
A Review/Tour of
Concurrency & Parallelism

CMPT 886
Automated Software Analysis & Security

Nick Sumner

Seeking out performance

● Improving performance can come from tuning
– Algorithmic complexity
– Memory access patterns
– Concurrency
– Parallelism

Seeking out performance

● Improving performance can come from tuning
– Algorithmic complexity
– Memory access patterns
– Concurrency
– Parallelism

● As processor speeds have slowed increasing, much
focus has been placed on the last two

Concurrency & Parallelism

● Concurrency is the management of multiple tasks at
the same time.
– e.g. Sharing a CPU across multiple processes.

Concurrency & Parallelism

● Concurrency is the management of multiple tasks at
the same time.
– e.g. Sharing a CPU across multiple processes.

M
P

3

M
P

3

M
P

3

E
di

to
r

E
di

to
r

Sequential

Concurrency & Parallelism

● Concurrency is the management of multiple tasks at
the same time.
– e.g. Sharing a CPU across multiple processes.

M
P

3

M
P

3

M
P

3

E
di

to
r

E
di

to
r

M
P

3

M
P

3

M
P

3

E
di

to
r

E
di

to
r

Concurrent

E
di

to
r

Concurrency & Parallelism

● Concurrency is the management of multiple tasks at
the same time.
– e.g. Sharing a CPU across multiple processes.

● Parallelism is using multiple resources to perform
multiple tasks at the same time.
– e.g. multiple cores for tasks, vector instructions

Concurrency & Parallelism

● Concurrency is the management of multiple tasks at
the same time.
– e.g. Sharing a CPU across multiple processes.

● Parallelism is using multiple resources to perform
multiple tasks at the same time.
– e.g. multiple cores for tasks, vector instructions

MP3

Editor

Using Parallelism

● Large problems can sometimes be split into parallel
tasks, and the effects of the parallel tasks combined

Parallel

Sequential

Using Parallelism

● Large problems can sometimes be split into parallel
tasks, and the effects of the parallel tasks combined

● The best possible running time is determined by the
critical path or span of dependent tasks through the
program.

Using Parallelism

● Large problems can sometimes be split into parallel
tasks, and the effects of the parallel tasks combined

● The best possible running time is determined by the
critical path or span of dependent tasks through the
program.

Using Parallelism

● Large problems can sometimes be split into parallel
tasks, and the effects of the parallel tasks combined

● The best possible running time is determined by the
critical path or span of dependent tasks through the
program.

This is too optimistic!
Why?

Using Parallelism

● There are often more tasks than compute resources

Using Parallelism

● There are often more tasks than compute resources
– Brent’s Theorem describes the time accounting for limits

Given p processors ,
Time1

p
≤Timep≤

Time1

p
+Time∞

Using Parallelism

● There are often more tasks than compute resources
– Brent’s Theorem describes the time accounting for limits

● Identifying good opportunities for effective
parallelism is open to research

Given p processors ,
Time1

p
≤Timep≤

Time1

p
+Time∞

Using Parallelism

● There are often more tasks than compute resources
– Brent’s Theorem describes the time accounting for limits

● Identifying good opportunities for effective
parallelism is open to research
– Profiling for tasks to extract
– Understanding the effect of speeding specific tasks
– ...

Given p processors ,
Time1

p
≤Timep≤

Time1

p
+Time∞

Correctness issues

● Parallel & concurrent code is challenging to write
– Nondeterministic timing

– Actions of one task may subtly affect others

Correctness issues

● Parallel & concurrent code is challenging to write
– Nondeterministic timing

– Actions of one task may subtly affect others

● Specifically
– Deadlock / Livelock
– Starvation
– Data races
– Atomicity violations
– Order violations
– ...

Correctness issues

● Parallel & concurrent code is challenging to write
– Nondeterministic timing

– Actions of one task may subtly affect others

● Specifically
– Deadlock / Livelock
– Starvation
– Data races
– Atomicity violations
– Order violations
– ...

97% of real world
concurrency bugs

[Lu, ASPLOS 2008]

Data Races

● A data race occurs when:

Data Races

● A data race occurs when:
1)two threads access the same location

Data Races

● A data race occurs when:
1)two threads access the same location
2)the accesses are logically simultaneous

Data Races

● A data race occurs when:
1)two threads access the same location
2)the accesses are logically simultaneous
3)at least one access is a write (WAW, WAR, RAR)

Data Races

● A data race occurs when:
1)two threads access the same location
2)the accesses are logically simultaneous
3)at least one access is a write (WAW, WAR, RAR)

T1 T2

read x
write x

T1 T2

read x
write x

Data Races

x++
tmp = x
tmp = tmp+1
x = tmp

T1 T2

tmp1 = x
tmp1 = tmp1+1
x = tmp1

tmp2 = x
tmp2 = tmp2+1
x = tmp2

Data Races

x++
tmp = x
tmp = tmp+1
x = tmp

T1 T2 T1 T2

tmp2 = x

tmp2 = tmp2+1
x = tmp2

tmp2 = x
tmp2 = tmp2+1
x = tmp2

tmp1 = x
tmp1 = tmp1+1
x = tmp1

tmp1 = x
tmp1 = tmp1+1

x = tmp1

Data Races

x++
tmp = x
tmp = tmp+1
x = tmp

T1 T2 T1 T2

tmp2 = x

tmp2 = tmp2+1
x = tmp2

tmp2 = x
tmp2 = tmp2+1
x = tmp2

tmp1 = x
tmp1 = tmp1+1
x = tmp1

tmp1 = x
tmp1 = tmp1+1

x = tmp1

Synchronization
discipline prevents

data races.

“Benign” Data Races

● Sometimes a developer will make use of a data race
– Avoid expensive synchronization
– The race looks “benign” or harmless

“Benign” Data Races

● Sometimes a developer will make use of a data race
– Avoid expensive synchronization
– The race looks “benign” or harmless

● Both programming languages and hardware have
memory models that determine what is really okay

“Benign” Data Races

● Sometimes a developer will make use of a data race
– Avoid expensive synchronization
– The race looks “benign” or harmless

● Both programming languages and hardware have
memory models that determine what is really okay
– A memory model determines what values may be read

by a given memory access, esp. w.r.t. previous writes
[CACM 2010, PLDI 2018]

http://delivery.acm.org/10.1145/1790000/1787255/p90-adve.pdf
http://kcsrk.info/papers/pldi18-memory.pdf

“Benign” Data Races

if (!init) {
 lock();
 if (!init) {
 data = create();
 init = true;
 }
 unlock();
}
tmp = data;

[Boehm, Hotpar 2011]

http://hboehm.info/boehm-hotpar11.pdf

“Benign” Data Races

● Threads race on init

● The compiler assumes no races
while optimizing

if (!init) {
 lock();
 if (!init) {
 data = create();
 init = true;
 }
 unlock();
}
tmp = data;

[Boehm, Hotpar 2011]

http://hboehm.info/boehm-hotpar11.pdf

“Benign” Data Races

● Threads race on init

● The compiler assumes no races
while optimizing

if (!init) {
 lock();
 if (!init) {
 data = create();
 init = true;
 }
 unlock();
}
tmp = data;

if (!init) {
 lock();
 if (!init) {
 init = true;
 data = create();
 }
 unlock();
}
tmp = data;

[Boehm, Hotpar 2011]

http://hboehm.info/boehm-hotpar11.pdf

“Benign” Data Races

● Threads race on init

● The compiler assumes no races
while optimizing

if (!init) {
 lock();
 if (!init) {
 data = create();
 init = true;
 }
 unlock();
}
tmp = data;

if (!init) {
 lock();
 if (!init) {
 init = true;
 data = create();
 }
 unlock();
}
tmp = data;

tmp = data;
if (!init) {
 lock();
 if (!init) {
 data = create();
 tmp = data;
 init = true;
 }
 unlock();
}

[Boehm, Hotpar 2011]

http://hboehm.info/boehm-hotpar11.pdf

“Benign” Data Races

local = counter;
if (local > localMax) {
 handler = ...;
}
update = work();
if (local > localMax) {
 handler(update);
}

[Boehm, Hotpar 2011]

http://hboehm.info/boehm-hotpar11.pdf

“Benign” Data Races

● Data race freedom allows extra
reads.

local = counter;
if (local > localMax) {
 handler = ...;
}
update = work();
if (local > localMax) {
 handler(update);
}

local = counter;
if (local > localMax) {
 handler = ...;
}
update = work();
if (counter > localMax) {
 handler(update);
}

False

True[Boehm, Hotpar 2011]

http://hboehm.info/boehm-hotpar11.pdf

“Benign” Data Races

● Races can introduce bugs on
non-racy variablesc = a + 10

...
b = a + 10

[Dolan, PLDI 2018]

c = 1

http://kcsrk.info/papers/pldi18-memory.pdf

“Benign” Data Races

● Races can introduce bugs on
non-racy variablesc = a + 10

...
b = a + 10

c = 1

c = a + 10
...
b = c

c = 1

[Dolan, PLDI 2018]

http://kcsrk.info/papers/pldi18-memory.pdf

“Benign” Data Races

● Races can jump forward and
backward in time

a = 1
flag = true

a = 2
f = flag
b = a
c = a

[Dolan, PLDI 2018]

http://kcsrk.info/papers/pldi18-memory.pdf

“Benign” Data Races

● Races can jump forward and
backward in time

a = 1
flag = true

a = 2
f = flag
b = a
c = a

a = 1
flag = true

a = 2

f = flag
b = a
c = 2

This can happen in Java when flag is volatile
& b is a complex reference

[Dolan, PLDI 2018]

http://kcsrk.info/papers/pldi18-memory.pdf

“Benign” Data Races

● Races can jump forward and
backward in time

a = 1
flag = true

a = 2
f = flag
b = a
c = a

a = 1
flag = true

a = 2

f = flag
b = a
c = 2

This can happen in Java when flag is volatile
& b is a complex reference

2 can be read after
1 even in the same

thread!

[Dolan, PLDI 2018]

http://kcsrk.info/papers/pldi18-memory.pdf

Happens-Before Ordering

● Memory models are often specified using
Happens-Before relations.

Happens-Before Ordering

● Memory models are often specified using
Happens-Before relations.
– a partial order over logical time (recall: simultaneously)
– defined behavior occurs when writes & reads are ordered

Happens-Before Ordering

● Memory models are often specified using
Happens-Before relations.
– a partial order over logical time (recall: simultaneously)
– defined behavior occurs when writes & reads are ordered
– lock/unlock, fork/join constrain order
– access to volatile variables keeps per variable order

Happens-Before Ordering

● Memory models are often specified using
Happens-Before relations.
– a partial order over logical time (recall: simultaneously)
– defined behavior occurs when writes & reads are ordered
– lock/unlock, fork/join constrain order
– access to volatile variables keeps per variable order

● Happens-Before ordering of a specific execution can
be tracked to identify bugs

Happens-Before Ordering
T1 T2

lock()
tmp = x
tmp = tmp+1
x = tmp
unlock()

lock()
tmp = x
tmp = tmp+1
x = tmp
unlock()

Happens-Before Ordering
T1 T2

lock()
tmp = x
tmp = tmp+1
x = tmp
unlock()

lock()
tmp = x
tmp = tmp+1
x = tmp
unlock()

Happens-Before Ordering
T1 T2

lock()
tmp = x
tmp = tmp+1
x = tmp
unlock()

lock()
tmp = x
tmp = tmp+1
x = tmp
unlock()

Happens-Before Ordering
T1 T2

lock()
tmp = x
tmp = tmp+1
x = tmp
unlock()

lock()
tmp = x
tmp = tmp+1
x = tmp
unlock()

T1 T2

tmp = x
tmp = tmp+1
x = tmp

tmp = x
tmp = tmp+1
x = tmp

Happens-Before Ordering
T1 T2

lock()
tmp = x
tmp = tmp+1
x = tmp
unlock()

lock()
tmp = x
tmp = tmp+1
x = tmp
unlock()

T1 T2

tmp = x
tmp = tmp+1
x = tmp

tmp = x
tmp = tmp+1
x = tmp

No ordering!
Simultaneous!
Race detected!

Happens-Before Ordering

● Note, this only detects races in the current
execution!
– Sound predictive data race detection can extend it across

other executions [PLDI 2017/2018]

https://arxiv.org/abs/1704.02432
http://web.cse.ohio-state.edu/~bond.213/vindicator-pldi-2018.pdf

Happens-Before Ordering

● Note, this only detects races in the current
execution!
– Sound predictive data race detection can extend it across

other executions [PLDI 2017/2018]

● Requires careful tracking of dependences
– Careful construction of logical time using vector clocks

[JVM 2001, PLDI 2009]

https://arxiv.org/abs/1704.02432
http://web.cse.ohio-state.edu/~bond.213/vindicator-pldi-2018.pdf
https://www.usenix.org/legacy/events/jvm01/full_papers/christiaens/christiaens.pdf
https://users.soe.ucsc.edu/~cormac/papers/pldi09.pdf

Logical Time & Vector Clocks
T1 T2

lock(a)
write x

Shadow Memory

x↦ R[0,0]
W[0,0]

y↦ R[0,0]
W[0,0]

lock(a)
read x
unlock(a)

unlock(a)

Clocks

T1↦[0,0]
T2↦[0,0]

write x

write y

Logical Time & Vector Clocks
T1 T2

lock(a)
write x

Shadow Memory

lock(a)
read x
unlock(a)

unlock(a)

Clocks

T1↦[1,0]
T2↦[0,0]

write x

x↦ R[0,0]
W[0,0]

y↦ R[0,0]
W[0,0]

write y

Logical Time & Vector Clocks
T1 T2

lock(a)
write x

Shadow Memory

lock(a)
read x
unlock(a)

unlock(a)

Clocks

T1↦[1,0]
T2↦[0,0]

write x

x↦ R[0,0]
W[1,0]

y↦ R[0,0]
W[0,0]

write y

Logical Time & Vector Clocks
T1 T2

lock(a)
write x

Shadow Memory

lock(a)
read x
unlock(a)

unlock(a)

Clocks

T1↦[2,0]
T2↦[0,0]

write x

write y x↦ R[0,0]
W[1,0]

y↦ R[0,0]
W[0,0]

Logical Time & Vector Clocks
T1 T2

lock(a)
write x

Shadow Memory

lock(a)
read x
unlock(a)

unlock(a)

Clocks

T1↦[2,0]
T2↦[2,1]

write x

x↦ R[0,0]
W[1,0]

y↦ R[0,0]
W[0,0]

write y

Logical Time & Vector Clocks
T1 T2

lock(a)
write x

Shadow Memory

lock(a)
read x
unlock(a)

unlock(a)

Clocks

T1↦[2,0]
T2↦[2,1]

write x

x↦ R[2,1]
W[1,0]

y↦ R[0,0]
W[0,0]

write y

Logical Time & Vector Clocks
T1 T2

lock(a)
write x

Shadow Memory

lock(a)
read x
unlock(a)

unlock(a)

Clocks

T1↦[2,0]
T2↦[2,2]

write x

x↦ R[2,1]
W[1,0]

y↦ R[0,0]
W[0,0]

write y

Logical Time & Vector Clocks
T1 T2

lock(a)
write x

Shadow Memory

lock(a)
read x
unlock(a)

unlock(a)

Clocks

T1↦[2,0]
T2↦[2,2]

write x

x↦ R[2,1]
W[2,0]

y↦ R[0,0]
W[0,0]

write y

Logical Time & Vector Clocks
T1 T2

lock(a)
write x

Shadow Memory

lock(a)
read x
unlock(a)

unlock(a)

Clocks

T1↦[2,0]
T2↦[2,2]

write x

x↦ R[2,1]
W[2,0]

y↦ R[0,0]
W[0,0]

write y

C(R,X) ⋢ C(W,X) → race!
(simplified for this case)

Data Race Detection - Locksets

● Lack of synchronization arises with complex locking

● We can dynamically track the locks guarding an
address!

Data Race Detection - Locksets

● Lack of synchronization arises with complex locking

● We can dynamically track the locks guarding an
address! T1 T2

lock(a); lock(b)

read y
write x

unlock(b)

Shadow Memory

y↦a,b
x↦a,b

lock(b)
write x
unlock(b)

write x
unlock(a)

Data Race Detection - Locksets

● Lack of synchronization arises with complex locking

● We can dynamically track the locks guarding an
address! T1 T2

lock(a); lock(b)

read y
write x

unlock(b)

Shadow Memory

y↦a,b
x↦a

lock(b)
write x
unlock(b)

write x
unlock(a)

Data Race Detection - Locksets

● Lack of synchronization arises with complex locking

● We can dynamically track the locks guarding an
address! T1 T2

lock(a); lock(b)

read y
write x

unlock(b)

Shadow Memory

y↦a,b
x↦{}

lock(b)
write x
unlock(b)

write x
unlock(a)

Data Race Detection - Locksets

● Lack of synchronization arises with complex locking

● We can dynamically track the locks guarding an
address! T1 T2

lock(a); lock(b)

read y
write x

unlock(b)

Shadow Memory

y↦a,b
x↦{}

lock(b)
write x
unlock(b)

write x
unlock(a) Note: Both x and y are

always protected by locks.
x still races.

Data Race Detection - Locksets

● Lockset based data race detection has many issues
– Synchronization may be fork/join, wait/notify based

– Initialization --> Process in Parallel --> Combine

– Richer parallel designs

Data Race Detection - Locksets

● Lockset based data race detection has many issues
– Synchronization may be fork/join, wait/notify based

– Initialization --> Process in Parallel --> Combine

– Richer parallel designs

● Tends to have many false positives

Order Violations

● Some accesses are wrongly assumed to occur
before others

T1 T2

x = new Data

x->datum

wait/notify or condition
variables can fix these

Atomicity Violations

● Data races are a matter of perspective
– Fine grained locking doesn’t solve much.

tmp = x
tmp = tmp+1
x = tmp

Atomicity Violations

● Data races are a matter of perspective
– Fine grained locking doesn’t solve much.

tmp = x
tmp = tmp+1
x = tmp

lock()
tmp = x
unlock()

tmp = tmp+1

lock()
x = tmp
unlock()

vs
No race,

similar effect!

Atomicity Violations

● Data races are a matter of perspective
– Fine grained locking doesn’t solve much.

tmp = x
tmp = tmp+1
x = tmp

lock()
tmp = x
unlock()

tmp = tmp+1

lock()
x = tmp
unlock()What do we really want?

vs

Atomicity Violations

● Data races are a matter of perspective
– Fine grained locking doesn’t solve much.

● An execution (or fragment thereof) is atomic if it is
equivalent to a sequentially executed one.

Atomicity Violations

● Data races are a matter of perspective
– Fine grained locking doesn’t solve much.

● An execution (or fragment thereof) is atomic if it is
equivalent to a sequentially executed one.

Acq(m) Rd(y,0) Rd(x,0) Wr(y,1) Wr(x,1) Wr(y,2) Rel(m)

Atomicity Violations

● Data races are a matter of perspective
– Fine grained locking doesn’t solve much.

● An execution (or fragment thereof) is atomic if it is
equivalent to a sequentially executed one.

Acq(m) Rd(y,0) Rd(x,0) Wr(y,1) Wr(x,1) Wr(y,2) Rel(m)

Acq(m) Rd(y,0)Rd(x,0) Wr(y,1)Wr(x,1) Wr(y,2)Rel(m)

Atomicity Violations

● Data races are a matter of perspective
– Fine grained locking doesn’t solve much.

● An execution (or fragment thereof) is atomic if it is
equivalent to a sequentially executed one.
– This also takes care of data races

– Similar to notions from databases
(serializability & linearizability)

Atomicity Violations

● How can we find atomicity violations?

Atomicity Violations

● How can we find atomicity violations (or correctness)?
– Lipton’s Theory of Reduction [CACM ‘75, POPL ‘04]

https://dl.acm.org/citation.cfm?id=361234
http://www.cs.williams.edu/~freund/papers/atomizer-popl.pdf

Atomicity Violations

● How can we find atomicity violations (or correctness)?
– Lipton’s Theory of Reduction [CACM ‘75, POPL ‘04]

Acq(m) Rd(y,0) Rd(x,0) Wr(y,1) Wr(x,1) Wr(y,2) Rel(m)

https://dl.acm.org/citation.cfm?id=361234
http://www.cs.williams.edu/~freund/papers/atomizer-popl.pdf

Atomicity Violations

● How can we find atomicity violations (or correctness)?
– Lipton’s Theory of Reduction [CACM ‘75, POPL ‘04]

Acq(m) Rd(y,0) Rd(x,0) Wr(y,1) Wr(x,1) Wr(y,2) Rel(m)

Right Mover Both Movers Left Mover

https://dl.acm.org/citation.cfm?id=361234
http://www.cs.williams.edu/~freund/papers/atomizer-popl.pdf

Atomicity Violations

● How can we find atomicity violations (or correctness)?
– Lipton’s Theory of Reduction [CACM ‘75, POPL ‘04]

Acq(m) Rd(y,0) Rd(x,0) Wr(y,1) Wr(x,1) Wr(y,2) Rel(m)

Acq(m) Rd(y,0)Rd(x,0) Wr(y,1)Wr(x,1) Wr(y,2)Rel(m)

https://dl.acm.org/citation.cfm?id=361234
http://www.cs.williams.edu/~freund/papers/atomizer-popl.pdf

Atomicity Violations

● How can we find atomicity violations (or correctness)?
– Lipton’s Theory of Reduction [CACM ‘75, POPL ‘04]

– 2 thread atomicity patterns [Lu ASPLOS ‘06]

https://dl.acm.org/citation.cfm?id=361234
http://www.cs.williams.edu/~freund/papers/atomizer-popl.pdf
https://dl.acm.org/citation.cfm?id=1168917.1168864

Atomicity Violations

● How can we find atomicity violations (or correctness)?
– Lipton’s Theory of Reduction [CACM ‘75, POPL ‘04]

– 2 thread atomicity patterns [Lu ASPLOS ‘06]

T1 T2 T1
R R R
W R R
R W R
W W R
R R W
W R W
R W W
W W W

Only some patterns are unserializable.
Detect unlikely issues via training.

Time

https://dl.acm.org/citation.cfm?id=361234
http://www.cs.williams.edu/~freund/papers/atomizer-popl.pdf
https://dl.acm.org/citation.cfm?id=1168917.1168864

Atomicity Violations

● How can we find atomicity violations (or correctness)?
– Lipton’s Theory of Reduction [CACM ‘75, POPL ‘04]

– 2 thread atomicity patterns [Lu ASPLOS ‘06]

– Conflict graphs [PLDI ‘08, RV ‘11]

https://dl.acm.org/citation.cfm?id=361234
http://www.cs.williams.edu/~freund/papers/atomizer-popl.pdf
https://dl.acm.org/citation.cfm?id=1168917.1168864
https://users.soe.ucsc.edu/~cormac/papers/pldi08.pdf
https://link.springer.com/chapter/10.1007/978-3-642-29860-8_13

Atomicity Violations

● How can we find atomicity violations (or correctness)?
– Lipton’s Theory of Reduction [CACM ‘75, POPL ‘04]

– 2 thread atomicity patterns [Lu ASPLOS ‘06]

– Conflict graphs [PLDI ‘08, RV ‘11]

a = x

e = d

c = x
d = c

https://dl.acm.org/citation.cfm?id=361234
http://www.cs.williams.edu/~freund/papers/atomizer-popl.pdf
https://dl.acm.org/citation.cfm?id=1168917.1168864
https://users.soe.ucsc.edu/~cormac/papers/pldi08.pdf
https://link.springer.com/chapter/10.1007/978-3-642-29860-8_13

Atomicity Violations

● How can we find atomicity violations (or correctness)?
– Lipton’s Theory of Reduction [CACM ‘75, POPL ‘04]

– 2 thread atomicity patterns [Lu ASPLOS ‘06]

– Conflict graphs [PLDI ‘08, RV ‘11]

a = x

e = d

c = x
d = c

T1

https://dl.acm.org/citation.cfm?id=361234
http://www.cs.williams.edu/~freund/papers/atomizer-popl.pdf
https://dl.acm.org/citation.cfm?id=1168917.1168864
https://users.soe.ucsc.edu/~cormac/papers/pldi08.pdf
https://link.springer.com/chapter/10.1007/978-3-642-29860-8_13

Atomicity Violations

● How can we find atomicity violations (or correctness)?
– Lipton’s Theory of Reduction [CACM ‘75, POPL ‘04]

– 2 thread atomicity patterns [Lu ASPLOS ‘06]

– Conflict graphs [PLDI ‘08, RV ‘11]

a = x

e = d

c = x
d = c

T1
T2

https://dl.acm.org/citation.cfm?id=361234
http://www.cs.williams.edu/~freund/papers/atomizer-popl.pdf
https://dl.acm.org/citation.cfm?id=1168917.1168864
https://users.soe.ucsc.edu/~cormac/papers/pldi08.pdf
https://link.springer.com/chapter/10.1007/978-3-642-29860-8_13

Atomicity Violations

● How can we find atomicity violations (or correctness)?
– Lipton’s Theory of Reduction [CACM ‘75, POPL ‘04]

– 2 thread atomicity patterns [Lu ASPLOS ‘06]

– Conflict graphs [PLDI ‘08, RV ‘11]

a = x

e = d

c = x
d = c

T1
T2

T3

https://dl.acm.org/citation.cfm?id=361234
http://www.cs.williams.edu/~freund/papers/atomizer-popl.pdf
https://dl.acm.org/citation.cfm?id=1168917.1168864
https://users.soe.ucsc.edu/~cormac/papers/pldi08.pdf
https://link.springer.com/chapter/10.1007/978-3-642-29860-8_13

Atomicity Violations

● How can we find atomicity violations (or correctness)?
– Lipton’s Theory of Reduction [CACM ‘75, POPL ‘04]

– 2 thread atomicity patterns [Lu ASPLOS ‘06]

– Conflict graphs [PLDI ‘08, RV ‘11]

a = x

e = d

c = x
d = c

T1
T2

T3

https://dl.acm.org/citation.cfm?id=361234
http://www.cs.williams.edu/~freund/papers/atomizer-popl.pdf
https://dl.acm.org/citation.cfm?id=1168917.1168864
https://users.soe.ucsc.edu/~cormac/papers/pldi08.pdf
https://link.springer.com/chapter/10.1007/978-3-642-29860-8_13

Atomicity Violations

● How can we find atomicity violations (or correctness)?
– Lipton’s Theory of Reduction [CACM ‘75, POPL ‘04]

– 2 thread atomicity patterns [Lu ASPLOS ‘06]

– Conflict graphs [PLDI ‘08, RV ‘11]

a = x

e = d

c = x
d = c

T1
T2

T3

Cycles are unserializable!

https://dl.acm.org/citation.cfm?id=361234
http://www.cs.williams.edu/~freund/papers/atomizer-popl.pdf
https://dl.acm.org/citation.cfm?id=1168917.1168864
https://users.soe.ucsc.edu/~cormac/papers/pldi08.pdf
https://link.springer.com/chapter/10.1007/978-3-642-29860-8_13

Atomicity Violations

● How can we find atomicity violations (or correctness)?
– Lipton’s Theory of Reduction [CACM ‘75, POPL ‘04]

– 2 thread atomicity patterns [Lu ASPLOS ‘06]

– Conflict graphs [PLDI ‘08, RV ‘11]

● How do we know what regions should be atomic?

https://dl.acm.org/citation.cfm?id=361234
http://www.cs.williams.edu/~freund/papers/atomizer-popl.pdf
https://dl.acm.org/citation.cfm?id=1168917.1168864
https://users.soe.ucsc.edu/~cormac/papers/pldi08.pdf
https://link.springer.com/chapter/10.1007/978-3-642-29860-8_13

Concurrent Test Generation

● What if we don’t already have a buggy execution?

Concurrent Test Generation

● What if we don’t already have a buggy execution?

● Explore bounded schedules
– 2 threads and few pre-emptions finds most bugs

Concurrent Test Generation

● What if we don’t already have a buggy execution?

● Explore bounded schedules
– 2 threads and few pre-emptions finds most bugs

● Careful schedule generation & selection

Concurrent Test Generation

● What if we don’t already have a buggy execution?

● Explore bounded schedules
– 2 threads and few pre-emptions finds most bugs

● Careful schedule generation & selection

● Generate API unit tests targeting concurrency
– Small enough for exhaustive schedule exploration

Other Directions

● Shepherding toward good behaviors

● Tolerating & avoiding on the fly

● Static analysis

Summary

● Parallelism is important for modern performance

● Choosing what to parallelize can be hard

● Parallelizing correctly can be very hard

Summary

● Parallelism is important for modern performance

● Choosing what to parallelize can be hard

● Parallelizing correctly can be very hard

And the hard problems
are interesting to study.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98

