeline is a list 
of groupbys all of which are computed in a single scan 
of the sort input stream. During the course of execu- 
tion of a pipeline we need to keep only one tuple per 
groupby in the pipeline in memory. 

Algorithm PipeSort 

Assume that for each groupby we have an estimate of 
the number of distinct values. A number of statistical 
procedures (e.g., pNSS95]) can be used for this pur- 
pose. The input to the algorithm is the search lattice 
defined as follows. 

Search Lattice A search lattice [HRU96] for a data 
cube is a graph where a vertex represents a group-by 
of the cube. A directed edge connects group-by i to 
groupby j whenever j can be generated from i and 
j has exactly one attribute less than i (i is called the 
parent of j). Thus, the out-degree of any node with 
Ic attributes is k. Figure 1 is an example of a searc 
lattice. Level k of the search lattice denotes all group- 
bys that contain exactly k attributes. The keyword 
all is used to denote the empty groupby (Level 0). 
Each edge in the search lattice eij is labeled with two 
costs. The flmt CO& S(eij) is the cost of computing 
j from i when i is not already sorted. The second 
cost A(ej) is the cost of computing j from i when i is 
already sorted. 

The output, 0 of the algorithm is a subgraph of the 
search lattice where each groupby is connected to a 
single parent groupby from which it will be computed 
and is associated with an attribute order in which it 
will be sorted. If the attribute order of a groupby j 
is a prefix of the order of its parent i, then j can be 
computed from i without sorting i and in 0, edge eij is 
marked A and incurs cost A(eij). Otherwise, i has to 
be sorted to compute j and in 0, eij is marked S and 
~IXWS cost S,. Clearly, for any output 0, there can 
be at most one out-edge marked A from any group 
by i, since there can be only one prefix of i in the 
adjacent level. However, there can be multiple out- 
edges marked S from i. The objective of the algorithm 
is to find an output 0 that has minimum sum of edge 
costs. 

Algorithm The algorithm proceeds level-by-level, 
starting from level k = 0 to level k = N - 1, where 
N is the total number of attributes. For each level k, 
it 6nds the best way of computing level k from level 
k + 1 by reducing the problem to a weighted bipartite 
matching problem2 p’s821 as follows. 

lThe weighted bipartite matching problems is defined as fol- 
lowe: We are given a gaph with two disjoint sets of vertices 
VI and VZ and a set of edges E that connect vertices in set 
VI to vertices in set Vs. Each edge is associated with a fixed 
weight. The weighted matching problem selects the maximum 
weight subset of edges from E such that in the selected subgraph 
each vertex in VI is connected to at moet one vertex in fi and 
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We first transform level k + 1 of the original search 
lattice by making k additional copies of each group-by 
in that level. Thus each level k + 1 group-by has k -I- 1 
vertices which is the same as the number of children 
or out-edges of that group-by. Each replicated vertex 
is connected to the same set of vertices as the origi- 
nal vertex in the search lattice. The cost on an edge 
eij from the ori@~~al vertex i to a level k V~I+XX j is 
set to A(eij) whereas all replicated vertices of i have 
edge cost set to S(cj). We then find the minimum 3 
co& matching in the bipartite graph induced by this 
transformed graph. In the matching so found, each 
vertex h in level k will be matched to some vertex g 
in level k + 1. If h is connected to g by an A() edge, 
then h determines the attribute order in which g will 
be sorted during its computation. On the other hand, 
if h is connected by an S() edge, g will be re-sorted for 
computing h. 

For illustration, we show how level 1 group-by8 are 
generated from level 2 group-bys for a three attribute 
search lattice. As shown in Figure 2(a), we rirst make 
one additional copy of each level 2 group-by. ,Solid 
edges represent the A() edges whereas dashed edges 
indicate the 5’0 edges. The number underneath each 
vertex is the cost of all out-edges from this vertex. In 
the minimum cost matching (Figure 2(b)), A is con- 
nected to AI? with an S() edge and B by an A() edge. 
Thus at level 2, group-by AI3 will be computed in 
the attribute order BA so that B is generated from it 
without sorting and A is generated by resorting BA. 
Similarly, since C is connected to AC by an A() edge, 
AC will be generated in the attribute order CA. Since, 
BC is not matched to any level-l group-by, BC can 
be computed in any order. 

(a) Transformed scrrch Imice (b) Minimum cost matching 

Figure 2: Computing level 1 group-bys from level 2 group- 
bys in a 3 attribute cube 

We u8e the algorithm in [pS82] for finding the min- 
imum cost matching in a bipartite graph4. The com- 
plexity of this algorithm is O(((k + l)&+~)~), where 
Mk+l is the number of group-bys.in level k + 1. 

PipeSort: 
(Input: search lattice with the A() and S() edges costs) 
For level k = 0 to N - 1 

SNote we can covert a minimum weight matching to a max- 
imum weight matching defined earlier by replacing each edge 
weight UJ by w(w) - w where moo(w) is the m&mum edge 
Cost. 

‘The code fok the matching algorithm is available from 
ftp-r~qu~~tQthoory.~t~ord.odu 

/* find how to generate level k from level k + 1 */ 
Generate-Plan(k + 1 + k); 
For each groupby g in level k + 1 

Fix the sort order of g a8 the order of the 
group-by connected to g by an A() edge; 

Generate-Plan(k + 1+ k) 
Make k additional copies of each level k + 1 vertex; 
Connect each copy vertex to the same set 
of level k vertices a8 the original vertex; 
Assign cost A(eij) to edge eij from the original 
vetiex and S(e,) to edge fi-om the copy vertex; 
Find the minimum cost matching on the 
transformed levels. 

Example: We illustrate the PipeSort algorithm for 
the four attribute lattice of Figure 1. For simplicity, 
assume that for a given group-by g the costs A() and 
S() are the same for all group-bys computable from 
g. The pair of numbers underneath each group-by in 
Figure 3 denote the A() and S() costs. Solid edges 
denote A() edges and dashed edge8 denote S() edges. 
For these costs, the graph in Figure 3(a) show8 the f?nal 
minimum co& plan output, by the PipeSort algorithm. 
Note that the plan in Figure 3(a) is optimal in terms 
of the total cost although the total number of sorts is 
suboptimal. For most real-lie datasets there could be 
a big difference in the sizea of group-bys on a level. 
Hence, optimizing for the number of sorts alone could 
lead to poor plans. 

In Figure 3(b) we show the pipelines that are ex- 
ecuted. Sorts are indicated by ellipses. We would 
first sort data in the order CBAD. In one scan of 
the sorted data, CBAD, CBA, CB, C and all would 
be computed in a pipelmed fashion, Then group-by 
ABCD would be sorted into the new order BADC 
and thereafter BAD, BA and B would be computed 
in a pipeiined fashion. 
We can make the following claims about algorithm 
PipeSort. 

Claim 3.1 Generate-plan0 finds the best plan to get 
level k from level k + 1. 

PROOF. Follow8 by construction assuming a cost func- 
tion where the cost of sorting a groupby does not de- 
pend on the order in which the groupby is already 
sorted. 

Claim 3.2 Generat&plan(k + 1 + k) does not pre 
vent Generat+pla.n(k + 2 + k + 1) from finding the 
best plan. 

PROOF. After we have fixed the way to generate level 
k from level k + 1 the only constraint we have on level 
k -I- 1 is the order in which the group-by8 should be 
generated. This ordering does not afIect the minimum 
matching solution for generating level & + 1 from k + 2. 
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(a) The minimum cost sort plan (b) The pipelines that are executed 

Figure 3: Sort-based method for computing a four attribute cube 

After finding the best solution for generating level k+l 
from level k + 2, we can always change the order in 
which each group-by should be generated (as,dictated 
by level k solution) without affecting the minimum 
cost. 

Note that PipeSort computes each group-by from 
a group-by occurring only in the immediately preced- 
ing level. Although the level-by-level approach is not 
provably optimal, we have not been able to find any 
case where generating a group-by from a group-by not 
in the preceding level leads to a better solution. Our 
experiments reported in Section 5 also show that our 
solution is very close to empirically estimated lower 
bounds for several datasets. 

Further Enhancements Our implementation of 
PipeSort includes the usual optimizations of aggre- 
gating and removing duplicates while sorting, in- 
stead of doing aggregation as a different phase after 
sorting[Gra93]. Often we can reduce the sorting cost 
by taking advantage of the partial sorting order. For 
instance, in Figure 3 for sorting ACD in the attribute 
order AD, we can get a sorted run of D for each dis- 
tinct value of AC and for each distinct A we can merge 
these runs of D. Also, after the PipeSort algorithm has 
fixed the order in which each group-by is generated we 
can modify the sort-edges in the output search lattice 
to take advantage of the partial sorting orders when- 
ever it is advantageous to do so. 

4 Hash-based methods 

We now discuss how we extend the hash-based method 
for computing a data cube. For hash-based meth- 
ods, the new challenge is careful memory allocations 
of multiple hash-tables for incorporating optimizations 
,cache-results and amortize-scans. For instance, if 
the hash tables for AB and AC fit in memory then 
the two group-bys could be computed in one scan of 
ABC. After AB is computed one could compute A 
and B while AB is still in memory and thus avoid the 

disk scan of AB. If memory were not a limitation, we 
could include all optimizations stated in Section 2 as 
follows. 

For k = N to 0 
For each k + 1 attribute groupby, g 

Compute in one scan of g all k attribute group-by 
for which g is the smallest parent; 

Save g to disk and destroy hash table of g; 

However, the data to be aggregated is usually too 
large for the hash-tables to fit in memory. The stan- 
dard way to deal with limited memory when construct- 
ing hash tables is to partition the data on one or 
more attributes. When data is partitioned on some 
attribute, say A, then all group-bys that contain A 
can be computed by independently grouping on each 
partition - the results across multiple partitions need 
not be combined. We can share the cost of data par- 
titioning across all group-bys that contain the parti- 
tioning attribute, leading to the optimization share- 
partitions. We present below the PipeHash algo- 
rithm that incorporates this optimization and also in- 
cludes the optimizations cache-results, amortize- 
scans and smallest-parent. 

Algorithm PipeHash 

The input to the algorithm is the search lattice de- 
scribed in the previous section. The PipeHash algcF 
rithm frrst chooses for each group-by, the parent group- 
by with the smallest estimated total size. The outcome 
is a minimum spanning tree (MST) where each vertex 
is a group-by and an edge from group-by o to b shows 
that u is the smallest parent of ii. In Figure 4 we show 
the MST for a four attribute search lattice (the size of 
each group-by is indicated below the group-by). 

In general, the available memory will not be suf- 
ficient to compute all the group-bys in the MST to- 
gether, hence the next step is to decide what group-bys 
to compute together, when to allocate and deallocate 
memory for different hash-tables, and what attribute 
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Figure 4: PipeHash on a four attribute groupby 

to choose for partitioning data. We conjecture this 
problem to be NP-complete because solving thii prob- 
lem optimally requires us to solve the following sub- 
problem optimally: Divide the MST into smaller sub- 
trees each of which can be computed in one scan of the 
group-by at the root of the MST such that the cost of 
scanning (from disk) the root group-by is minimized. 
This problem is similar to well-known NP-complete 
partitioning problems [GJ79]. Hence, we resort to us- 
ing a heuristic solution. Later (in Section 5) we show 
that our solution is very close to empirically estimated 
lower bounds for several datasets. 

Optimizations cache-results and amortizescans are 
favored by choosing as large a subtree of the MST as 
possible so that we can use the method above to com- 
pute together the group-bys in the subtree. However, 
when data needs to be partitioned baaed on some at- 
tribute, the partitioning attribute limits the subtree to 
only include group-bys containing the partitioning at- 
tribute. We therefore, choose a partitioning attribute 
that allows the choice of the largest subtree as shown 
in the pseudo-code of the PipeHash algorithm below. 

This leaves T - T,, a forest of smaller trees; add 
this to the worklist; 

return T,; 

Compute-subtree 
M = memory available; 
numParts = memory required by T’*fudgefactor/M; 
Partition root of T’ into numparts; 
For each partition of root(T’) 

For each node, n in T’ 
(scanned in a breadth first manner) 

Compute all children of n in one scan; 
If n is cached, save it to disk and 
release memory occupied by its hash-table; 

PipeHash: 
Input: search lattice with group-by estimated sizes 
Initialize worklist with MST of the search lattice; 
While worklist is not empty 

Pick any tree T from the workliit; 
T’ = Select-subtree of T to be executed next; 
Compute-subtree T’; 

Select-subtree 
If memory required by T < available, return T 
Else, let S be the attributes of root(T) 

(We will pick s c S for partitioning root(T). 
For any s we get a subtree T. of T also rooted at 

T including all group-bys that contain 3.) 
Let P. = maximum number of partitions of root(T) 
possible if partitioned on s c S; 
We choose s c S such that 

memory required by T./P, < memory available, 
and T, is the largest over all subsets of S; 

Remove T, from T; 

Example: Figure 4 illustrates the PipeHash algo- 
rithm for the four attribute search lattice of Figure 1. 
The boxed group-bys represent the root of the sub- 
trees. Figure 4(a) shows the minimum spanning tree. 
Assume there is not enough memory to compute the 
whole tree in one pass and we need to partition the 
data. Figure 4(b) shows the first subtree TA selected 
when A is chosen as the partitioning attribute. After 
removing TA from the MST, we are left with four sub- 
trees as shown in Figure 4(c). None of the group-bys in 
these subtrees include A. For computing TA, we first 
partition the raw data on A. For each partition we 
compute first the group-by ABCD; then scan ABCD 
(while it is still in memory) to compute ABC, ABD 
and ACD together; save ABCD and ABD to disk; 
compute AD from ACD; save ACD and AL) to disk; 
scan ABC to compute AB and AC; save ABC and 
AC to disk; scan AB to compute A- and save AB and 
A to disk. After TA is computed, we compute each of 
the remaining four subtrees in the worklist. 

Note that PipeHash incorporates the optimization 
share-partitions by computing from the same partition 
all group-bys that contain the partitioning attribute. 
Also, when computing a subtree we maintain all hash- 
tables of group-bys in the subtree (except the root) 
in memory until all its children are created. Also, for 
each group-by we compute its children in one scan of 
the group-by. Thus PipeHash also incorporate the op- 

A (c) Remaining subtrees 
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Dataset # grouping # tuples size 
attributes (in millions) (in MB) 

Data&-A 3 5.5 110 
Data&-B 4 7.5 121 
Data&X 5 9 180 
Dataset-D 5 3 121 
Data&-E 6 0.7 18 

Table 1: Description of the datasets 

timisations amortize-scans and cache-results. 6 
PipeHash is biased towards optimizing for the 

smallest-parent. For each group-by, we first fix the 
smallest parent and then incorporate the other opti- 
mizations. For instance, in Figure 4(c), we could have 
computed BC from BCD instead of its smallest parent 
ABC and thus saved the extra scan on ABC. However, 
in practice, saving on sequential disk scans .is less im- 
portant than reducing the CPU cost of aggregation by 
choosing the smallest parent. 

5 Experimental evaluation 

In this section, we present the performance of our 
cube algorithms on several real-lie datasets and an- 
alyze the behavior of these algorithms on tunable syn- 
thetic datasets. These experiments were performed on 
a RS/SOOO 250 workstation running AIX 3.2.5. The 
workstation had a total physical memory of 256 MB. 
We used a buffer of size 32 MB. The datasets were 
stored as flat files on a local 2GB SCSI 3.5” drive with 
sequential throughput of about 1.5 MB/second. 

Datasets Table 1 lists the five real-lie datasets used 
in the experiments. -These datasets were derived from 
sales transactions of various department stores and 
mail order companies. A .brief description is given 
next. The datasets differ in the number of transac- 
tions, the number of attributes, and the number of 
distinct values for each attribute. For each attribute, 
the number within brackets denotes the number of its 
distinct valuea. 

l Dataset-A: This data is about supermarket pur- 
chases. Each transaction has three attributes: 
store id(73), date(16) and item identifier(48510). 
In addition, two attributes cost and amount are 
used as aggregation columns. 

l Dataset-B: This data is from a mail order com- 
pany. A sales transaction here consists of four 
attributes: the customer identifier(213972), the 
order date(2589), the product identifier(l5836), 
and the catalog used for ordering(214). 

%fer [SAG961 for a diacuwion of how we handle the prob- 
lems of data skew and incorrect size estimates in allocating hash- 
t ahles 

NH:NaiveHash PH:PipeHash NS:NaiveSort PS:PipeSort 
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Figure 5: Performance of the cube computation algorithms 
on the five real life data&s. The y-&s denotes the total 
time normalized by the time taken by the NaiveHash algo- 
rithm for each dataset. 

Dataset-C: This is data about grocery pur- 
chases of customers from a supermarket. Each 
transaction has five attributes: the date of pur- 
chase(1092), the shopper type(195), the store 
code(415), the state in which the store is lo 
cated(46) and the product group of the item pur- 
chased(ll8). 
DataseeD: This is data from a department 
store. Each transaction has five attributes: the 
store identifier(l7), the date of purchase(l5), the 
UPC of the product(85161), the department num- 
ber(44) and the SKU number(63895). 
Dataset-E: This data is also from a department 
store. Each transaction has total of six attributes: 
the store, number(ri), the date of purchase(l5), 
the item number(26412), the business center(g), 
the merchandising group(22496) and a sequence 
number(255). A seventh attribute: the quantity 
of purchase was used as the aggregating column. 

Algorithms compared For providing a basis of 
evaluation, we choose the straightforward method 
of computing each groupby in a cube as a sepa- 
rate group-by resulting in algorithms NaiveHash and 
NaiveSort depending on whether group-bys are com- 
puted using hash-based or sort-based methods. We 
further compare our algorithms against easy but pos- 
sibly unachievable lower-bounds. 

For the hash-based method the lower bound is ob- 
tained by summing up the following operations: Com- 
pute the bottom-most (level-N) groupby by hashing 
raw-data stored on disk; include the data partitioning 
cost if any. Compute all other group-bys by hashing 
the smallest parent assumed to be in memory; ignore 
data partitioning costs. Save all computed group-bys 
to disk. 
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Figure 6: Effect of sparseness on relative performance of PipeSort and PipeHash for a 5 attribute synthetic dataset. 

For the sort-based method the lower bound is ob- 
tained by summing up the following operations: Com- 
pute the bottom-most (level-N) group-by by sorting 
the raw-data stored on disk. Compute all other group 
bys from the smallest parent assumed to be in memory 
and sorted in the order of the group-by to be com- 
puted. Save all computed groupbys. 

Performance results Figure 5 shows the perfor- 
mance of the proposed PipeHash and PipeSort relative 
to the corresponding naive algorithms and estimated 
lower bounds. The total execution time is normalized 
by the time taken by the NaiveHash algorithm for each 
dataset to enable presentation on the same scale. In 
[SAG961 we discuss the methods we used for estimat- 
ing the size of each group-by and the hashing function 
used with NaiveHash and PipeHash. We can make the 
following observations. 

better than the sort-based method. Careful scrutiny 
of the performance data revealed that this deviation is 
because after some parent groupby is sorted we com- 
pute more than one group-by from it whereas for the 
hash-based method we build a different hash table for 
each group-by. Even though we share the partition- 
ing cost for the hash-based method, the partitioning 
cost is not a dominant fraction of the total cost unliie 
sorting. 

l Our algorithms are two to eight times faster than 
the naive methods. 

l The performance of PipeHash is very close to our 
calculated lower bound for hash-based algorithms. 
The maximum difference in performance is 8%. 

l PipeSort is also close to the calculated lower 
bound for sort-based method in most cases. The 
maximum gap between their performance is 22%. 

l For most of the datasets, PipeHash is inferior to 
the PipeSort algorithms. We suspected this to 
be an artifact of these datasets. To further in- 
vestigate the difference between them, therefore, 
we did a series of experiments on a synthetically 
generated dataset described next. 

We conjectured that the hash-based method can 
perform better than the so&based method when each 
group-by results in a considerable reduction in the 
number of tuples. This is because the cost of hashing 
at higher levels of aggregations can become a negligible 
fraction of the total cost when the number of tuples re 
duces rapidly. To validate our conjecture that the per- 
formance difference between the hash-based method 
and sort-based method is mainly due to the rate of de- 
crease in the number of tuples as we’aggregate along 
more and more attributes, we took a series of measure- 
ments on synthetic datasets described below. 

5.1 Comparing PipeSort and PipeHash 

For the datasets in Table 1, the sort-based method 
performs better than the hash-based method. For 
Data&-D, PipeSort is almost a factor of two better 
than PipeHash. Based on results in [GLS94], we had 
expected the hash-based method to be comparable or 

Synthetic datasets Each dataset is characterized 
by four parameters: 

1. Number of tuples, T. 

2. Number of grouping attributes, N. 
3. Ratio amongst the number of distinct values of 

each attribute dl : & : . . . : dN. 

4. A parameter, p, denoting the degree of sparsity 
of the data. It is defined as the ratio of T to the 
total number of possible attribute value combi- 
nations. Thus, if Di denotes the number of .dis- 
tinct values of attribute i, then p is defined as 
T/(DlxDp... DN). Clearly, higher the degree of 
spar&y (lower value of p), lower the reduction in 
the number of tuples after aggregation. 

Given these four parameters, the dataset is generated 
as follows. We first determine the total number of 
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values Di along each dimension i as: 

Di= T 
0 

k di 
P (dl x do x . . . x d&’ 

Then, for each of the T tuples, we choose a value for 
each attribute i randomly between 1 and Di. 

Results We show the results for two sets of synthetic 
datasets with T is 5 million, N is 5. For dataset in 
Figure 6(a) the ratio between the number of distinct 
values of each attribute is 1:2:4:20:300 (large variance 
in number of distinct values). We vary the sparsity 
by changing p. The X-axis denotes decreasing levels 
of sparsity and the Y-axis denotes the ratio between 
the total running time of algorithms PipeHash and 
PipeSort. We notice that as the data becomes less 
and less sparse the hash-based method performs bet- 
ter than the sort-based method. We repeated the same 
set of measurements for datasets with a different r& 
tio, 1:l:l:l:l (Figure 6(b)): We notice the same trend 
for datasets with very different characteristics, empir- 
ically confirming that sparsity indeed is a p’redictor of 
the relative performance of the PipeHash and PipeSort 
algorithms. 

Part 116 

6 Contributions of this Part 

We present a class of sorting-based methods for com- 
puting the CUBE that try to minimize the number of 
disk accesses by overlapping the computation of the 
various cuboids. They make use of partially matching 
sort orders to reduce the number of sorting steps re 
quired. Our experiments with an implementation of 
these methods show that they perform well even with 
limited amounts of memory. In particular, they always 
perform substantially better than the Independent and 
Parent method of computing the CUBE by a sequence 
of groupby statements, which is currently the only 
option in commercial relational database systems. 

7 Options for Computing the CUBE 

Let R be a relation with k + 1 attributes 
{&&,... , Ak+l}. Consider the computation of a 
CUBE on k attributes X = {Al, As,. . . , Ak} of rela- 
tion R with aggregate function F(e) applied on Ak+r . 
AcuboidonjattributesS=(.&,,A~,...,&j}isde- 
fined as a groupby on the attributes Ai,, 4,. . . ,.&, 
using the aggregate function F. This cuboid can 

6This part presents work done by Prasad M. Dsshpande, 
Same& AgarwaI, Jeffrey F. Naughton and Rpghu Ramabish- 
nan; {pmd, samefst, naughton, w&u} Bcr.wi8c.edu, University 
of Wisconsin-Madison. 
It wan supported by a grant from IBM under the University 
Partnership Programand NSF grant IIU-9167367 

be represented as a k + 1 attribute relation by us- 
ing the special value ALL for the remaining k - j at- 
tributes [GBLP96]. The CUBE on attribute set X 
is the union of cuboids on all subsets of attributes of 
X. The cuboid (or group-by) on all attributes in X is 
called the base cuboid 

To compute the CUBE we need to compute all 
the cuboids that together form the CUBE. The base 
cuboid has to be computed from the original relation. 
The other cuboids can be computed from the base 
cuboid due to the distributive nature of the aggrega- 
tion. For example, in a retail application relation with 
attributes (Product, Yeor, Customer, Sales), sum of 
a&a by (product, customer) can be obtained by using 
sum of sales by (product, year, customer). There are 
different ways of scheduling the computations of the 
cuboids: 

Multiple Independent Group-By Queries (In- 
dependent Method) 

A straightforward approach (which we call Indepen- 
dent) is to independently compute each cuboid from 
the base cuboid, using any of the standard group-by 
techniques. Thus the base cuboid is read and pro 
cessed for each cuboid to be computed, leading to poor 
performance. 

Hierarchy of GroupBy Queries (Parent 
Method) 

Consider the computation of different cuboids for the 
CUBE on attributes {A, B, C, D}. The cuboid {A, C} 
can be computed from the cuboid (A, B,C} or the 
cuboid {A, C, D}, since the aggregation function is 
distributive. In general, a cuboid on attribute set X 
(called cuboid X) can be computed from a cuboid on 
attribute set Y iff X C Y. One optimiiation is to 
choose Y to be as small as possible to reduce cost 
of computation. We use the heuristic of computing 
a cuboid with k - 1 attributes from a cuboid with k 
attributes, since cuboid size is likely to increase with 
additional attributes. For example, it is better to com- 
pute sum of sales by (product) using sum of sales by 
(product, customer) rather than sum of sales by (prod- 
uct, year, cwtomer). 

We can view this hierarchy as a DAG where the 
nodes are cuboids and there is an edge from a k at- 
tribute cuboid to a k-l attribute cuboid iff the k-l at- 
tribute set is a subset of the k attribute set. The DAG 
captures the “consider-computing-from” relationship 
between the cuboids. The DAG for the CUBE on 
{A, B, C, D} is shown in Figure 7. 

In the P&t method each cuboid is computed from 
one of its parents in the DAG. This is better than 
the Independent method since the parent is likely to 
be much smaller than the base cuboid, which is the 
largest of all the cuboids. 
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Overlap Method 

This is a further extension of the idea behind the Par- 
ent method. While the Independent and Parent meth- 
ods are currently in use by Relational OLAP tools, the 
Overlap method cannot be used directly by a standard 
SQL database system and to our knowledge it has not 
appeared in the literature to date. As in the Parent 
method, the Overlap method computes each cuboid 
from one of its parents in the cuboid tree. It tries to 
do better than Parent by overiapping the computa- 
tion of different cuboids and using partially matching 
sort orders. This can significantly reduce the num- 
ber of I/OS required. The details of this scheme are 
explained in Section 8. 

7.1 Computing the Group-bys using Sorting 

In relational query processing, there are various meth- 
ods for computing a group-by, such as sorting or hash- 
ing [EPST79, Gra93, SN95]. These methods can be 
used to compute one cuboid from another. We concen- 
trate on sorting based methods in this paper, though 
we believe that hashing could also be used similarly. 
Computing a CUBE requires computation of a num- 
ber of cuboids (group-bys). Sorting combined with 
Overlap seems to be a good option due to the follow- 
ing observations which help in reducing the number of 
sorting steps. 

l Cuboids can be computed from a sorted cuboid 
in sorted order. 

l An existing sort order on a cuboid can be used 
while computing other cuboids from it. For exam- 
ple, consider a cuboid X = {A, B, D} to be com- 
puted from Y = {A, B, C, D}. Let Y be sorted 
in ABCD order which is not the same as ABD 
order needed to compute X. But Y need not be 
resorted to compute X. The existing order on Y 
can be used. The exact details are explained in 
Section 8. 

8 The Overlap Method 

The method we propose for CUBE computation is a 
sort-based overlap method. Computations of different 
cuboids are overlapped and all cuboids are computed 
in sorted order. In this paper we give only a short 
description of our method. More details can be found 
in [DANR96]. We first define some terms which will 
be used frequently. 

Sorted Runs : 
Consider a cuboid on j attributes {Al, AZ,. . . , Aj}. 

We use (Al,Az,..., Aj) to denote the cuboid sorted 
on the attributes Al, AQ, . . ., Aj in that order. Con- 
sider the cuboid S = (A1,Az,...,AI_1,Al+1,...,Aj) 
computed using B = (Al, AQ, . . . , Aj). A sorted 
run R of S in B is defined as follows: R= 

flAl,Al,..., A,-,,A,+, ,..., Aj (Q) where Q is a maximal se- 
quence of tuples T of B such that for each tuple in Q, 
the first I columns have the same value. Informally a 
sorted run of S in B is a maximal run of tuples in B 
whose ordering is consistent with their ordering in the 
sort order associated with S. 

For example, consider 
[(a, 1,2), (a, 1,3), (a, 2,2), (b, 1,3), (b, 3,2),?c 3 111. = 
Let S be the cuboid on the first and third ‘atkribute. 
i.e., S = [(a, 2), (a,3), (b,3), (b,2), (c, l)], The sorted 
runs for S are Ka,2),(a,3)1, Ka,2)1, Kh3)1, [@,2)1 ad 

Kc7 111. 
Partitions : 

BandShaveacommonprefixofAi,A~ ,..., AL-~. 
A partition of the cuboid S in B is a union of sorted 
runs such that the first 1 - 1 columns (the common 
prefix) of all the tuples of the sorted runs have the 
same value. In the above example, the partitions for 
S in B will be [(a, 2), (o,3)], [(h 2), (4 3)] ad [(c, I)]. 

This definition implies that all tuples of one parti- 
tion are either less or greater than all tuples of any 
other partition. Tuples from different partitions will 
not merge for aggregation. Thus partition becomes a 
unit of computation and each partition can be com- 
puted independently of the others. 

8.1 Overview of the Overlap Method 

The overlap method is a muti-pass method. In each 
pass, a set of cuboids is selected for computing under 
memory constraints. These cuboids are computed in a 
overlapped manner. The tuples generated for a cuboid 
are used to compute its descendents in the DAG. This 
pipelining reduces the number of scans needed. The 
process is repeated until all cuboids get computed. 

The algorithm begins by sorting the base cuboid. 
All other cuboids can be directly computed in sorted 
order without any further sorting. Instead of re-sorting 
for each cuboid, the existing sorted runs are merged to 
create the cuboid. This reduces the number of compar- 
isons as well. Suppose the base cuboid for the CUBE 
on (A, B, C, D} is sorted in the order (A, B, C,D). 
This decides the sort order in which the other cuboids 
get computed. The sort orders for the other cuboids 
of {A, B, C, D} are shown in the Figure 7. A few 
heuristics for choosing this sort order are mentioned 
in [DANR96]. 

Computation of each cuboid requires some amount 
of memory. If there is enough to memory to hold all 
the cuboids, then the entire CUBE can be computed 
in one scan of the input relation. But often, this is not 
the case. The,aMilable memory may be insufficient 
for large CUBEs. Thus, to get the maximum overlap 
across computations of diierent cuboids, we could try 
to reduce the amount of memory needed to compute 
a particular cuboid. Since partition can be a unit of 
computation, while computing a cuboid from another 
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Figure 8: Cuboid ‘Bee obtained from the cuboid DAG 

sorted cuboid we just need memory sufficient to hold a 
partition of the cuboid. As soon as a partition is com- 
pleted, the tuples can be pipelined into the computa- 
tion of descendant cuboids, or written out to disk; the 
same memory can then be used to start computation 
of the next partition. This is a significant reduction 
since for most cuboids the partition size is much less 
than the size of the cuboid. For example, while com- 
puting (A, B, C) and (A,B,D) from (A, B, C,D) the 
partition size for (A, B, C) is 1 tuple (since (A, B, C) 
sort order matches (A, B,C, D) sort order) whereas 
the partition size for (A, B, 0) is bounded by the num- 
ber of distinct values of D. So for computing these we 
just need space su&ient to hold a partition. Thus. 
computation of many cuboids can be overlapped in 
the available memory effectively reducing the number 
of scans. 

8.2 Details 

8.2.1 Choosing a Parent to Compute a 
Cuboid 

Each cuboid in the cuboid DAG has more than one 
parent from which it could be computed. We need to 
choose one of these parents thus converting the DAG 
to a rooted tree. The root of the tree is the base cuboid 
and each cuboid’s parent is the cuboid to be used for 
computing it. For example, one possible tree for com- 
puting the DAG in Figure 7 is as shown in Figure 8. 

There are many possible trees. The goal in choos- 
ing a tree is to minimize the size of the partitions of 

0 
[...I indicates estimated partition size in number of pages 

Figure 9: Estimates of Partition Sizes 

a cuboid so that minimum memory is needed for its 
computation. For example, it is better to compute 
(A, C) from (A, C,D) rather than (A, B, C). This is 
because (A, C, D) sort order matches the (A, C) sort 
order and the partition size is 1. This is general- 
ized to the following heuristic: Consider the cuboid 
S = (Ail,A,,*.*>Aij), where the base cuboid is 
(AI,&,..., &). S can be computed from any cuboid 
with one additional attribute, say AI. Our heuristic 
is to choose the cuboid with the largest value of 1 to 
compute S. Maximizing the size of the common pre- 
fit minimizes the partition size. The tree in Fiie 8 
is obtained by using this heuristic. Note that among 
the children of a particular node, the partition sizes 
increase from left to right. For example, partition size 
for computing (A, B, C) from (A, B, C, II) is 1 whereas 
the partition size for (B, C, D) is the maximum (equal 
to size-of the cuboid (B, C, D) itself). 

8.2.2 Choosing a Set of Cuboids for 
Overlapped Computation 

The next step is to choose a set of cuboids that can 
be computed concurrently within the memory con- 
straints. To compute a cuboid in memory, we need 
memory equal to the size of its partition. We assume 
that we have estimates of sizes of the cuboids. The 
partition sizes can be estimated from these using uni- 
form distribution assumption [DANR96]. If this much 
memory can be allocated, the cuboid will be marked to 
be in Partition state. For some other cuboids it may 
be possible to allocate one page of memory. These 
cuboids will be SortRun state. The allocated page can 
be used to write out sorted runs for this cuboid on disk. 
This will save a scan of the parent when the cuboid has 
to be computed. These sorted runs are merged in fur- 
ther passes to complete the computation. 

Given any subtree of a cuboid tree and the size 
of memory M, we need to mark the cuboids to be 
computed and allocate memory for their computation. 
When a cuboid is in Partition state, its tuples can be 
pipelined for computing the descendent cuboids in the 
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same pass. This is not true for SortRun state. Thus 
we have the following constraints: 

Cl: A cuboid can be considered for computation if 
either its parent is the root of the subtree (this 
means either the parent cuboid itself or sorted- 
runs for the parent cuboid have been materialized 
on the disk), or the parent has been marked as 
being in the Partition state. 

C2: The total memory allocated to all the cuboids 
should not be more than the available memory M. 

There are a large number of options for selecting which 
cuboids to compute and in what state. The cost of 
computation depends critically on the choices made. 
When a cuboid is marked in SortRun state there is 
an additional cost of writing out the sorted runs and 
reading them to merge and compute the cuboids in the 
subtree rooted at that node. We have shown that find- 
ing an overall optimal allocation scheme for our cuboid 
tree is NP-hard [DANR96] . So, instead of trying to 
find the optimal allocation we do the allocation by us- 
ing the heuristic of traversing the tree in a breadth 
first- (BF) search order: 

l Cuboids to the left have smaller partition sizes, 
and require less memory. So consider these before 
considering cuboids to the right. 

l Cuboids at a higher level tend to be bigger. Thus, 
these should be given higher priority for allocation 
than cuboids at a lower level in the tree. 

Because of the constraints there may be some sub- 
trees that remain uncomputed. These are considered 
in subsequent passes, using the same algorithm to al- 
locate memory and mark cuboids. Thus, when the al- 
gorithm terminates, all cuboids have been computed. 

8.2.3 Computing a Cuboid From its Parent 

This section describes the actual method of compu- 
tation for the chosen cuboids. Every cuboid (say S) 
other than the base cuboid is computed from its par- 
ent in the cuboid tree (say B). If a cuboid has been 
marked in Partition state it means that we have s&i- 
cient memory to fit the largest partition of S in mem- 
ory. We can compute the entire cuboid S in one pass 
over B and also pipeline the tuples generated for fur- 
ther computation if necessary. However, if the cuboid 
is marked to be in S&Run state, we can write out 
sorted runs of S in this pass. Writing out the sor$,ed 
runs requires just one page of memory. The algorithm 
for computing a cuboid is specified below : 

Output: The sorted cuboid S. 

foreach tuple T of B do 
if (state == Partition) then 

process-partition(r) 
else 

processsortedrun(r) 

endif 
end-of-cuboid() 

endfor 

The process-partition0 procedure is as follows: 
l If the input tuple starts a new partition, output 

the current partition at the end of the cuboid, 
start a new one and make it current. 

l If the input tuple matches with an existing tuple 
in the partition then recompute the aggregate of 
the existing tuple using the old aggregate value 
and the input tuple. 

l If the input tuple is not the same as any existing 
tuple then insert the input tuple into the current 
partition at the appropriate location to maintain 
the sorted order of the partition. 

The processsort_run() procedure is as follows: 
l If the input tuple starts a new sorted run, flush all 

the pages of the current sorted run, start a new 
sorted run and make it current. 

l If the input tuple matches with the last tuple in 
the sorted run then recompute the aggregate of 
the last tuple using the old aggregate value and 
the input tuple. 

l If the input tuple does not match with the last 
tuple of the sorted run, append the tuple to the 
end of the existing run. If, there is no space in 
the allocated memory for the sorted run, we flush 
out the pages in the memory to the end of the 
current sorted run on disk. Continue the sorted 
run in memory with the input tuple. 

The end-of-cuboid() processing writes the final par- 
tition or sorted run currently in memory to disk. For 
the case of the Partition state, the cuboids get com- 
puted completely in the first pass. For SortRun, we 
now have a set of sorted runs on disk. We compute 
such a cuboid by merging these runs, like the merge 
step of external sort, aggregating duplicates if neces- 
sary. This step is combined with the computation of 
cuboids that are descendants of that cuboid. The runs 
are merged and the result pipelined for further com- 
putation (of descendants). Note that computation of 
a cuboid in the SortRun state involves the additional 
cost of writing out and merging the runs. Further, 
the child cuboids cannot be computed during the run- 
creation phase, and must be computed during the sub- 
sequent merging phase, as noted above. 

8.3 Example computation of a CUBE 

Consider the CUBE to be computed on {A, B, C, II}. 
The tree of cuboids and the estimates of the partition 
sizes of the cuboids are shown in Figure 9. If the mem- 
ory available is 25 pages, BF allocation will generate 
three subtrees, each of which is computed in one pass. 
These subtrees are shown in Figure 10. In the second 



Figure 10: Steps of the algorithm 

and third steps the cuboids (B,C,D) and (C,D) are 
allocated 10 pages as there are 9 sorted runs to merge. 

Comparison with Independent and Parent 
method 

The cost of writing out the computed cuboids is com- 
mon to all the schemes. The only additional cost in 
this case was of writing the sorted runs of (B, C, D) 
and (C, 0) and merging these sorted runs. The Inde- 
pendent scheme would have required 16 scans and sorts 
of the base cuboid (once for each cuboid to be com- 
puted) and the Parent scheme would require a number 
of scans and sorts of each non-leaf cuboid in the tree 
(one for each of its children). Thus our scheme incurs 
fewer I/OS and less computation compared to these 
two. 

9 Implementation and Results 

To test how well our algorithm performs, we imple- 
mented a stand-alone version of the algorithm and 
tested it for varying memory sizes and data distri- 
butions. All the experiments were done on a Sun 
SPARC 10 machine running SUN-OS or Solaris. The 
implementation uses the file system provided by the 
OS. All reads and writes to the files were in terms of 
blocks corresponding to the page size. Performance 
was measured in terms of I/OS by counting the num- 
ber of page read and page write requests generated by 
the algorithm and is thus independent of the OS. A 
detailed performance study is described in [DANR96]. 
We mention only a few important experiments here. 

Unless otherwise mentioned, the data for the in- 
put relation was generated randomly. The values for 
each attribute is independently chosen uniformly from 
a domain of values for that attribute. Each tuple has 
six attributes and the CUBE is computed on five at- 
tributes with the aggregation (computing the sum) on 
the sixth attribute. Each CUBE attribute has 40 dis- 
tinct values. Each tuple is 24 bytes wide. The page 
size used was 1K. 
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Figure 11: Uniform Data : Varying Memory : Input Size 
2.4M, CUBE Size 27.lM 

9.1 Comparison with Independent and 
Parent methods 

To illustrate the gains of our algorithm over other 
methods, we compare the performance of our algo- 
rithm with the Independent and Parent methods de- 
scribed before. We varied different parameters like 
memory size, relation size, data distribution and the 
number of attributes on which the CUBE is computed. 

9.1.1 Different data distributions 

In order to run experiments that finished in a reason- 
able amount of time, for the bulk of our experiments 
the relation size was kept constant at 100,000 tuples 
(2.4 MByte). While this is quite small, the important 
performance parameter in our algorithm is the ratio of 
the relation size and the memory size. To compensate 
for an artificially small input relation size, we used 
very small memory sizes, varying from a low of 100 
pages (100 KByte) to a high of 3000 pages (3 MB). 
Section 9.1.2 shows that the performance characteris- 
tics of the algorithms we tested are unchanged if you 
scale the memory and data size to more realistic lev- 
els. For each of the methods, we plotted the sum of 
the number of reads and writes. 

The graph in Figure 11 shows the performance of 
the three algorithms for uniform data. Figure 12 is for 
non-uniform data which is generated using zipf dis- 
tribution for the attribute values. Values for A and B 
were chosen with a zipf factor of 2, C with a factor of 1, 
and D and E with a factor of 0 (uniform distribution) 

The graphs in Figures 11 and 12 show that our 
method achieves a significant improvement over the 
lndependent and Parent methods for both uniform and 
non-uniform data. There are some spikes in the graph 
in Figure 12. For example, the I/O performance at 
memory size 15OOK is worse than that at 1250K for 



Figure 12: Non-uniform Data : Zipf Distribution : Input 
Size 2.4M, CUBE Size 10M 

our algorithm. This only shows that the breadth-first 
heuristic that we are using for memory allocation is 
not always optimal. 

The graphs also show that choosing a proper sort 
order is important. For non-uniform data, sort order 
‘EDCBA’ is better than the order ‘ABCDE’. This is 
due to different degrees of skewness in diierent at- 
tributes. 

9.1.2 Scaleup Experiments 

We performed some experiments to check how our 
method scales for larger input sizes with proportion- 
ately larger memory sizes. The relation size was varied 
from 100,000 (2.4M) to 1000,000 tuples (24 M). The 
memory used for each case was about 10% of the re- 
lation size. The graph in Figure 13 shows that the 
performance characteristics of the algorithms we con- 
sider are unchanged when the data sets axe scaled to 
more realistic levels. 

9.2 Relation between Memory and Input size 
for Overlap method 

We performed some experiments to study how our 
method performs for different ratios of memory to the 
input size. 

9.2.1 Varying Memory 

Figure 14 plots the number of Heads and Writes for 
computing CUBE for a input size of 100,000 tuples 
(2.4MB). The memory is varied from 1OOK to 3MB. 
From the graphs in Figure 14, it is clear that the I/OS 
decrease with increasing memory since more and more 
cuboids are computed simultaneously, avoiding excess 
reading and writing of sorted runs. We observe that 
even for very low memory sizes, the number of writes 
is only slightly more than the size of CUBE and the 

t 1 

Figure 14: Varying memory : Relation : 2.4M; CUBE size 
: 27.1M 

number of reads is within two times the input rela- 
tion size. This shows that we are getting near optimal 
performance with respect to number of I/OS. 

9.2.2 Varying Relation size 

In the other experiment, the memory was kept con- 
stant at 500 pages (500K). The input relation size was 
varied from 10000 to 100,000 tuplea. Each attribute 
has 20 distinct values. The graph is shown in the Fig- 
ure 15. The X axis represents the size of the relation 
in bytes. On the Y axis, we plot the following ratios. 

1. s Number of Write. 
ire of the CUBE in Page8 

2. Number of Reads 
Size of the Input Relation in Pages 

Any algorithm to compute the cube has to scan the 
input and write out the results. Hence these ratios 
give an idea of how close the algorithm is to ideal. 
Since the memory size is 500K, for relations of size up 
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data. Thus, we can choose between the PipeHash and 
PipeSort algorithms for a particular data& based on 
estimated sparsity of the dataset. 

We extended the cube algorithms to compute a 
specified subset of the 2N group-bys instead of all of 
them. Our proposed extension considers intermediate 
group-bys that are not in the desired subset for gener- 
ating the best plan. We also extended our algorithms 
for computing aggregations in the presence of hierar- 
chies on attributes. These extensions are discussed in 
[SAG96]. 

El 
In this part we have examined various schemes to im- 

b”:’ . IJ. L arying relation sizes: Memory : 500K plement the CUBE operator. Sorting-based methods 

to 500K, the performance is ideal. For bigger relations, 
exploit the existing ordering to reduce the number of 

the performance degrades slowly as the partitions no 
sorts. Also, pipelining can be used to save on reads. 

longer fit in memory and sorted runs have to be written 
out for many cuboids. The spikes show that the BF 
allocation may be non-optimal in some cases. 

10 Conclusions and Summary 

10.1 Summary of part I 

We presented two algorithms for computing the data 
cube. Our algorithms extend the sort-baaed and hash- 
based methods for computing group-bys with five op- 
timizations: smallest-parent, cache-results, amortize- 
acans, share-aorta and share-partitions. These opti- 
mizations are often conflicting. Our proposed algo- 
rithms combine them so as to reduce the total cost. 
The sort-baaed algorithm, called PipeSort, develops a 
plan by reducing the problem to a minimum weight 
matching problem on a bipartite graph. The hash- 
based algorithm, called PipeHaah, develops a plan 
by first creating the minimum spanning tree showing 
what group-by should be generated from what and 
then choosing a partitioning that takes into account 
memory availability. 

Measurements on five real-life OLAP datasets 
yielded a factor of two to eight improvement with our 
algorithms over straightforward methods of computing 
each group-by separately. Although the PipeHash and 
PipeSort algorithms are not provably optimum, com- 
parison with conservatively calculated lower bounds 
show that the PipeHash algorithm was within 8% 
and the PipeSort algorithm was within 22% of these 
lower bounds on several datasets. We further exper- 
imented with the PipeHash and PipeSort algorithms 
using a tunable synthetic dataset and observed that 
their relative performance depends on the sparsity of 
data values. PipeHash does better on low sparsity 
data whereas PipeSort does better on high sparsity 
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l We have presented one particular sorting based 
scheme called Overlap. This scheme overlaps the 
computation of different cuboids and minimiies 
the number of scans needed. It uses estimates 
about cuboid sizes to determine a “good” schedule 
for the computation of the cuboids if the estimates 
are fairly accurate. 

l We implemented the Overlap method and com- 
pared it with two other schemesFrom the per- 
formance results, it is clear that our algorithm is 
a definite improvement over the Independent and 
the Parent methods. The idea of partitions allows 
us to overlap the computation of many cuboids 
using minimum possible memory for each. By 
overlapping computations and making use of par- 
tially matching sort orders, our algorithms will 
perform much better than the Independent and 
Parent method, irrespective of what heuristic is 
used for allocation. 

l The Overlap algorithm gives reasonably good per- 
formance even for very limited memory. Though 
these results are for relatively small relations, the 
memory used was also relatively small. Scaleup 
experiments show that similar results should hold 
for larger relations with more memory available. 
Very often we may not want to compute all the 
cuboids. This can be handled in our algorithm by 
deleting nodes which are not to be computed from 
the cuboid tree. Results show that the algorithm 
gives good performance even for thii case. 

l We have shown that the optimal allocation prob- 
lem is NP-hard. We have therefore used a heuris- 
tic allocation (BF) in our algorithm. The results 
suggest that the heuristics yield performance close 
to that of optimal allocation in most cases. 



10.3 Comparison of PipeSort and Overlap 

The PipeSort method takes into account the size of a 
group-by while selecting a parent with the aim of re- 
ducing both scanning cost and sorting cost. It views 
this as a matching problem to choose the optimal par- 
ent and sort order for each group-by. It may thus use 
more than one sort order. 

The Overlap method on the other hand uses a single 
sort order. This helps in setting up multiple pipelines 
(as against the single pipeline of the PipeSort method) 
to achieve more overlap using Partitions. While choos- 
ing a parent, it tries to get maximum match in their 
sort orders. However, unlike PipeSort, it does not con- 
sider the size of the group-bys. 

We have not compared the performance of these 
two methods. As future work, we plan to study their 
relative merits, and consider how their best features 
can be combined. 
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