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Abstract 

Classification of large datasets is an important 
data mining problem. Many classification algo- 
rithms have been proposed in the literature, but 
studies have shown that so far no algorithm uni- 
formly outperforms all other algorithms in terms 
of quality. In this paper, we present a unifying 
framework for decision tree classifiers that sepa- 
rates the scalability aspects of algorithms for con- 
structing a decision tree from the central features 
that determine the quality of the tree. This generic 
algorithm is easy to instantiate with specific algo- 
rithms from the literature (including C4.5, CART, 
CHAID, FACT, ID3 and extensions, SLIQ, Sprint 
and QUEST). 

In addition to its generality, in that it yields scal- 
able versions of a wide range of classification al- 
gorithms, our approach also offers performance 
improvements of over a factor of five over the 
Sprint algorithm, the fastest scalable classifica- 
tion algorithm proposed previously. In contrast to 
Sprint, however, our generic algorithm requires a 
certain minimum amount of main memory, pro- 
portional to the set of distinct values in a column 
of the input relation. Given current main memory 
costs, this requirement is readily met in most if 
not all workloads. 
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1 Introduction 

Classification is an important data mining problem[AIS93]. 
The input is a database of training records; each record 
has several attributes. Attributes whose underlying domain 
is totally ordered are called ordered attributes, whereas at- 
tributes whose underlying domain is not ordered are called 
categorical attributes. There is one distinguished attribute, 
called class label, which is a categorical attribute with a 
very small domain. (We will denote the elements of the 
domain of the class label attribute as class labels; the se- 
mantics of the term class label will be clear from the con- 
text). The remaining attributes are called predictor at- 
tributes; they are either ordered or categorical in nature. 
The goal of classification is to build a concise model of the 
distribution of the class label in terms of the predictor at- 
tributes. The resulting model is used to assign class labels 
to a database of testing records where the values of the pre- 
dictor attributes are known but the value of the class label 
is unknown. Classification has a wide range of applications 
including scientific experiments, medical diagnosis, fraud 
detection, credit approval, and target marketing. 

Many classification models have been proposed in 
the literature. (For overviews of classification methods 
see [WK91, MST94].) Decision trees are especially at- 
tractive for a data mining environment for three reasons. 
First, due to their intuitive representation, they are easy 
to assimilate by humans [BFOS84]. Second, they can 
be constructed relatively fast compared to other meth- 
ods [MAR96, SAM96]. Last, the accuracy of decision 
tree classifiers is comparable or superior to other mod- 
els [LLS97, Han97]. In this paper, we restrict our attention 
to decision tree classifiers. 

Within the area of decision tree classification, there ex- 
ists a large number of algorithms to construct decision trees 
(also called classification trees; we will use both terms 
interchangeably). Most algorithms in the machine leam- 
ing and statistics community are main memory algorithms, 
even though today’s databases are in general much larger 
than main memory [AIS93]. 

There have been several approaches to dealing with 
large databases. One approach is to discretize each ordered 
attribute and run the algorithm on the discretized data. 



But all discretization methods for classification that take 
the class label into account when discretizing assume that 
the database fits into main memory [Qui93, F193, Maa94, 
DKS95]. Catlett [Cat911 proposed sampling at each node 
of the classification tree, but considers in his studies only 
datasets that could fit in main memory. Methods for parti- 
tioning the dataset such that each subset fits in main mem- 
ory are considered by Chan and Stolfo [CS93a, CS93b]; al- 
though this method enables classification of large datasets 
their studies show that the quality of the resulting decision 
tree is worse than that of a classifier that was constructed 
taking the complete database into account at once. 

In this paper, we present a framework for scaling up 
existing decision tree construction algorithms. This gen- 
eral framework, which we call RainForest for rather whim- 
sical reasons’, closes the gap between the limitations to 
main memory datasets of algorithms in the machine learn- 
ing and statistics literature and the scalability requirements 
of a data mining environment. The main insight, based 
on a careful analysis of the algorithms in the literature, 
is that most (to our knowledge, all) algorithms (includ- 
ing C4.5 [Qui93], CART [BFOS84], CHAID [Mag93], 
FACT [LV88], ID3 and extensions [Qui79, Qui83, Qui86, 
CFIQ88, Fay91], SLIQ and Sprint [MAR96, MRA95, 
SAM961 and QUEST [LS97]) access the data using a com- 
mon pattern, as described in Figure 1. We present data 
access algorithms that scale with the size of the database, 
adapt gracefully to the amount of main memory available, 
and are not restricted to a specific classification algorithm. 
(This aspect of decision tree classification is addressed ex- 
tensively in statistics and machine learning.) Our frame- 
work applied to algorithms in the literature results in a scal- 
able version of the algorithm without modifying the result 
ofthe algorithm. Thus, we do not evaluate the quality of the 
resulting decision tree, which is not affected by our frame- 
work; instead we concentrate on scalability issues. 

The rest of the paper is organized as follows. In Sec- 
tion 2, we formally introduce the problem of decision tree 
classification and describe previous work in the database 
literature. In Section 3, we introduce our framework and 
discuss how it encompasses previous work. In Section 4, 
we present scalable algorithms to construct decision trees, 
and in Section 5 we present results from a detailed perfor- 
mance evaluation. We conclude in Section 6. 

2 Decision tree classifiers 

2.1 Problem definition 

A decision tree T is a model of the data that encodes the 
distribution of the class label in terms of the predictor at- 
tributes. It is a directed, acyclic graph in form of a tree. The 
root of the tree does not have any incoming edges. Every 
other node has exactly one incoming edge and zero or more 
outgoing edges. If a node n has no outgoing edges we call 
n a leaf node, otherwise we call n an internal node. Each 

‘There arc lots of trees to choose from, and they all grow fast in Rain- 
Forest! We also happen to like rainforests. 

leaf node is labeled with one class label; each internal node 
is labeled with one predictor attribute called the splitting at- 
tribute. Each edge e originating from an internal node n has 
a predicate q associated with it where q involves only the 
splitting attribute of n. The set of predicates P on the out- 
going edges of an internal node must be non-overlapping 
and exhaustive. A set of predicates P is non-overlapping 
if the conjunction of any two predicates in P evaluates to 
false. A set of predicates P is exhaustive if the disjunc- 
tion of all predicates in P evaluates to true. We will call 
the set of predicates on the outgoing edges of an internal 
node n the splittingpredicates of n; the combined informa- 
tion of splitting attribute and splitting predicates is called 
the splitting criteria of n and is denoted by cri t(n). 

For an internal node n, let E = {el, e2,. . . , ek} be the 
set of outgoing edges and let & = { 91, q2, . . . , qk} be the 
set of predicates such that edge ei is associated with pred- 
icate qi. Let us define the notion of the family of tuples of 
a node with respect to database D. The family F(r) of the 
root node r of decision tree T is the set of all tuples in D. 
For a non-root node n E T, let p be the parent of n in T 
and let qp+,, be the predicate on the edge ephn fromp to n. 
The family of the node n is the set of tuples F(n) such that 
for each tuple t E F(n), t E F(p) and qp+.,(t) evaluates 
to true. Informally, the family of a node n is the set of 
tuples of the database that follows the path from the root to 
n when being classified by the tree. Each path W from the 
root T to a leaf node n corresponds to a classification rule 
R = P + c, where P is the conjunction of the predicates 
along the edges in W and c is the class label of node n. 

There are two ways to control the size of a classification 
tree. A bottom-up pruning algorithm [MRA95] has two 
phases: In phase one, the growth phase, a very deep tree 
is constructed. In phase two, the pruning phase, this tree 
is cut back to avoid ovetfltting the training data. In a top- 
down pruning algorithm [RS98] the two phases are inter- 
leaved: Stopping criteria are calculated during tree growth 
to inhibit further construction of parts of the tree when ap- 
propriate. In this paper, we will concentrate on the tree 
growth phase, since it is due to its data-intensive nature 
the most time-consuming part of decision tree construc- 
tion [MAR96, SAM96]. Whether the tree is pruned top- 
down or bottom-up is an orthogonal issue. 

2.2 Previous work in the database literature 

Agrawal et al. introduce in [AGI+92] an interval classifier 
that could use database indices to efficiently retrieve por- 
tions of the classified dataset using SQL queries. However, 
the method does not scale to large training sets [SAM96]. 
Fukuda et al. [FMM96] construct decision trees with two- 
dimensional splitting criteria. Although their algorithm can 
produce rules with very high classification accuracy, scal- 
ability was not one of the design goals. In addition, the 
decision tree no longer has the intuitive representation of 
a tree with one-dimensional splits at each node. The deci- 
sion tree classifier in [MAR96], called SLIQ, was designed 
for large databases but uses an in-memory data structure 
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that grows linearly with the number of tuples in the train- 
ing database. This limiting data structure was eliminated 
in [SAM96], which introduced Sprint, a scalable classifier. 

Sprint works for very large datasets and removes all re- 
lationships between main memory and size of the dataset. 
Sprint builds classification trees with binary splits using the 
gini index [BFOS84] to decide the splitting criterion; it 
controls the final quality of the decision tree through an ap- 
plication of the MDL principle [R&39, MRA95]. To decide 
on the splitting attribute at a node n, the algorithm requires 
access to F(n) for each ordered attribute in sorted order. So 
conceptually, for each node n of the decision tree, a sort of 
F(n) for each ordered attribute is required. Sprint avoids 
sorting at each node through the creation of attribute lists. 
The attribute list L, for attribute a is a vertical partition of 
the training database D: For each tuple t E D the entry 
oft into L, consists of the projection oft onto a, the class 
label and t’s record identifier. The attribute lists are cre- 
ated at the beginning of the algorithm and sorted once as a 
preprocessing step. 

During the tree growth phase, whenever an internal node 
n splits, F(n) is distributed among n’s children according 
to cri t(n). Since every tuple is vertically partitioned over 
all attribute lists, each attribute list needs to be distributed 
separately. The distribution of an attribute list is performed 
through a hash-join with the attribute list of the splitting 
attribute; the record identifier, which is duplicated into each 
attribute list, establishes the connection between the parts 
of the tuple. Since during the hash-join each attribute list 
is read and distributed sequentially, the initial sort order of 
the attribute list is preserved. 

In recent work, Morimoto et al. developed algorithms 
for decision tree construction for categorical predictor vari- 
ables with large domains [YFM+98]; the emphasis of this 
work is to improve the quality of the resulting tree. Rastogi 
and Shim developed PUBLIC, a scalable decision tree clas- 
sifier using top-down pruning [RS98]. Since pruning is an 
orthogonal dimension to tree growth, their techniques can 
be easily incorporated into our schema. 

2.3 Discussion 

One can think of Sprint as a prix jIxe all-you-can-eat 
meal in a world-class restaurant. Sprint runs with a min- 
imal amount of main memory and scales to large train- 
ing databases. But it also comes with some drawbacks. 
First, it materializes the attribute lists at each node, possibly 
tripling the size of the database (it is possible to create only 
one attribute list for all categorical attributes together as an 
optimization). Second, there is a large cost to keep the at- 
tribute lists sorted at each node n in the tree: Since the con- 
nection between the vertically separated parts of a tuple can 
only be made through the record identifier, a costly hash- 
join needs to be performed. The size of the hash table is 
proportional to the number of tuples in F(n) and thus can 
be very large. Overall, Sprint pays a significant price for 
its scalability. As we will show in Section 3, some obser- 
vations about the nature of decision tree algorithms enable 

us to speed up Sprint significantly in most cases. To return 
to our restaurant analogy, the techniques in Section 3 allow 
you to sample some RainForest Crunch (TM) ice-cream in 
the restaurant, paying for just what you ordered. 

The emphasis of the research in the machine learning 
and statistics community has been on improving the accu- 
racy of classifiers. Many studies have been performed to 
determine which algorithm has the highest prediction accu- 
racy [SMT91, BU92, DBP93, CM94, MST94]. These stud- 
ies indicate that no algorithm is uniformly most accurate 
over all the datasets studied. (Mehta et al. also show qual- 
ity studies [MRA95, MAR961 which indicate that the ac- 
curacy of the decision tree built by Sprint is not uniformly 
superior.) We have therefore concentrated on developing 
a unifying framework that can be applied to most decision 
tree algorithms, and results in a scalable version of the al- 
gorithm without modifying the result. That is, the scalable 
versions of the algorithms produce exactly the same deci- 
sion tree as ifsuficient main memory were available to run 
the original algorithm on the complete database in main 
memory. To carry our restaurant analogy one (last!) step 
further, the techniques in Section 4 allow you to pick a dif- 
ferent restaurant every day, eat there as little or much as 
you want, and pay only for what you order. 

3 The RainForest Framework 
We first introduce the well-known greedy top-down deci- 
sion tree induction schema. Then we show how this schema 
can be refined to the generic RainForest Tree Induction 
Schema and detail how the separation of scalability issues 
from quality concerns is achieved. Concluding this section, 
we overview the resulting design space for the algorithms 
presented in Section 4. 

Decision tree algorithms build the tree top-down in the 
following way: At the root node r, the database is exam- 
ined and the best splitting criterion cri t(r) is computed. 
Recursively, at a non-root node n, F(n) is examined and 
from it cri t(n) is computed. (This is the well-known 
schema for top-down decision tree induction; for example, 
a specific instance of this schema for binary splits is shown 
in [MAR96]). This schema is shown in Figure 1. 

A thorough examination of the algorithms in the lit- 
erature shows that the greedy schema can be refined to 
the generic RainForest Tree Induction Schema shown in 
Figure 1. Most decision tree algorithms (including C4.5, 
CART, CHAID, FACT, ID3 and extensions, SLIQ, Sprint 
and QUEST) proceed according to this generic schema and 
we do not know of any algorithm in the literature that does 
not adhere to it. In the remainder of the paper, we denote 
by CL a representative decision tree algorithm. 

Note that at a node n, the utility of a predictor attribute 
a as a possible splitting attribute is examined independent 
of the other predictor attributes: The information about the 
class label distribution for each distinct attribute value of a 
is sufficient. We define the AVC-set of a predictor attribute 
a at node n to be the projection of F(n) onto a and the 
class label where counts of the individual class labels are 
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Input: node n, partition D, classification algorithm CL 
Output: decision tree for D rooted at n 

Top-Down Decision Tree Induction Schema: 
BuildTree(Node n, datapartition D, algorithm CC) 
(1) Apply CL to D to find crit(n) 
(2) let k be the number of children of n 
(3) if (k > 0) 
(4) Create k children cl, . . . , ck of n 
(5) Use best split to partition D into D1 , . . . , Dk 
(6) for (i = 1; i 5 k; i++) 
(7) BuildTree(c;, Di) 
(8) endfor 
(9) endif 
RainForest Refinement: 
(la) for each predictor attribute p 
(lb) Call Ct.find-best-partitioning(AVC-set ofp) 
UC) endfor 
(2a) k =CL.decide-splittingxriterion(); 

Figure 1: Tree Induction Schema and Refinement 

aggregated. We define the AVC-group of a node n to be the 
set of all AVC-sets at node n. (The acronym AVC stands 
for Attribute-Value, Classlabel.) Note that the size of the 
AVC-set of a predictor attribute a at node n depends only 
on the number of distinct attribute values of a and the num- 
ber of class labels in F(n). 

The main difference between the greedy top-down 
schema and the subtly refined RainForest Schema is, that 
the latter isolates an important component, the AVC- 
set. The AVC-set allows the separation of scalability is- 
sues of the classification tree construction from the algo- 
rithms to decide on the splitting criterion: Consider the 
main memory requirements at each step of the RainFor- 
est Schema shown in Figure 1. In lines (la)-(lc), the 
AVC-sets of each predictor attribute are needed in main 
memory, one at a time, to be given as argument to pro- 
cedure CL.f ind-best-partitioning. Thus, the total 
main memory required in lines (la)--(lc) is the maxi- 
mum size of any single AVC-set. In addition, Algorithm 
CC stores for each predictor attribute the result of proce- 
dure CC.f ind-best-partitioning as input to the pro- 
cedure CC.decide-splitting-criterion; the size of 
these statistics is negligible. In line (2a), all the statistics 
collected in lines ( 1 a)-( lc) are evaluated together in proce- 
dure CC.decide-splitting-criterion; the main mem- 
ory requirements for this step are minimal. Lines (3x9) 
distribute tuples from one partition to several others; one 
page per open file is needed. 

Following the preceding analysis based on insights from 
the RainForest Schema, we can make the (now rather triv- 
ial) observation that as long as we can find an efficient way 
to construct the AVC-group of node n, we can scale up 
any classification algorithm CC that adheres to the generic 
RainForest Schema. 

Consider the size S, ofthe AVC-set of predictor attribute 
a at a node n. Note that S, is proportional to the number 
of distinct attribute values of attribute a in F(n), and not to 
the size of the family F(n) of n. Thus, for most real-life 

datasets, we expect that the whole AVC-group of the root 
node will fit entirely in main memory, given current mem- 
ory sizes; if not it is highly likely that at least the AVC-set 
of each individual predictor attribute fits in main memory. 

The assumption that the AVC-group of the root node r 
fits in-memory does not imply that the input database fits 
in-memory! The AVC-group of r is not a compressed rep- 
resentation of F(r); F( r ) can not be reconstructed from the 
AVC-group of r. Rather the AVC-group of r contains ag- 
gregated information that is sufficient for decision tree con- 
struction. In Section 5, we calculate example numbers for 
the AVC-group of the root node generated by a synthetic 
data generator introduced by Agrawal et al. in [AK931 
(which was designed to model real-life data). The max- 
imum memory size for the AVC-group of the generated 
datasets is about 16 megabytes. With current memory sizes 
of 64 megabytes for home computers, we believe that in a 
corporate data mining environment the AVC-group of the 
root node will almost always fit in main memory; other- 
wise at least each single AVC-set of the root node will fit 
in-memory. Depending on the amount of main memory 
available, three cases can be distinguished: 

1. The AVC-group of the root node fits in main mem- 
ory. We describe algorithms for this case in Sec- 
tions 4.1,4.2, and 4.3. 

2. Each individual AVC-set of the root node fits in main 
memory, but the AVC-group of the root node does not 
fit in main memory. We describe algorithms for this 
case in Section 4.4. 

3. None of the individual AVC-sets of the root fit in main 
memory. This case is discussed in the full paper. 

In understanding the RainForest family of algorithms, it 
is useful to keep in mind that the following steps are carried 
out for each tree node n, according to the generic schema 
in Figure 1: 

AVC-group Construction: If an AVC-group does not 
already exist when the node n is considered, we must 
read F(n) in order to construct the AVC-group. This 
involves a scan of the input database D or a material- 
ized partition of D that is a superset of F(n). Some- 
times, we need to construct the AVC-group one AVC- 
set at a time. 

Choose Splitting Attribute and Predicate: This step 
uses the decision tree algorithm CC that is being 
scaled using the RainForest framework, to our knowl- 
edge all decision tree algorithms make these choices 
by examining the AVC-sets of the node one by one. 

Partition D Across the Children Nodes: We must 
read the entire dataset and write out all records, par- 
titioning them into child “buckets” according to the 
splitting criterion chosen in the previous step. If there 
is sufficient memory, we can build the AVC-groups for 
one or more children at this time, as an optimization. 
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State of n Precondition Processing Behavior of tuple t 
Send cri t(n) has been computed; n’s children nodes t is sent to a child according to cri t(n) 

are allocated; n is root, or parent of n is in state 
Send 

Fill n is root node, or parent of n is in state Send The AVC-group at n is updated 
Write n is root, or n’s parent is in state Send t is appended to n’s partition 

FillWrite n is root node, or parent of n is in state Send The AVC-group at n is updated by t; t is ap- 
pended to n’s partition 

Undecided No processing takes place 
Dead cri t(n) has been computed; either n does not No processing takes place 

sulit or all children of n are in state Dead 

Figure 2: States and Processing Behavior 
The algorithms that we present in Section 4 differ pri- 

marily in how they utilize additional memory in the third 
step, and how they deal with insufficient memory to hold 
an AVC-group in the first step. 

Figure 2. Whenever a node is created, its state is set to 
Undecided (unless mentioned otherwise), and we will 
call such a node a new node. A node whose state is 
Dead will be called a dead node. 

Comparing the size of the AVC-group of a node n to the 
attribute lists created in Sprint [SAM961 for n, the AVC- 
group is typically much smaller than even a single attribute 
list, because the AVC-set size is proportional to the num- 
ber of distinct values in the columns of D, rather than to the 
number of records in D. Although we outperform Sprint by 
about a factor of five, the primary design goal of the Rain- 
Forest framework was not to outperform Sprint, but rather 
to provide a general framework to scale up a broad range 
of decision-tree classification algorithms from the litera- 
ture. The reason why the techniques used in Sprint do not 
straightforwardly extend to a broader range of algorithms 
is that the data management of Sprint is designed to enable 
efficient sequential access to ordered attributes in sorted or- 
der. Thus, decision tree algorithms that exhibit this access 
pattern (e.g., CART [BFOS84]) can be implemented with 
the data management of Sprint. But other decision tree al- 
gorithms (e.g., ID3 [Qui86] or GID3 [CFIQ88]) that do not 
exhibit a sequential access pattern can not be scaled using 
this approach. 

4 Algorithms 

In this section, we present algorithms for two of the three 
cases listed above. The first three algorithms, RF-Write, 
RF-Read and RF-Hybrid, require that the AVC-group of 
the root node T (and thus the AVC-group of each individ- 
ual node in the tree) fits into main memory; we assume that 
this is the most common case, as discussed in Section 3. 
The remaining algorithm, RF-Vertical, works in the case 
that each single AVC-set of r fits in-memory, but the com- 
plete AVC-group of T does not fit. Since scalability and 
splitting criterion selection are orthogonal in the RainFor- 
est Schema, we do not dwell on any issues dealing with the 
quality of the resulting decision tree. 

In order to describe the following algorithms pre- 
cisely, we introduce the notion of the state of a node; 
possible states are Send, Fill, FillWrite, Write, 
Undecided, and Dead. The state S of a node n deter- 
mines how a tuple is processed at n. A list of the states 
and the preconditions and processing behavior is shown in 

4.1 Algorithm RF-Write 

For Algorithm RF-Write, we assume that the AVC-group of 
the root node r fits into main memory. Algorithm RF-Write 
works as follows: We make one scan over the database and 
construct the AVC-group of r. Algorithm CL is applied 
and Ic children of r are created. An additional scan over the 
database is made, where each tuple t is written into one of 
the k partitions. The algorithm then recurses in turn on each 
partition. In the remainder of this paragraph, we describe 
Algorithm RF-Write in more detail. 

At the beginning, the state of T is set to Fill and one 
scan over the database D is made. Since r is in state Fi 11, 
its AVC-group is constructed during the scan. Algorithm 
CL is called with the AVC-group of r as argument and com- 
putes cri t(r). Assume that CL splits on attribute a into k 
partitions. Algorithm RF-Write allocates k children nodes 
of r, sets the state of r to Send, the state of each child to 
Write, and makes one additional pass over D. Each tuple 
t that is read from D is processed by the tree: Since r is in 
state Send, cri t(r) is applied to t and t is sent to a child 
ct. Since node ct is in state Write, t is appended to et’s 
partition. After the scan, the partition of each child node 
ct consists of F(ct). The algorithm is then applied on each 
partition recursively. 

For each level of the tree, Algorithm RF-Write reads the 
entire database twice and writes the entire database once.2 

4.2 Algorithm RF-Read 

The basic idea behind Algorithm RF-Read is to always 
read the original database instead of writing pa&ions for 
the children nodes. Since at some point all AVC-groups of 
the new nodes will not fit into main memory, we will read 
the original database many times, each time constructing 

*This simple analysis assumes that the tree is balanced. More pre- 
cisely, at a level 1, only those tuples that belong to families of nodes at 
level 1 are read twice and written once. Since there might be dead nodes 
in the tree, the set of tuples processed at level 1 does not necessarily con- 
stitute the whole input database. 
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AVC-groups for an unexamined subset of the new nodes in 
the tree. 

More precisely, in the first step of Algorithm RF-Read, 
the state of the root node r is set to Fill, one scan over 
the database D is made, and cri t(r) is computed. The 
children nodes { ci , cs , . . . , ck} of r are created. Suppose 
that at this point there is enough main memory to hold the 
AVC-groups of all children nodes { ci , cp, . . . , Ck} of r in- 
memory. (We will address the problem of size estimation 
of the AVC-groups in Section 4.5.) In this case, there is no 
need to write out partitions for the ci ‘s as in Algorithm RF- 
Write. Instead, we can in another scan over D construct 
the AVC-groups of all children simultaneously: We set the 
state of r to Send, change the state of each newly allocated 
child ci from Undecided to Fi 11, and build in a second 
scan over D the AVC-groups of the nodes cl, . . . , ck simul- 
taneously in main memory. After the scan of D, Algorithm 
C1: is applied to the in-memory AVC-group of each child 
node ci to decide cri t(c;). If c; splits, its children nodes 
are allocated and its state is set to Send; otherwise ci ‘s state 
is set to Dead. Note that so far we have made only two 
scans over the original database to construct the first two 
levels of the tree. 

We can proceed in the same way for each level of the 
tree, as long as there is sufficient main memory available 
to hold the AVC-groups of all new nodes N at the level. 
Suppose that we arrive at a level L where there is not suf- 
ficient memory to hold all AVC-groups of the new nodes 
in-memory. In this case, we can divide the set of new nodes 
N intogroupsGi,..., Gg,,UGi = N,GinGj = Ofor 
i # j, such that the all AVC-groups of the nodes in a given 
group Gi fit in-memory. Each group is then processed in- 
dividually: the states of the nodes in Gi are changed from 
Undecided to Fill and one scan over the database is 
made to construct their AVC-groups; after the scan, their 
splitting criteria are computed. Once all gL groups for level 
L have been processed, we proceed to the next level of the 
tree. Note that for level L, gL scans over the database D 
were necessary. 

With increasing L, usually the number of nodes at a 
level L of the tree and thus usually the overall main mem- 
ory requirements of the collective AVC-groups of the nodes 
at that level grow. Thus, Algorithm RF-Read makes an in- 
creasing number of scans over the database per level of the 
tree. Therefore it is not efficient for splitting algorithms 
that apply bottom-up pruning (except for the case that the 
families at the pure leaf nodes are very large - and this is 
usually not known in advance). But for splitting algorithms 
that prune the tree top-down [Faygl, RS98], this approach 
might be a viable solution. 

We included Algorithm RF-Read for completeness: it 
marks one end of the design spectrum in the RainForest 
framework and it is one of the two parents of the Algorithm 
RF-Hybrid described in the next section. We do not think 
that it is very important in practice due to its restrictions in 
usability. 

4.3 Algorithm RF-Hybrid 

Combining Algorithm RF-Write and Algorithm RF-Read 
gives rise to Algorithm RF-Hybrid. We first describe a sim- 
ple form of RF-Hybrid; in the next paragraph we will refine 
this version further. RF-Hybrid proceeds exactly like RF- 
Read until a tree level L is reached where all AVC-groups 
of the new nodes N together do not fit any more in main 
memory. At this point, RF-Hybrid switches to RF-Write: 
Algorithm RF-Hybrid creates m partitions and makes a 
scan over the database D to partition D over the m par- 
titions. The algorithm then recurses on each node n E N 
and to complete the subtree rooted at n. This first version 
of RF-Hybrid uses the available memory more efficiently 
than RF-Write and, unlike RF-Read, does not require an in- 
creasing number of scans over the database for lower levels 
of the tree. 

We can improve upon this simple version of Algorithm 
RF-Hybrid using the following observation: Assume that 
we arrive at tree level L where all AVC-groups of the new 
nodes N together do not fit any more in main memory. Al- 
gorithm RF-Hybrid switches from RF-Read to RF-Write, 
but during this partitioning pass, we do not make use of 
the available main memory. (Each tuple is read, processed 
by the tree and written to a partition - no new informa- 
tion concerning the structure of the tree is gained during 
this pass.) We exploit this observation as follows: We se- 
lect a set M c N for which we construct AVC-groups in 
main memory while writing the partitions for the nodes in 
N. After the partitioning pass, Algorithm CC is applied to 
the in-memory AVC-groups of the nodes in it4 and their 
splitting criteria are computed. 

The concurrent construction of AVC-groups for the 
nodes in M has the following advantage. Let n E M 
be a node whose AVC-group has been constructed, and 
consider the recursion of Algorithm RF-Hybrid on n. 
Since crit(n) is already known, we saved the first scan 
over n’s partition: we can immediately proceed to the sec- 
ond scan during which we construct AVC-groups for the 
children of n. Thus, due to the concurrent construction of 
the AVC-groups of the nodes in M, we save for each node 
n E M one scan over n’s partition. 

How do we choose M c N? Since we save for each 
node n E M one scan over F(n), we would like to maxi- 
mize the sum of the sizes of the families of the nodes in M. 
The restricting factor is the size of main memory: For each 
node n E M we have to maintain its AVC-group in main 
memory. We can formulate the problem as follows: Each 
node n E M has an associated benejt (the size of F(n)) 
and an associated cost (the size of its AVC-group which has 
to be maintained in main memory). 

Assume for now that we have estimates of the sizes of 
the AVC-groups of all nodes in N. (We will address the 
problem of size estimation of AVC-groups in Section 4.5.) 
According to the formulation in the preceding paragraph, 
the choice of M is an instance of the knapsack prob- 
lem [GJ79]. An instance of the knapsack problem consists 
of a knapsack capacity and a set of items where each item 
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State of n ( Precondition 1 Processing Behavior of a tuple t 
Fill 1 n is root node, or parent of n 1 The AVC-group at n is updated and the projection oft onto Plarge 

is in state Send and the class label is written to a file 
FillWrite n is root node, or parent of n The AVC-group at n is updated and t is appended to n’s partition; 

is in state Send the projection oft onto Plarge and the class label is written to a 
temoorarv file F 

Figure 3: Description of States with Modified Processing Behavior in Algorithm RF-Vertical 
has an associated cost and benefit. The goal is to find a sub- 
set of the items such that the total cost of the subset does not 
exceed the capacity of the knapsack while maximizing the 
sum of the benefits of the items in the knapsack. The knap- 
sack problem is known to be NP-complete [GJ79]. We de- 
cided to use a modified greedy approximation which finds 
a packing that has at least half the benefit of the optimal 
packing and works well in practice. (We call the greedy 
algorithm modified, because it considers the item with the 
largest benefit separately; this special case is necessary to 
get the stated bound with respect to the optimal solution.) 
The output of the Greedy Algorithm is the subset M of 
the new nodes N such that: (i) We can afford to construct 
the AVC-groups of M in-memory, and (ii) The benefit (the 
number of saved I/O’s) is maximized. 

Note that the Greedy Algorithm only addresses the 
problem of selecting an optimal set M of new nodes N for 
which we can construct AVC sets in-memory. As an exten- 
sion of Algorithm RF-Hybrid, we could consider writing 
partitions for only the nodes in N \ M; we will consider 
this extension in further research. 

4.4 Algorithm RF-Vertical 

Algorithm RF-Vertical is designed for the case that the 
AVC-group of the root node T does not fit in main mem- 
ory, but each individual AVC-set of T fits in-memory. For 
the presentation of RF-Vertical, we assume without loss 
of generality that there are predictor attributes Pzarge = 
{al,..., a,} with very large AVC-sets such that each indi- 
vidual AVC-set fits in main memory, but no two AVC-sets 
of attributes in Pzarge fit in-memory. We denote the remain- 
ing predictor attributes by Psmozz = {a,+~, . . . , a,}; the 
class label is attribute c. We limited the presentation to this 
special scenario for the ease of explanation; our discussion 
can easily be extended to the general case. 

RF-Vertical proceeds similar to RF-Hybrid, but we pro- 
cess predictor attributes a E Pzorge in a special way: For 
each node, we write a temporary file Z from which we can 
reconstruct the AVC-sets of the attributes in Pzarge. Af- 
ter “normal” processing of the attributes a @ Psmazz has 
completed, 2 is read u times and for each a E Pzarge its 
AVC-set is constructed in turn. 

Let n be a node in the tree and let t be a tuple from 
the database I). In Algorithm RF-Vertical, the process- 
ing of a tuple t at a node n has slightly changed for 
some states of n. Assume that n is in state F i 11. Since 
we can not afford to construct n’s complete AVC-group 
in main memory, we only construct the attribute lists for 
predictor attributes Psmazz in-memory. For predictor at- 

tributes in Pzarge, we write a temporary file Z,,, into which 
we insert t’s projection onto Pzarge and the class label. 
Thus, 2, has the schema (a1,u2,. . . ,a,,~). After the 
scan over D is completed, Algorithm C,C is applied to the 
in-memory AVC-groups of the attribute in Psmazz. Al- 
gorithm CC can not yet compute the final splitting crite- 
rion (i.e., procedure Cf..decidesplitting-criterion 
can not be called yet), since the AVC-sets of the attributes 
(3 E Plarge have not yet been examined. Therefore, 
for each predictor attribute a E Pzarse, we make one 
scan over Z,, construct the AVC-set for a and call proce- 
dure CL.f ind-best-partitioning on the AVC-set. Af- 
ter all v attributes have been examined, we call proce- 
dure CC.decide_splitting-criterion to compute the 
final splitting criterion for node n. This slightly modi- 
fied processing behavior of a node for states Fill and 
FillWrite has been summarized in Figure 3. 

In the description above, we concentrated on one pos- 
sibility to construct the AVC-set of the predictor attributes 
P large. In general, there are several possibilities for prepar- 
ing the construction of the AVC-sets of the predictor at- 
tributes Pzarge at a node n. The complete set of options is 
given in the full paper. 

4.5 AVC-Group Size Estimation 

To estimate the size of the AVC-group of new node n, note 
that we can not assume that n’s AVC-group is much smaller 
than the AVC-group of its parent p even though F Cp) might 
be considerably larger than F(n). We estimate the size of 
the AVC-group of a new node n in a very conservative way: 
We estimate it to be the same size as its parent p - except 
for the AVC-set of the splitting attribute a. (If parent p of 
node n splits on a we know the size of a’s AVC-set at node 
n exactly). Even though this approach usually overesti- 
mates the sizes of AVC-groups, it worked very well in prac- 
tice. There are algorithms for the estimation of the number 
of distinct values of an attribute ([ASW87, HNSS95J); we 
intend to explore their use in future research. 

5 Experimental results 
In the machine learning and statistics literature, the two 
main performance measures for classification tree algo- 
rithms are: (i) The quality of the rules of the resulting tree, 
and (ii) The decision tree construction time [LLS97]. The 
generic schema described in Section 3 allows the instan- 
tiation of most (to our knowledge, all) classification tree 
algorithms from the literature without modzBing the result 
ofrhe algorithm. Thus, quality is an orthogonal issue in our 
framework, and we can concentrate solely on decision tree 
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Predictor Attribute 1 Distribution I( Maximum number of entries 1 

1 Overall size of the AVC-group of the root I 2045 129 J 

Figure 4: The sizes of the AVC-sets of Generatorin [AIS93] 
construction time. In the remainder of this section we study 
the performance of the techniques that enable classification 
algorithms to be made scalable. 

5.1 Datasets and Methodology 

The gap between the scalability requirements of real-life 
data mining applications and the sizes of datasets consid- 
ered in the literature is especially visible when looking for 
possible benchmark datasets to evaluate scalability results. 
The largest dataset in the often used Statlog collection of 
training databases [MST941 contains only 57000 records, 
and the largest training dataset considered in [LLS97] has 
4435 tuples. We therefore use the synthetic data genera- 
tor introduced by Agrawal et al. in [AIS93], henceforth re- 
ferred to as Generator. The synthetic data has nine pre- 
dictor attributes as shown in Table 4. Included in the gen- 
erator are classification functions that assign labels to the 
records produced. We selected two of the functions (Func- 
tion 1 and Function 7) from [AIS93] for our performance 
study. Function 1 generates relatively small decision tree 
whereas the trees generated by Function 7 are large. (Note 
that this adheres to the methodology used in the Sprint per- 
formance study [SAM96].) 

Since the feasibility of our framework relies on the 
size of the initial AVC-group, we examined the sizes 
of the AVC-group of the training data sets generated by 
Generator. The overall maximum number of entries in 
the AVC-group of the root node is about 2.1 million, re- 
quiring a maximum memory size of about 17 MB. If we 
partition the predictor attribute house value vertically, the 
main memory requirements to hold the AVC-groups of the 
root node in main memory are reduced to about 11 MB 
(1.35 million entries). The maximal AVC-set sizes of each 
predictor attribute are displayed in Figure 4. The function 
U(z, y) denotes the integer uniform distribution with val- 
ues v : x 5 v _< y. Since we will change the memory 
available to the RainForest algorithms during our experi- 
ments, let us call the number of AVC-set entries that fit 
in-memory the buffer size. So in order to run RF-Write on 
the datasets generated by Generator, we need a buffer 
size of at least 2.1 million entries, whereas RF-Vertical can 
be run with a buffer size of 1.35 million entries. All our 

experiments were performed on a Pentium Pro with a 200 
Mhz processor running Solaris X86 version 2.5.1 with 128 
MB of main memory. All algorithms are written in C++ 
and were compiledusing gee version 2.7.2.1 with the - 03 
compilation option. 

We are interested in the behavior of the RainForest algo- 
rithms for datasets that are larger than main memory, there- 
fore we uniformly stopped tree construction for leaf nodes 
whose family was smaller than 10000 tuples; any clever 
implementation would switch to a main memory algorithm 
at a node n whenever F(n) fits into main memory. 

5.2 Scalability results 

First, we examined the performance of Algorithms RF- 
Write, RF-Hybrid and RF-Vertical as the size of the in- 
put database increases. For Algorithms RF-Write and RF- 
Hybrid, we fixed the size of the AVC-group buffer to 2.5 
million entries; for Algorithm RF-Vertical we fixed the size 
of the AVC-group buffer to 1.8 million entries. Figures 5 
and 6 show the overall running time of the algorithms as 
the number of tuples in the input database increases from 
1000000 to 5000000. (Function 7 constructs very large de- 
cision trees and thus tree growth takes much longer than 
for Function 1.) The running time of all algorithms grows 
nearly linearly with the number of tuples. Algorithm RF- 
Hybrid outperforms both Algorithms RF-Write and RF- 
Vertical in terms of running time; the difference is much 
more pronounced for Function 7. Figures 7 and 8 show the 
number of page accesses during tree construction (assum- 
ing a pagesize of 32 KB). 

In the next four experiments, we investigated how inter- 
nal properties of the AVC-groups of the training database 
influence performance. (We expected that only the size of 
the input database and the buffer size matter which is con- 
firmed by the experiments.) We fixed the size of the in- 
put database to 2000000 tuples and the classification ftmc- 
tion to Function 1. Figure 9 shows the effect of an in- 
crease in the absolute size of the AVC-group in the input 
database while holding the available buffer sizes constant 
at 2.5 million entries for RF-Write and RF-Hybrid and at 
1.8 million entries for RF-Vertical. We varied the size 
of the AVC-group through manipulation of the data gen- 
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erator from 200000 entries (20% of the original size) to 
2000000 entries (original size). For small AVC-group sizes 
(40% and below), the times for RF-Vertical and RF-Hybrid 
are identical. The larger buffer size only shows its effect 
for larger AVC-group-sizes: RF-Hybrid writes partitions 
less frequently than RF-Vertical. The running time of RF- 
Write is not affected through a change in AVC-group size, 
since RF-Write writes partitions regardless of the amount 
of memory available. Figure 10 shows the effect of an in- 
crease in the absolute size of the AVC-group in the input 
database while varying the buffer sizes. The buffer size for 
RF-Write and RF-Hybrid is set such that exactly the AVC- 
group of the root node fits in-memory; the buffer size of 
RF-Vertical is set such that exactly the largest AVC-set of 
the root node fits in-memory. Since both AVC-group size 
and buffer size are increased simultaneously (keeping their 
ratio constant), the running times stay constant. 

Figure 11 shows how the effect of skew between two 
attributes within an AVC-group affects performance. The 
number of tuples remained constant at 2000000; we set the 
buffer sizes for RF-Write and RF-Hybrid to 250000, and 
the buffer size for RF-Vertical to 1800000. We duplicated 
the loan attribute (thus increasing the number of attributes 
to ten), but skewed the distribution of distinct attributes val- 
ues between the two loan attributes. We reduced the num- 
ber of attribute values of the remaining attributes to make 
the loan attributes the dominant contributors to the over- 
all AVC-group size. During the skew, we held the over- 
all number of distinct attribute values for the two loan at- 
tributes at a combined size of 1200000 entries. For exam- 
ple, a skew value of 0.1 indicates that the first loan attribute 
had 10% (120000) distinct attribute values and the second 
loan attribute had 90% (1080000) distinct values. As we 
expected, the overall running time is not influenced by the 
skew, since the overall AVC-group size remained constant. 

In our last experiment shown in Figure 12, we added 
extra attributes with random values to the records in the 
input database, while holding the overall number of en- 
tries constant at 4200000 for RF-Hybrid and RF-Write and 
at 2100000 entries for RF-Vertical. Adding attributes in- 
creases tree construction time since the additional attributes 
need to be processed, but does not change the final deci- 
sion tree. (The splitting algorithm will never choose such a 
“noisy” attribute in its splitting criterion.) As can be seen 
in Figure 12, the RainForest family of algorithms exhibits 
a roughly linear scaleup with the number of attributes. 

5.3 Performance comparison with Sprint 

In this section, we present a performance comparison with 
Sprint [SAM96]. We tried to make our implementation of 
Sprint as efficient as possible, resulting in the following 
two implementation improvements over the algorithm de- 
scribed in [SAM96]. First, we create only one attribute list 
for all categorical attributes together. Second, when a node 
n splits into children nodes nl and ns, we create the his- 
tograms for the categorical attributes of ni and ns during 
the distribution of the categorical attribute list, thus sav- 

ing an additional scan. We made the in-memory hash-table 
large enough to perform each hash-join in one pass over an 
attribute list. 

Figures 13 and 14 show the comparison of Sprint and 
the RainForest algorithms for Functions 1 and 7. For al- 
gorithms RF-Hybrid and RF-Write, we set the AVC buffer 
size to 2500000 entries (the AVC-group of the root fits in- 
memory); for RF-Vertical we set the buffer size such that 
the largest AVC-set of a single attribute of the root node 
fits in-memory. The figures show that for Function 1, RF- 
Hybrid and RF-Vertical outperform Sprint by a factor of 
about 5. Function 7 generates larger trees than function 1; 
thus the speedup factor is about 8. 

Where does this speed-up come from? First, we com- 
pared the cost of the repeated in-memory sorting of AVC- 
groups in the RainForest algorithms with the cost of cre- 
ation of attribute lists in Sprint through which repeated 
sorts can be avoided. The numbers in Figure 15 show that 
repeated in-memory sorting of the AVC-groups is about ten 
times faster than the initial attribute list creation time. Sec- 
ond, we compared the cost to arrive at a splitting criterion 
for a node n plus distribution of F(n) among n’s children. 
In Sprint, the splitting criterion is computed through a scan 
over all attribute lists; the distribution of F(n) is performed 
through a hash-join of all attribute lists with the attribute 
list of the splitting attribute. In the RainForest family of al- 
gorithms, F(n) is read twice and written once; RF-Vertical 
needs to write vertical partitions if necessary. We set the 
buffer size of RF-Write such that the AVC-group of the root 
fits in-memory and the buffer size of RF-Vertical such that 
the largest AVC-set fits in-memory. Figure 16 shows that 
the cost of determining the splitting criterion plus partition- 
ing in the original database is about a factor of 5 faster than 
scanning and hash-joining the attribute lists. This cost is 
the overall dominant cost during tree construction and thus 
explains why the RainForest family of algorithms outper- 
forms Sprint by a factor of 5. 

6 Conclusions 

In this paper, we have developed a comprehensive approach 
to scaling decision tree algorithms that is applicable to all 
decision tree algorithms that we are aware of. The key in- 
sight is the observation that decision trees in the literature 
base their splitting criteria at a tree node on the AVC-group 
for that node, which is relatively compact. 

The best splitting criteria developed in statistics and ma- 
chine learning can now be exploited for classification in a 
scalable manner. In addition, depending upon the available 
memory, our algorithms offer significant performance im- 
provements over the Sprint classification algorithm, which 
is the fastest scalable classifier in the literature. If there 
is enough memory to hold individual AVC-sets, as is very 
likely, we obtain very good speed-up over Sprint; if there is 
enough memory to hold all AVC-sets for a node, the speed- 
up is even better. 
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