
A Review/Tour of Formalism

CMPT 886
Automated Sofware Analysis & Security

Nick Sumner

Formalism is just a tool

● Formal systems are common

Formalism is just a tool

● Formal systems are common
– High school algebra
– Classic formal logic
– Euclidean geometry

Formalism is just a tool

● Formal systems are common
– High school algebra
– Classic formal logic
– Euclidean geometry

● They serve multple useful purposes

Formalism is just a tool

● Formal systems are common
– High school algebra
– Classic formal logic
– Euclidean geometry

● They serve multple useful purposes
– Limit the possibilites that you may consider
– Check whether reasoning is correct
– Enable automated techniques for fnding solutons

Formalism is just a tool

● Formal systems are common
– High school algebra
– Classic formal logic
– Euclidean geometry

● They serve multple useful purposes
– Limit the possibilites that you may consider
– Check whether reasoning is correct
– Enable automated techniques for fnding solutons

● Choosing the right tool for the job can be hard

Formalism is just a tool

● Several specifc systems are common
(in CS and program analysis)

Formalism is just a tool

● Several specifc systems are common
(in CS and program analysis)

– Order Theory How to compare elements of a set

Formalism is just a tool

● Several specifc systems are common
(in CS and program analysis)

– Order Theory
– Formal Grammars & Automata

Use structure to constrain
the elements of a set

Formalism is just a tool

● Several specifc systems are common
(in CS and program analysis)

– Order Theory
– Formal Grammars & Automata
– Formal Logic (Classical & otherwise)

How and when to infer facts

Formalism is just a tool

● Several specifc systems are common
(in CS and program analysis)

– Order Theory
– Formal Grammars & Automata
– Formal Logic (Classical & otherwise)

● We are going to revisit these (quickly) with some
insights on how they can useful in practce.

Formalism is just a tool

● Several specifc systems are common
(in CS and program analysis)

– Order Theory
– Formal Grammars & Automata
– Formal Logic (Classical & otherwise)

● We are going to revisit these (quickly) with some
insights on how they can useful in practce.
– Most students don’t seem to remember them

Formalism is just a tool

● Several specifc systems are common
(in CS and program analysis)

– Order Theory
– Formal Grammars & Automata
– Formal Logic (Classical & otherwise)

● We are going to revisit these (quickly) with some
insights on how they can useful in practce.
– Most students don’t seem to remember them
– Even fewer learn that formalism can be useful!

Formalism is just a tool

● Several specifc systems are common
(in CS and program analysis)

– Order Theory
– Formal Grammars & Automata
– Formal Logic (Classical & otherwise)

● We are going to revisit these (quickly) with some
insights on how they can useful in practce.
– Most students don’t seem to remember them
– Even fewer learn that formalism can be useful!
– These techniques are critcal for statc program analysis

Order Theory

● Order theory is a feld examining how we compare
elements of a set.

Order Theory

● Order theory is a feld examining how we compare
elements of a set.

● Simplest example is numbers on a number line:

0 1 2 3 4-4 -3 -2 -1

Set: ℤ Relaton: ≤

Order Theory

● Order theory is a feld examining how we compare
elements of a set.

● Simplest example is numbers on a number line:

0 1 2 3 4-4 -3 -2 -1

Set: ℤ Relaton: ≤

Order Theory

● Order theory is a feld examining how we compare
elements of a set.

● Simplest example is numbers on a number line:

● ≤ is a total order on ℤ.

– Intuitvely, a, b ∀ ∈ , either a ≤ b or b ≤ℤ a

0 1 2 3 4-4 -3 -2 -1

Set: ℤ Relaton: ≤

Order Theory

● We ofen want to compare complex data

Order Theory

● We ofen want to compare complex data
– Ordinal, multdimensional, ...

Order Theory

● We ofen want to compare complex data
– Ordinal, multdimensional, ...

0 1 2 3 4
0

1

2

Order Theory

● We ofen want to compare complex data
– Ordinal, multdimensional, ...

0 1 2 3 4
0

1

2

(1,1)

(2,2)

Order Theory

● We ofen want to compare complex data
– Ordinal, multdimensional, ...

0 1 2 3 4
0

1

2

(1,1)

(2,2) What is the result of
(1,1) ≤ (2,2)?

Order Theory

● We ofen want to compare complex data
– Ordinal, multdimensional, ...

0 1 2 3 4
0

1

2

(1,1)

(2,2) What is the result of
(1,1) ≤ (2,2)?

We can take ≤ to be
componentwise comparison.

Order Theory

● We ofen want to compare complex data
– Ordinal, multdimensional, ...

0 1 2 3 4
0

1

2 (1,2)

(2,1)
What is the result of

(1,2) ≤ (2,1)?

Order Theory

● We ofen want to compare complex data
– Ordinal, multdimensional, ...

● Componentwise comparison with tuples yields a
partal order

0 1 2 3 4
0

1

2 (1,2)

(1,1) (2,1)

(2,2)

Order Theory

● We ofen want to compare complex data
– Ordinal, multdimensional, ...

● Componentwise comparison with tuples yields a
partal order
– Intuitvely, not all elements are comparable

0 1 2 3 4
0

1

2 (1,2)

(1,1) (2,1)

(2,2)

Order Theory

● We ofen want to compare complex data
– Ordinal, multdimensional, ...

● Componentwise comparison with tuples yields a
partal order
– Intuitvely, not all elements are comparable

0 1 2 3 4
0

1

2 (1,2)

(1,1) (2,1)

(2,2) Which of these 4
elements are comparable?

Partal Orders

● A relaton ≤ is a partal order on a set S if ∀ a,b,c S∈

– Refexive: a ≤ a
– Antsymmetric: a ≤ b & b ≤ a a = b⇒
– Transitve: a ≤ b & b ≤ c a ≤ c⇒

Partal Orders

● A relaton ≤ is a partal order on a set S if ∀ a,b,c S∈

– Refexive: a ≤ a
– Antsymmetric: a ≤ b & b ≤ a a = b⇒
– Transitve: a ≤ b & b ≤ c a ≤ c⇒

Partal Orders

● A relaton ≤ is a partal order on a set S if ∀ a,b,c S∈

– Refexive: a ≤ a
– Antsymmetric: a ≤ b & b ≤ a a = b⇒
– Transitve: a ≤ b & b ≤ c a ≤ c⇒

Partal Orders

● A relaton ≤ is a partal order on a set S if ∀ a,b,c S∈

– Refexive: a ≤ a
– Antsymmetric: a ≤ b & b ≤ a a = b⇒
– Transitve: a ≤ b & b ≤ c a ≤ c⇒

How does a
total order
compare?

Partal Orders

● A relaton ≤ is a partal order on a set S if ∀ a,b,c S ∈
– Refexive: a ≤ a
– Antsymmetric: a ≤ b & b ≤ a a = b⇒
– Transitve: a ≤ b & b ≤ c a ≤ c⇒

● When reasoning about partal orders, we prefer ⊑

Partal Orders

● A relaton ≤ is a partal order on a set S if ∀ a,b,c S ∈
– Refexive: a ≤ a
– Antsymmetric: a ≤ b & b ≤ a a = b⇒
– Transitve: a ≤ b & b ≤ c a ≤ c⇒

● When reasoning about partal orders, we prefer ⊑
● Common partal orders include

– substring, subsequence, subset relatonships

Partal Orders

● A relaton ≤ is a partal order on a set S if ∀ a,b,c S ∈
– Refexive: a ≤ a
– Antsymmetric: a ≤ b & b ≤ a a = b⇒
– Transitve: a ≤ b & b ≤ c a ≤ c⇒

● When reasoning about partal orders, we prefer ⊑
● Common partal orders include

– substring, subsequence, subset relatonships

ab ⪯str xabyz

ab ⪯seq xaybz

{a,b} {⊆ a,b,x,y,z}

Partal Orders

● A relaton ≤ is a partal order on a set S if ∀ a,b,c S ∈
– Refexive: a ≤ a
– Antsymmetric: a ≤ b & b ≤ a a = b⇒
– Transitve: a ≤ b & b ≤ c a ≤ c⇒

● When reasoning about partal orders, we prefer ⊑
● Common partal orders include

– substring, subsequence, subset relatonships
– componentwise orderings

Partal Orders

● A relaton ≤ is a partal order on a set S if ∀ a,b,c S ∈
– Refexive: a ≤ a
– Antsymmetric: a ≤ b & b ≤ a a = b⇒
– Transitve: a ≤ b & b ≤ c a ≤ c⇒

● When reasoning about partal orders, we prefer ⊑
● Common partal orders include

– substring, subsequence, subset relatonships
– componentwise orderings

(1,1) (1,2)⊑
(1,1) (2,2)⊑

Partal Orders

● A relaton ≤ is a partal order on a set S if ∀ a,b,c S ∈
– Refexive: a ≤ a
– Antsymmetric: a ≤ b & b ≤ a a = b⇒
– Transitve: a ≤ b & b ≤ c a ≤ c⇒

● When reasoning about partal orders, we prefer ⊑
● Common partal orders include

– substring, subsequence, subset relatonships
– componentwise orderings
– functons (considering all input/output mappings)

Partal Orders

● A relaton ≤ is a partal order on a set S if ∀ a,b,c S ∈
– Refexive: a ≤ a
– Antsymmetric: a ≤ b & b ≤ a a = b⇒
– Transitve: a ≤ b & b ≤ c a ≤ c⇒

● When reasoning about partal orders, we prefer ⊑
● Common partal orders include

– substring, subsequence, subset relatonships
– componentwise orderings
– functons (considering all input/output mappings)

f(x) = x +1 ⊑ g(x) = x + 2
h(x) = x ⋤ i(x) = -x

Partal Orders

● We can express the structure of partal orders using
(semi-)latces.

0 1 2
0

1

2 (1,2)

(1,1) (2,1)

(2,2)

Partal Orders

● We can express the structure of partal orders as
(semi-)latces.

0 1 2
0

1

2 (1,2)

(1,1) (2,1)

(2,2)

(0,0)

(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)

(2,2)

Partal Orders

● We can express the structure of partal orders as
(semi-)latces.

0 1 2
0

1

2 (1,2)

(1,1) (2,1)

(2,2)

(0,0)

(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)

(2,2)

Partal Orders

● We can express the structure of partal orders as
(semi-)latces.

0 1 2
0

1

2 (1,2)

(1,1) (2,1)

(2,2)

(0,0)

(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)

(2,2)

Partal Orders

● We can express the structure of partal orders as
(semi-)latces.

0 1 2
0

1

2 (1,2)

(1,1) (2,1)

(2,2)

(0,0)

(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)

(2,2)

Partal Orders

● We can express the structure of partal orders as
(semi-)latces.

● If unique least/greatest elements exist, we call them
(botom)/ (top⊥ ⊤)

0 1 2
0

1

2 (1,2)

(1,1) (2,1)

(2,2)

(0,0)

(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)

(2,2)

⊥

Partal Orders

● We are ofen interested in upper and lower bounds.

(0,0)

(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)

(2,2)

Partal Orders

● We are ofen interested in upper and lower bounds.
– A join a b is the least upper bound of a and b⊔

(0,0)

(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)

(2,2)

What is
(0,1) (1,0)?⊔

Partal Orders

● We are ofen interested in upper and lower bounds.
– A join a b is the least upper bound of a and b⊔

(0,0)

(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)

(2,2)

⊔What is
(0,1) (1,0)?⊔

Partal Orders

● We are ofen interested in upper and lower bounds.
– A join a b is the least upper bound of a and b⊔
– A meet a b is the greatest lower bound of and and b⊓

(0,0)

(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)

(2,2)

What is
(0,1)⊓(1,0)?

Partal Orders

● We are ofen interested in upper and lower bounds.
– A join a b is the least upper bound of a and b⊔
– A meet a b is the greatest lower bound of and and b⊓

(0,0)

(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)

(2,2)

⊓
What is

(0,1)⊓(1,0)?

Partal Orders

● We are ofen interested in upper and lower bounds.
– A join a b is the least upper bound of a and b⊔
– A meet a b is the greatest lower bound of and and b⊓
– Bounds must be unique and may not exist.

(0,0)

(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)

(2,2)

Partal Orders

● We are ofen interested in upper and lower bounds.
– A join a b is the least upper bound of a and b⊔
– A meet a b is the greatest lower bound of and and b⊓
– Bounds must be unique and may not exist.
– ∀S’ S, ⊆ S’ ∃⊔ & S’ latce⊓ ⇒ , S’ ∃⊔ or S’ semilatce∃⊓ ⇒

(0,0)

(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)

(2,2)

What is the
structure shown?

Partal Orders

● A product of latces yields a latce
– We already saw componentwise orderings for tuples.

This is the same.

Partal Orders

● A product of latces yields a latce
– We already saw componentwise orderings for tuples.

This is the same.

● Partal orders & latces can be very useful
– A formal structure for reasoning about relatve value

Partal Orders

● A product of latces yields a latce
– We already saw componentwise orderings for tuples.

This is the same.

● Partal orders & latces can be very useful
– A formal structure for reasoning about relatve value
– modern cryptography

Partal Orders

● A product of latces yields a latce
– We already saw componentwise orderings for tuples.

This is the same.

● Partal orders & latces can be very useful
– A formal structure for reasoning about relatve value
– modern cryptography
– concurrency & distributed systems

Partal Orders

● A product of latces yields a latce
– We already saw componentwise orderings for tuples.

This is the same.

● Partal orders & latces can be very useful
– A formal structure for reasoning about relatve value
– modern cryptography
– concurrency & distributed systems
– datafow analysis & proving program propertes

Formal Grammars & Automata

● Grammars defne the structure of elements in a set
– Alternatvely, they generate the set via structure

Formal Grammars & Automata

● Grammars defne the structure of elements in a set
– Alternatvely, they generate the set via structure

● They commonly defne formal languages
– Sets of strings over a defned alphabet

Formal Grammars & Automata

● Grammars defne the structure of elements in a set
– Alternatvely, they generate the set via structure

● They commonly defne formal languages
– Sets of strings over a defned alphabet

● They are efectve at constraining a search space

Regular Languages & Finite Automata

● A regular language can be expressed via a
regular expression

Regular Languages & Finite Automata

● A regular language can be expressed via a
regular expression

regex → symbol
| `(` regex `)`
| regex `*`
| regex `|` regex

Regular Languages & Finite Automata

● A regular language can be expressed via a
regular expression

regex → symbol
| `(` regex `)`
| regex `*`
| regex `|` regex

e.g. a(bc | cd)*e defnes L containing abccdbce

Regular Languages & Finite Automata

● A regular language can be expressed via a
regular expression

● Finite automata can be used to recognize or
generate elements of a regular language

Regular Languages & Finite Automata

● A regular language can be expressed via a
regular expression

● Finite automata can be used to recognize or
generate elements of a regular language

1 2a

3

4

44

b

c
d

c e

Regular Languages & Finite Automata

● A regular language can be expressed via a
regular expression

● Finite automata can be used to recognize or
generate elements of a regular language

e.g. a(bc | cd)*e recognizes L containing abccdbce

1 2a

3

4

44

b

c
d

c e

Regular Languages & Finite Automata

● A regular language can be expressed via a
regular expression

● Finite automata can be used to recognize or
generate elements of a regular language

e.g. a(bc | cd)*e recognizes L containing abccdbce

1 2a

3

4

44

b

c
d

c e

Regular Languages & Finite Automata

● A regular language can be expressed via a
regular expression

● Finite automata can be used to recognize or
generate elements of a regular language

e.g. a(bc | cd)*e recognizes L containing abccdbce

1 2a

3

4

44

b

c
d

c e

Regular Languages & Finite Automata

● A regular language can be expressed via a
regular expression

● Finite automata can be used to recognize or
generate elements of a regular language

e.g. a(bc | cd)*e recognizes L containing abccdbce

1 2a

3

4

44

b

c
d

c e

Regular Languages & Finite Automata

● A regular language can be expressed via a
regular expression

● Finite automata can be used to recognize or
generate elements of a regular language

e.g. a(bc | cd)*e recognizes L containing abccdbce

1 2a

3

4

44

b

c
d

c e

Regular Languages & Finite Automata

● A regular language can be expressed via a
regular expression

● Finite automata can be used to recognize or
generate elements of a regular language

● Recall, regular languages cannot express matched
parentheses (Dyck languages)

anbn

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

Start = A
A → cBd
B → eBf

| g

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

Start = A
A → cBd
B → eBf

| g

cengfnd

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

Start = A
A → cBd
B → eBf

| g

cengfnd

This requires some kind of memory

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

Start = A
A → cBd
B → eBf

| g

cengfnd

A

c B d

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

Start = A
A → cBd
B → eBf

| g

cengfnd

A

c B d

e B f

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

Start = A
A → cBd
B → eBf

| g

cengfnd

A

c B d

e B f

Generatng symbols out of order
acts as a form of memory.

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

Start = A
A → cBd
B → eBf

| g

cengfnd

A

c B d

e B f
...

B

g

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton
– The grammar for regular expressions was a CFG!

regex → symbol
| `(` regex `)`
| regex `*`
| regex `|` regex

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton
– The grammar for regular expressions was a CFG!

regex → symbol
| `(` regex `)`
| regex `*`
| regex `|` regex

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

● Augmentng a fnite automaton with a stack enables
recogniton and generaton (via pushdown automata)

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

● Augmentng a fnite automaton with a stack enables
recogniton and generaton (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

● Augmentng a fnite automaton with a stack enables
recogniton and generaton (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

x y

z B

A

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

● Augmentng a fnite automaton with a stack enables
recogniton and generaton (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

x y

z B

A

t

a
A

u

b
B

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

● Augmentng a fnite automaton with a stack enables
recogniton and generaton (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x y

z B

A

t

a
A

u

b
B

S

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

● Augmentng a fnite automaton with a stack enables
recogniton and generaton (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x y

z B

A

t

a
A

u

b
B

xS

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

● Augmentng a fnite automaton with a stack enables
recogniton and generaton (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x y

z B

A

t

a
A

u

b
B

xAS

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

● Augmentng a fnite automaton with a stack enables
recogniton and generaton (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x y

z B

A

t

a
A

u

b
B

xAS
A

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

● Augmentng a fnite automaton with a stack enables
recogniton and generaton (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x y

z B

A

t

a
A

u

b
B

xA

a

S
A

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

● Augmentng a fnite automaton with a stack enables
recogniton and generaton (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x y

z B

A

t

a
A

u

b
B

xA

aA

S
A

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

● Augmentng a fnite automaton with a stack enables
recogniton and generaton (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x y

z B

A

t

a
A

u

b
B

xA

aA

aA

t

S
A
A
A

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

● Augmentng a fnite automaton with a stack enables
recogniton and generaton (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x y

z B

A

t

a
A

u

b
B

xA

aA

aA

S
A
A

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

● Augmentng a fnite automaton with a stack enables
recogniton and generaton (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x y

z B

A

t

a
A

u

b
B

xA

aA

S
A

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

● Augmentng a fnite automaton with a stack enables
recogniton and generaton (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x y

z B

A

t

a
A

u

b
B

xAS

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

● Augmentng a fnite automaton with a stack enables
recogniton and generaton (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x y

z B

A

t

a
A

u

b
B

xAyS

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

● Augmentng a fnite automaton with a stack enables
recogniton and generaton (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x y

z B

A

t

a
A

u

b
B

xAyS

Is this behavior similar to
something more familiar?

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

● Augmentng a fnite automaton with a stack enables
recogniton and generaton (via pushdown automata)

● Context free grammars play a key role in
– Precise statc program analysis

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

● Augmentng a fnite automaton with a stack enables
recogniton and generaton (via pushdown automata)

● Context free grammars play a key role in
– Precise statc program analysis
– Program synthesis

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable
Dyck language recogniton

● Augmentng a fnite automaton with a stack enables
recogniton and generaton (via pushdown automata)

● Context free grammars play a key role in
– Precise statc program analysis
– Program synthesis
– Predicton and machine learning on programs

Formal Logic

● Formal logic is a systematc approach to reasoning
– Separate the messy content of an argument from its

structure

Formal Logic

● Formal logic is a systematc approach to reasoning
– Separate the messy content of an argument from its

structure

● Sometmes the process can be automated
– e.g. satsfability problems, type inference, ...

Formal Logic

● Formal logic is a systematc approach to reasoning
– Separate the messy content of an argument from its

structure

● Sometmes the process can be automated
– e.g. satsfability problems, type inference, ...

● Program analysis has actually been one of the
driving forces behind satsfability in recent years.

Classical Logic

● You likely already know either propositonal or
first order logic

– Systems for reasoning about the truth of sentences

Classical Logic

● You likely already know either propositonal or
first order logic

– Systems for reasoning about the truth of sentences

● Atoms abstract away the actors of the sentences
– Constants: #t, #f
– Variables: x, y, z, ...

Classical Logic

● You likely already know either propositonal or
first order logic

– Systems for reasoning about the truth of sentences

● Atoms abstract away the actors of the sentences
– Constants: #t, #f
– Variables: x, y, z, ...

● Connectves relate the atoms & other propositons to each
other
– ¬ (Not), ∧ (And), ∨ (or)
– → (Implies), ↔(If)

Classical Logic

● You likely already know either propositonal or
first order logic

– Systems for reasoning about the truth of sentences

● Atoms abstract away the actors of the sentences
– Constants: #t, #f
– Variables: x, y, z, ...

● Connectves relate the atoms & other propositons to each
other
– ¬ (Not), ∧ (And), ∨ (or)
– → (Implies), ↔(If)

x ∧ ¬y ∧ z

Classical Logic

● First order logic augments with

Classical Logic

● First order logic augments with
– Quantfers- ∃ (there exists), ∀ (for all)

– Functons & Relatons- e.g. father(x), Elephant(y)

Classical Logic

● First order logic augments with
– Quantfers- ∃ (there exists), ∀ (for all)

– Functons & Relatons- e.g. father(x), Elephant(y)
● Sentences can be true or false

Classical Logic

● First order logic augments with
– Quantfers- ∃ (there exists), ∀ (for all)

– Functons & Relatons- e.g. father(x), Elephant(y)
● Sentences can be true or false∀x(Elephant(x) → Grey(x))

Classical Logic

● First order logic augments with
– Quantfers- ∃ (there exists), ∀ (for all)

– Functons & Relatons- e.g. father(x), Elephant(y)
● Sentences can be true or false∀x(Elephant(x) → Grey(x))∀x(Elephant(x) → Elephant(father(x)))

Classical Logic

● First order logic augments with
– Quantfers- ∃ (there exists), ∀ (for all)

– Functons & Relatons- e.g. father(x), Elephant(y)
● Sentences can be true or false

● An interpretaton I of the world along with the rules
of logic determine truth via judgement (⊢)

Classical Logic

● First order logic augments with
– Quantfers- ∃ (there exists), ∀ (for all)

– Functons & Relatons- e.g. father(x), Elephant(y)
● Sentences can be true or false

● An interpretaton I of the world along with the rules
of logic determine truth via judgement (⊢)I ⊢ x and I ⊢ y if I ⊢ x ∧ y

Classical Logic

● Satsfiability
– A sentence s is satsfable ↔ ∃I (I⊢s)

Classical Logic

● Satsfiability
– A sentence s is satsfable ↔ ∃I (I⊢s)

● Validity
– A sentence s is valid ↔ ∀I (I⊢s)

Classical Logic

● Satsfiability
– A sentence s is satsfable ↔ ∃I (I⊢s)

● Validity
– A sentence s is valid ↔ ∀I (I⊢s)

● We will see later how these can be used for a wide
variety of tasks

Classical Logic

● Satsfiability
– A sentence s is satsfable ↔ ∃I (I⊢s)

● Validity
– A sentence s is valid ↔ ∀I (I⊢s)

● We will see later how these can be used for a wide
variety of tasks
– Bug fnding
– Model checking (proving correctness)
– Explaining defects
– ...

Inference using classical logic

● Rules express how some judgements enable othersΓ ⊢ x ∆ ⊢ yΓ, ∆ ⊢ x ∧ y

Inference using classical logic

● Rules express how some judgements enable othersΓ ⊢ x ∆ ⊢ yΓ, ∆ ⊢ x ∧ y

Inference using classical logic

● Rules express how some judgements enable othersΓ ⊢ x ∆ ⊢ yΓ, ∆ ⊢ x ∧ y

Inference using classical logic

● Rules express how some judgements enable others

● Proofs can be writen by stacking rules

Γ ⊢ x ∆ ⊢ yΓ, ∆ ⊢ x ∧ y

Inference using classical logic

● Rules express how some judgements enable others

● Proofs can be writen by stacking rules

Γ ⊢ x ∆ ⊢ yΓ, ∆ ⊢ x ∧ y

Wadler, “A Taste of Linear Logic”. 2014.

Hoare Logic

● Hoare logic reasons about the behavior of programs
and program fragments

Hoare Logic

● Hoare logic reasons about the behavior of programs
and program fragments{φ}C{ψ}
Preconditon

Hoare Logic

● Hoare logic reasons about the behavior of programs
and program fragments{φ}C{ψ}
Preconditon

Command

Hoare Logic

● Hoare logic reasons about the behavior of programs
and program fragments{φ}C{ψ}
Preconditon

Command
Postconditon

Hoare Logic

● Hoare logic reasons about the behavior of programs
and program fragments

● If phi holds before C, psi will hold afer

{φ}C{ψ}
{x=3 ∧ y=2}x = 5{x=5}

Hoare Logic

● Hoare logic reasons about the behavior of programs
and program fragments

● If phi holds before C, psi will hold afer

● A weakest preconditon wp(C,ψ) captures all states
leading to ψ afer C.

{φ}C{ψ}
{x=3 ∧ y=2}x = 5{x=5}

Hoare Logic

● Hoare logic reasons about the behavior of programs
and program fragments

● If phi holds before C, psi will hold afer

● A weakest preconditon wp(C,ψ) captures all states
leading to ψ afer C.

{φ}C{ψ}
{x=3 ∧ y=2}x = 5{x=5}

{#t}x←5{x=5}

Hoare Logic

● Hoare logic reasons about the behavior of programs
and program fragments

● If phi holds before C, psi will hold afer

● A weakest preconditon wp(C,ψ) captures all states
leading to ψ afer C.

{φ}C{ψ}
{x=3 ∧ y=2}x = 5{x=5}

{#t}x←5{x=5}{???}if c then x←5{x=5}

Intuitonistc & Constructve Logic

● It can be useful to modify or limit rules of inference

Intuitonistc & Constructve Logic

● It can be useful to modify or limit rules of inference
– Suppose a compiler cannot prove variable x is an int.

Is it reasonable for the compile to assume x is a string?

Intuitonistc & Constructve Logic

● It can be useful to modify or limit rules of inference
– Suppose a compiler cannot prove variable x is an int.

Is it reasonable for the compile to assume x is a string?

● Constructiism argues that truth comes from direct
eiidence.
– We cannot merely assume p or not p, we must have

evidence

Intuitonistc & Constructve Logic

● It can be useful to modify or limit rules of inference
– Suppose a compiler cannot prove variable x is an int.

Is it reasonable for the compile to assume x is a string?

● Constructvism argues that truth comes from direct
evidence.
– We cannot merely assume p or not p, we must have

evidence

● Intuitonistc logic restricts the rules of inference to
require direct evidence

Intuitonistc & Constructve Logic

● Classic logic includes several rules including

 ⊢ p ∨ ¬p
Law of excluded middle

Intuitonistc & Constructve Logic

● Classic logic includes several rules including

 ⊢ p ∨ ¬p Γ ⊢ ¬¬pΓ ⊢ p
Double negaton

eliminaton

Intuitonistc & Constructve Logic

● Classic logic includes several rules including

● Intuitonistc logic excludes these to require direct
evidence

 ⊢ p ∨ ¬p Γ ⊢ ¬¬pΓ ⊢ p

Intuitonistc & Constructve Logic

● Classic logic includes several rules including

● Intuitonistc logic excludes these to require direct
evidence

● Note, this is commonly used in type systems

 ⊢ p ∨ ¬p Γ ⊢ ¬¬pΓ ⊢ p

Linear & Substructural Logic

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)

Linear & Substructural Logic

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)∧ buyBurrito(me,store)

Linear & Substructural Logic

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)∧ buyBurrito(me,store)∧ buyBurrito(me,store)

Linear & Substructural Logic

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)∧ buyBurrito(me,store)∧ buyBurrito(me,store)∧ buyBurrito(me,store)

Linear & Substructural Logic

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)∧ buyBurrito(me,store)∧ buyBurrito(me,store)∧ buyBurrito(me,store)
Classical & intuitonistc logic have

trouble expressing consumable facts

Linear & Substructural Logic

● Linear logic denotes separates facts into two kinds
– [Intuitonistc] as before
– <Linear> cannot be used with contracton or weakening

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)

Linear & Substructural Logic

● Linear logic denotes separates facts into two kinds
– [Intuitonistc] as before
– <Linear> cannot be used with contracton or weakening

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)

Γ,A,A,∆ ⊢ pΓ,A,∆ ⊢ p Γ,∆⊢ pΓ,A,∆ ⊢ p

Linear & Substructural Logic

● Linear logic denotes separates facts into two kinds
– [Intuitonistc] as before
– <Linear> cannot be used with contracton or weakening
– In essence, linear facts must be consumed exactly once

in a proof.

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)

Linear & Substructural Logic

● Linear logic denotes separates facts into two kinds
– [Intuitonistc] as before
– <Linear> cannot be used with contracton or weakening
– In essence, linear facts must be consumed exactly once

in a proof.

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)

Logics that remove additonal rules from
intuitonistc logic are substructural

Linear & Substructural Logic

● Linear logic denotes separates facts into two kinds
– [Intuitonistc] as before
– <Linear> cannot be used with contracton or weakening
– In essence, linear facts must be consumed exactly once

in a proof.

● This forms the backbone of ownership types in
languages like Rust!

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)

Separaton Logic

● Linear logic allows facts to be used exactly once <>
or arbitrarily many tmes [].

Separaton Logic

● Linear logic allows facts to be used exactly once <>
or arbitrarily many tmes [].

● Separaton logic (informally) distnguishes separate
facts (countng), allowing them to be used separately

Separaton Logic

● Linear logic allows facts to be used exactly once <>
or arbitrarily many tmes [].

● Separaton logic (informally) distnguishes separate
facts (countng), allowing them to be used separately

● This allows compositonal reasoning about sofware.{x↦y * y↦x}x = z{x↦z * y↦x}

Separaton Logic

● Linear logic allows facts to be used exactly once <>
or arbitrarily many tmes [].

● Separaton logic (informally) distnguishes separate
facts (countng), allowing them to be used separately

● This allows compositonal reasoning about sofware.{x↦y * y↦x}x = z{x↦z * y↦x}
Suppose we used ∧ instead,

what problem exists?

Separaton Logic

● Linear logic allows facts to be used exactly once <>
or arbitrarily many tmes [].

● Separaton logic (informally) distnguishes separate
facts (countng), allowing them to be used separately

● This allows compositonal reasoning about sofware.

● Separaton logic enables efcient compositonal
reasoning
– It is the backbone of Facebook’s Infer engine!

{x↦y * y↦x}x = z{x↦z * y↦x}

Recap

● Formalism is a tool that can simplify reasoning
about tasks

Recap

● Formalism is a tool that can simplify reasoning
about tasks

● Many solutons involve a careful combinaton of
– order theory (for comparison)

– formal grammars (for structure)

– formal logic (for inference)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156

