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Seeking out performance

● Improving performance can come from tuning
– Algorithmic complexity
– Memory access patterns
– Concurrency
– Parallelism

● As processor speeds have slowed increasing, much 
focus has been placed on the last two
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Using Parallelism

● Large problems can sometimes be split into parallel 
tasks, and the effects of the parallel tasks combined

● The best possible running time is determined by the 
critical path or span of dependent tasks through the 
program.

This is too optimistic!
Why?
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Using Parallelism

● There are often more tasks than compute resources
– Brent’s Theorem describes the time accounting for limits

● Identifying good opportunities for effective 
parallelism is open to research
– Profiling for tasks to extract
– Understanding the effect of speeding specific tasks
– ...

Given p processors ,
Time1

p
≤Timep≤

Time1

p
+Time∞
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– Actions of one task may subtly affect others
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Correctness issues

● Parallel & concurrent code is challenging to write
– Nondeterministic timing

– Actions of one task may subtly affect others

● Specifically
– Deadlock / Livelock
– Starvation
– Data races
– Atomicity violations
– Order violations
– ...

97% of real world 
concurrency bugs

[Lu, ASPLOS 2008]
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Data Races

● A data race occurs when:
1)two threads access the same location
2)the accesses are logically simultaneous
3)at least one access is a write (WAW, WAR, RAR)

T1 T2

read x
write x

T1 T2

read x
write x



  

Data Races

x++
tmp = x
tmp = tmp+1
x = tmp

T1 T2

tmp1 = x
tmp1 = tmp1+1
x = tmp1

tmp2 = x
tmp2 = tmp2+1
x = tmp2



  

Data Races

x++
tmp = x
tmp = tmp+1
x = tmp

T1 T2 T1 T2

tmp2 = x

tmp2 = tmp2+1
x = tmp2

tmp2 = x
tmp2 = tmp2+1
x = tmp2

tmp1 = x
tmp1 = tmp1+1
x = tmp1

tmp1 = x
tmp1 = tmp1+1

x = tmp1



  

Data Races

x++
tmp = x
tmp = tmp+1
x = tmp

T1 T2 T1 T2

tmp2 = x

tmp2 = tmp2+1
x = tmp2

tmp2 = x
tmp2 = tmp2+1
x = tmp2

tmp1 = x
tmp1 = tmp1+1
x = tmp1

tmp1 = x
tmp1 = tmp1+1

x = tmp1

Synchronization 
discipline prevents 

data races.
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– Avoid expensive synchronization
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“Benign” Data Races

● Sometimes a developer will make use of a data race
– Avoid expensive synchronization
– The race looks “benign” or harmless

● Both programming languages and hardware have 
memory models that determine what is really okay
– A memory model determines what values may be read 

by a given memory access, esp. w.r.t. previous writes
[CACM 2010, PLDI 2018]

http://delivery.acm.org/10.1145/1790000/1787255/p90-adve.pdf
http://kcsrk.info/papers/pldi18-memory.pdf


  

“Benign” Data Races

if (!init) {
    lock();
    if (!init) {
        data = create();
        init = true;
    }
    unlock();
}
tmp = data;

[Boehm, Hotpar 2011]

http://hboehm.info/boehm-hotpar11.pdf


  

“Benign” Data Races

● Threads race on init

● The compiler assumes no races 
while optimizing

if (!init) {
    lock();
    if (!init) {
        data = create();
        init = true;
    }
    unlock();
}
tmp = data;

[Boehm, Hotpar 2011]

http://hboehm.info/boehm-hotpar11.pdf


  

“Benign” Data Races

● Threads race on init

● The compiler assumes no races 
while optimizing

if (!init) {
    lock();
    if (!init) {
        data = create();
        init = true;
    }
    unlock();
}
tmp = data;

if (!init) {
    lock();
    if (!init) {
        init = true;
        data = create();
    }
    unlock();
}
tmp = data;

[Boehm, Hotpar 2011]

http://hboehm.info/boehm-hotpar11.pdf


  

“Benign” Data Races

● Threads race on init

● The compiler assumes no races 
while optimizing

if (!init) {
    lock();
    if (!init) {
        data = create();
        init = true;
    }
    unlock();
}
tmp = data;

if (!init) {
    lock();
    if (!init) {
        init = true;
        data = create();
    }
    unlock();
}
tmp = data;

tmp = data;
if (!init) {
    lock();
    if (!init) {
        data = create();
        tmp = data;
        init = true;
    }
    unlock();
}

[Boehm, Hotpar 2011]

http://hboehm.info/boehm-hotpar11.pdf


  

“Benign” Data Races

local = counter;
if (local > localMax) {
    handler = ...;
}
update = work();
if (local > localMax) {
    handler(update);
}

[Boehm, Hotpar 2011]

http://hboehm.info/boehm-hotpar11.pdf


  

“Benign” Data Races

● Data race freedom allows extra 
reads.

local = counter;
if (local > localMax) {
    handler = ...;
}
update = work();
if (local > localMax) {
    handler(update);
}

local = counter;
if (local > localMax) {
    handler = ...;
}
update = work();
if (counter > localMax) {
    handler(update);
}

False

True[Boehm, Hotpar 2011]

http://hboehm.info/boehm-hotpar11.pdf


  

“Benign” Data Races

● Races can introduce bugs on 
non-racy variablesc = a + 10

...
b = a + 10

[Dolan, PLDI 2018]

c = 1

http://kcsrk.info/papers/pldi18-memory.pdf


  

“Benign” Data Races

● Races can introduce bugs on 
non-racy variablesc = a + 10

...
b = a + 10

c = 1

c = a + 10
...
b = c

c = 1

[Dolan, PLDI 2018]

http://kcsrk.info/papers/pldi18-memory.pdf


  

“Benign” Data Races

● Races can jump forward and 
backward in time

a = 1
flag = true

a = 2
f = flag
b = a
c = a

[Dolan, PLDI 2018]

http://kcsrk.info/papers/pldi18-memory.pdf


  

“Benign” Data Races

● Races can jump forward and 
backward in time

a = 1
flag = true

a = 2
f = flag
b = a
c = a

a = 1
flag = true

a = 2

f = flag
b = a
c = 2

This can happen in Java when flag is volatile
& b is a complex reference

[Dolan, PLDI 2018]

http://kcsrk.info/papers/pldi18-memory.pdf


  

“Benign” Data Races

● Races can jump forward and 
backward in time

a = 1
flag = true

a = 2
f = flag
b = a
c = a

a = 1
flag = true

a = 2

f = flag
b = a
c = 2

This can happen in Java when flag is volatile
& b is a complex reference

2 can be read after 
1 even in the same 

thread!

[Dolan, PLDI 2018]

http://kcsrk.info/papers/pldi18-memory.pdf
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Happens-Before Ordering

● Memory models are often specified using
Happens-Before relations.
– a partial order over logical time (recall: simultaneously)
– defined behavior occurs when writes & reads are ordered
– lock/unlock, fork/join constrain order
– access to volatile variables keeps per variable order

● Happens-Before ordering of a specific execution can 
be tracked to identify bugs



  

Happens-Before Ordering
T1 T2

lock()
tmp = x
tmp = tmp+1
x = tmp
unlock()

lock()
tmp = x
tmp = tmp+1
x = tmp
unlock()



  

Happens-Before Ordering
T1 T2

lock()
tmp = x
tmp = tmp+1
x = tmp
unlock()

lock()
tmp = x
tmp = tmp+1
x = tmp
unlock()



  

Happens-Before Ordering
T1 T2

lock()
tmp = x
tmp = tmp+1
x = tmp
unlock()

lock()
tmp = x
tmp = tmp+1
x = tmp
unlock()
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T1 T2

lock()
tmp = x
tmp = tmp+1
x = tmp
unlock()

lock()
tmp = x
tmp = tmp+1
x = tmp
unlock()

T1 T2

tmp = x
tmp = tmp+1
x = tmp

tmp = x
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Happens-Before Ordering
T1 T2

lock()
tmp = x
tmp = tmp+1
x = tmp
unlock()

lock()
tmp = x
tmp = tmp+1
x = tmp
unlock()

T1 T2

tmp = x
tmp = tmp+1
x = tmp

tmp = x
tmp = tmp+1
x = tmp

No ordering!
Simultaneous!
Race detected!



  

Happens-Before Ordering

● Note, this only detects races in the current 
execution!
– Sound predictive data race detection can extend it across 

other executions [PLDI 2017/2018]

https://arxiv.org/abs/1704.02432
http://web.cse.ohio-state.edu/~bond.213/vindicator-pldi-2018.pdf


  

Happens-Before Ordering

● Note, this only detects races in the current 
execution!
– Sound predictive data race detection can extend it across 

other executions [PLDI 2017/2018]

● Requires careful tracking of dependences
– Careful construction of logical time using vector clocks

[JVM 2001, PLDI 2009]

https://arxiv.org/abs/1704.02432
http://web.cse.ohio-state.edu/~bond.213/vindicator-pldi-2018.pdf
https://www.usenix.org/legacy/events/jvm01/full_papers/christiaens/christiaens.pdf
https://users.soe.ucsc.edu/~cormac/papers/pldi09.pdf


  

Logical Time & Vector Clocks
T1 T2

lock(a)
write x

Shadow Memory

x↦ R[0,0]
W[0,0]

y↦ R[0,0]
W[0,0]

lock(a)
read x
unlock(a)

unlock(a)

Clocks

T1↦[0,0]
T2↦[0,0]

write x

write y



  

Logical Time & Vector Clocks
T1 T2

lock(a)
write x

Shadow Memory

lock(a)
read x
unlock(a)

unlock(a)

Clocks

T1↦[1,0]
T2↦[0,0]

write x

x↦ R[0,0]
W[0,0]

y↦ R[0,0]
W[0,0]

write y



  

Logical Time & Vector Clocks
T1 T2

lock(a)
write x

Shadow Memory

lock(a)
read x
unlock(a)

unlock(a)

Clocks

T1↦[1,0]
T2↦[0,0]

write x

x↦ R[0,0]
W[1,0]

y↦ R[0,0]
W[0,0]

write y



  

Logical Time & Vector Clocks
T1 T2

lock(a)
write x

Shadow Memory

lock(a)
read x
unlock(a)

unlock(a)

Clocks

T1↦[2,0]
T2↦[0,0]

write x

write y x↦ R[0,0]
W[1,0]

y↦ R[0,0]
W[0,0]



  

Logical Time & Vector Clocks
T1 T2

lock(a)
write x

Shadow Memory

lock(a)
read x
unlock(a)

unlock(a)

Clocks

T1↦[2,0]
T2↦[2,1]

write x

x↦ R[0,0]
W[1,0]

y↦ R[0,0]
W[0,0]

write y



  

Logical Time & Vector Clocks
T1 T2

lock(a)
write x

Shadow Memory

lock(a)
read x
unlock(a)

unlock(a)

Clocks

T1↦[2,0]
T2↦[2,1]

write x

x↦ R[2,1]
W[1,0]

y↦ R[0,0]
W[0,0]

write y



  

Logical Time & Vector Clocks
T1 T2

lock(a)
write x

Shadow Memory

lock(a)
read x
unlock(a)

unlock(a)

Clocks

T1↦[2,0]
T2↦[2,2]

write x

x↦ R[2,1]
W[1,0]

y↦ R[0,0]
W[0,0]

write y



  

Logical Time & Vector Clocks
T1 T2

lock(a)
write x

Shadow Memory

lock(a)
read x
unlock(a)

unlock(a)

Clocks

T1↦[2,0]
T2↦[2,2]

write x

x↦ R[2,1]
W[2,0]

y↦ R[0,0]
W[0,0]

write y



  

Logical Time & Vector Clocks
T1 T2

lock(a)
write x

Shadow Memory

lock(a)
read x
unlock(a)

unlock(a)

Clocks

T1↦[2,0]
T2↦[2,2]

write x

x↦ R[2,1]
W[2,0]

y↦ R[0,0]
W[0,0]

write y

C(R,X)  ⋢ C(W,X) → race!
(simplified for this case)
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● We can dynamically track the locks guarding an 
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lock(a); lock(b)

read y
write x

unlock(b)

Shadow Memory

y↦a,b
x↦a,b

lock(b)
write x
unlock(b)

write x
unlock(a)
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read y
write x
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Shadow Memory
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Data Race Detection - Locksets

● Lack of synchronization arises with complex locking

● We can dynamically track the locks guarding an 
address! T1 T2

lock(a); lock(b)

read y
write x

unlock(b)

Shadow Memory

y↦a,b
x↦{}

lock(b)
write x
unlock(b)

write x
unlock(a)



  

Data Race Detection - Locksets

● Lack of synchronization arises with complex locking

● We can dynamically track the locks guarding an 
address! T1 T2

lock(a); lock(b)

read y
write x

unlock(b)

Shadow Memory

y↦a,b
x↦{}

lock(b)
write x
unlock(b)

write x
unlock(a) Note: Both x and y are 

always protected by locks.
x still races.
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● Lockset based data race detection has many issues
– Synchronization may be fork/join, wait/notify based

– Initialization --> Process in Parallel --> Combine

– Richer parallel designs



  

Data Race Detection - Locksets

● Lockset based data race detection has many issues
– Synchronization may be fork/join, wait/notify based

– Initialization --> Process in Parallel --> Combine

– Richer parallel designs

● Tends to have many false positives



  

Order Violations

● Some accesses are wrongly assumed to occur 
before others

T1 T2

x = new Data

x->datum

wait/notify or condition 
variables can fix these



  

Atomicity Violations

● Data races are a matter of perspective
– Fine grained locking doesn’t solve much.

tmp = x
tmp = tmp+1
x = tmp



  

Atomicity Violations

● Data races are a matter of perspective
– Fine grained locking doesn’t solve much.

tmp = x
tmp = tmp+1
x = tmp

lock()
tmp = x
unlock()

tmp = tmp+1

lock()
x = tmp
unlock()

vs
No race,

similar effect!



  

Atomicity Violations

● Data races are a matter of perspective
– Fine grained locking doesn’t solve much.

tmp = x
tmp = tmp+1
x = tmp

lock()
tmp = x
unlock()

tmp = tmp+1

lock()
x = tmp
unlock()What do we really want?

vs
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equivalent to a sequentially executed one.
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Atomicity Violations

● Data races are a matter of perspective
– Fine grained locking doesn’t solve much.

● An execution (or fragment thereof) is atomic if it is 
equivalent to a sequentially executed one.
– This also takes care of data races

– Similar to notions from databases 
(serializability & linearizability)



  

Atomicity Violations

● How can we find atomicity violations?
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Atomicity Violations

● How can we find atomicity violations (or correctness)?
– Lipton’s Theory of Reduction [CACM ‘75, POPL ‘04]

Acq(m) Rd(y,0) Rd(x,0) Wr(y,1) Wr(x,1) Wr(y,2) Rel(m)

Right Mover Both Movers Left Mover

https://dl.acm.org/citation.cfm?id=361234
http://www.cs.williams.edu/~freund/papers/atomizer-popl.pdf
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Atomicity Violations

● How can we find atomicity violations (or correctness)?
– Lipton’s Theory of Reduction [CACM ‘75, POPL ‘04]

– 2 thread atomicity patterns [Lu ASPLOS ‘06]

https://dl.acm.org/citation.cfm?id=361234
http://www.cs.williams.edu/~freund/papers/atomizer-popl.pdf
https://dl.acm.org/citation.cfm?id=1168917.1168864


  

Atomicity Violations

● How can we find atomicity violations (or correctness)?
– Lipton’s Theory of Reduction [CACM ‘75, POPL ‘04]

– 2 thread atomicity patterns [Lu ASPLOS ‘06]

T1 T2 T1
R R R
W R R
R W R
W W R
R R W
W R W
R W W
W W W

Only some patterns are unserializable.
Detect unlikely issues via training.

Time

https://dl.acm.org/citation.cfm?id=361234
http://www.cs.williams.edu/~freund/papers/atomizer-popl.pdf
https://dl.acm.org/citation.cfm?id=1168917.1168864


  

Atomicity Violations

● How can we find atomicity violations (or correctness)?
– Lipton’s Theory of Reduction [CACM ‘75, POPL ‘04]

– 2 thread atomicity patterns [Lu ASPLOS ‘06]

– Conflict graphs [PLDI ‘08, RV ‘11]

https://dl.acm.org/citation.cfm?id=361234
http://www.cs.williams.edu/~freund/papers/atomizer-popl.pdf
https://dl.acm.org/citation.cfm?id=1168917.1168864
https://users.soe.ucsc.edu/~cormac/papers/pldi08.pdf
https://link.springer.com/chapter/10.1007/978-3-642-29860-8_13


  

Atomicity Violations

● How can we find atomicity violations (or correctness)?
– Lipton’s Theory of Reduction [CACM ‘75, POPL ‘04]

– 2 thread atomicity patterns [Lu ASPLOS ‘06]

– Conflict graphs [PLDI ‘08, RV ‘11]

a = x

e = d

c = x
d = c

https://dl.acm.org/citation.cfm?id=361234
http://www.cs.williams.edu/~freund/papers/atomizer-popl.pdf
https://dl.acm.org/citation.cfm?id=1168917.1168864
https://users.soe.ucsc.edu/~cormac/papers/pldi08.pdf
https://link.springer.com/chapter/10.1007/978-3-642-29860-8_13


  

Atomicity Violations

● How can we find atomicity violations (or correctness)?
– Lipton’s Theory of Reduction [CACM ‘75, POPL ‘04]

– 2 thread atomicity patterns [Lu ASPLOS ‘06]

– Conflict graphs [PLDI ‘08, RV ‘11]

a = x

e = d

c = x
d = c

T1

https://dl.acm.org/citation.cfm?id=361234
http://www.cs.williams.edu/~freund/papers/atomizer-popl.pdf
https://dl.acm.org/citation.cfm?id=1168917.1168864
https://users.soe.ucsc.edu/~cormac/papers/pldi08.pdf
https://link.springer.com/chapter/10.1007/978-3-642-29860-8_13


  

Atomicity Violations
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● How can we find atomicity violations (or correctness)?
– Lipton’s Theory of Reduction [CACM ‘75, POPL ‘04]

– 2 thread atomicity patterns [Lu ASPLOS ‘06]

– Conflict graphs [PLDI ‘08, RV ‘11]

a = x

e = d

c = x
d = c

T1
T2

T3

Cycles are unserializable!
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Atomicity Violations

● How can we find atomicity violations (or correctness)?
– Lipton’s Theory of Reduction [CACM ‘75, POPL ‘04]

– 2 thread atomicity patterns [Lu ASPLOS ‘06]

– Conflict graphs [PLDI ‘08, RV ‘11]

● How do we know what regions should be atomic?
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Concurrent Test Generation

● What if we don’t already have a buggy execution?

● Explore bounded schedules
– 2 threads and few pre-emptions finds most bugs

● Careful schedule generation & selection

● Generate API unit tests targeting concurrency
– Small enough for exhaustive schedule exploration



  

Other Directions

● Shepherding toward good behaviors

● Tolerating & avoiding on the fly

● Static analysis
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● Parallelism is important for modern performance

● Choosing what to parallelize can be hard

● Parallelizing correctly can be very hard



  

Summary

● Parallelism is important for modern performance

● Choosing what to parallelize can be hard

● Parallelizing correctly can be very hard

And the hard problems 
are interesting to study.
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