
Mining Quantitative Association Rules in Large Relational

Tables

Ramakrishnan Srikant” Rakesh Agrawal

IBM Almaden Research Center IBM Almaden Research Center

650 Harry Road, San Jose, CA 95120 650 Harry Road, San Jose, CA 95120

Abstract

We introduce the problem of mining association rules in

large relational tables containing both quantitative and

categorical attributes. An example of such an association

might be “ 10% of married people between age 50 and 60 have

at least 2 cars”. We deal with quantitative attributes by fine-

partitioning the values of the attribute and then combining

adjacent partitions as necessary. We introduce measures of

partial completeness which quantify the information lost due

to partitioning. A direct application of this technique can

generate too many similar rules. We tackle this problem

by using a “greater-than-expected-value” interest measure

to identify the int cresting rules in the output. We give

an algorithm for mining such quantitative association rules.

Finally, we describe the results of using this approach on a

real-life dat aset.

1 Introduction

Data mining, also known as knowledge discovery in

databases, has been recognized as a new area for

database research. The problem of discovering asso-

czatzon rules was introduced in [AIS93]. Given a set of

transactions, where each transaction is a set of items,

an association rule is an expression of the from X + Y,

where X and Y are sets of items. An example of an

association rule is: “3070 of transactions that contain

beer also contain diapers; 2% of all transactions contain

both of these items”. Here 30% is called the confidence

of the rule, and 2% the support of the rule. The problem

is to find all association rules that satisfy user-specified

minimum support and minimum confidence constraints.

Conceptually, this problem can be viewed as finding

associations between the “l” values in a relational

table where all the attributes are boolean. The

* Also, Department of Computer Science, University of

Wisconsin, Madison.

Permission to make digitahhard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or mmmercial advantage, the cmpynght notice, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

SIGMOD ’96 6/96 Montreal, Canada
01996 ACM 0-89791 -794-4/9610006 ..,$3.50

table has an attribute corresponding to each item

and a record corresponding to each transaction. The

value of an attribute for a given record is “ 1“ if the

item corresponding to the attribute is present in the

transaction corresponding to the record, “O” else. In

the rest of the paper, we refer to this problem as the

Boolean Association Rules problem.

Relational tables in most business and scientific

domains have richer attribute types. Attributes can

be quantitative (e.g. age, income) or categorical (e.g.

zip code, make of car). Boolean attributes can be

considered a special case of categorical attributes.

In this paper, we define the problem of mining associ-

ation rules over quantitative and categorical attributes

in large relational tables and present techniques for dis-

covering such rules. We refer to this mining problem as

the Quantitative Association Rules problem. We

give a formal statement of the problem in Section 2. For

illustration, Figure 1 shows a People table with three

non-key attributes. Age and NumCars are quantitative

attributes, whereas Married is a categorical attribute.

A quantitative association rule present in this table is:

(Age:

1.1

30..39) and (Married: Ye~) + (NumCars: 2).

Mapping the Quantitative Association

Rules Problem into the Boolean

Association Rules Problem

Let us examine whether the Quantitative Association

Rules problem can be mapped to the Boolean Asso-

ciation Rules problem. If all attributes are categori-

cal or the quantitative attributes have only a few val-

ues, this mapping is straightforward. Conceptually, in-

stead of having just one field in the table for each at-

tribute, we have as many fields as the number of at-

tribute values. The value of a boolean field correspond-

ing to (attrzbutel, valuel) would be “1” if attribute had

valuel in the original record, and “O” otherwise. If the

domain of values for a quantitative approach is large, an

obvious approach will be to first partition the values into

intervals and then map each (at tribute, interval) pair to

a boolean attribute. We can now use any algorithm for

finding Boolean Association Rules (e.g. [AS94]) to find

People

‘ RecordID Age Married NumCars

100 2.3 No 1

200 25 Yes 1

300 29 No o

400 34 Yes 2

500 38 Yes 2

(minimum support = 40%, minimum confidence = 50%)

Rules (Sample) Support Confidence

(Age: 30..39) and (Married: Yes) + (NumCars: 2) 40% 100%

(NumCars: O. .1) + (Married: No) 40% 66.6%

Figure 1: Example of Quantitative Association Rules

quantitative association rules.

Figure 2 shows this mapping for the non-key at-

tributes of the People table given in Figure 1. Age

is partitioned into two intervals: 20..29 and 30..39.

The categorical attribute, Married, has two boolean at-

tributes ‘(Married: Yes” and “Married: No”. Since the

number of values for NumCars is small, NumCars is

not partitioned into intervals; each value is mapped to

a boolean field. Record 100, which had (Age: 23) now

has “Age: 20..29” equal to “l”, “Age: 30..39” equal to

“O”, etc.

Mapping Woes. There are two problems with this

simple approach when applied to quantitative at-

tributes:

“ManSup”. If the number of intervals for a quan-

titative attribute (or values, if the attribute is not

partitioned) is large, the support for any single in-

terval can be low. Hence, without using larger in-

tervals, some rules involving this attribute may not

be found because they lack minimum support.

“MinConf”. There is some information lost when-

ever we partition values into intervals. Some rules

may have minimum confidence only when an item in

the antecedent consists of a single value (or a small

interval). This information loss increases as the in-

terval sizes become larger.

For example, in Figure 2, the rule “(NumCars: O)

+ (Married: No)” has 1007o confidence. But if

we had partitioned the attribute NumCars into

intervals such that O and 1 cars end up in the same

partition, then the closest rule is “(NumCars: O.. 1)

* (Married: No)”, which only has 66.670 confidence.

There is a “catch-22” situation created by these two

problems – if the intervals are too large, some rules may

not have minimum confidence; if they are too small,

some rules may not have minimum support.

Breaking the logjam. To break the above catch-22

situation, we can consider all possible continuous ranges

over the values of the quantitative attribute, or over the

partitioned intervals. The “ “MinSup” problem now dis-

appears since we can combine adj scent intervals/values.

The “MinConf” problem is still present; however, the in-

formation loss can be reduced by increasing the number

of intervals, without encountering the “MinSup” prob-

lem.

Unfortunately, increasing the number of intervals

while simultaneously combining adjacent intervals in-

troduces two new problems:

●

●

“Exec Time”. If a quantitative attribute has n values

(or intervals), there are on average 0(n2) ranges

that include a specific value or interval. Hence the

number of items per record blows up, which will blow

up the execution time.

“ManyRules”. If a value (or interval) of a quan-

titative attribute has minimum support, so will any

range containing this value/interval. Thus, the num-

ber of rules blows up. Many of these rules will not

be interesting (as we will see later).

There is a tradeoff between faster execution time with

fewer intervals (mitigating ‘{ExecTime”) and reducing

information loss with more intervals (mitigating “Min-

Conf”). We can reduce the information loss by increas-

ing the number of intervals, at the cost of increasing the

execution time and potentially generating many unin-

teresting rules (“ManyRules” problem).

It is not meaningful to combine categorical attribute

values unless unless a taxonomy (M-U hierarchy) is

present on the attribute. In this case, the taxonomy

can be used to implicitly combine values of a categorical

attribute (see [SA95], [HF95]). Using a taxonomy in this

manner is somewhat similar to considering ranges over

quantitative attributes.

2

RecID Age: 20..29 Age: 30..39 Married: Yes Married: No NumCars: O NumCars: 1 NumCars: 2

100 1 0 0 1 0 1 0

200 1 0 1 0 0 1 0

300 1 0 0 1 1 0 0

400 0 1 1 0 0 0 1

500 0 1 1 0 0 0 1

Figure 2: Mapping to Boolean Association Rules Problem

1.2 Our Approach

We consider ranges over adjacent values/intervals of

quantitative attributes to avoid the “MinSup” problem.

To mitigate the “ExecTime” problem, we restrict

the extent to which adjacent values/intervals may be

combined by introducing a user-specified “maximum

support” parameter; we stop combining intervals if their

combined support exceeds this value. However, any

single interval/value whose support exceeds maximum

support is still considered.

But how do we decide whether to partition a quantita-

tive attribute or not? And how many partitions should

there be in case we do decide to partition? We intro-

duce a parttal completeness measure in Section 3 that

gives a handle on the information lost by partitioning

and helps make these decisions.

To address the “ManyRules” problem, we give an

znterest measuTe in Section 4. The interest measure is

based on deviation from expectation and helps prune

out uninteresting rules. This measure is an extension of

the interest-measure introduced in [SA95].

We give the algorithm for discovering quantitative

association rules in Section 5. This algorithm shares

the basic structure of the algorithm for finding boolean

association rules given in [AS94]. However, to yield a

fast implementation, the computational details of how

candidates are generated and how their supports are

counted are new.

We present our experience with this solution on a

real-life dataset in Section 6.

1.3 Related Work

Since the introduction of the (Boolean) Association

Rules problem in [AIS93], there has been considerable

work on designing algorithms for mining such rules

[AS94] [HS95] [MTV94] [SON95] [PCY95]. This work

was subsequently extended to finding association rules

when there is a taxonomy on the items in [SA95] [HF95].

Related work also includes [PS9 1], where quantitative

rules of the from z = qn + y = qg are discovered. How-

ever, the antecedent and consequent are constrained to

be a single (attribute, value) pair. There are suggestions

about extending this to rules where the antecedent is

of the from 1 < z <, u. This is done by partitioning

the quantitative attributes into intervals; however, the

intervals are not combined. The algorithm in [PS91]

is fairly straightforward. To find the rules comprising

(A = a) as the antecedent, where a is a specific value

of the attribute A, one pass over the data is made and

each record is hashed by values of A. Each hash cell

keeps a running summary of values of other attributes

for the records with the same A value. The summary

for (A = a) is used to derive rules implied by (A = a)

at the end of the pass. To find rules for different at-

tributes, the algorithm is run once on each attribute.

Thus if we are interested in finding all rules, we must

find these summaries for all combinations of attributes,

which is exponentially large.

2 Problem Statement and

Decomposition

We now give a formal statement of the problem of

mining Quantitative Association Rules and introduce

some terminology.

We use a simple device to treat categorical and quan-

titative attributes uniformly. For categorical attributes,

the values of the attribute are mapped to a set of con-

secutive integers. For quantitative attributes that are

not partitioned into intervals, the values are mapped to

consecutive integers such that the order of the values is

preserved. If a quantitative attribute is partitioned into

intervals, the intervals are mapped to consecutive inte-

gers, such that the order of the intervals is preserved.

These mappings let us treat a database record as a set

of (attribute, integer value) pairs, without loss of gen-

erality.

Now, let Z= {ii, iz, . . ., im} be a set of literals, called

attributes. Let P denote the set of positive integers.

Let Iv denote the set Z x P. A pair (x, v) E Zv

denotes the attribute z, with the associated value v.

Let & denote the set {(x,l, u) ● 1 x P x P I 1 <

u, if z is quantitative; 1 = u, if z is categorical }. Thus,

a triple (z, 1, u) c ZR denotes either a quantitative at-

tribute z with a value in the interval [1, u], or a cate-

gorical attribute z with a value 1. We will refer to this

triple as an ztem. For any X ~ 1~, let attrdndes(X)

denote the set {z I (z, 1, u) c X}.

Note that with the above definition, only values

are associated with categorical attributes, while both

values and ranges may be associated with quantitative

attributes. In other words, values of categorical

3

attributes are not combined.

Let D be a set of records, where each record R

is a set of attribute values such that R ~ Zv. We

assume that each attribute occurs at most once in a

record. We say that a record R supports X ~ ZR, if

V(z,l, u) c X (~(s, q) E R such that 1< q < u).

A quantitative assocxataon rule is an implication of

the form X + Y, where X C ZR, Y C Zn, and

attributes(X) n attributes(Y) = @ The rule X + Y

holds in the record set D with confidence c if c% of

records in D that support X also support Y. The rule

X + Y has support s in the record set D if s70 of records

in D support X U Y.

Given a set of records D, the problem of mining

quantitative association rules is to find all quantitative

association rules that have support and confidence

greater than the user-specified minimum support (called

mmsup) and minimum confidence (called mmcon~)

respectively. Note that the fact that items in a rule

can be categorical or quantitative has been hidden in

the definition of an association rule.

Notation Recall that an ttem is a triple that repre-

sents either a categorical attribute with its value, or

a quantitative attribute with its range. (The value of

a quantitative attribute can be represented as a range

where the upper and lower limits are the same.) We use

the term itemset to represent a set of items. The sup-

port of an itemset X c Zn is simply the percentage of

records in V that support X. We use the term frequent

ttemset to represent an itemset with minimum support.

Let Pr(X) denote the probability that all the items

in X ~ Zx are supported by a given record. Then

support(X + Y) = Pr(X U Y) and conjldence(X + Y)

= Pr(Y [X). (Note that Pr(X U Y) is the probability

that all the items in X U Y are present in the record.)

We call ~ a generaizzataon of X (and X a speczalazatton

of ~) if attributes(X) = attributes(~) and Yx G

attributes(X) [(~, 1, u) c X A (z, 1’, u’) E ~ + 1’ <

1< u < u’]. For example, the itemset { (Age: 30..39),

(Married: Yes) } is a generalization of { (Age: 30..35),

(Married: Yes) }.

2.1 Problem Decomposition

We solve the problem of discovering quantitative asso-

ciation rules in five steps:

1. Determine the number of partitions for each quanti-

tative attribute. (See Section 3.)

2. For categorical attributes, map the values of the at-

tribute to a set of consecutive integers. For quantita-

tive attributes that are not partitioned into intervals,

the values are mapped to consecutive integers such

that the order of the values is preserved. If a quan-

titative attribute is partitioned into intervals, the

3.

4.

5.

intervals are mapped to consecutive integers, such

that the order of the intervals is preserved. From

this point, the algorithm only sees values (or ranges

over values) for quantitative attributes. That these

values may represent intervals is transparent to the

algorithm.

Find the support for each value of both quantitative

and categorical attributes. Additionally, for quan-

titative attributes, adjacent values are combined as

long as their support is less than the user-specified

max support. We now know all ranges and val-

ues with minimum support for each quantitative at-

tribute, as well as all values with minimum support

for each categorical attribute. These form the set of

all frequent items.

Next, find all sets of items whose support is greater

than the user-specified minimum support. These are

the frequent ttemsets. (See Section 5.)

Use the frequent itemsets to generate association

rules. The general idea is that if, say, ABCD and

Al? are frequent itemsets, then we can determine if

the rule All + CD holds by computing the ratio

conf = support (ABCD)/support (All). If conf ~

mmconf, then the rule holds. (The rule will have

minimum support because ABCD is frequent.) We

use the algorithm in [AS94] to generate rules.

Determine the interesting rules in the output, (See

Section 4.)

Example Consider the “People” table shown in Fig-

ure 3a. There are two quantitative attributes, Age and

NumCars. Assume that in Step 1, we decided to parti-

tion Age into 4 intervals, as shown in Figure 3b. Con-

ceptually, the table now looks as shown in Figure 3c.

After mapping the intervals to consecutive integers, us-

ing the mapping in Figure 3d, the table looks as shown

in Figure 3e. Assuming minimum support of 40% and

minimum confidence of 5070, Figure 3f shows some of

the frequent itemsets, and Figure 3g some of the rules.

We have replaced mapping numbers with the values in

the original table in these two figures. Notice that the

item (Age: 20. .29) corresponds to a combination of the

intervals 20..24 and 25..29, etc. We have not shown the

step of determining the interesting rules in this example.

3 Partitioning Quantitative Attributes

In this section, we consider when we should partition

the values of quantitative attributes into intervals, and

how many partitions there should be. First, we present

a measure of partial completeness which gives a handle

on the amount of information lost by partitioning.

We then show that equi-depth partitioning minimizes

the number of intervals required to satisfy this partial

4

Minimum Support = 40% = 2 records

Minimum Confidence = 50%

People

RecordID I Age I Married I NumCars

100 23 [No 1

U
(a)

After partitioning Age

RecordID I Age I Married] NumCars]

100 20;24 No o

200 25..29 Yes 1

300 25..29 No 1

400 30..34 Yes 2

500 35..39 Yes 2

(c)

After mapping attributes

RecordID Age Married NumCars

100 1 2 0

200 2 1 1

300 2 2 1

400 3 1 2

500 4 1 2

(e)

Partitions for Age

~

(b)

Mapping Age

mm

wlNO’ 2
(d)

Frequent Itemsets: Sam

Itemset

{ (Age: 20..29)}

{ (Age: 30..39)}

{ (Married: Yes) }

{ (Married: No) }

{ (NumCars: 0..1) }

{ (Age: 30..39), (Married: Yes) }

(f)

Rules: Sample

Rule Support Confidence

(Age: 30..39) and (Married: Yes) + (NumCars: 2) 40% 100%

(Age: 20..29) = (NumCars: 0..1) 60% 66.6%

le

Support

3

2

3

2

3

2

(d

Figure 3: Example of Problem Decomposition

completeness level. Thus equi-depth partitioning is,

in some sense, optimal for this measure of partial

completeness.

The intuition behind the partial completeness mea-

sure is as follows. Let R be the set of rules obtained

by considering all ranges over the raw values of quan-

titative attributes. Let R’ be the set of rules obtained

by considering all ranges over the partitions of quanti-

tative attributes. One way to measure the information

loss when we go from R to R’ is to see for each rule in

R, how “far” the “closest” rule in R’ is. The further

away the closest rule, the greater the loss. By defin-

ing “close” rules to be generalizations, and using the

ratio of the support of the rules as a measure of how

far apart the rules are, we derive the measure of partial

completeness given below.

3.1 Partial Completeness

We first define partial completeness over itemsets rather

than rules, since we can guarantee that a close itemset

will be found whereas we cannot guarantee that a

close rule will be found. We then show that we can

guarantee that a close rule will be found if the minimum

confidence level for R’ is less than that for R by a certain

(computable) amount.

Let C denote the set of all frequent itemsets in V. For

any K > 1, we call P K-complete with respect to C if

5

● VX & C [3~ ~ P such that

(i) ~ is a generalization of X and support(~) <

K x support(X), and

(ii) VY ~ X 21~ ~ ~ such that ~ is a generalization

of Y and support(~) < K x support(Y)].

The first two conditions ensure that ‘P only contains

frequent ltemsets and that we can generate rules from

‘P. The first part of the third condition says that

for any itemset in C, there is a generalization of

that itemset with at most K times the support in

‘P. The second part says that the property that the

generalization has at most -K times the support also

holds for corresponding subsets of attributes in the

itemset and its generalization. Notice that if K = 1,

P becomes identical to C.

For example, assume that in some table, the following

are the frequent itemsets C:

rNumber

1

2

3

4

5

6

7

Itemset

{ (Age: 20..30)}

{ (Age: 20..40)}

{ (Age: 20..50)}

{ (Cars: 1.2)}

{ (Cars: 1..3)}

{ (Age: 20..30), (Cars: 1..2)}

{ (Age. 20..40), (Cars: 1..3)}

Support

5%

6%

8%

5%

6%

4%

5%

The itemsets 2, 3, 5 and 7 would from a 1.5-complete

set, since for any itemset X, either 2, 3, 5 or 7 is a

generalization whose support is at most 1.5 times the

support of X. For instance, itemset 2 is a generalization

of itemset 1, and the support of itemset 2 is 1.2 times

the support of itemset 1. Itemsets 3, 5 and 7 do not

form a 1.5-complete set because for itemset 1, the only

generalization among 3, 5 and 7 is itemset 3, and the

support of 3 is more than 1.5 times the support of 1.

Lemma 1 Let P be a K-complete set w.r. t. C, the

set of all frequent ttemsets. Let %?C be the set of

rules generated from C, for a mmzmum confidence level

minconf. Let ‘RP be the set of rules generated from ‘P

wzth the mznzmum confidence set to minconf/K. Then

for any rule A + B m %?C, there zs a rule ~ + ~ m

7?p such that

● ~ ts a genera lzzatzon of A, ~ as a genera lzzatzon of

B,

● the support of A + B w at most K t~mes the support

of A ~ B, and

● the confidence of ~ + $ w at least l/K tzmes, and

at most K tames the confidence of A d B.

Proof Parts 1 and 2 follow directly from the definition

of K-completeness. We now prove Part 3. Let A ~ B

be a rule in IZC. Then there is an itemset AUB in C: B~

definition of a K-complete @ ,~here is an itemset AU B

in 7 such that (i) support (ALJB) < K x support (AUB),

and (ii) support (~) < K x support(A). T+he confidence
,-. .

of the rule A + B (generated from A U B) is given by

support(~ U B)/support(A). Hence

Supp ort (lu~) support(~u~)
confidence (~ =+ ~) _ support (X) support (AuB)

confidence(A + B) – suPPort(AU~) =
support (,4) m

since both support (iu~j
SUppOrt(AUB)

and _ lie between 1
Supper (A)

and K (inclusive), the confidence of ~ + & must be

between l/K and K times the confidence of A ~ B. ❑

Thus, given a set of frequent itemsets P which is K-

complete w .r.t. the set of all frequent itemsets, the

minimum confidence when generating rules from 7 must

be set to l/K times the desired level to guarantee that

a close rule will be generated.

In the example given earlier, itemsets 2, 3 and 5

form a 1.5-complete set. The rule “(Age: 20..30) ~

(Cars: 1. .2)” has 80% confidence, while the correspond-

ing generalized rule “(Age: 20. .40) > (Cars 1..3)” has

83 .3?70confidence

3.2 Determining the number of Partitions

We first prove some properties of partitioned attributes

(w.r.t. partial completeness), and then use these prop-

erties to decide the number of intervals given the partial

completeness level.

Lemma 2 Conszder a quantttattve attrabute z, and

some real K > 1. Assume we partztzon x znto tnteruals

(called base zntervals) such that foT any base mtemal B,

ezther the support of B M less than minsup x (K – 1)/2

or B conststs of a szngle value. Let P denote the set of

all combmatzons of base mtemals that have mmzmum

suppoTt. Then F’ M K-complete w.r. t, the set of all

ranges over x wzth mmzmum support.

Proo$ Let X be any interval with minimum support,

and X the smallest combination of base intervals which

is a generalization of X (see Figure 4). There are at

most two base intervals, one at each end, which are

only partially spanned by X. Consider either of these

intervals. If X only partially spans this interval, the

interval cannot be just a single value, Hence the support

of this interval, as well as the support of the portion

of the interval not spanned by X, must be less than

mmsup x (K – 1)/2, Thus

support(~) < support(X) + 2 x mmsup x (K–1)/2

< support(X) + support(X) x (K – 1)

(since support (X) > mmsup)

< support(X) x K

6

i
<------------ ----->

I I 1 I I

<---------->
-iG7 x

Interval

Figure 4: Illustration for Lemma 2

Figure 5: Example for Lemma 3

❑

Lemma 3 Consider a set of n quantitative attributes,

and some real K > 1. Assume each quantitative

attribute is partitioned such that for any base interval B,

either the support of B is less than minsup x (K – 1)/(2 x

n) or B consists of a single value. Let P denote the set

of all frequent itemsets over the partitioned attributes.

Then P is K-complete w. r. t the set of all frequent

itemsets (’obtained without partitioning).

Proof The proof is similar to that for Lemma 2.

However, the difference in s~pport between an itemset

X and its generalization X may be 2m times the

support of a single base interval for a single attribute,

where m is the number of quantitative attributes in X.

Since X may have upto n attributes, the support of each

base interval must beat most minsup x (K – 1)/(2 x n),

rather than just minsup x (K – 1)/2 for P to be K-

complete. A similar argument applies to subsets of X.

An illustration of this proof for 2 quantitative at-

tributes is shown in Figure 5. The solid lines correspond

to partitions of the attributes, and the dashed rectangle

corresponds to an itemset X. The shaded areas show

the extra ~rea that must be covered to get its gener-

alization X using partitioned attributes. Each of the 4

shaded areas spans less than a single partition of a single

attribute. (One partition of one attribute corresponds

to a band from one end of the rectangle to another.) ❑

For any given partitioning, we can use Lemma 3

to compute the level of partial completeness for that

partitioning. We first illustrate the procedure for a

single attribute. In this case, we simply find the

partition with highest support among those with more

than one value. Let the support of this partition be s.

Then, to find the partial completeness level K, we use

the formula s = minsup x (K – 1)/2 from Lemma 2

to get K = 1 + 2 x s~minsup. With n attributes, the

formula becomes

2xnxs
K=l+

minsup
(1)

where s is the maximum support for a partition

wit h more than one value, among all the quantitative

attributes. Recall that the lower the level of partial

completeness, the less the information lost. The formula

reflects this: as s decreases, implying more intervals, the

partial completeness level decreases.

Lemma 4 FOT any specijied number of intervals, equi-

depth partitioning minimizes the partial completeness

level.

Proof From Lemma 3, if the support of each base in-

terval is less than minsup x (K – 1)/(2 x n), the partial

completeness level is K. Since the maximum support

of any base interval is minimized with equi-depth par-

titioning, equi-depth partitioning results in the lowest

partial completeness level. ❑

Corollary 1 For a given partial completeness level,

equi-depth partitioning minimizes the number of inter-

vals required to satisfy that partial completeness level.

Given the level of partial completeness desired by

the user, and the minimum support, we can calculate

the number of partitions required (assuming equi-

depth partitioning). From Lemma 3, we know that

to get a partial completeness level K, the support

of any partition with more than one value should be

less than minsup * (K – 1)/(2 x n) where n is the

number of quantitative at tribut es. Ignoring the special

case of partitions that cent ain just one valuel, and

assuming that equi-depth partitioning splits the support

identically, there should be 1/s partitions in order to get

the support of each partition to less than s. Thus we

get

2xn
Number of Intervals =

mx(K–1)

where

n= Number of Quantitative Attributes

m= Minimum Support (as a fraction)

K = Partial Completeness Level

(2)

If there are no rules with more than n’ quantitative

attributes, we can replace n with n’ in the above formula

(see proof of Lemma 3).

4 Interest

A potential problem with combining intervals for quan-

titative attributes is that the number of rules found may

be very large. [ST95] looks at subjective measures of in-

terestingness and suggests that a pattern is interesting if

1While this may overstate the number of partitions required,

it will not increase the partial completeness level.

7

it is unexpected (surprising to the user) and/or action-

able (the user can do something with it). [ST95] also

distinguishes between subjective and objective interest

measures. [PS91] discusses a class of objective interest

measures based on how much the support of a rule devi-

ates from what the support would be if the antecedent

and consequent of the rule were independent.

In this section, we present a “greater-than-expected-

value” interest measure to identify the interesting rules

in the output. This interest measure looks at both

generalizations and specializations of the rule to identify

the interesting rules.

To motivate our interest measure, consider the fol-

lowing rules, where about a quarter of people in the age

group 20..30 are in the age group 20..25.

(Age: 20..30) ~ (Cars: 1..2) (8% sup., 70% conf.)

(Age: 20..25) + (Cars: 1..2) (2% sup., 70% conf.)

The second rule can be considered redundant since

it does not convey any additional information and is

less general than the first rule. Given the first rule,

we expect that the second rule would have the same

confidence as the first and support equal to a quarter

of the support for the first. Even if the confidence of

the second rule was a little different, say 68% or 73%, it

does not convey significantly more information than the

first rule. We try to capture this notion of “interest” by

saying that we only want to find rules whose support

and/or confidence is greater than expected. (The user

can specify whether it should be support and confidence,

or support or confidence.) We now formalize this idea,

after briefly describing related work,

Expected Values. Let J!3P,(5) [Pr(,Z)] denote the

“expected” value of Pr(Z) (that is, the support of Z)

based on Pr(~), where ~ is a generalization of Z, Let

Z be the itemset {(zl, 11, u1), (zm, Jm, Un)} and Z the

set {(zl, lj, u~), . ..)(zm. ~~, ~~)} (where lj < h < ui <

u;). Then we define

E ~,(;) [Pr(Z)] =

Pr((Zl,~l,~l)) ., ~ Pr((zn, ln, Un))
x

pr((zl,lj, ~~)) Pr((’zn lL! ~~)) x “(2)

Similarly, we EP,(; , +, [Pr(Y I X)] denote the “ex-

pected” confidence of the rule X ~ Y based on

the rule ~ + ~, where ~ and ~ are general-

izations of X and Y respectively. Let -Y be the

itemset {(yl, 11, ul), .,(yn, lm, un)} and Y the set

{(~l,~j, ~j) , (Y~,lL,u~)}. Then we define

E ~,(; , ;)[Pr(Y I X)] =

Pr((y~,ll, ul)) x ,x Pr((yn,ln, un)) . .

Pr((y~,lj, u~)) pr((y~,L4J) x ‘r(y ‘ ‘)

1
Support for Values —

‘“Whole” -o---
“Interesting” +

“Decoy” o
“Boring” -X --

It+-....

Attribute x

Figure 6: Example for Interest

A ‘1’entative Interest Measure. We first introduce

a measure similar to the one used in [SA95].

An itemset Z is R-interesting w.r.t an ancestor ~ if

the support of Z is greater than or equal to R times

the expected support based on ,?. A rule X + Y ie

R-interesting w.r.t an ancestor ~ ~ ~ if the support of

the ~ule ~ + Y is R times the expected support based

on X + Y , or the c~nfidence is R times the expected

confidence based on X ~ ~.

Given a set of rules, we call ~ ~ ~ a close a~cesto~

of X q Y if there is no rule X’ ~ YI such that X ~ ~

is an ancestor of X’ ~ Y’ and X’ ~ Y’ is an ancestor

of X ~ Y . A similar definition holds for itemsets,

Given a set of rules S and a minimum interest R, a

rule X + Y is interesting (in S) if it has no ancestors

or it is R-interesting with reepect to its close ancestors

among its interesting ancestors.

Why looking at generalizations is insufficient.

The above definition of interest has the following

problem. Consider a single attribute z with the range

[1, 10], and another categorical attribute y. Assume the

support for the values of x are uniformly distributed.

Let the support for values of z together with y be

as shown in Figure 6. For instance, the support of

((z,5),y) = 11%, and the support for ((z, l),y) =

170. This figure also shows the “average” support

for the itemsets ((z, 1, 10), Y), ((z, 3, 5), Y), ((z, 3,4),Y)

and ((z, 4, 5),y). Clearly, the only ‘[interesting” set

is {(z, 5, 5),y}. However, the interest measure given

above may also find other itemsets “interesting”. For

instance, with an interest level of 2, interval “Decoy”,

{(z, 3, 5),v} would also be considered interesting, as

would {(z, 4, 6),y} and {(z, 5, 7),y}.

If we had the support for each value of z along with y,

it is easy to check that all specializations of an itemset

are also interesting. However, in general, we will not

have this information, since a single value of z together

with y may not have minimum support. We will only

have information about those specializations of x which
(along with y) have minimum support. For instance,
we may only have information about the support for
the subinterval “Interesting” (for interval “Decoy”).

An obvious way to use this information is to check
whether there are any specializations with minimum
support that are not interesting. However, there are
two problem with this approach. First, there may not be
any specializations with minimum support that are not
interesting. This case is true in the example given above
unless the minimum support is less than or equal to 2Y0.
Second, even if there are such specializations, there may
not be any specialization with minimum support that
are int cresting. We do not want to discard the current
itemset unless there is a specialization with minimum
support that is interesting and some part of the current
itemset is not interesting.

An alternative approach is to check whether there
are any specializations that are more interesting than
the itemset, and then subtract the specialization from
the current itemset to see whether or not the difference
is interesting. Notice that the difference need not
have minimum support. Further, if there are no such
specializations, we would want to keep this itemset.
Thus this approach is clearly preferred. We therefore
change the definitions of interest given earlier to reflect
these ideas.

Final Interest Meas~re. An itemset X is R-znter-
estzng with respect to X if the support of X is greater
thanAor equal to R times the expected support based
on X and for any specialization X’ such that X’ has
minimum support and X –-X’ < I&, X – X’ is R-
interesting with respect to X.

Similarl~, a r~le X + Y is R-interesting w.r.t an
ancestor X + Y if the support of the ru~e X ~~ Y
is R times the expected support based on X + Y , or
the confidence is R times the expected confidence based
o-n2A+ ~, and the itemset X U Y is R-interesting w .r.t
XUY.

Note that with the specification of the interest level,
the specification of the minimum confidence parameter
can opt ionall y be dropped. The semantics in that case
will be that we are interested in all those rules that have
interest above the specified interest level.

5 Algorithm

In this section, we describe the algorithm for finding
all frequent itemsets (Step 3 of the problem decompo-
sit ion given in Section 2.1). At this stage, we have al-
ready partitioned quantitative attributes, and crest ed
combinations of intervals of the quantitative attributes
that have minimum support. These combinations, along
with those values of categorical attributes that have
minimum support, form the frequent items.

Starting with the frequent items, we generate all
frequent itemsets using an algorithm based on the
Apriori algorithm for finding boolean association rules
given in [AS94]. The proposed algorithm extends the
candidate generation procedure to add pruning using
the interest measure, and uses a different data struct ure
for counting candidates.

Let k-itemset denote an itemset having k items. Let
Lk represent the set of frequent k-itemsets, and Ck
the set of candidate k-itemsets (potentially frequent
itemsets). The algorithm makes multiple passes over
the database. Each pass consists of two phases. First,
the set of all frequent (k–1)-itemsets, Lk -1, found in the
(k–l)th pass, is used to generate the candidate itemsets
ck. The candidate generation procedure ensures that
ck is a superset of the set of all frequent k-itemsets. The
algorithm now scans the database, For each record, it
determines which of the candidates in ck are contained
in the record and increments their support count. At the
end of the pass, ck is examined to determine which of
the candidates are frequent, yielding Lk. The algorithm
terminates when Lh becomes empty.

We now discuss how to generate candidates and count
their support.

5.1 Candidate Generation

Given Lk -1, the set of all frequent k – l-itemsets, the
candidate generation procedure must return a superset
of the set of all frequent k-itemsets. This procedure has
three parts:

1.

2.

3.

Join Phase. Lk - 1 is joined with itself, the join
condition being that the lexicographically ordered
first k – 2 items are the same, and that the attributes
of the last two items are different. For example, let
L2 consist of the following itemsets:

{ (Married: Yes) (Age: 20..24)}
{ (Married: Yes) (Age: 20..29)}
{ (Married: Yes) (NumCars: 0..1)}
{ (Age: 20..29) (NumCars: 0..1) }

After the join step, C3 will consist of the following
itemsets:

{ (Married: Yes) (Age: 20..24) (NumCars: 0..1) }
{ (Married: Yes) (Age: 20..29) (NumCars: 0..1) }

Subset Prune Phase All itemsets from the join
result which have some (k – 1)-subset that is not
in Lk.. 1 are deleted. Continuing the earlier ex-
ample, the prune step will delete the itemset
{ (Married: Yes) (Age: 20..24) (NumCars: 0..1))-
since its subset { (Age: 20..24) (NumCars: O..1) }
is not in L2.

Interest Prune Phase. If the user specifies an
interest level, and wants only itemsets whose support

and confidence is greater than expected, the interest
measure is used to prune the candidates further.
Lemma 5, given below, says that we can delete
any itemset that contains a quantitative item whose
(fractional) support is greater than I/R, where R
is the interest level. If we delete all items whose
support is greater than l/R at the end of the first
pass, the candidate generation procedure will ensure
that we never generate candidates that contain an
item whose support is more than I/R.

Lemma 5 C~nszder an ztemset X, with a quantitatwe
ztem x. Let X be the generahzatton of X where x is

replaced by the ttem comespondzng to the full range of

attmbute(x). Let the user-specified interest level be R.

If the support of x w greater than l/R, then the actual
support of X cann~t be more than R tames the expected

suppoTt based on X.

Proof The actual supp~ort of X cannot be greater than
the actual supp~rt of X. The expected support of X
w,r.t. ~ is Pr(X) x Pr(z), since Pr(~) equals 1. Thus
the ratio of tJhe actual to the expected ~upport of X is
Pr(X)/(Pr(X) x Pr(z)) = (Pr(X)/Pr(X)) x (1/ Pr(z)).
The first ratio is less than or equal to 1, and the second
ratio is less than R. Hence the ratio of the actual to the
expected support is less than R. D

5.2 Counting Support of Candidates

Whale making a pass, we read one record at a time and
increment the support count of candidates supported by
the record. Thus, given a set of candidate itemsets C
and a record t, we need to find all itemsets in C that
are supported by t.

We partition candidates into groups such that candi-
dates in each group have the same attributes and the
same values for their categorical attributes. We replace
each such group with a single “super-candidate”. Each
“super-candidate” has two parts: (1) the common cate-
gorical attribute values, and (ii) a data structure repre-
senting the set of values of the quantitative attributes.

For example, consider the candidates:

{ (Married: Yes) (Age: 20..24), (NumCars: 0..1) }
{ (Married: Yes} (Age: 20. .29), (NumCars: 1..2) }
{ (Marr~ed: Yes) (Age: 24..29), (NumCars: 2..2) }

These candidates have one categorical attribute, ‘(Mar-
ried”, whose value, “Yes” is the same for all three candi-
dates. Their quantitative attributes, “Age” and “Num-
Cars)’ are also the same. Hence these candidates can
be grouped together into a super-candidate. The cat-
egorical part of the super-candidate contains the item
(Married: Yes). The quantitative part contains the fol-
lowing information.

mAge NumCars
20..24 0..1

20..29 1..2
24..29 2..2

We can now split the problem into two parts:

1

2.

We first find which “super-candidates” are sup-
ported by the categorical attributes in the record.
We re-use a hash-tree data structure described in
[AS94] to reduce the number of super-candidates
that need to be checked for a given record.

Once we know that the categorical attributes of a
‘(super-candidate” are supported by a given record,
we need to find which of the candidates in the
super-candidate are supported. (Recall that while
all candidates in a super-candidate have the same
values for their categorical values, they have different
values for their quantitative attributes.) We discuss
this issue in the rest of this section.

Let a “super-candidate” have n quantitative at-
tributes. The quantitative attributes are fixed for a
given “super-candidate”. Hence the set of values for
the quantitative attributes correspond to a set of n-
dimensional rectangles (each rectangle corresponding
to a candidate in the super-candidate). The values of
the corresponding quantitative attributes in a database
record correspond to a n-dimensional point. Thus the
problem reduces to finding which n-dimensional rectan-
gles contain a given n-dimensional point, for a set of
n-dimensional points. The classic solution to this prob-
lem is to put the rectangles in a R*-tree [BKSS90].

If the number of dimensions is small, and the range of
values in each dimension is also small, there is a faster
solution. Namely, we use a n-dimensional array, where
the number of array cells in the j-th dimension equals
the number of partitions for the attribute corresponding
to the j-th dimension. We use this array to get support
counts for all possible combinations of values of the
quantitative attributes in the super-candidate. The
amount of work done per record is only O(number-of-
dimensions), since we simply index into each dimension
and increment the support count for a single cell. At
the end of the pass over the database, we iterate over
all the cells covered by each of the rectangles and sum
up the support counts.

Using a multi-dimensional array is cheaper than using
an R*-tree, in terms of CPU time. However, as the
number of attributes (dimensions) in a super-candidate
increases, the multi-dimensional array approach will
need a huge amount of memory. Thus there is a tradeoff
between less memory for the R*-tree versus less CPU
time for the multi-dimensional array. We use a heuristic
based on the ratio of the expected memory use of the
R*-tree to that of the multi-dimensional array to decide
which data structure to use.

10

6 Experience with a real-life dataset

We assessed the effectiveness of our approach by ex-
perimenting with a real-life dataset. The data had 7
attributes: 5 quantitative and 2 categorical. The quan-
titative attributes were monthly-income, credit-limit,
current-balance, year-t o-date balance, and year-to-date
interest. The categorical attributes were employee-
category and marital-stat us. There were 500,000
records in the data.

Our experiments were performed on an IBM RS/6000
250 workstation with 128 MB of main memory running
AIX 3.2.5. The data resided in the AIX file system
and was stored on a local 2GB SCSI 3.5” drive, with
measured sequential throughput of about 2 MB/second.

Partial Completeness Level. Figure 7 shows the
number of interesting rules, and the percent of rules
found to be interesting, for different interest levels as the
partial completeness level increases from 1.5 to 5. The
minimum support was set to 20%, minimum confidence
to 25%, and maximum support to 4070. As expected,
the number of interesting rules decreases as the partial
completeness level increases. The percentage of rules
pruned also decreases, indicating that fewer similar rules
are found as the partial completeness level increases and
there are fewer intervals for the quantitative attributes.

Interest Measure. Figure 8 shows the fraction of
rules identified as “interesting” as the interest level was
increased from O (equivalent to not having an interest
measure) to 2. As expected, the percentage of rules
identified as interesting decreases as the interest level
increases.

Scaleup. The running time for the algorithm can be
split into two parts:

(i) Candidate generation. The time for this is indepen-
dent of the number of records, assuming that the
distribution of values in each record is similar.

(ii) Counting support. The time for this is directly pro-
portional to the number of records, again assuming
that the distribution of values in each record is sim-
ilar. When the number of records is large, this time
will dominate the total time.

Thus we would expect the algorithm to have near-linear
scaleup. This is confirmed by Figure 9, which shows the
relative execution time as we increase the number of
input records 10-fold from 50,000 to 500,000, for three
different levels of minimum support.
been normalized with respect to
records, The graph shows that
quite linearly for this dataset.

the
the

The times have
times for 50,000
algorithm scales

1000

100

10

“1,5 2 3
Partial Completeness Level

5

: ~ ~l
“1o

t

Q

D

o! I

1.5 2 3 5
Partial Completeness Level

Figure 7: Changing the Partial Completeness Level

7 Conclusions

We introduced the problem of mining association rules
in large relational tables containing both quantitative
and categorical attributes. We dealt with quantitative
attributes by fine-partitioning the values of the attribute
and then combining adjacent partitions as necessary.
We introduced a measure of partial completeness which
quantifies the information lost due to partitioning. This
measure is used to decide whether or not to partition a
quantitative attribute, and the number of partitions.

A direct application of this technique may generate
too many similar rules. We tackled this problem by
using a “greater-than-expected-value” interest measure
to identify the interesting rules in the output. This
interest measure looks at both generalizations and
specializations of the rule to identify the interesting
rules.

We gave an algorithm for mining such quantitative
association rules. Our experiments on a real-life dataset
indicate that the algorithm scales linearly with the
number of records. They also showed that the interest
measure was effective in identifying the interesting rules.

Future Work:

11

●

●

100 . !2

90

80 -

70 x ,

60
b “,,

x ‘,+
50 ,.,

., ‘“
40

,.,.,

30
x

......
20,.

...
10 -

9
()~

O 0.2 0,4 0.6 0.8 1 1.2 1.4 1,6 1.8 2
Interest Level

Figure 8: Interest Measure

10

9 -

8 -

7

6 -

5

4

3

1
“50 100 200 300 400 500

Number of Records (’000s)

Figure 9: Scale-up : Number of records

We presented a measure of partial completeness

based on the support of the rules. Alternate

measures may be useful for some applications. For

instance, we may generate a partial completeness

measure based on the range of the attributes in the

rules. (For any rule, we will have a generalization

such that the range of each attribute is at most K

times the range of the corresponding attribute in the

original rule.)

Equi-depth partitioning may not work very well on

highly skewed data. It tends to split adjacent values

with high support into separate intervals though

their behavior would typically be similar. It may

be worth exploring the use of clustering algorithms

[JD88] for partitioning, and their relationship to

partial completeness.

Acknowledgment We wish to thank Jeff Naughton

for his comments and suggestions during the early stages

c,f this work.

References

[AIS93]

[AS94]

[BKSS90]

[HF95]

[HS95]

[JD88]

[MTV94]

[PCY95]

[PS91]

[SA95]

[SON95]

[ST95]

Rakesh Agrawal, Tomasz Imielinski, and Arun

Swami. Mining association rules between sets of

items in large databases. In Proc. of the ACM

SIGMOD Conference on Management of Data,

pages 207-216, Washington, D. C., May 1993.

Rakesh Agrawal and Ramakrishnan Srikant. Fast

Algorithms for Mining Association Rules. In

Proc. of the 20th Int’1 Conference on Very Large

Databases, Santiago, Chile, September 1994.

N. Beckmann, H.-P. Kriegel, R. Schneider, and

B. Seeger. The R*-tree: an efficient and robust

access met hod for points and rectangles. In Proc,

of ACM SIGMOD, pages 322–331, Atlantic City,

NJ, May 1990.

J. Han and Y. Fu. Discovery of multiple-

level association rules from large databases. In

Proc. of the 21st Int’1 Conference on Verg Large

Databases, Zurich, Switzerland, September 1995.

Maurice Houtsma and Arun Swami. Set-oriented

mining of association rules. In Int’1 Conference on

Data Engineering, Taipei, Taiwan, March 1995,

A. K. Jain and R. C. Dubes. Algorithms for

clustering data. Prentice Hall, X988.

Heikki Mannila, Harmu Toivonen, and A. Inkeri

Verkamo. Efficient algorithms for discovering

association rules. In KDD-94: AAAI Workshop

on Knowledge Discovery in Databases, pages 181-

192, Seattle, Washington, July 1994.

Jong Soo Park, Ming-Syan Chen, and Philip S.

Yu. An effective hash based algorithm for mining

association rules. In Proc. of the A CM- SIGMOD

Conference on Management of Data, San Jose,

California, May 1995.

G. Piatetsky-Shapiro. Discovery, analysis, and

presentation of strong rules. In G. Piatetsky-

Shapiro and W. J. Frawley, editors, Knowl-

edge Discovery in Databases, pages 229–248.

AAAI/MIT Press, Menlo Park, CA, 1991.

Ramakrishnan Srikant and Rakesh Agrawal. Min-

ing Generalized Association Rules. In Proc. of the

21st Int’1 Conference on Very Large Databases,

Zurich, Switzerland, September 1995.

A. Savasere, E. Omiecinskl, and S. Navathe. An

efficient algorithm for mining association rules in

large databases. In Proc. of the VLDB Confer-

ence, Zurich, Switzerland, September 1995.

Avi Silberschatz and Alexander Tuzhilin. On

Subjective Measures of Interestingness in Knowl-

edge Discovery. In Proc. of the First Int’1 C’onf er-

ence on Knowledge Discovery and Data Mining,

Montreal, Canada, August 1995.

12

	Abstract
	Introduction
	Problem Statement and Decomposition
	Partitioning Quantitative Attributes
	Interest
	Algorithm
	Experience with a real-life dataset
	Conclusions
	References

