
CURE: An Efficient Clustering Algorithm for Large Databases

Sudipto Guha* Rajeev Rastogi Kyuseok Shim

Stanford University

Stanford, CA 94305
sudipto@cs.stanford.edu

Bell Laboratories

Murray Hill, NJ 07974
rastogi@bell-labs.com

Bell Laboratories

Murray Hill, NJ 07974
shim@bell-labsxom

Abstract

Clustering, in data mining, is useful for discovering groups
and identifying interesting distributions in the underlying
data. Traditional clustering algorithms either favor clusters
with spherical shapes and similar sizes, or are very frag-
ile in the presence of outliers. We propose a new cluster-
ing algorithm called CURE that is more robust to outliers,
and identifies clusters having non-spherical shapes and wide
variances in size. CURE achieves this by representing each
cluster by a certain fixed number of points that are gen-
erated by selecting well scattered points from the cluster
and then shrinking them toward the center of the cluster
by a specified fraction. Having more than one representa-
tive point per cluster allows CURE to adjust well to the
geometry of non-spherical shapes and the shrinking helps to
dampen the effects of outliers. To handle large databases,
CURE employs a combination of random sampling and par-
titioning. A random sample drawn from the data set is first
partitioned and each partition is partially clustered. The
partial clusters are then clustered in a second pass to yield
the desired clusters. Our experimental results confirm that
the quality of clusters produced by CURE is much better
than those found by existing algorithms. Furthermore, they
demonstrate that random sampling and partitioning enable
CURE to not only outperform existing algorithms but also
to scale well for large databases without sacrificing cluster-
ing quality.

1 Introduction

The wealth of information embedded in huge databases be-
longing to corporations (e.g., retail, financial, telecom) has
spurred a tremendous interest in the areas of lcnowledge dis-
covery and data mining. Clustering, in data mining, is a
useful technique for discovering interesting data distribu-
tions and patterns in the underlying data. The problem of
clustering can be defined as follows: given n data points in a
d-dimensional metric space, partition the data points into Ic

*The work was done while the author was visiting Bell
Laboratories.

Permiaslon to make digital or hard copier of all or part of this work for
pareOne or clrrseroom use is granted without fee provided that
copi** are not made or distributed for profit or commrrcisl advan-
tage and that copies boar this notice and the full citation on the firat psga.
To copy otherwise. to republish. to post on a.rv.r, or to
redistribute to Iiatr, requires prior specific permission and/or a foe.
SIGMOD ‘98 Seattle, WA, USA
8 1998 ACM 0-89791~996.5/98/006...$6.00

clusters such that the data points within a cluster are more
similar to each other than data points in different clusters.

1.1 Traditional Clustering Algorithms - Drawbacks

Existing clustering algorithms can be broadly classified into
partitional and hierarchical [JD88]. Partitional clustering
algorithms attempt to determine k partitions that optimize
a certain criterion function. The square-error criterion, de-
fined below, is the most commonly used (m; is the mean of
cluster Ci).

k

E = c c IIP - rni112.
i=l pee;

The square-error is a good measure of the within-cluster
variation across all the partitions. The objective is to find
L partitions that minimize the square-error. Thus, square-
error clustering tries to make the k clusters as compact and
separated as possible, and works well when clusters are com-
pact clouds that are rather well separated from one another.
However, when there are large differences in the sizes or ge-
ometries of different clusters, as illustrated in Figure 1, the
square-error method could split large clusters to minimize
the square-error. In the figure, the square-error is larger for
the three separate clusters in (a) than for the three clusters
in (b) where the big cluster is split into three portions, one
of which is merged with the two smaller clusters. The reduc-
tion in square-error for (b) is due to the fact that the slight
reduction in square error due to splitting the large cluster is
weighted by many data points in the large cluster.

A hierarchical clustering is a sequence of partitions in
which each partition is nested into the next partition in the
sequence. An agglomerative algorithm for hierarchical clus-
tering starts with the disjoint set of clusters, which places
each input data point in an individual cluster. Pairs of items
or clusters are then successively merged until the number
of clusters reduces to Ic. At each step, the pair of clus-
ters merged are the ones between which the distance is the
minimum. The widely used measures for distance between
clusters are as follows (mi is the mean for cluster Ci and n;
is the number of points in Ci).

73

Figure 1: Splitting of a large cluster by partitional algorithms

For example, with d,,,, as the distance measure, at each
step, the pair of clusters whose centroids or means are the
closest are merged. On the other hand, with d,i,, the pair
of clusters merged are the ones containing the closest pair of
points. All of the above distance measures have a minimum
variance flavor and they usually yield the same results if the
clusters are compact and well-separated. However, if the
clusters are close to one another (even by outliers), or if their
shapes and sizes are not hyperspherical and uniform, the re-
sults of clustering can vary quite dramatically. For example,
with the data set shown in Figure l(a), using d,,,, d,,, or
d,,,, as the distance measure results in clusters that are
similar to those obtained by the square-error method shown
in Figure l(b). Similarly, consider the example data points
in Figure 2. The desired elongated clusters are shown in Fig-
ure 2(a). However, d,,,, as the distance measure, causes
the elongated clusters to be split and portions belonging to
neighboring elongated clusters to be merged. The resulting
clusters are as shown in Figure 2(b). On the other hand,
with dmin as the distance measure, the resulting clusters
are as shown in Figure 2(c). The two elongated clusters
that are connected by narrow string of points are merged
into a single cluster. This “chaining effect” is a drawback of
d,in - basically, a few points located so as to form a bridge
between the two clusters causes points across the clusters to
be grouped into a single elongated cluster.

From the above discussion, it follows that neither the
centroid-based approach (that uses d,,,,) nor the all-points
approach (based on d,i,) work well for non-spherical or
arbitrary shaped clusters. A shortcoming of the centroid-
based approach is that it considers only one point as repre-
sentative of a cluster - the cluster centroid. For a large or
arbitrary shaped cluster, the centroids of its subclusters can
be reasonably far apart, thus causing the cluster to be split.
The all-points approach, on the other hand, considers all
the points within a cluster as representative of the cluster.
This other extreme, has its own drawbacks, since it makes
the clustering algorithm extremely sensitive to outliers and
to slight changes in the position of data points.

When the number N of input data points is large, hi-
erarchical clustering algorithms break down due to their
non-linear time complexity (typically, O(N’)) and huge I/O
costs. In order to remedy this problem, in [ZRL96], the
authors propose a new clustering method named BIRCH,
which represents the state of the art for clustering large data
sets. BIRCH first performs a preclzlstering phase in which
dense regions of points are represented by compact sum-
maries, and then a centroid-based hierarchical algorithm is
used to cluster the set of summaries (which is much smaller
than the original dataset).

The preclustering algorithm employed by BIRCH to re-

duce input size is incremental and approximate. During
preclustering, the entire database is scanned, and cluster
summaries are stored in memory in a data structure called
the CF-tree. For each successive data point, the CF-tree is
traversed to find the closest cluster to it in the tree, and if
the point is within a threshold distance of the closest cluster,
it is absorbed into it. Otherwise, it starts its own cluster in
the CF-tree.

Once the clusters are generated, a final labeling phase is
carried out in which using the centroids of clusters as seeds,
each data point is assigned to the cluster with the closest
seed. Using only the centroid of a cluster when redistribut-
ing the data in the final phase has problems when clusters
do not have uniform sizes and shapes as in Figure 3(a). In
this case, as illustrated in Figure 3(b), in the final labeling
phase, a number of points in the bigger cluster are labeled
as belonging to the smaller cluster since they are closer to
the centroid of the smaller cluster.

1.2 Our Contributions

In this paper, we propose a new clustering method named
CURE (Clustering Using Representatives) whose salient fea-
tures are described below.

Hierarchical Clustering Algorithm: CURE employs a novel
hierarchical clustering algorithm that adopts a middle ground
between the centroid-based and the all-point extremes. In
CURE, a constant number c of well scattered points in a clus-
ter are first chosen. The scattered points capture the shape
and extent of the cluster. The chosen scattered points are
next shrunk towards the centroid of the cluster by a fraction
cr. These scattered points after shrinking are used as repre-
sentatives of the cluster. The clusters with the closest pair
of representative points are the clusters that are merged at
each step of CURE’s hierarchical clustering algorithm.

The scattered points approach employed by CURE alle-
viates the shortcomings of both the all-points as well as the
centroid-based approaches. It enables CURE to correctly
identify the clusters in Figure 2(a) - the resulting clusters
due to the centroid-based and all-points approaches is as
shown in Figures 2(b) and 2(c), respectively. CURE is less
sensitive to outliers since shrinking the scattered points to-
ward the mean dampens the adverse effects due to outliers
~ outliers are typically further away from the mean and are
thus shifted a larger distance due to the shrinking. Multiple
scattered points also enable CURE to discover non-spherical
clusters like the elongated clusters shown in Figure 2(a). For
the centroid-based algorithm, the space that constitutes the
vicinity of the single centroid for a cluster is spherical. Thus,
it favors spherical clusters and as shown in Figure 2(b), splits
the elongated clusters. On the other hand, with multiple
scattered points as representatives of a cluster, the space

74

(4 (b) 04
Figure 2: Clusters generated by hierarchical algorithms

Figure 3: Problem of labeling

that forms the vicinity of the cluster can be non-spherical,
and this enables CURE to correctly identify the clusters in
Figure 2(a).

Note that the kinds of clusters identified by CURE can
be tuned by varying 0: between 0 and 1. CURE reduces
to the centroid-based algorithm if (Y = 1, while for cy = 0,
it becomes similar to the all-points approach. CURE’s hi-
erarchical clustering algorithm uses space that is linear in
the input size n and has a worst-case time complexity of
O(n2 log n). For lower dimensions (e.g., two), the complex-
ity can be shown to further reduce to O(n’). Thus, the time
complexity of CURE is no worse than that of the centroid-
based hierarchical algorithm.

Random Sampling and Partitioning: CURE’s approach to
the clustering problem for large data sets differs from BIRCH
in two ways. First, instead of preclustering with all the data
points, CURE begins by drawing a random sample from the
database. We show, both analytically and experimentally,
that random samples of moderate sizes preserve informa-
tion about the geometry of clusters fairly accurately, thus
enabling CURE to correctly cluster the input. In particu-
lar, assuming that each cluster has a certain minimum size,
we use chernoff bounds to calculate the minimum sample
size for which the sample contains, with high probability,
at least a fraction f of every cluster. Second, in order to
further speed up clustering, CURE first partitions the ran-
dom sample and partially clusters the data points in each
partition. After eliminating outliers, the preclustered data
in each partition is then clustered in a final pass to generate

the final clusters.

Labeling Data on Disk: Once clustering of the random
sample is completed, instead of a single centroid, multiple
representative points from each cluster are used to label the
remainder of the data set. The problems with BIRCH’s la-
beling phase are eliminated by assigning each data point to
the cluster containing the closest representative point.

Overview: The steps involved in clustering using CURE
are described in Figure 4. Our experimental results confirm
that not only does CURE’s novel approach to clustering
based on scattered points, random sampling and partition-
ing enable it to find clusters that traditional clustering algo-
rithms fail to find, but it also results in significantly better
execution times.

The remainder of the paper is organized as follows. In
Section 2, we survey related work on clustering large data
sets. We present CURE’s hierarchical clustering algorithm
that uses representative points, in Section 3. In Section 4,
we discuss issues related to sampling, partitioning, outlier
handling and labeling in CURE. Finally, in Section 5, we
present the results of our experiments which support our
claims about CURE’s clustering ability and execution times.
Concluding remarks are made in Section 6.

75

Data C!)[Draw random sample) C$(Partition sample
j”$(

Partially cluster partitions

-3

(2 [Label datain disk](Il (Cluster partial clusters

Figure 4: Overview of CURE

Eliminate outliers

2 Related Work

In recent years, a number of clustering algorithms for large
data.bases have been proposed [NH94, ZRL96, EKSX96]. In
[NH94], the authors propose a partitional clustering method
for large databases which is based on randomized search.
Each cluster is represented by its medoid, the most centrally
located point in the cluster, and the objective is to find the
,$ best medoids that optimize the criterion function. The
authors reduce this problem to that of graph search by rep-
resenting each set of k: medoids as a node in the graph, two
nodes being adjacent if they have k - 1 medoids in com-
mon. Initially, an arbitrary node is set to be the current
node and a fixed number of iterations are performed. In
each iteration, a random neighbor of the current node is
set to be the current node if it results in better clustering.
The computation of the criterion function for the random
neighbor requires the entire database to be examined. It
is experimentally shown that CLARANS outperforms the
traditional k-medoid algorithms. However, CLARANS may
require several passes over the database, the runtime cost
of which could be prohibitive for large databases. Further-
more, like other partitional clustering algorithms, it could
converge to a local optimum.

In [EKX95], the authors use the R*-tree[SRF87, BKSSSO,
Sam891 to improve the I/O efficiency of CLARANS on large
databases by (1) drawing samples from leaf pages to reduce
the number of data points (since data points are packed in
leaf nodes based on spatial locality, a sample point in the
leaf page can be a good representative point), and (2) focus-
ing on relevant points when evaluating the “goodness” of a
neighbor.

Since multiple I/O scans of the data points is a bottle-
neck for existing clustering algorithms, in (ZRLSG], the au-
thors present a clustering method named BIRCH whose I/O
complexity is a little more than one scan of the data. BIRCH
first pre-clusters the data into the maximum possible and
finest possible subclusters that can fit in main-memory. For
the pre-clustering phase, BIRCH employs a CF-tree which
is a balanced tree structure similar to the B-tree and R-tree
family[Sam89]. After pre-clustering, BIRCH treats each of
the subcluster summaries as representative points, and runs
a well-known approximation algorithm from [Ols93], which
is an agglomerative hierarchical clustering algorithm.

BIRCH and CLARANS work well for convex or spherical
clusters of uniform size. However, they are unsuitable when
clusters have different sizes (see Figure l), or when clus-
ters are non-spherical (see Figure 2). For clustering such
arbitrary shaped collections of points (e.g., ellipsoid, spiral,
cylindrical), a density-based algorithm called DBSCAN was
proposed in [EKSXSG]. DBSCAN requires the user to spec-
ify two parameters that are used to define minimum density
for clustering ~~ the radius Eps of the neighborhood of a point
and the minimum number of points MinPts in the neighbor-
hood. Clusters are then found by starting from an arbitrary
point, and if its neighborhood satisfies the minimum density,

including the points in its neighborhood into the cluster.
The process is then repeated for the newly added points.

While DBSCAN can find clusters with arbitrary shapes,
it suffers from a number of problems. DBSCAN is very sen-
sitive to the parameters Eps and MinPts, which in turn, are
difficult to determine. Furthermore, DBSCAN also suffers
from the robustness problems that plague the all-points hier-
archical clustering algorithm - in case there is a dense string
of points connecting two clusters, DBSCAN could end up
merging the two clusters. Also, DBSCAN does not perform
any sort of preclustering and executes directly on the entire
database. As a result, for large databases, DBSCAN could
incur substantial I/O costs. Finally, with density-based al-
gorithms, using random sampling to reduce the input size
may not be feasible - the reason for this is that unless sample
sizes are large, there could be substantial variations in the
density of points within each cluster in the random sample.

3 Hierarchical Clustering Algorithm

In this section, we present CURE’s hierarchical clustering
algorithm whose salient features are: (1) the clustering al-
gorithm can recognize arbitrarily shaped clusters (e.g., el-
lipsoidal), (2) the algorithm is robust to the presence of
outliers, and (3) the algorithm has linear storage require-
ments and time complexity of O(n’) for low-dimensional
data. The n data points input to the algorithm are either
a sample drawn randomly from the original data points, or
a subset of it if partitioning is employed. An analysis of
issues related to the size of the random sample and number
of partitions is presented in Section 4.

3.1 Intuition and Overview

The clustering algorithm starts with each input point as
a separate cluster, and at each successive step merges the
closest pair of clusters. In order to compute the distance
between a pair of clusters, for each cluster, c representative
points are stored. These are determined by first choosing c
well scattered points within the cluster, and then shrinking
them toward the mean of the cluster by a fraction a’. The
distance between two clusters is then the distance between
the closest pair of representative points - one belonging to
each of the two clusters. Thus, only the representative points
of a cluster are used to compute its distance from other
clusters.

The c representative points attempt to capture the phys-
ical shape and geometry of the cluster. Furthermore, shrink-
ing the scattered points toward the mean by a factor cy gets
rid of surface abnormalities and mitigates the effects of out-
liers. The reason for this is that outliers typically will be
further away from the cluster center, and as a result, the
shrinking would cause outliers to move more toward the cen-
ter while the remaining representative points would experi-
ence minimal shifts. The larger movements in the outliers
would thus reduce their ability to cause the wrong clusters to

76

procedure cluster(S, Ic)
begin
1. T := buildkd-tree(S)
2. Q := build-heap(S)
3. while size(Q) > Ic do {
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

u := extractmin(Q)
v := uclosest
delete(Q, w)
w := merge(u, w)
deleterep(T, u); deleterep(T, v); insert-rep@‘, w)
w.closest := x /” x is an arbitrary cluster in Q */
for each x E Q do {

if dist(w,x) < dist(w, wclosest)
wclosest := z

if zclosest is either u or v {
if dist(z, xclosest) < dist(x, w)

z.closest := closest-cluster(T, Z, dist(z, w))
else

z.closest := w
relocate(Q, Z)

I
else if dist(z, z.closest) > dist(z, w) {

z.c1osest := w
relocate(Q, x)

>
1

26.
end

insert(Q, w)

j

Figure 5: Clustering algorithm

be merged. The parameter ~1 can also be used to control the
shapes of clusters. A smaller value of CY shrinks the scattered
points very little and thus favors elongated clusters. On the
other hand, with larger values of a, the scattered points get
located closer to the mean, and clusters tend to be more
compact.

3.2 Clustering Algorithm

In this subsection, we describe the details of our cluster-
ing algorithm (see Figure 5). The input parameters to our
algorithm are the input data set S containing n points in d-
dimensional space and the desired number of clusters k. As
we mentioned earlier, starting with the individual points as
individual clusters, at each step the closest pair of clusters
is merged to form a new cluster. The process is repeated
until there are only k remaining clusters.

Data Structures: With every cluster is stored all the points
in the cluster. Also, for each cluster U, u.mean and u.rep
store the mean of the points in the cluster and the set of c
representative points for the cluster, respectively. For a pair
of points p, q, dist(p,q) denotes the distance between the
points. This distance could be any of the L, metrics like LI
(“manhattan”) or Lz (“euclidean”) metrics. Alternatively,
nonmetric similarity functions can also be used. The dis-
tance between two clusters u and u can then be defined as

dist(,u, II) =
peu.r~,i$~.repdist(p’ ‘)

For every cluster U, we keep track of the cluster closest to it
in u.closest.

procedure merge(u, u)
begin
1. w:=nUv

IUlflUl
3. tmpSet := 0
4. for i := 1 to c do {
5. maxDist := 0
6. foreach point p in cluster w do {
7. ifi=l
8. minDist := dist(p, w.mean)
9. else
10. minDist := min{dist(p, q) : q E tmpSet}
11. if (minDist 2 maxDist){
12. maxDist := minDist
13. maxPoint := p
14. 1
15. }
16. tmpSet := tmpSet U {maxPoint}
17. }
18. foreach point p in tmpSet do
19. w.rep := w.rep U {p + cw*(w.mean-p) }
20. return w
end

Figure 6: Procedure for merging clusters

The algorithm makes extensive use of two data struc-
tures - a heap[CLRSO] and a k-d tree[Sam90]. Furthermore,
corresponding to every cluster, there exists a single entry in
the heap - the entries for the various clusters u are arranged
in the heap in the increasing order of the distances between
u and uclosest. The second data structure is a k-d tree that
stores the representative points for every cluster. The k-d
tree is a data structure for efficiently storing and retriev-
ing multi-dimensional point data. It is a binary search tree
with the distinction that a different key value is tested at
each level of the tree to determine the branch to traverse
further. For example, for two dimensional data points, the
first dimension of the point is tested at even levels (assum-
ing the root node is level 0) while the second dimension is
tested at odd levels. When a pair of clusters is merged, the
k-d tree is used to compute the closest cluster for clusters
that may previously have had one of the merged clusters as
the closest cluster.

Clustering procedure: Initially, for each cluster u, the set
of representative points w..rep contains only the point in
the cluster. Thus, in Step 1, all input data points are
inserted into the k-d tree. The procedure buildheap (in
Step 2) treats each input point as a separate cluster, com-
putes uclosest for each cluster u and then inserts each clus-
ter into the heap (note that the clusters are arranged in the
increasing order of distances between u and wclosest).

Once the heap Q and tree T are initialized, in each it-
eration of the while-loop, until only k clusters remain, the
closest pair of clusters is merged. The cluster u at the top
of the heap Q is the cluster for which u and uxlosest are
the closest pair of clusters. Thus, for each step of the while-
loop, extractmin (in Step 4) extracts the top element u in
Q and also deletes u from Q. The merge procedure (see
Figure 6) is then used to merge the closest pair of clusters
u and u, and to compute new representative points for the
new merged cluster w which are subsequently inserted into

77

T (in Step 8). The points in cluster w are simply the union
of the points in the two clusters u and w that were merged.
The merge procedure, in the for-loop (Steps 4-17), first iter-
atively selects c well-scattered points. In the first iteration,
the point farthest from the mean is chosen as the first scat-
tered point. In each subsequent iteration, a point from the
cluster w is chosen that is farthest from the previously cho-
sen scattered points. The points are then shrunk toward the
mean by a fraction Q in Step 19 of the merge procedure.

For the merged cluster w, since the set of representative
points for it could have changed (a new set of representative
points is computed for it), we need to compute its distance
to every other cluster and set w.closest to the cluster closest
to it (see Steps 11 and 12 of the cluster procedure). Simi-
larly, for a different cluster z in Q, z.closest may change and
z may need to be relocated in Q (depending on the distance
between z and zclosest). A brute-force method for deter-
mining the closest cluster to z is to compute its distance
with every other cluster (including w). However, this would
require O(n) steps for each cluster in Q, and could be com-
putationally expensive and inefficient. Instead, we observe
that the expensive computation of determining the closest
cluster is not required for every cluster IC. For the few cases
that it is required, we use T to determine this efficiently in
O(log n) steps per case. We can classify the clusters in Q
into two groups. The first group of clusters are those who
had either 2~ or v as the closest cluster before u and 21 were
merged. The remaining clusters in Q constitute the second
group. For a cluster x in the first group, if the distance to w
is smaller than its distance to the previously closest cluster
(say n), then all we have to do is simply set w to be the
closest cluster (see Step 17). The reason for this is that we
know that the distance between x and every other cluster
is greater than the distance between z and 1~. The problem
arises when the distance between x and w is larger than the
distance between x and u. In this case, any of the other clus-
ters could become the new closest cluster to x. The proce-
dure closest-cluster (in Step 15) uses the tree T to determine
the closest cluster to cluster 2. For every point p in xrep,
T is used to determine the nearest neighbor to p that is not
in z.rep. From among the nearest neighbors, the one that is
closest to one of x’s representative points is determined and
the cluster containing it is returned as the closest cluster to
x. Since we are not interested in clusters whose distance
from z is more than dist(z,w), we pass this as a parame-
ter to closest-cluster which uses it to make the search for
nearest neighbors more ef%icient. Processing a cluster z in
the second group is much simpler ~ z.closest already stores
the closest cluster to 2 from among existing clusters (except
w). Thus, if the distance between x and w is smaller than
x’s distance to it’s previously closest cluster, x.closest, then
w becomes the closest cluster to x (see Step 21); otherwise,
nothing needs to be done. In case z.closest for a cluster z is
updated, then since the distance between Z-C and its closest
cluster may have changed, x may need to be relocated in
the heap Q (see Steps 18 and 22).

An improved merge procedure: In the merge procedure,
the overhead of choosing representative points for the merged
cluster can be reduced as follows. The merge procedure, in
the outer for-loop (Step 4), chooses c scattered points from
among all the points in the merged cluster w. Instead, sup-
pose we selected the c scattered points for w from the 2c
scattered points for the two clusters ‘u. and u being merged
(the original scattered points for clusters 1~ and 2) can be
obtained by unshrinking their representative points by 0).

Then, since at most 2c points, instead of O(n) points, need
to be examined every time a scattered point is chosen, the
complexity of the merge procedure reduces to O(1). Fur-
thermore, since the scattered points for w are chosen from
the original scattered points for clusters u and v, they can
be expected to be fairly well spread out.

3.3 Time and Space Complexity

The worst-case time complexity of our clustering algorithm
can be shown to be O(n2 logn). In [GRS97], we show that
when the dimensionality of data points is small, the time
complexity further reduces to O(n2). Since both the heap
and the /c-d tree require linear space, it follows that the space
complexity of our algorithm is O(n).

4 Enhancements for Large Data Sets

Most hierarchical clustering algorithms, including the one
presented in the previous subsection, cannot be directly ap-
plied to large data sets due to their quadratic time complex-
ity with respect to the input size. In this section, we present
enhancements and optimizations that enable CURE to han-
dle large data sets. We also address the issue of outliers and
propose schemes to eliminate them.

4.1 Random Sampling

In order to handle large data sets, we need an effective mech-
anism for reducing the size of the input to CURE’s cluster-
ing algorithm. One approach to achieving this is via random
sampling - the key idea is to apply CURE’s clustering algo-
rithm to a random sample drawn from the data set rather
than the entire data set. Typically, the random sample will
fit in main-memory and will be much smaller than the orig-
inal data set. Consequently, significant improvements in
execution times for CURE can be realized. Also, random
sampling can improve the quality of clustering since it has
the desirable effect of filtering outiiers.

Efficient algorithms for drawing a sample randomly from
data in a file in one pass and using constant space are pro-
posed in [Vit85]. As a result, we do not discuss sampling in
any further detail, and assume that we employ one of the
well-known algorithms for generating the random sample.
Also, our experience has been that generally, the overhead
of generating a random sample is very small compared to the
time for performing clustering on the sample (the random
sampling algorithm typically takes less than two seconds to
sample a few thousand points from a file containing hundred
thousand or more points).

Of course, one can argue that the reduction in input size
due to sampling has an associated cost. Since we do not con-
sider the entire data set, information about certain clusters
may be missing in the input. As a result, our clustering algo-
rithms may miss out certain clusters or incorrectly identify
certain clusters. Even though random sampling does have
this tradeoff between accuracy and efficiency, our experi-
mental results indicate that for most of the data sets that we
considered, with moderate sized random samples, we were
able to obtain very good clusters. In addition, we can use
chernoff bounds to analytically derive values for sample sizes
for which the probability of missing clusters is low.

We are interested in answering the following question:
what should the size s of the random sample be so that the
probability of missing clusters is low ? One assumption that
we will make is that the probability of missing a cluster u

78

is low if the sample contains at least flu] points from the
sample, where 0 5 f 5 1. This is a reasonable assumption
to make since clusters will usually be densely packed and
a subset of the points in the cluster is all that is required
for clustering. Furthermore, the value of f depends on the
cluster density as well as the intercluster separation - the
more well-separated and the more dense clusters become,
the smaller is the fraction of the points from each cluster
that we need for clustering. Chernoff bounds [MR95] can be
used to prove the following theorem.

Theorem 4.1: For o. cluster IL, if the sample size s satisfies

s L .frv + fi log(i) + ; a d
(log(+))’ + 2flul log($) (1)

then the probability that the sample contains fewer than flui
points belonging to cluster IL is less than 6, 0 5 6 5 1. m

Proof: See [GRS97]. u

Thus, based on the above equation, we conclude that for
the sample to contain at least flu] points belonging to clus-
ter ‘u. (with high probability), we need the sample to contain
more than a fraction f of the total number of points - which
seems intuitive. Also, suppose 2~~;~ is the smallest cluster
that we are interested in, and snLln is the result of substi-
tuting]umzn] for]u] in the right hand side of Equation (1).
It is easy to observe that Equation (1) holds for s = smzn
and all I$ 2]~~mzn]. Thus, with a sample of size smzn, we
can guarantee that with a high probability, 1 - 6, the sam-
ple contains at least flu] points from an arbitrary cluster ‘1~.
Also, assuming that there are k clusters, with a sample size
of Sml.n, the probability of selecting fewer than flu] points
from any one of the clusters u is bounded above by lc6.

4.2 Partitioning for Speedup

As the separation between clusters decreases and as clus-
ters become less densely packed, samples of larger sizes are
required to distinguish them. However, as the input size
n grows, the computation that needs to be performed by
CURE’s clustering algorithm could end up being fairly sub-
stantial due to the O(n2 log n) time complexity. In this sub-
section, we propose a simple partitioning scheme for speed-
ing up CURE when input sizes become large.

The basic idea is to partition the sample space into p
partitions, each of size %. We then partially cluster each
partition until the final number of clusters in each partition
reduces to 5 for some constant q > 1. Alternatively, we
could stop merging clusters in a partition if the distance be-
tween the closest pair of clusters to be merged next increases
above a certain threshold. Once we have generated $ clus-
ters for each partition, we then run a second clustering pass
on the s partial clusters for all the partitions (that resulted
from the first pass).

The idea of partially clustering each partition achieves
a sort of yeclustering - schemes for which were also pro-
posed in [ZRL96]. The preclustering algorithm in [ZRL96]
is incremental and scans the entire data set. Each successive
data point becomes part of the closest existing cluster if it
is within some threshold distance r from it - else, it forms
a new cluster. Thus, while [ZRL96] applies an incremen-
tal and approximate clustering algorithm to all the points,
CURE uses it’s hierarchical clustering algorithm only on the
points in a partition. In some abstract sense, CURE’s parti-
tioning scheme behaves like a sieve working in a bottom-up

fashion and filtering out individual points in favor of partial
clusters that are then processed during the second pass.

The advantage of partitioning the input in the above
mentioned fashion is that we can reduce execution times
by a factor of approximately 5 + 5. The reason for
this is that the complexity of clustering any one partition
is O(<(4=“) log F) since the number of points per parti-
tion i,” z &d the number of merges that need to be per-

formed for the number of clusters to reduce to & is F(y).
Since there are p such partitions, the complexity of the first
pass becomes 0($(y) log $). The time complexity of

clustering the : clusters in the second pass is 0($ log i).
Thus, the complexity of CURE’s partitioning algorithm is
o($(+og; + $log5), which corresponds to an im-

provement factor of approximately * + $ over clustering
without partitioning.

An important point to note is that, in the first pass, the
closest points in each partition are merged only until the
final number of clusters reduces to 2. By ensuring that $ is
sufficiently large compared to the number of desired clusters,
k, we can ensure that even though each partition contains
fewer points from each cluster, the closest points merged in
each partition generally belong to the same cluster and do
not span clusters. Thus, we can ensure that partitioning
does not adversely impact clustering quality. Consequently,
the best values for p and q are those that maximize the
improvement factor 5 + -$ while ensuring that E is at
least 2 or 3 times k.

The partitioning scheme can also be employed to ensure
that the input set to the clustering algorithm is always in
main-memory even though the random sample itself may not
fit in memory. If the partition size is chosen to be smaller
than the main-memory size, then the input points for clus-
tering during the first pass are always main-memory resi-
dent. The problem is with the second pass since the size of
the input is the size of the random sample itself. The reason
for this is that for every cluster input to the second cluster-
ing pass, we store all the points in the cluster. Clearly, this
is unnecessary, since our clustering algorithm only relies on
the representative points for each cluster. Furthermore, the
improved merge procedure in Section 3 only uses representa-
tive points of the previous clusters when computing the new
representative points for the merged cluster. Thus, by stor-
ing only the representative points for each cluster input to
the second pass, we can reduce the input size for the second
clustering pass and ensure that it fits in main-memory.

4.3 Labeling Data on Disk

Since the input to CURE’s clustering algorithm is a set of
randomly sampled points from the original data set, the fi-
nal k clusters involve only a subset of the entire set of points.
In CURE, the algorithm for assigning the appropriate clus-
ter labels to the remaining data points employs a fraction
of randomly selected representative points for each of the
final k clusters. Each data point is assigned to the cluster
containing the representative point closest to it.

Note that approximating every cluster with multiple points
instead a single centroid as is done in [ZRL96], enables
CURE to, in the final phase, correctly distribute the data
points when clusters are non-spherical or non-uniform. The
final labeling phase of [ZRLSG], since it employs only the cen-
troids of the clusters for partitioning the remaining points,

79

has a tendency to split clusters when they have non-spherical
shapes or non-uniform sizes (since the space defined by a
single centroid is a sphere).

4.4 Handling Outliers

Any data set almost always contains o&hers. These do not
belong to any of the clusters and are typically defined to be
points of non agglomerative behavior. That is, the neighbor-
hoods of outliers are generally sparse compared to points in
clusters, and the distance of an outlier to the nearest cluster
is comparatively higher than the distances among points in
bon&de clusters themselves.

Every clustering method needs mechanisms to eliminate
outliers. In CURE, outliers are dealt with at multiple steps.
First, random sampling filters out a majority of the outliers.
Furthermore, the few outlicrs that actually make it into the
random sample are distributed all over the sample space.
Thus, random sampling further isolates outliers.

In agglomerative hierarchical clustering, initially each
point is a separate cluster. Clustering then proceeds by
merging closest points first. What this suggests is that out-
liers, due to their larger distances from other points, tend to
merge with other points less and typically grow at a much
slower rate than actual clusters. Thus, the number of points
in a collection of outliers is typically much less than the num-
ber in a cluster.

This leads us to a scheme of outlier elimination that pro-
ceeds in two phases. In the first phase, the clusters which are
growing very slowly are identified and eliminated as outliers.
This is achieved by proceeding with the clustering for some
time until the number of clusters decreases below a certain
fraction of the initial number of clusters. At this time, we
classify clusters with very few points (e.g., 1 or 2) as out-
liers. The choice of a value for the fraction of initial clusters
at which outlier elimination gets triggered is important. A
very high value for the fraction could result in a number of
cluster points being incorrectly eliminated - on the other
hand, with an extremely low value, outliers may get merged
into proper clusters before the elimination can kick in. An
appropriate value for the fraction, obviously, is dependent
on the data set. For most data sets we considered, a value
of around i performed well.

The first phase of outlier elimination is rendered ineffec-
tive if a number of outliers get sampled in close vicinity -
this is possible in a randomized algorithm albeit with low
probability. In this case, the outliers merge together pre-
venting their elimination, and we require a second level of
pruning. The second phase occurs toward the end. Usually,
the last few steps of a clustering are the most important
ones, because the granularity of the clusters is very high,
and a single mistake could have grave consequences. Conse-
quently, the second phase of outlier elimination is necessary
for good clustering. From our earlier discussion, it is easy to
observe that outliers form very small clusters. As a result,
we can easily identify such small groups and eliminate them
when there are very few clusters remaining, typically in the
order of k, the actual number of clusters desired. We have
found the above two-phase approach to outlier elimination
to work very well in practice.

5 Experimental Results

In this section, we study the performance of CURE and
demonstrate its effectiveness for clustering compared to BIRCH

and MST’ (minimum spanning tree). From our experimen-
tal results, we establish that

BIRCH fails to identify clusters with non-spherical shapes
(e.g., elongated) or wide variances in size.

MST is better at clustering arbitrary shapes, but is
very sensitive to outliers.

CURE can discover clusters with interesting shapes
and is less sensitive (than MST) to outliers.

Sampling and partitioning, together, constitute an ef-
fective scheme for preclustering - they reduce the input
size for large data sets without sacrificing the quality
of clustering.

The execution time of CURE is low in practice.

Sampling and our outlier removal algorithm do a good
job at filtering outliers from data sets.

Our final labeling phase labels the data residing on
disk correctly even when clusters are non-spherical.

In our experiments, in addition to CURE, we consider
BIRCH and MST. We first show that, for data sets contain-
ing elongated or big and small clusters, both BIRCH and
MST fail to detect the clusters while CURE discovers them
with appropriate parameter settings. We then focus on ana-
lyzing the sensitivity of CURE to parameters like the shrink
factor Q: and the random sample size s. Finally, we com-
pare the execution times of BIRCH and CURE on a data
set from [ZRL96], and present the results of our scale-up
experiments with CURE. In all of our experiments, we use
euclidean distance as the distance metric. We performed
experiments using a Sun Ultra-2/200 machine with 512 MB
of RAM and running Solaris 2.5.

Due to lack of space, we do not report all our experi-
mental results - these can be found in [GRS97]. Also, the
clusters in the figures in this section were generated using
our labeling algorithm and visualizer. Our visualizer assigns
a unique color to each cluster’.

5.1 Algorithms

BIRCH: We used the implementation of BIRCH provided
to us by the authors of [ZRL96]. The implementation per-
forms preclustering and then uses a centroid-based hierar-
chical clustering algorithm with time and space complexity
that is quadratic in the number of points after preclustering.
We set parameter values to the default values suggested in
[ZRL96]. For example, we set the page size to 1024 bytes
and the input size to the hierarchical clustering algorithm
after the preclustering phase to 1000. The memory used for
preclustering was set to be about 5% of dataset size.

CURE: Our version of CURE is based on the clustering
algorithm described in Section 3, that uses representative
points with shrinking towards the mean. As described at the
end of Section 3, when two clusters are merged in each step
of the algorithm, representative points for the new merged
cluster are selected from the ones for the two original clus-
ters rather than all points in the merged cluster. This im-
provement speeds up execution times for CURE without ad-
versely impacting the quality of clustering. In addition, we

‘Clustering using MST is the saxnc as the all-points approach de-
scribed in Section 1, that is, hierarchical clustering using d,,, as the
distance measure.

‘The figures in this paper were originally produced in color. These
can be found in [GRS97].

80

r Symbol Meaning Default Value Range
s Sample Size 2500 500 - 5000
c Number of Representatives in Cluster 10 1 - 50
P Number of Partitions 1 1 - 50
4 Reducing Factor for Each Partition 3 -
a Shrink Factor 0.3 0 - 1.0

Table 1: Parameters

Number of Points Shape of Clusters Number of Clusters
Data Set 1 100000 Big and Small Circles, Ellipsoids 5
Data Set 2 100000 Circles of Equal Sizes 100

Table 2: Data Sets

also employ random sampling, partitioning, outlier removal
and labeling as described in Section 4. Our implementa-
tion makes use of the k-d tree and heap data structures.
Thus, our implementation requires linear space and has a
quadratic time complexity in the size of the input for lower
dimensional data.

The partitioning constant q (introduced in Section 4.2)
was set to 3. That is, we continue clustering in each partition
until the number of clusters remaining is l/3 of the number
of points initially in the partition. We found that, for some
of the data sets we considered, when q exceeds 3, points
belonging to different clusters are merged, thus negatively
impacting the clustering quality. Also we handle outliers
as follows. First, at the end of partially clustering each
partition, clusters containing only one point are considered
outliers, and eliminated. Then, as the number of clusters
approaches k, we again remove outliers - this time, the ones
containing as many as 5 points. Finally, in almost all of
our experiments, the random sample size was chosen to be
about 2.5% of the initial data set size. Table 1 shows the
parameters for our algorithm, along with their default values
and the range of values for which WC conducted experiments.

MST: When LY = 0 and the number of representative
points c is a large number, CURE reduces to the MST
method. Thus, instead of implementing the MST algorithm,
we simply use CURE with the above parameter settings for
a and c. This suffices for our purposes since we are primar-
ily interested in performing qualitative measurements using
MST.

5.2 Data sets

We experimented with four data sets containing points in
two dimensions. Details of these experiments can be found
in [GRS97]. Due to the lack of space, we report here the
results with only two data sets whose geometric shape is as
illustrated in Figure 7. The number of points in each data
set is also described in Table 2. Data set 1 contains one
big and two small circles that traditional partitional and
hierarchical clustering algorithms, including BIRCH, fail to
find. The data set also contains two ellipsoids which are con-
nected by a chain of outliers. In addition, the data set has
random outliers scattered in the entire space. The purpose
of having outliers in the data set is to compare the sensitiv-
ity of CURE and MST to outliers. Data set 2 is identical
to one of the data sets used for the experiments in [ZRLSG].
It consists of 100 clusters with centers arranged in a grid
pattern and data points in each cluster following a normal
distribution with mean at the cluster center (a more detailed
description of the data set can be found in [ZRL96]). We

81

show that CURE not only correctly clusters this data set,
but also that its execution times on the data set are much
smaller than BIRCH.

5.3 Quality of Clustering

We run the three algorithms on Data set 1 to compare them
with respect to the quality of clustering. Figure 8 shows the
clusters found by the three algorithms for Data set 1. As
expected, since BIRCH uses a centroid-based hierarchical
clustering algorithm for clustering the preclustered points,
it cannot distinguish between the big and small clusters. It
splits the larger cluster while merging the two smaller clus-
ters adjacent to it. In contrast, the MST algorithm merges
the two ellipsoids because it cannot handle the chain of out-
hers connecting them. CURE successfully discovers the clus-
ters in Data set 1 with the default parameter settings in Ta-
ble 1, that is, s = 2500, c = 10, cy = 0.3 and p = 1. The
moderate shrinking toward the mean by a factor of 0.3 en-
ables CURE to be less sensitive to outliers without splitting
the large and elongated clusters.

5.4 Sensitivity to Parameters

In this subsection, we perform a sensitivity analysis for CURE
with respect to the parameters (Y, c, s and p. We use Data
set 1 for our study. Furthermore, when a single parameter
is varied, the default settings in Table 1 are used for the
remaining parameters.

Shrink Factor CY: Figure 9 shows the clusters found by
CURE when cy is varied from 0.1 to 0.9. The results, when
cx = 1 and (Y = 0, are similar to BIRCH and MST, respec-
tively. These were presented in the previous subsection and
thus, we do not present the results for these values of (Y. As
the figures illustrate, when (Y is 0.1, the scattered points are
shrunk very little and thus CURE degenerates to the MST
algorithm which merges the two ellipsoids. CURE behaves
similar to traditional centroid-based hierarchical algorithms
for values of (Y between 0.8 and 1 since the representative
points end up close to the center of the cluster. However, for
the entire range of cr values from 0.2 to 0.7, CURE always
finds the right clusters. Thus, we can conclude that 0.2-
0.7 is a good range of values for cy to identify non-spherical
clusters while dampening the effects of outliers.

Number of Representative Points c: We ran CURE while
the number of representative points are varied from 1 to 100.
For smaller values of c, we found that the quality of clus-
tering suffered. For instance, when c = 5, the big cluster
is split. This is because a small number of representative

(a) Data set ,l

(a) BIRCH

Figure 7: Data sets

(b) MST METHOD (c) CURE

Figure 8

points do not adequately capture the geometry of clusters.
However, for values of c greater than 10, CURE always found
right clusters. In order to illustrate the effectiveness of the
representative points in capturing the geometry of clusters,
we plot, in Figure 10, the representatives for clusters at the
end of clustering. The circular dot is the center of clusters
and the representative points are connected by lines. As
the figure illustrates, the representative points take shapes
of clusters. Also, Figure 10(b) explains why the big clus-
ter is split when we choose only 5 representative points per
cluster. The reason is that the distance between the closest
representative points belonging to the two subclusters of the
large cluster becomes fairly large when c is 5.

Number of Partitions p: We next varied the number of par-
titions from 1 to 100. With as many as 50 partitions, CURE
always discovered the desired clusters. However, when we
divide the sample into as many as 100 partitions, the qual-
ity of clustering suffers due to the fact that each partition
does not contain enough points for each cluster. Thus, the
relative distances between points in a cluster become large
compared to the distances between points in different clus-
ters - the result is that points belonging to different clusters
are merged.

There is a correlation between the number of partitions
p and the extent to which each partition is clustered as de-
termined by q (a partition is clustered until the clusters re-
maining are 1 of the original partition size). In order to
preserve the integrity of clustering, as q increases, partition

Data set 1

sizes must increase and thus, p must decrease. This is be-
cause with smaller partition sizes, clustering each partition
to a larger degree could result in points being merged across
clusters (since each partition contains fewer points from each
cluster). In general, the number of partitions must be cho-
sen such that & is fairly large compared to k (e.g., at least
2 or 3 times k).

Random Sample Size s: We ran CURE on Data set 1 with
random sample sizes ranging from 500 upto 5000. For sam-
ple sizes up to 2000, the clusters found were of poor quality.
However, from 2500 sample points and above (2.5% of the
data set size), CURE always correctly identified the clusters.

5.5 Comparison of Execution time to BIRCH

The goal of our experiment in this subsection is to demon-
strate that using the combination of random sampling and
partitioning to reduce the input size as is done by CURE
can result in lower execution times than the preclustering
scheme employed by BIRCH for the same purpose. We run
both BIRCH and CURE on Data set 2 - this is the data
set that centroid-based algorithms, in general, and BIRCH,
in particular, can cluster correctly since it contains com-
pact clusters with similar sizes. CURE, too, finds the right
clusters with a random sample size of 2500, o = 1 (which
reduces CURE to a centroid-based algorithm), one represen-
tative for each cluster (that is, the centroid), and as many
as 5 partitions.

82

(a) a = 0.1

? 120
8
s. 100

if 80 i=

(a) c = 2

(b) cy = 0.2 - 0.7 (c) cy = 0.8 - 0.9

Figure 9: Shrink factor toward centroid

(b) c = 5 (c) c = 10

Figure 10: Representatives of clusters

BIRCH --
CURE (p = 1) -----x---
CURE (P = ‘4 *...
CURE(P=5) a-.

_I

200000 300000 400000 500000
Number of Points

Figure 11: Comparison to BIRCH

Figure 11 illustrates the performance of BIRCH and CURE
as the number of data points is increased from 100000 to
500000. The number of clusters or their geometry is not
altered - thus, each cluster becomes more dense as the num-
ber of points increases. For CURE, we consider three values
for the number of partitions: 1, 2 and 5, in order to show
the effectiveness of partitioning. The execution times do
not include the time for the final labeling phase since these

are approximately the same for BIRCH and CURE, both
of which utilize only the cluster centroid for the purpose of
labeling.

As the graphs demonstrate, CURE’s execution times are
always lower than BIRCH’s, In addition, partitioning fur-
ther improves our running times by more than 50%. Finally,
as the number of points is increased, execution times for
CURE increase very little since the sample size stays at 2500,
and the only additional cost incurred by CURE is that of
sampling from a larger data set. In contrast, the executions
times for BIRCH’s preclustering algorithm increases much
more rapidly with increasing data set size. This is because
BIRCH scans the entire database and uses all the points in
the data set for preclustering. Thus, the above results con-
firm that our proposed random sampling and partitioning
algorithm are very efficient compared to the preclustering
technique used in BIRCH.

5.6 Scale-up Experiments

The goal of the scale-up experiments is to determine the ef-
fects of the random sample size s, number of representatives
c, number of partitions p and the number of dimensions on
execution times. However, due to the lack of space, we only
report our results when the random sample size is varied for
Data set 1. The experimental results for varying number of
representatives, partitions and dimensions can be found in
[GRS97] (CURE took less than a minute to cluster points

83

P=l -
p = * x . . -
p = 5 ..*

-500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Sample Points

Figure 12: Scale-up experiments

with dimensionality as high as 40 - thus, CURE can comfort-
ably handle high-dimensional data). In our running times,
we do not include the time for the final labeling phase.

Random Sample Size: In Figure 12, we plot the execution
time for CURE as the sample size is increased from 500 to
5000. The graphs confirm that the computational complex-
ity of CUR.E is quadratic with respect to the sample size.

6 Concluding Remarks [MRSS]

In this paper, we addressed problems with traditional clus-
tering algorithms which either favor clusters with spherical
shapes and similar sizes, or are very fragile in the presence
of outliers. We proposed a clustering method called CURE.
CURE utilizes multiple representative points for each clus-
ter that are generated by selecting well scattered points from
the cluster and then shrinking them toward the center of the
cluster by a specified fraction. This enables CURE to adjust
well to the geometry of clusters having non-spherical shapes
and wide variances in size. To handle large databases, CURE
employs a combination of random sampling and partitioning
that allows it to handle large data sets efficiently. Ran-
dom sampling, coupled with outlier handling techniques,
also makes it possible for CURE to filter outliers contained
in the data set effectively. Furthermore, the labeling algo-
rithm in CURE uses multiple random representative points
for each cluster to assign data points on disk. This enables
it to correctly label points even when the shapes of clus-
ters are non-spherical and the sizes of clusters vary. For a
random sample size of 3, the time complexity of CURE is
0(s2) for low-dimensional data and the space complexity is
linear in s. To study the effectiveness of CURE for clus-
tering large data sets, we conducted extensive experiments.
Our results confirm that the quality of clusters produced
by CURE is much better than those found by existing al-
gorithms. Furthermore, they demonstrate that CURE not
only outperforms existing algorithms but also scales well for
large databases without sacrificing clustering quality.

[NH941

[Ols93]

[Sam891

[SamSO]

[SRF87]

[Vit85]

[ZRL96]

the support of Yesook Shim, it would have been impossible
to complete this work.

References

[BKSSSO]

[CLRSO]

[EKSX96]

[EKX95]

[GRS97]

[JD88]

N. Beckmann, H.-P. Kriegei, R. Schneider, and
B. Seeger. The R*-tree: an efficient and robust ac-
cess method for points and rectangles. In Proc. of
ACM SIGMOD, pages 322-331, Atlantic City, NJ,
May 1990.

Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rivest. Introduction to Algorithms. The
MIT Press, Massachusetts, 1990.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and
Xiaowei Xu. A density-based algorithm for discovering
clusters in large spatial database with noise. In I&‘1
Conference on Knowledge Discovery in Databases and
Data Mining (KDD-96), Portland, Oregon, August
1996.

Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu.
A database interface for clustering in large spatial
databases. In Int’l Conference on Knowledge Discov-
ery in Databases and Data Mining (KDD-95), Mon-
treal, Canada, August 1995.

Sudipto Guha, R. Rastogi, and K. Shim. CURE: A
clustering algorithm for large databases. Technical re-
port, Bell Laboratories, Murray Hill, 1997.

Anil K. Jain and Richard C. Dubes. Algorithms for
Clustering Data. Prentice Hall, Englewood Cliffs, New
Jersey, 1988.

R. Motwani and P. Raghavan. Randombed Algo-
rithms. Cambridge University Press, 1995.

Raymond T. Ng and Jiawei Han. Efficient and effective
clustering methods for spatial data mining. In Proc.
of the VLDB Conference, Santiago, Chile, September
1994.

Clark F. Olson. Parallel algorithms for hierarchical
clustering. Technical report, University of California
at Berkeley, December 1993.

H. Samet. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, 1989.

Hanan Samet. The Design and Analysis of Spatial
Data Structures. Addison-Wesley Publishing Com-
pany, Inc., New York, 1990.

T. Sellis, N. Roussopoulos, and C. Faioutsos. The R+
tree: a dynamic index for multi-dimensional objects.
In Proc. 13th Int’l Conference on VLDB, pages 507~-
518, England, 1987.

Jeff Vitter. Random sampling with a reservoir. ACM
Transactions on Mathematical Software, 11(1):37-57,
1985.

Tian Zhang, Raghu Ramakrishnan, and Miron Livny.
Birch: An efficient data clustering method for very
large databases. In Proceedings of the ACM SIGMOD
Conference on Management of Data, pages 103-114,
Montreal, Canada, June 1996.

Acknowledgments

We would like to thank Narain Gehani, Hank Korth, Rajeev
Motwani and Avi Silberschatz for their encouragement and
for their comments on earlier drafts of this paper. Without

84

