Static Analysis and Dataflow Analysis

Static Analysis

Static analyses consider all possible behaviors of a program without running it.

Static Analysis

Static analyses consider all possible behaviors of a program without running it.

- Look for a property of interest

Static Analysis

Static analyses consider all possible behaviors of a program without running it.

- Look for a property of interest
- Do I dereference NULL pointers?

Static Analysis

Static analyses consider all possible behaviors of a program without running it.

- Look for a property of interest
- Do I dereference NULL pointers?
- Do lleak memory?

Static Analysis

Static analyses consider all possible behaviors of a program without running it.

- Look for a property of interest
- Do I dereference NULL pointers?
- Do Ileak memory?
- Do I violate a protocol specification?

Static Analysis

Static analyses consider all possible behaviors of a program without running it.

- Look for a property of interest
- Do I dereference NULL pointers?
- Do I leak memory?
- Do I violate a protocol specification?
- Is this file open?

Static Analysis

Static analyses consider all possible behaviors of a program without running it.

- Look for a property of interest
- Do I dereference NULL pointers?
- Do I leak memory?
- Do I violate a protocol specification?
- Is this file open?
- Does my program terminate?

Static Analysis

Static analyses consider all possible behaviors of a program without running it.

- Look for a property of interest
- Do I dereference NULL pointers?
- Do I leak memory?
- Do I violate a protocol specification?
- Is this file open?
- Does my program terminate?

But wait? Isn't that impossible?

Static Analysis

Brief Review of Undecidability

Static Analysis

Brief Review of Undecidability

Static Analysis

Brief Review of Undecidability

Static Analysis

Brief Review of Undecidability

Static Analysis

Brief Review of Undecidability

Static Analysis

Brief Review of Undecidability

It's a classic paradox!

Static Analysis

Static analyses consider all possible behaviors of a program without running it.

- Look for a property of interest
- Do I dereference NULL pointers?
- Do I leak memory?
- Do I violate a protocol specification?
- Is this file open?
- Does my program terminate?

But wait? Isn't that impossible?

Static Analysis

Static analyses consider all possible behaviors of a program without running it.

- Look for a property of interest
- Do I dereference NULL pointers?
- Do I leak memory?
- Do I violate a protocol specification?
- Is this file open?
- Does my program terminate?

But wait? Isn't that impossible?

- Only if answers must be perfect.

Static Analysis

Static analyses consider all possible behaviors of a program without running it.

- Look for a property of interest
- Do I dereference NULL pointers?
- Do I leak memory?
- Do I violate a protocol specification?
- Is this file open?
- Does my program terminate?

But wait? Isn't that impossible?

- Only if answers must be perfect.

Static Analysis

Static analyses consider all possible behaviors of a program without running it.

- Look for a property of interest
- Do I dereference NULL pointers?
- Do I leak memory?
- Do I violate a protocol specification?
- Is this file open?
- Does my program terminate?

But wait? Isn't that impossible?

- Only if answers must be perfect.

Static Analysis

Overapproximate or underapproximate the problem, and try to solve this simpler version.

Static Analysis

Overapproximate or underapproximate the problem, and try to solve this simpler version.

- Sound analyses
- Overapproximate
- Guaranteed to find violations of property
- May raise false alarms

Static Analysis

Overapproximate or underapproximate the problem, and try to solve this simpler version.

- Sound analyses
- Overapproximate
- Guaranteed to find violations of property
- May raise false alarms
- Complete analyses
- Underapproximate
- Reported violations are real
- May miss violations

Static Analysis

Overapproximate or underapproximate the problem, and try to solve this simpler version.

- Sound analyses
- Overapproximate
- Guaranteed to find violations of property
- May raise false alarms
- Complete analyses
- Underapproximate
- Reported violations are real
- May miss violations

Striking the right balance is key to a useful analysis

Approximation

Modeled program behaviors

Approximation

Modeled program behaviors

Consider some behaviors possible when they are not.

Approximation

Modeled program behaviors

Ignore some behaviors that are possible.

Approximation

- Dynamic Analysis
- Analyzed \subseteq Feasible
- As \# tests \uparrow, Analyzed \rightarrow Feasible

Approximation

- Dynamic Analysis
- Analyzed \subseteq Feasible
- As \# tests \uparrow, Analyzed \rightarrow Feasible
- Static Analysis
- Feasible \subseteq Analyzed

Approximation

- Dynamic Analysis
- Analyzed \subseteq Feasible
- As \# tests \uparrow, Analyzed \rightarrow Feasible
- Static Analysis
- Feasible \subseteq Analyzed

Approximation

- Dynamic Analysis
- Analyzed \subseteq Feasible
- As \# tests \uparrow, Analyzed \rightarrow Feasible
- Static Analysis
- Feasible \subseteq Analyzed
- As infeasible paths \downarrow, Analyzed \rightarrow Feasible

Approximation

- Dynamic Analysis
- Analyzed \subseteq Feasible
- As \# tests \uparrow, Analyzed \rightarrow Feasible
- Static Analysis
- Feasible \subseteq Analyzed
- As infeasible paths \downarrow, Analyzed \rightarrow Feasible
- The two areas complement each other
- Static analysis can help generate useful tests
- Dynamic analysis can help identify infeasibility

Abstract Interpretation

Q: Is a particular number ever negative? - Might be an offset into invalid memory!

Approximate the program's behavior

Abstract Interpretation

Q: Is a particular number ever negative? - Might be an offset into invalid memory!

Approximate the program's behavior

- Concrete domain: integers
- Abstract domain: $\{-, 0,+\} \bigcup\{T, \perp\}$

Abstract Interpretation

Q: Is a particular number ever negative?

- Might be an offset into invalid memory!

Approximate the program's behavior

- Concrete domain: integers
- Abstract domain: $\{-, 0,+\} \bigcup\{T, \perp\}$

$$
\begin{aligned}
& \text { concrete }(x)=5 \mapsto \operatorname{abstract}(x)=+ \\
& \text { concrete(y) = -3 } \mapsto \text { abstract }(\mathrm{y})=- \\
& \text { concrete(z) }=0 \mapsto \operatorname{abstract}(z)=0
\end{aligned}
$$

Combines sets of the concrete domain

Abstract Interpretation

- Transfer Functions show how to evaluate this approximated program:

Abstract Interpretation

- Transfer Functions show how to evaluate this approximated program:
$-+++\rightarrow+$
- - + - \rightarrow -
$-0+0 \rightarrow 0$
$-0+-\rightarrow-$
- ...
$-++-\rightarrow T$ (unknown / might vary)
- ... / $0 \rightarrow \perp$ (undefined)

Abstract Interpretation

- Transfer Functions show how to evaluate this approximated program:
$-+++\rightarrow+$
- - + - \rightarrow -
$-0+0 \rightarrow 0$
$-0+-\rightarrow-$
- ...
$-++-\rightarrow$ T(unknown / might vary)
- ... / $0 \rightarrow \perp$ (undefined)

This type of approximation is called abstract interpretation.

Abstract Interpretation

6) print (sum)
7) print(i)

Abstract Interpretation

6) print (sum)
7) print(i)

Abstract Interpretation

Abstract Interpretation

6) print (sum)
7) print(i)

Abstract Interpretation

6) print (sum)
7) print(i)

Abstract Interpretation

6) print (sum) 7) print(i)

Abstract Interpretation

6) print (sum) 7) print(i)

Abstract Interpretation

Abstract Interpretation

Does the process ever end?

Abstract Interpretation

Abstract Interpretation

Abstract Interpretation

- Guarantee termination by carefully choosing
- The abstract domain
- The transfer function

Abstract Interpretation

- Guarantee termination by carefully choosing
- The abstract domain
- The transfer function
- For basic analyses, use a monotone framework Loosely: <CFG, Transfer Function, Lattice Abstraction>

Abstract Interpretation

- Guarantee termination by carefully choosing
- The abstract domain
- The transfer function
- For basic analyses, use a monotone framework
- $\{-, 0,+\} \cup\{T, \perp\}$
- They define a partial order
- Abstract state can only move up lattice at a statement

Abstract Interpretation

- Guarantee termination by carefully choosing
- The abstract domain
- The transfer function
- For basic analyses, use a monotone framework
- $\{-, 0,+\} \cup\{T, \perp\}$
- They define a partial order
- Abstract state can only move up lattice at a statement

Why does this specific example terminate?

Abstract Interpretation

- Guarantee termination by carefully choosing
- The abstract domain
- The transfer function
- For basic analyses, use a monotone framework
- But in theory a lattice need not be finite!
(ranges/intervals, linear constraints, ...)

Abstract Interpretation

- Guarantee termination by carefully choosing
- The abstract domain
- The transfer function
- For basic analyses, use a monotone framework
- But in theory a lattice need not be finite!
- Widening operators can still make it feasible (e.g., heuristically raise to T)

Abstract Interpretation

- What properties should a good abstraction have?

Abstract Interpretation

- What properties should a good abstraction have?

Concrete

Abstract Interpretation

- What properties should a good abstraction have?

Concrete

Abstract Interpretation

- What properties should a good abstraction have?

Concrete

Abstract Interpretation

- What properties should a good abstraction have?

Concrete

Abstract

Abstract Interpretation

- What properties should a good abstraction have?

Abstract Interpretation

- What properties should a good abstraction have?

Abstract Interpretation

- What properties should a good abstraction have?

Abstract Interpretation

- What properties should a good abstraction have?

Dataflow Analysis

- Dataflow analysis performs model checking of abstract interpretations

Dataflow Analysis

- Dataflow analysis performs model checking of abstract interpretations
- Meet Operator (Π) combines results across program paths

Dataflow Analysis

- Dataflow analysis performs model checking of abstract interpretations
- Meet Operator (Π) combines results across program paths

$$
\mathbf{x}_{\mathrm{A}} \prod \mathrm{x}_{\mathrm{B}}=?
$$

Dataflow Analysis

- Dataflow analysis performs model checking of abstract interpretations
- Meet Operator (Π) combines results across program paths

Dataflow Analysis

- Dataflow analysis performs model checking of abstract interpretations
- Meet Operator (Π) combines results across program paths

Dataflow Analysis

- Dataflow analysis performs model checking of abstract interpretations
- Meet Operator (Π) combines results across program paths

Dataflow Analysis

- Dataflow analysis performs model checking of abstract interpretations
- Meet Operator (Π) combines results across program paths

Dataflow Analysis

- Now model the abstract program state and propagate through the CFG.

Dataflow Analysis

- Now model the abstract program state and propagate through the CFG.

Dataflow Analysis

- Now model the abstract program state and propagate through the CFG.

Dataflow Analysis

- Now model the abstract program state and propagate through the CFG.

Dataflow Analysis

- Now model the abstract program state and propagate through the CFG.

Dataflow Analysis

- Now model the abstract program state and propagate through the CFG.

Dataflow Analysis

- Now model the abstract program state and propagate through the CFG.

Dataflow Analysis

- Now model the abstract program state and propagate through the CFG.

Dataflow Analysis

- Now model the abstract program state and propagate through the CFG.

Dataflow Analysis

- Now model the abstract program state and propagate through the CFG.

Dataflow Analysis

- Now model the abstract program state and propagate through the CFG.

Dataflow Analysis

- Now model the abstract program state and propagate through the CFG.

Dataflow Analysis

- Now model the abstract program state and propagate through the CFG.

Dataflow Analysis

- Now model the abstract program state and propagate through the CFG.

Dataflow Analysis

- Now model the abstract program state and propagate through the CFG.
- Continue until we reach a fixed point
(No more changes)

Dataflow Analysis

- Now model the abstract program state and propagate through the CFG.
- Continue until we reach a fixed point
(No more changes)
- Proper ordering can improve the efficiency.
(Topological Order, Strongly Connected Components)

Dataflow Analysis

- Now model the abstract program state and propagate through the CFG.
- Continue until we reach a fixed point
(No more changes)
- Proper ordering can improve the efficiency.
- (Topological Order, Strongly Connected Components)

Will it always terminate?

Dataflow Analysis

- Note: need to model program state before and after each statement
- Proper ordering \& a work list algorithm improves the efficiency

Worklist Algorithms

```
work = nodes()
state(n) = \perp\forall n G nodes()
while work = Ø:
    unit = take(work)
    old = state(unit)
    before = Пstate(p)
        | \in preds(unit)
    new = transfer(before, unit)
    if old # after:
        work = work U succs(unit)
        state(unit) = new
```


Worklist Algorithms

```
work = nodes()
state(n) = \perp \forall n \in nodes()
while work = Ø
    unit = take(work)
    old = state(unit)
    before = Пstate(p)
        | \in preds(unit)
    new = transfer(before, unit)
    if old # after:
        work = work U succs(unit)
        state(unit) = new
```

work: | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |

state:

(3 $\mapsto \perp)$
($4 \mapsto \perp$)

\}

Worklist Algorithms

```
work = nodes()
state(n) = \perp\forall n \in nodes()
while work = Ø
    unit = take(work)
    old = state(unit)
    before = Пstate(p)
        | }\in\mathrm{ preds(unit)
    new = transfer(before, unit)
    if old # after:
        work = work U succs(unit)
        state(unit) = new
```

unit $=1$

state:

(3) $\mapsto \perp$)
($4 \mapsto \perp$)

\}

Worklist Algorithms

```
work = nodes()
state(n) = \perp\forall n \in nodes()
while work = Ø
    unit = take(work)
    old = state(unit)
    before = Пstate(p)
        | | preds(unit)
    new = transfer(before, unit)
    unit =1 
    if old # after:
        work = work U succs(unit)
        state(unit) = new
```

work: | 2 | 3 | 4 |
| :--- | :--- | :--- |

state:

(3 $\mapsto \perp)$
($4 \mapsto \perp$)

Worklist Algorithms

work: | 2 | 3 | 4 |
| :--- | :--- | :--- |

state: $\left\{\begin{array}{l}(\boxed{1} \mapsto \perp) \\ (\boxed{2} \mapsto \perp)\end{array}\right.$
$(3 \mapsto \perp)$
$(4 \mapsto \perp)$
\}

Worklist Algorithms

```
work = nodes()
state(n) = \perp\forall n G nodes()
while work = Ø
    unit = take(work)
    old = state(unit)
    before = Пstate(p)
        | }\in\mathrm{ preds(unit)
    new = transfer(before, unit)
\begin{tabular}{ll} 
unit \(=\) & 1 \\
old \(=\) & \(\perp\) \\
new & \(\underset{i}{\text { sum } \rightarrow 0}\) \\
\(=\) &
\end{tabular}
    if old # after:
        work = work U succs(unit)
        state(unit) = new
```

work: | 2 | 3 | 4 |
| :--- | :--- | :--- |

state:

$$
\left\{\begin{array}{ll}
\left(\sqrt{1} \mapsto \operatorname{sum} \rightarrow 0_{i \rightarrow+}\right. & (\sqrt{3} \mapsto \perp) \\
(\sqrt{2} \mapsto \perp) & (\boxed{4} \mapsto \perp)
\end{array}\right\}
$$

Worklist Algorithms

work $=$ nodes $($)
state(n) $=\perp \forall \mathrm{n} \in \operatorname{nodes}()$
while work $=\varnothing$:
unit = take(work)
old = state(unit)
before $=$ Пstate (p)
$\forall \mathrm{p} \in$ preds(unit)
new = transfer(before, unit)
if old \neq after:
work = work U succs(unit) state(unit) = new

work: \quad| $-\cdots$ | 4 |
| :--- | :--- | :--- | :--- |

state:

$$
\left\{\begin{array}{ll}
\left(\sqrt{1} \mapsto \operatorname{sum} \rightarrow 0^{\operatorname{sum}_{i \rightarrow+}}\right) & (\sqrt{3} \mapsto \perp) \\
\left(\sqrt{2} \mapsto \operatorname{sum}_{i \rightarrow+0}\right) & (\overline{4} \mapsto \perp)
\end{array}\right\}
$$

Worklist Algorithms

work $=$ nodes $($)
state(n) $=\perp \forall \mathrm{n} \in \operatorname{nodes}()$
while work $=\varnothing$:
unit = take(work)
old = state(unit)
before $=$ Пstate(p)
$\forall \mathrm{p} \in$ preds(unit)
new = transfer(before, unit)

if old \neq after:
work = work U succs(unit) state(unit) = new
work:
state: $\left\{\begin{array}{lll}\left(\sqrt{1} \mapsto \operatorname{sum} \rightarrow 0^{\operatorname{sum}_{i \rightarrow+}}\right) & \left(3 \mapsto \operatorname{sum} \rightarrow+^{i \rightarrow+}\right) \\ \left(\boxed{2} \mapsto \operatorname{sum} \rightarrow 0^{i \rightarrow+}\right) & (4 \mapsto \perp)\end{array}\right\}$

Worklist Algorithms

work $=$ nodes $($)
state(n) $=\perp \forall \mathrm{n} \in \operatorname{nodes}()$
while work $=\varnothing$:
unit $=$ take(work)
old $=$ state(unit)
before $=$ Пstate(p)
$\forall \mathrm{p} \in$ preds(unit)
new = transfer(before, unit)
if old \neq after:
work = work U succs(unit) state(unit) $=$ new
work:

Worklist Algorithms

work $=$ nodes $($)
state(n) $=\perp \forall \mathrm{n} \in \operatorname{nodes}()$
while work $=\varnothing$:
unit = take(work)
old = state(unit)
before $=$ Пstate (p)
$\forall \mathrm{p} \in$ preds(unit)
new = transfer(before, unit)
if old \neq after:
work = work U succs(unit) state(unit) $=$ new

4,3 were added back to the list
work:
state:

$$
\left\{\begin{array}{ll}
\left(\sqrt{1} \mapsto \operatorname{sum} \rightarrow 0^{\operatorname{sum}_{i \rightarrow+}}\right) & \left(\sqrt{3} \mapsto \operatorname{sum} \rightarrow+^{\left.\operatorname{sum}_{i \rightarrow+}\right)}\right) \\
\left(\sqrt{2} \mapsto \operatorname{sum}_{i \rightarrow+}\right) & \left(\sqrt{4} \mapsto \mapsto_{i \rightarrow+}\right)
\end{array}\right\}
$$

Worklist Algorithms

work $=$ nodes $($)
state(n) $=\perp \forall \mathrm{n} \in \operatorname{nodes}()$
while work $=\varnothing$:
unit = take(work)
old = state(unit)
before $=$ Пstate (p)
$\forall \mathrm{p} \in$ preds(unit)
new = transfer(before, unit)
if old \neq after:
work = work U succs(unit) state(unit) = new
work:
state: $\left\{\begin{array}{lll}\left(\sqrt{1} \mapsto \operatorname{sum}_{i \rightarrow+}\right) & \left.(2) \operatorname{sum} \rightarrow+^{\operatorname{sum}_{i \rightarrow+}}\right) \\ \left(\sqrt{2} \mapsto \operatorname{sum}_{i \rightarrow+}\right) & \left(4 \mapsto \operatorname{sum}_{i \rightarrow+}\right)\end{array}\right\}$

Worklist Algorithms

work $=$ nodes $($)
state(n) $=\perp \forall \mathrm{n} \in \operatorname{nodes}()$
while work $=\varnothing$:
unit = take(work)
old = state(unit)
before $=$ Пstate (p)
$\forall \mathrm{p} \in$ preds(unit)
new = transfer(before, unit)
if old \neq after:
work = work U succs(unit) state(unit) = new
work:
state: $\left\{(1) \mapsto \operatorname{sum}_{i \rightarrow+0}\right)$

Worklist Algorithms

```
work = nodes()
state(n) = \perp \foralln\in nodes()
while work = \varnothing:
    unit = take(work)
    old = state(unit)
    before = Пstate(p)
    \forallp\in preds(un
    new = transfer(before,
    if old # after:
        work = work U succs(uTITI)
    state(unit) = new
```

work:
state:

$$
\left\{\begin{array}{ll}
\left(\sqrt{1} \mapsto \operatorname{sum} \rightarrow 0^{i \rightarrow+}\right.
\end{array}\right) \quad\left(\begin{array}{ll}
3 & \operatorname{sum} \rightarrow+^{i \rightarrow+} \\
\left(\sqrt{2} \mapsto \operatorname{sum}_{i \rightarrow+}\right) & \left(4 \mapsto \operatorname{sum}_{i \rightarrow+}\right)
\end{array}\right\}
$$

Effect of Approximation

- There are several possible sources of imprecision

Effect of Approximation

- There are several possible sources of imprecision

Effect of Approximation

- There are several possible sources of imprecision

Effect of Approximation

- There are several possible sources of imprecision
- 2 Key sources are
- Control flow
- Many different paths are summarized together

Effect of Approximation

- There are several possible sources of imprecision
- 2 Key sources are
- Control flow
- Many different paths are summarized together
- Abstraction
- Deliberately throwing away information
- Granularity of program state affects correlations across variables

Effect of Approximation

- We compute results with maximal fixed points (MFP) in the lattice

Effect of Approximation

- We compute results with maximal fixed points (MFP) in the lattice
- Ideal solution is a Meet Over all Paths (MOP)

Effect of Approximation

- We compute results with maximal fixed points (MFP) in the lattice
- Ideal solution is a Meet Over all Paths (MOP)

For one path $p: f_{p}(\perp)=f_{n}\left(f_{n-1}\left(\ldots f_{1}\left(f_{0}(\perp)\right)\right)\right)$

Effect of Approximation

- We compute results with maximal fixed points (MFP) in the lattice
- Ideal solution is a Meet Over all Paths (MOP)

For one path $p: f_{p}(\perp)=f_{n}\left(f_{n-1}\left(\ldots f_{1}\left(f_{0}(\perp)\right)\right)\right)$
For all paths $\mathrm{p}: \quad \Pi \mathrm{pfp}(\perp)$

Effect of Approximation

- We compute results with maximal fixed points (MFP) in the lattice
- Ideal solution is a Meet Over all Paths (MOP)
- Are they different?

Effect of Approximation

- We compute results with maximal fixed points (MFP) in the lattice
- Ideal solution is a Meet Over all Paths (MOP)
- Are they different?
- Sometimes. But sometime solutions are perfect.

Effect of Approximation

- We compute results with maximal fixed points (MFP) in the lattice
- Ideal solution is a Meet Over all Paths (MOP)
- Are they different?
- Sometimes. But sometime solutions are perfect.
- When $f()$ is distributive, MFP=MOP

$$
\mathrm{f}(\mathrm{x} \sqcap \mathrm{y} \sqcap \mathrm{z})=\mathrm{f}(\mathrm{x}) \sqcap \mathrm{f}(\mathrm{y}) \sqcap \mathrm{f}(\mathrm{z})
$$

Effect of Approximation

- We compute results with maximal fixed points (MFP) in the lattice
- Ideal solution is a Meet Over all Paths (MOP)
- Are they different?
- Sometimes. But sometime solutions are perfect.
- When $f()$ is distributive, MFP=MOP

$$
\mathrm{f}(\mathrm{x} \sqcap \mathrm{y} \sqcap \mathrm{z})=\mathrm{f}(\mathrm{x}) \sqcap \mathrm{f}(\mathrm{y}) \sqcap \mathrm{f}(\mathrm{z})
$$

- This applies to an important class of problems called bitvector frameworks.

Bitvector Frameworks

- When the property concerns subsets of a finite set, the abstract domain \& lattice are easy:
- Concrete: D = \{a, b, c, d, ... $\}$
- Abstract: $\wp(D)=\{\{ \},\{a\},\{b\}, \ldots,\{a, b\},\{a, c\}, \ldots\}$
- Lattice: Defined by subset relation:

Bitvector Frameworks

- When the property concerns subsets of a finite set, the abstract domain \& lattice are easy:
- Concrete: $\mathrm{D}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \ldots$. $\}$
- Abstract: $\wp(D)=\{\{ \},\{a\},\{b\}, \ldots,\{a, b\},\{a, c\}, \ldots\}$
- Lattice: Defined by subset relation: What would the meet operator be?

Bitvector Frameworks

- Why is this convenient?
- Hint: bitvector frameworks

Bitvector Frameworks

- Why is this convenient?
- Hint: bitvector frameworks
$-X=\{a, b\}, Y=\{c, d\} \rightarrow X \sqcup Y=\{a, b\} \cup\{c, d\}=\{a, b, c, d\}$
- We can implement the abstract state using efficient bitvectors!

Effect of Approximation

- If approximation yields imprecise results, why do we do it?

Recap: Dataflow Analysis

Analyze complex behavior with approximation:

- Abstract domain: e.g. $\{-, 0,+\} \cup\{T, \perp\}$
- Transfer functions: -++ \rightarrow T
- Bounded domain lattice height:
- Concern for false + \& -

Recap: Dataflow Analysis

Analyze complex behavior with approximation:

- Abstract domain: e.g. \{-,0,+\} $\cup\{T, \perp\}$
- Transfer functions: - + + \rightarrow T
- Bounded domain lattice height:
- Concern for false + \& -

Implementation:

- Computing using work lists

- Speeding up by sorting CFG nodes

Recap: Dataflow Analysis

Analyze complex behavior with approximation:

- Abstract domain: e.g. $\{-, 0,+\} \cup\{T, \perp\}$
- Transfer functions: - + + \rightarrow T
- Bounded domain lattice height:
- Concern for false + \& -

Implementation:

- Computing using work lists

- Speeding up by sorting CFG nodes

Let's see an example

File Policy Analysis

Goal: Identify potential misuses of open/closed files

File Policy Analysis

Goal: Identify potential misuses of open/closed files

- Files may be open or closed

File Policy Analysis

Goal: Identify potential misuses of open/closed files

- Files may be open or closed
- Many operations may only occur on open files e.g. read, write, print, flush, close, ...

File Policy Analysis

Goal: Identify potential misuses of open/closed files

- Files may be open or closed
- Many operations may only occur on open files e.g. read, write, print, flush, close, ...

What should our design actually be?

- Abstract domain?
- Transfer functions?
- Lattice?

File Policy Analysis

Goal: Identify potential misuses of open/closed files

- Files may be open or closed
- Many operations may only occur on open files e.g. read, write, print, flush, close, ...

What should our design actually be?

- Abstract domain?
- Transfer functions?
- Lattice?
[DEMO]

Flow Insensitive Analysis

- Saw flow sensitive analysis
- Modeling state at each statement is expensive
- Scales to functions and small components
- Usually not beyond 1000s of lines without care

Flow Insensitive Analysis

- Saw flow sensitive analysis
- Modeling state at each statement is expensive
- Scales to functions and small components
- Usually not beyond 1000s of lines without care
- Flow insensitive analyses aggregate into a global state
- Better scalability
- Less precision
- "Does this function modify global variable X?"

Context Sensitive Analyses

- Program behavior may be dependent on the call stack / calling context.
- "If bar() is called by foo(), then it is exception free."
- Can enable more precise interprocedural analyses

Context Sensitive Analyses

- Program behavior may be dependent on the call stack / calling context.
- "If bar() is called by foo(), then it is exception free."
- Can enable more precise interprocedural analyses

Can you imagine how to solve this? What problems might arise?

Context Sensitivity

- Recall that we can extract a call graph
- Just as you are doing in your first project!

```
def a():
    b()
    *"
        b()
def b():
```


The behavior of c() could be affected by each "..."

Modeling them can make analysis more precise.

Context Sensitivity

- Simplest Approach
- Add edges between call sites \& targets
- Perform data flow on this larger graph

```
def main():
    \(x=7\)
    \(r=p(x)\)
    \(x=r\)
    \(z=p(x+10)\)
```

def $p(a):$
if a < 9:
$y=0$
else:
$y=1$

Context Sensitivity

- Simplest Approach
- Add edges between call sites \& targets
- Perform data flow on this larger graph

$$
\begin{aligned}
\text { def } & \text { main }(): \\
x & =7 \\
r & =p(x) \\
x & =r \\
z & =p(x+10)
\end{aligned}
$$

main()

$$
\begin{aligned}
& x=7 \\
& \text { call } p(x)
\end{aligned}
$$

$$
\operatorname{def} p(a):
$$

$$
\text { if } a<9:
$$

$$
y=0
$$

```
r = return p(x)
x = r
call p(x+10)
```


$$
z=\text { return } p(x+10)
$$

Context Sensitivity

- Simplest Approach
- Add edges between call sites \& targets
- Perform data flow on this larger graph

$$
\begin{aligned}
\text { def } & \text { main }(): \\
x & =7 \\
r & =p(x) \\
x & =r \\
z & =p(x+10)
\end{aligned}
$$

main()
$x=7$
$c a l y$
$p(x)$

$$
\operatorname{def} p(a):
$$

$$
\text { if } a<9:
$$

$$
y=0
$$

$$
\begin{aligned}
& r=r e t u r n ~ p(x) \\
& x=r \\
& c a l l p(x+10)
\end{aligned}
$$

$$
z=\text { return } p(x+10)
$$

Context Sensitivity

- Simplest Approach
- Add edges between call sites \& targets
- Perform data flow on this larger graph

$$
\begin{gathered}
\text { def main }(): \\
x=7 \\
r=p(x) \\
x=r \\
z=p(x+10) \\
\text { def } p(a): \\
\text { if } a<9: \\
y=0 \\
\text { else: } \\
y=1
\end{gathered}
$$

Context Sensitivity

- Simplest Approach
- Add edges between call sites \& targets
- Perform data flow on this larger graph

$$
\begin{gathered}
\text { def main }(): \\
x=7 \\
r=p(x) \\
x=r \\
z=p(x+10) \\
\text { def } p(a): \\
\text { if } a<9: \\
y=0 \\
\text { else: } \\
y=1
\end{gathered}
$$

Context Sensitivity

- Simplest Approach
- Add edges between call sites \& targets
- Perform data flow on this larger graph

$$
\begin{gathered}
\text { def main }(): \\
x=7 \\
r=p(x) \\
x=r \\
z=p(x+10) \\
\text { def } p(a): \\
\text { if } a<9: \\
y=0 \\
\text { else: } \\
y=1
\end{gathered}
$$

Context Sensitivity

- Simplest Approach
- Add edges between call sites \& targets
- Perform data flow on this larger graph

$$
\begin{gathered}
\text { def main }(): \\
x=7 \\
r=p(x) \\
x=r \\
z=p(x+10) \\
\text { def } p(a): \\
\text { if } a<9: \\
y=0 \\
\text { else: } \\
y=1
\end{gathered}
$$

Context Sensitivity

- Simplest Approach
- Add edges between call sites \& targets
- Perform data flow on this larger graph

$$
\begin{gathered}
\text { def main }(): \\
x=7 \\
r=p(x) \\
x=r \\
z=p(x+10) \\
\text { def } p(a): \\
\text { if } a<9: \\
y=0 \\
\text { else: } \\
y=1
\end{gathered}
$$

Context Sensitivity

- Simplest Approach
- Add edges between call sites \& targets
- Perform data flow on this larger graph

$$
\begin{aligned}
\text { def } & \text { main }(): \\
x & =7 \\
r & =p(x) \\
x & =r \\
z & =p(x+10)
\end{aligned}
$$

$r=7$

$$
\operatorname{def} p(a):
$$

$$
\text { if } a<9:
$$

$$
y=0
$$

main()
$x=7$
call $p(x)$

Context Sensitivity

- Simplest Approach
- Add edges between call sites \& targets
- Perform data flow on this larger graph

$$
\begin{aligned}
\text { def } & \text { main }(): \\
x & =7 \\
r & =p(x) \\
x & =r \\
z & =p(x+10)
\end{aligned}
$$

$$
\operatorname{def} p(a):
$$

$$
\text { if } a<9:
$$

$$
y=0
$$

else:

Context Sensitivity

- Simplest Approach
- Add edges between call sites \& targets
- Perform data flow on this larger graph

$$
\begin{aligned}
\text { def } & \text { main }(): \\
x & =7 \\
r & =p(x) \\
x & =r \\
z & =p(x+10)
\end{aligned}
$$

$$
r=7
$$

$$
\operatorname{def} p(a):
$$

$$
\text { if } a<9:
$$

$$
y=0
$$

main()

$$
\begin{aligned}
& x=7 \\
& \text { call } p(x)
\end{aligned}
$$

$$
z=\text { return } p(x+10)
$$

Context Sensitivity

- Simplest Approach
- Add edges between call sites \& targets
- Perform data flow on this larger graph

$$
\begin{gathered}
\text { def main }(): \\
x=7 \\
r=p(x) \\
x=r \\
z=p(x+10) \\
\text { def } p(a): \\
\text { if } a<9: \\
y=0 \\
\text { else: } \\
y=1
\end{gathered}
$$

Context Sensitivity

- Information from one call site can flow to a mismatched return site!

Context Sensitivity

- Information from one call site can flow to a mismatched return site!
- How could we address it?

Context Sensitivity

- Solution 2: Inlining
- Make a copy of the function at each call site

Context Sensitivity

- Solution 2: Inlining
- Make a copy of the function at each call site
- What problems arise?

Context Sensitivity

- Solution 2: Inlining
- Make a copy of the function at each call site
- What problems arise?
- What other strategies can we use?

Context Sensitivity

- Solution 3: Make a Copy
- Make one copy of each function per call site

Context Sensitivity

- Solution 3: Make a Copy
- Make one copy of each function per call site

1) def main():
2) $a()$
3) $a()$
4) $\operatorname{def} a():$
5) $b()$
6) $\operatorname{def} b():$
7) pass

Context Sensitivity

- Solution 3: Make a Copy
- Make one copy of each function per call site
return a()
call a()
b()\#\#5
pass

```
```

 a()##3
    ```
```

 a()##3
    ```
```

 a()##3
 call b()

```
```

call b()

```
```

call b()

```
```


Context Sensitivity

- Solution 3: Make a Copy
- Make one copy of each function per call site

1) def main():
$\begin{array}{ll}\text { 2) } & \text { a() } \\ 3) & a()\end{array}$
2) $\operatorname{def} a():$
3) $b()$
4) $\operatorname{def} b():$
5) pass

So far, so good
b()\#\#5
pass

Context Sensitivity

- Solution 3: Make a Copy
- Make one copy of each function per call site

1) def main():
$\begin{array}{ll}\text { 2) } & \text { a() } \\ 3) & a()\end{array}$
2) $\operatorname{def} a():$
3) $b()$
4) $\operatorname{def} b():$
5) pass

Context Sensitivity

- Solution 3: Make a Copy
- Make one copy of each function per call site

1) def main():
$\begin{array}{ll}\text { 2) } & \text { a() } \\ 3) & \text { a() }\end{array}$
2) def $a()$:
3) $b()$
4) def $b()$:
5) pass

How can we improve it?

Context Sensitivity

Generalized:

- Make a bounded number of copies

Context Sensitivity

Generalized:

- Make a bounded number of copies
- Choose a key/feature that determines which copy to use
- Bounded calling context/call stack (call site sensitivity)
- Allocation sites of objects (object sensitivity)

Context Sensitivity

- Solution 4: Make a logical copy

Context Sensitivity

- Solution 4: Make a logical copy
- Instead of actually making a copy, just keep track of the context information (the key) during analysis

Context Sensitivity

- Solution 4: Make a logical copy
- Instead of actually making a copy, just keep track of the context information (the key) during analysis
- Compute results (called procedure summaries) for each logical copy of a function.

Context Sensitivity

- Solution 4: Make a logical copy
- Instead of actually making a copy, just keep track of the context information (the key) during analysis
- Compute results (called procedure summaries) for each logical copy of a function.
- Modify the treatment of calls slightly:

On foo(in) with context C :

Context Sensitivity

- Solution 4: Make a logical copy
- Instead of actually making a copy, just keep track of the context information (the key) during analysis
- Compute results (called procedure summaries) for each logical copy of a function.
- Modify the treatment of calls slightly:

On foo(in) with context C:
If (foo, C) doesn't have a summary, process foo(in) in C and save the result to S.

Context Sensitivity

- Solution 4: Make a logical copy
- Instead of actually making a copy, just keep track of the context information (the key) during analysis
- Compute results (called procedure summaries) for each logical copy of a function.
- Modify the treatment of calls slightly:

On foo(in) with context C:
If (foo, C) doesn't have a summary, process foo(in) in C and save the result to S.
If the summary S already approximates foo(in), use S

Context Sensitivity

- Solution 4: Make a logical copy
- Instead of actually making a copy, just keep track of the context information (the key) during analysis
- Compute results (called procedure summaries) for each logical copy of a function.
- Modify the treatment of calls slightly:

On foo(in) with context C:
If (foo, C) doesn't have a summary, process foo(in) in C and save the result to S.
If the summary S already approximates foo(in), use S
Otherwise, process foo(in) in C and update S with (in Π S.in).

Context Sensitivity

- Solution 4: Make a logical copy
- Instead of actually making a copy, just keep track of the context information (the key) during analysis
- Compute results (called procedure summaries) for each logical copy of a function.
- Modify the treatment of calls slightly:

On foo(in) with context C:
If (foo, C) doesn't have a summary, process foo(in) in C and save the result to S.
If the summary S already approximates foo(in), use S
Otherwise, process foo(in) in C and update S with (in Π S.in). If the result changes, reprocess all callers of (foo, C)

Context Sensitivity - IFDS

- In some cases, context sensitive analysis can be reduced to special forms of graph reachability.

Context Sensitivity - IFDS

- In some cases, context sensitive analysis can be reduced to special forms of graph reachability.
- Set of dataflow facts D is finite
- Transfer functions are distributive $[f(x \sqcap y)=f(x) \sqcap f(y)]$
- Domain and range of transfer functions is $\mathscr{P}(D)$
- Lattice ordering is set containment

Context Sensitivity - IFDS

- In some cases, context sensitive analysis can be reduced to special forms of graph reachability.
- Set of dataflow facts D is finite
- Transfer functions are distributive $[f(x \sqcap y)=f(x) \sqcap f(y)]$
- Domain and range of transfer functions is $\mathscr{P}(\mathrm{D})$
- Lattice ordering is set containment
(Interprocedural Finite Distributive Subsets)

Context Sensitivity - IFDS

- Consider an undefined variable analysis...

$$
\begin{aligned}
& a=7 \\
& b=a \\
& c=d
\end{aligned}
$$

Context Sensitivity - IFDS

- Consider an undefined variable analysis...

Context Sensitivity - IFDS

- Consider an undefined variable analysis...

Context Sensitivity - IFDS

- Consider an undefined variable analysis...

Context Sensitivity - IFDS

- Consider an undefined variable analysis...

Context Sensitivity - IFDS

- Consider an undefined variable analysis...

Context Sensitivity - IFDS

- Consider an undefined variable analysis...

Context Sensitivity - IFDS

- Consider an undefined variable analysis...

Context Sensitivity - IFDS

- Consider an undefined variable analysis...

Context Sensitivity - IFDS

- Consider an undefined variable analysis...

$$
\begin{gathered}
\text { def main }(): \\
x=7 \\
r=p(x) \\
x=r \\
z=p(x+10) \\
\text { def } p(a): \\
\text { if } a<9: \\
y=0 \\
\text { else: } \\
y=1
\end{gathered}
$$

Context Sensitivity - IFDS

- Consider an undefined variable analysis...

$$
\begin{gathered}
\text { def main }(): \\
x=7 \\
r=p(x) \\
x=r \\
z=p(x+10) \\
\text { def } p(a): \\
\text { if } a<9: \\
y=0 \\
\text { else: } \\
y=1
\end{gathered}
$$

Context Sensitivity - IFDS

- Consider an undefined variable analysis...

$$
\begin{gathered}
\text { def main }(): \\
x=7 \\
r=p(x) \\
x=r \\
z=p(x+10) \\
\text { def } p(a): \\
\text { if } a<9: \\
y=0 \\
\text { else: } \\
y=1
\end{gathered}
$$

string: ()$_{2}$

Context Sensitivity - IFDS

- Consider an undefined variable analysis...

$$
\begin{gathered}
\text { def main }(): \\
x=7 \\
r=p(x) \\
x=r \\
z=p(x+10) \\
\text { def } p(a): \\
\text { if } a<9: \\
y=0 \\
\text { else: } \\
y=1
\end{gathered}
$$

string: ()$_{1} \quad$ unreachable

Context Sensitivity - IFDS

- Consider an undefined variable analysis.

$$
\begin{gathered}
\text { def main }(): \\
x=7 \\
r=p(x) \\
x=r \\
z=p(x+10) \\
\text { def } p(a): \\
\text { if } a<9: \\
y=0 \\
\text { else: } \\
y=1
\end{gathered}
$$

string: ()$_{1}$

Context Sensitivity - IFDS

- Consider an undefined variable analysis.

$$
\begin{gathered}
\text { def main }(): \\
x=7 \\
r=p(x) \\
x=r \\
z=p(x+10) \\
\text { def } p(a): \\
\text { if } a<9: \\
y=0 \\
\text { else: } \\
y=1
\end{gathered}
$$

string: $\left.\left(I_{1}\right)_{2}\right)_{2}$

Context Sensitivity - IFDS

- Consider an undefined variable analysis.

$$
\begin{gathered}
\text { def main }(): \\
x=7 \\
r=p(x) \\
x=r \\
z=p(x+10) \\
\text { def } p(a): \\
\text { if } a<9: \\
y=0 \\
\text { else: } \\
y=1
\end{gathered}
$$

string: ()$\left.\left._{1}\right)_{2}\right)_{2} \quad$ reachable

Context Sensitivity - IFDS

- Consider an undefined variable analysis...

$$
\begin{gathered}
\text { def main }(): \\
x=7 \\
r=p(x) \\
x=r \\
z=p(x+10) \\
\text { def } p(a): \\
\text { if } a<9: \\
y=0 \\
\text { else: } \\
y=1
\end{gathered}
$$

- A fact f holds before a node if f is CFL-Reachable in a language of matched parentheses

Context Sensitivity - IFDS

Context Sensitivity - IFDS

- Does constant propagation fit our definition of IFDS?

Context Sensitivity - IFDS

- Does constant propagation fit our definition of IFDS?
- Can you think of ways that it could be made to fit into IFDS?

Dataflow Configurations

Can be configured in many ways:

Dataflow Configurations

Can be configured in many ways:

- Forward / Backward (e.g. reaching vs liveness)

Dataflow Configurations

Can be configured in many ways:

- Forward / Backward (e.g. reaching vs liveness)
- May / Must (\cup vs \cap in lattice when paths П)

Dataflow Configurations

Can be configured in many ways:

- Forward / Backward (e.g. reaching vs liveness)
- May / Must ($\cup v s \cap$ in lattice when paths П)
- Sensitivity \{Path? Flow? Context?\}

Dataflow Configurations

Can be configured in many ways:

- Forward / Backward (e.g. reaching vs liveness)
- May / Must (\cup vs \cap in lattice when paths П)
- Sensitivity \{Path? Flow? Context?\}

The configuration is ultimately driven by the property/problem of interest

Static Analysis

- We've already seen a few static analyses:
- Call graph construction
- Points-to graph construction (What are MAY/MUST?)
- Static slicing

Static Analysis

- We've already seen a few static analyses:
- Call graph construction
- Points-to graph construction (What are MAY/MUST?)
- Static slicing
- The choices for approximation are why these analyses are imprecise.

Other (Traditionally) Static Approaches

- Type based analyses
- Bounded state exploration
- Symbolic execution
- Model checking

Many of these have been integrated into dynamic analyses, as we shall see over the semester.

Static Analysis Summary

- Considers all possible executions

Static Analysis Summary

- Considers all possible executions
- Approximates program behavior to fight undecidability

Static Analysis Summary

- Considers all possible executions
- Approximates program behavior to fight undecidability
- Can answer queries like:
- Must my program always ...?
- May my program ever ...?

Static Analysis Summary

- Considers all possible executions
- Approximates program behavior to fight undecidability
- Can answer queries like:
- Must my program always ...?
- May my program ever ...?
- Dataflow analysis is one common form of static analysis

