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Formalism is just a tool

● Formal systems are common
– High school algebra
– Classic formal logic
– Euclidean geometry

● They serve multple useful purposes
– Limit the possibilites that you may consider
– Check whether reasoning is correct
– Enable automated techniques for fnding solutons

● Choosing the right tool for the job can be hard
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Formalism is just a tool

● Several specifc systems are common
(in CS and program analysis)

– Order Theory
– Formal Grammars & Automata
– Formal Logic (Classical & otherwise)

● We are going to revisit these (quickly) with some 
insights on how they can useful in practce.
– Most students don’t seem to remember them
– Even fewer learn that formalism can be useful!
– These techniques are critcal for statc program analysis
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Order Theory

● Order theory is a feld examining how we compare 
elements of a set.

● Simplest example is numbers on a number line:

● ≤ is a total order on ℤ.

– Intuitvely,  a, b  ∀ ∈ , either a ≤ b or b ≤ℤ  a

0 1 2 3 4-4 -3 -2 -1

Set: ℤ Relaton: ≤
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We can take ≤ to be
componentwise comparison.



  

Order Theory

● We ofen want to compare complex data
– Ordinal, multdimensional, ...

0 1 2 3 4
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2 (1,2)

(2,1)
What is the result of

(1,2) ≤ (2,1)?
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Order Theory

● We ofen want to compare complex data
– Ordinal, multdimensional, ...

● Componentwise comparison with tuples yields a 
partal order
– Intuitvely, not all elements are comparable

0 1 2 3 4
0

1

2 (1,2)

(1,1) (2,1)

(2,2) Which of these 4
elements are comparable?
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– Refexive: a ≤ a
– Antsymmetric: a ≤ b & b ≤ a  a = b⇒
– Transitve: a ≤ b & b ≤ c  a ≤ c⇒

How does a
total order
compare?
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Partal Orders

● A relaton ≤ is a partal order on a set S if ∀ a,b,c  S ∈
– Refexive: a ≤ a
– Antsymmetric: a ≤ b & b ≤ a  a = b⇒
– Transitve: a ≤ b & b ≤ c  a ≤ c⇒

● When reasoning about partal orders, we prefer ⊑
● Common partal orders include

– substring, subsequence, subset relatonships
– componentwise orderings
– functons (considering all input/output mappings)

f(x) = x +1    ⊑ g(x) = x + 2
h(x) = x    ⋤ i(x) = -x 
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Partal Orders

● We can express the structure of partal orders as 
(semi-)latces.

● If unique least/greatest elements exist, we call them 
(botom)/ (top⊥ ⊤ )
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● We are ofen interested in upper and lower bounds.
– A join a  b is the least upper bound of a and b⊔
– A meet a  b is the greatest lower bound of and and b⊓
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Partal Orders

● We are ofen interested in upper and lower bounds.
– A join a  b is the least upper bound of a and b⊔
– A meet a  b is the greatest lower bound of and and b⊓
– Bounds must be unique and may not exist.
– ∀S’ S, ⊆ S’ ∃⊔ & S’  latce⊓ ⇒ , S’ ∃⊔ or S’  semilatce∃⊓ ⇒

(0,0)

(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)

(2,2)

What is the 
structure shown?
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● A product of latces yields a latce
– We already saw componentwise orderings for tuples.

This is the same.

● Partal orders & latces can be very useful
– A formal structure for reasoning about relatve value
– modern cryptography
– concurrency & distributed systems
– datafow analysis & proving program propertes
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Formal Grammars & Automata

● Grammars defne the structure of elements in a set
– Alternatvely, they generate the set via structure

● They commonly defne formal languages
– Sets of strings over a defned alphabet

● They are efectve at constraining a search space
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Regular Languages & Finite Automata

● A regular language can be expressed via a
regular expression

● Finite automata can be used to recognize or 
generate elements of a regular language

● Recall, regular languages cannot express matched 
parentheses (Dyck languages)

anbn
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Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable 
Dyck language recogniton

Start = A
A → cBd
B → eBf

| g

cengfnd

A

c B d

e B f

Generatng symbols out of order
acts as a form of memory.



  

Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable 
Dyck language recogniton

Start = A
A → cBd
B → eBf

| g

cengfnd

A

c B d

e B f
...

B

g
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Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable 
Dyck language recogniton

● Augmentng a fnite automaton with a stack enables 
recogniton and generaton (via pushdown automata)
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A → aA | t
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Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable 
Dyck language recogniton

● Augmentng a fnite automaton with a stack enables 
recogniton and generaton (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x    y

z B

A

t

a   
A

u

b   
B

xAyS

Is this behavior similar to 
something more familiar?
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Context Free Grammars & Pushdown Automata

● Context free grammars add recursion and enable 
Dyck language recogniton

● Augmentng a fnite automaton with a stack enables 
recogniton and generaton (via pushdown automata)

● Context free grammars play a key role in
– Precise statc program analysis
– Program synthesis
– Predicton and machine learning on programs
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Formal Logic

● Formal logic is a systematc approach to reasoning
– Separate the messy content of an argument from its 

structure

● Sometmes the process can be automated
– e.g. satsfability problems, type inference, ...

● Program analysis has actually been one of the 
driving forces behind satsfability in recent years.
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● You likely already know either propositonal or
first order logic

– Systems for reasoning about the truth of sentences

● Atoms abstract away the actors of the sentences
– Constants: #t, #f
– Variables: x, y, z, ...

● Connectves relate the atoms & other propositons to each 
other
– ¬ (Not),  ∧ (And),  ∨ (or)
– → (Implies),  ↔(If)

x ∧ ¬y ∧ z
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Classical Logic

● First order logic augments with
– Quantfers- ∃ (there exists), ∀ (for all)

– Functons & Relatons- e.g. father(x), Elephant(y)
● Sentences can be true or false

● An interpretaton I of the world along with the rules 
of logic determine truth via judgement (⊢)I ⊢ x and I ⊢ y if I ⊢ x ∧ y



  

Classical Logic

● Satsfiability
– A sentence s is satsfable ↔ ∃I (I⊢s)



  

Classical Logic

● Satsfiability
– A sentence s is satsfable ↔ ∃I (I⊢s)

● Validity
– A sentence s is valid ↔ ∀I (I⊢s)



  

Classical Logic

● Satsfiability
– A sentence s is satsfable ↔ ∃I (I⊢s)

● Validity
– A sentence s is valid ↔ ∀I (I⊢s)

● We will see later how these can be used for a wide 
variety of tasks



  

Classical Logic

● Satsfiability
– A sentence s is satsfable ↔ ∃I (I⊢s)

● Validity
– A sentence s is valid ↔ ∀I (I⊢s)

● We will see later how these can be used for a wide 
variety of tasks
– Bug fnding
– Model checking (proving correctness)
– Explaining defects
– ...
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Inference using classical logic

● Rules express how some judgements enable others

● Proofs can be writen by stacking rules

Γ ⊢ x ∆ ⊢ yΓ, ∆ ⊢ x ∧ y

Wadler, “A Taste of Linear Logic”. 2014.
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Hoare Logic

● Hoare logic reasons about the behavior of programs 
and program fragments

● If phi holds before C, psi will hold afer

● A weakest preconditon wp(C,ψ) captures all states 
leading to ψ afer C.

{φ}C{ψ}
{x=3 ∧ y=2}x = 5{x=5}

{#t}x←5{x=5}{???}if c then x←5{x=5}
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Intuitonistc & Constructve Logic

● It can be useful to modify or limit rules of inference
– Suppose a compiler cannot prove variable x is an int.

Is it reasonable for the compile to assume x is a string?

● Constructvism argues that truth comes from direct 
evidence.
– We cannot merely assume p or not p, we must have 

evidence

● Intuitonistc logic restricts the rules of inference to 
require direct evidence
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● Classic logic includes several rules including

 ⊢ p ∨ ¬p Γ ⊢ ¬¬pΓ ⊢ p
Double negaton

eliminaton
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Intuitonistc & Constructve Logic

● Classic logic includes several rules including

● Intuitonistc logic excludes these to require direct 
evidence

● Note, this is commonly used in type systems

 ⊢ p ∨ ¬p Γ ⊢ ¬¬pΓ ⊢ p
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Linear & Substructural Logic

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)∧ buyBurrito(me,store)∧ buyBurrito(me,store)∧ buyBurrito(me,store)
Classical & intuitonistc logic have 

trouble expressing consumable facts
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Logics that remove additonal rules from 
intuitonistc logic are substructural



  

Linear & Substructural Logic

● Linear logic denotes separates facts into two kinds
– [Intuitonistc] as before
– <Linear> cannot be used with contracton or weakening
– In essence, linear facts must be consumed exactly once 

in a proof.

● This forms the backbone of ownership types in 
languages like Rust!

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)
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facts (countng), allowing them to be used separately

● This allows compositonal reasoning about sofware.{x↦y * y↦x}x = z{x↦z * y↦x}
Suppose we used ∧ instead, 

what problem exists?



  

Separaton Logic

● Linear logic allows facts to be used exactly once <>
or arbitrarily many tmes [].

● Separaton logic (informally) distnguishes separate 
facts (countng), allowing them to be used separately

● This allows compositonal reasoning about sofware.

● Separaton logic enables efcient compositonal 
reasoning
– It is the backbone of Facebook’s Infer engine!

{x↦y * y↦x}x = z{x↦z * y↦x}
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Recap

● Formalism is a tool that can simplify reasoning 
about tasks

● Many solutons involve a careful combinaton of
– order theory (for comparison)

– formal grammars (for structure)

– formal logic (for inference)
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