
Static Analysis 
and

Dataflow Analysis
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Static Analysis

Static analyses consider all possible behaviors of a 
program without running it.

● Look for a property of interest
– Do I dereference NULL pointers?
– Do I leak memory?
– Do I violate a protocol specification?
– Is this file open?
– Does my program terminate?

But wait? Isn't that impossible?
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Static Analysis

HALT?

Brief Review of
Undecidability

“Does my program terminate?”
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Static Analysis

or

HALT?

P

Brief Review of
Undecidability

if HALT?( P , P ):
while True: { }

else
return True

PP

P P

or

=H'

HALT?
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if HALT?( P , P ):
while True: { }

else
return True
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Static Analysis

or

HALT?

P

Brief Review of
Undecidability

H'

H'

?

It's a classic paradox!

if HALT?( P , P ):
while True: { }

else
return True

PP

P P

or

=H'

HALT?
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program without running it.

● Look for a property of interest
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– Do I violate a protocol specification?
– Is this file open?
– Does my program terminate?

But wait? Isn't that impossible?

● Only if answers must be perfect.
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Static Analysis

Static analyses consider all possible behaviors of a 
program without running it.

● Look for a property of interest
– Do I dereference NULL pointers?
– Do I leak memory?
– Do I violate a protocol specification?
– Is this file open?
– Does my program terminate?

But wait? Isn't that impossible?

● Only if answers must be perfect.
HALT?

?
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and try to solve this simpler version.



21

Static Analysis

Overapproximate or underapproximate the problem, 
and try to solve this simpler version.

● Sound analyses
– Overapproximate
– Guaranteed to find violations of property
– May raise false alarms



22

Static Analysis

Overapproximate or underapproximate the problem, 
and try to solve this simpler version.

● Sound analyses
– Overapproximate
– Guaranteed to find violations of property
– May raise false alarms

● Complete analyses
– Underapproximate
– Reported violations are real
– May miss violations



23

Static Analysis

Overapproximate or underapproximate the problem, 
and try to solve this simpler version.

● Sound analyses
– Overapproximate
– Guaranteed to find violations of property
– May raise false alarms

● Complete analyses
– Underapproximate
– Reported violations are real
– May miss violations

Striking the right balance is key to a useful analysis
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Approximation

Modeled program behaviors

Overapproximate

Possible Program Behavior

Consider some behaviors possible when they are not.
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Approximation

Modeled program behaviors

Overapproximate

Possible Program Behavior

Underapproximate

Ignore some behaviors that are possible.
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Analyzed

Feasible
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Approximation

● Dynamic Analysis

– Analyzed ⊆ Feasible
– As # tests ↑, Analyzed → Feasible

● Static Analysis

– Feasible ⊆ Analyzed
– As infeasible paths ↓, Analyzed → Feasible

Analyzed
Feasible
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Approximation

● Dynamic Analysis

– Analyzed ⊆ Feasible
– As # tests ↑, Analyzed → Feasible

● Static Analysis

– Feasible ⊆ Analyzed
– As infeasible paths ↓, Analyzed → Feasible

● The two areas complement each other

– Static analysis can help generate useful tests
– Dynamic analysis can help identify infeasibility
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Q: Is a particular number ever negative?
– Might be an offset into invalid memory!

Approximate the program's behavior
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Abstract Interpretation

Q: Is a particular number ever negative?
– Might be an offset into invalid memory!

Approximate the program's behavior

● Concrete domain: integers
● Abstract domain: {-,0,+}  ⋃  {⊤,⊥}

concrete(x) =  5  
concrete(y) = -3 
concrete(z) =  0  

Combines sets of the concrete domain

  ↦ abstract(x) = +
  ↦ abstract(y) = -
  ↦ abstract(z) = 0
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Abstract Interpretation

● Transfer Functions show how to evaluate this 
approximated program:
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● Transfer Functions show how to evaluate this 
approximated program:
– + + + → +
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– 0 + 0 → 0
– 0 + - → -
– …
– + + - → ⊤(unknown / might vary)
– … / 0 → ⊥(undefined)
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Abstract Interpretation

● Transfer Functions show how to evaluate this 
approximated program:
– + + + → +
– - + - → -
– 0 + 0 → 0
– 0 + - → -
– …
– + + - → ⊤(unknown / might vary)
– … / 0 → ⊥(undefined)

This type of approximation is called
abstract interpretation.
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3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)
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Abstract Interpretation

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

Does the process ever end?

2
s 0↦
i↦⊥

3
s 0↦
i 1↦

3
s 0↦
i +↦

6
s 0↦
i +↦

7
s 0↦
i +↦

4
s 0↦
i +↦

5
s 0↦
i +↦

3
s +↦
i +↦

6
s +↦
i +↦

7
s +↦
i +↦

4
s +↦
i +↦

5
s +↦
i +↦

1
s↦⊥
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Abstract Interpretation

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

Can the final sum ever be negative?

2
s 0↦
i↦⊥

3
s 0↦
i 1↦

3
s 0↦
i +↦

6
s 0↦
i +↦

7
s 0↦
i +↦

4
s 0↦
i +↦

5
s 0↦
i +↦

3
s +↦
i +↦

6
s +↦
i +↦

7
s +↦
i +↦

4
s +↦
i +↦

5
s +↦
i +↦

1
s↦⊥
i↦⊥
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Abstract Interpretation

● Guarantee termination by carefully choosing

– The abstract domain

– The transfer function

● For basic analyses, use a monotone framework
Loosely:   <CFG, Transfer Function, Lattice Abstraction>
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Abstract Interpretation

● Guarantee termination by carefully choosing

– The abstract domain

– The transfer function

● For basic analyses, use a monotone framework

– {-,0,+}  ⋃  {⊤,⊥}

– They define a partial order

– Abstract state can only
move up lattice at a statement

⊤

⊥

0- +



52

Abstract Interpretation

● Guarantee termination by carefully choosing

– The abstract domain

– The transfer function

● For basic analyses, use a monotone framework

– {-,0,+}  ⋃  {⊤,⊥}

– They define a partial order

– Abstract state can only
move up lattice at a statement

Why does this specific
example terminate?

⊤

⊥

0- +
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Abstract Interpretation

● Guarantee termination by carefully choosing

– The abstract domain

– The transfer function

● For basic analyses, use a monotone framework

● But in theory a lattice need not be finite!
(ranges/intervals, linear constraints, ...)
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Abstract Interpretation

● Guarantee termination by carefully choosing

– The abstract domain

– The transfer function

● For basic analyses, use a monotone framework

● But in theory a lattice need not be finite!

– Widening operators can still make it feasible

(e.g., heuristically raise to )⊤
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Abstract Interpretation

● What properties should a good abstraction have?
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Abstract Interpretation

● What properties should a good abstraction have?

{1, 5}

{1, 4, 5}

Concrete

{1, 4}

{1, 2, 3, …}

ℤ
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Abstract Interpretation

● What properties should a good abstraction have?

{1, 5}

⊤

⊥

0- +{1, 4, 5}

Concrete Abstract

{1, 4}

{1, 2, 3, …}

ℤ
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Abstract Interpretation

● What properties should a good abstraction have?

{1, 5}

⊤

⊥

0- +{1, 4, 5}

Concrete Abstract

{1, 4}

{1, 2, 3, …}

ℤ

α
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Abstract Interpretation

● What properties should a good abstraction have?

{1, 5}

⊤

⊥

0- +{1, 4, 5}

Concrete Abstract

{1, 4}

{1, 2, 3, …}

ℤ

α

γ
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Abstract Interpretation

● What properties should a good abstraction have?

{1, 5}

⊤

⊥

0- +{1, 4, 5}

Concrete Abstract

{1, 4}

{1, 2, 3, …}

ℤ

α

γ

s ⊆ γ(α(s))
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Abstract Interpretation

● What properties should a good abstraction have?

{1, 5}

⊤

⊥

0- +{1, 4, 5}

Concrete Abstract

{1, 4}

{1, 2, 3, …}

ℤ

α

γ

s ⊆ γ(α(s))

No concrete values were
discarded by abstraction
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Dataflow Analysis

● Dataflow analysis performs model checking of 
abstract interpretations
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● Dataflow analysis performs model checking of 
abstract interpretations

● Meet Operator (⨅) combines results across program 
paths

A B

C

x
A

+↦ x
B

-↦

x
C
↦?

x
A

 x⨅
B
 = ? 
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Dataflow Analysis

● Dataflow analysis performs model checking of 
abstract interpretations

● Meet Operator (⨅) combines results across program 
paths

A B

C
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⊤
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0- +

x
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x
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Dataflow Analysis

● Dataflow analysis performs model checking of 
abstract interpretations

● Meet Operator (⨅) combines results across program 
paths

A B

C

x
A

+↦ x
B

-↦
⊤

⊥

0- +

x
C
↦?

x
A

 x⨅
B
 = α(x

A
)⨆α(x

B
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Dataflow Analysis

● Dataflow analysis performs model checking of 
abstract interpretations

● Meet Operator (⨅) combines results across program 
paths

A B

C

x
A

+↦ x
B

-↦
⊤

⊥

0- +

x
C
↦⊤

x
A

 x⨅
B
 = α(x

A
)⨆α(x

B
) = ⊤
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Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → ⊥
i → ⊥
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Dataflow Analysis
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Dataflow Analysis

● Now model the abstract program state and 
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Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.
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Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)
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Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → ⊥
i → ⊥

sum → 
i → +

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

sum → +
i → +

Meet Operator
sum was 0, but
what should it be now?

?
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Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

sum → +
i → +

sum → ⊥
i → ⊥

sum → 
i → +

sum → 0
i → +

sum → 0
i → +

?
The value across all executions is not -, 0, or +,
so it is simply unknown/anything. (⊤)



81

Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

sum → +
i → +

sum → ⊥
i → ⊥

sum → ⊤ 
i → +

sum → 0
i → +

sum → 0
i → +



82

Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.
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Dataflow Analysis
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Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → ⊥
i → ⊥

sum → ⊤ 
i → +

sum → ⊤
i → +

sum → 0
i → +

sum → 0
i → +

sum → ⊤
i → +

sum → ⊤
i → +

sum → +
i → +



85

Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

– Continue until we reach a fixed point

(No more changes)
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Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

– Continue until we reach a fixed point

(No more changes)

– Proper ordering can improve the efficiency.

(Topological Order, Strongly Connected Components)
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Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

– Continue until we reach a fixed point

(No more changes)

– Proper ordering can improve the efficiency.
● (Topological Order, Strongly Connected Components)

Will it always terminate?
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Dataflow Analysis

● Note: need to model program state before and after 
each statement

● Proper ordering & a work list algorithm improves 
the efficiency
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Worklist Algorithms

work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new

1

2

3

4
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Worklist Algorithms

1

2

3

4

work: 1 2 3 4

state:

{ 1( ↦⊥)
2( ↦⊥)

3( ↦⊥)
4( ↦⊥) }

work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new
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Worklist Algorithms

1

2

3

4

work:

1

2 3 4

state:

{ 2( ↦⊥)

3( ↦⊥)
4( ↦⊥)

 unit =

}1( ↦⊥)

work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new
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Worklist Algorithms

1

2

3

4

work:

1

2 3 4

state:

{ 2( ↦⊥)

3( ↦⊥)
4( ↦⊥)

 unit =
old =  ⊥

}1( ↦⊥)

work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new
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Worklist Algorithms

1

2

3

4

work:

1

2 3 4

state:

{ 2( ↦⊥)

3( ↦⊥)
4( ↦⊥)

 unit =
old =  ⊥
new 
=

sum → 0
i → +

}1( ↦⊥)

work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new
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Worklist Algorithms

1

2

3

4

work:

1

2 3 4

state:

{ 1( ↦ )
2( ↦⊥)

3( ↦⊥)
4( ↦⊥)

 unit =
old =  ⊥
new 
=

sum → 0
i → +

sum → 0
i → + }

work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new



95

Worklist Algorithms

1

2

3

4

work:

2

3 4

state:

{ 1( ↦ )
2( ↦⊥ )

3( ↦⊥)
4( ↦⊥)

 unit =
old =  ⊥
new 
=

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

}

work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new
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Worklist Algorithms

1

2

3

4

work:

3

4

state:

{ 1( ↦ )
2( ↦⊥ )

3( ↦⊥ )

 unit =
old =  ⊥
new 
=

sum → +
i → +

sum → 0
i → +

sum → 0
i → +

2
sum → +
i → +

2 was added back to the list

4( ↦⊥) }

work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new
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Worklist Algorithms

1

2

3

4

work:

state:

{ 1( ↦ )
2( ↦⊥ )

3( ↦⊥ )
4( ↦⊥ )}

 unit =
old =  ⊥
new 
=

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

2
sum → +
i → +

4

sum → 0
i → +

work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new
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work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new

Worklist Algorithms

1

2

3

4

work:

state:

{ 1( ↦ )
2( ↦⊥ )

3( ↦⊥ )
4( ↦⊥ )}

 unit =
old =  ⊥
new 
=

sum → 0
i → +

sum → 0
i → +

sum → ⊤
i → +

4
sum → +
i → +

sum → 0
i → +

2

4,3 were added back to the list

sum →⊤
i → +

3
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Worklist Algorithms

1

2

3

4

work:

state:

{ 1( ↦ )
2( ↦⊥ )

3( ↦⊥ )
4( ↦⊥ )}

 unit =
old =  ⊥
new 
=

sum → 0
i → +

sum → 0
i → +

sum → ⊤
i → +

sum → +
i → +

sum → ⊤
i → +

4

sum →⊤
i → +

3

work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new
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Worklist Algorithms

1

2

3

4

work:

state:

{ 1( ↦ )
2( ↦⊥ )

3( ↦⊥ )
4( ↦⊥ )}

 unit =
old =  ⊥
new 
=

sum → +
i → +

sum → 0
i → +

sum → ⊤
i → +

sum → +
i → +

sum → ⊤
i → +

3

sum → +
i → +

No change

work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new
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work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new

Worklist Algorithms

1

2

3

4

work:

state:

{ 1( ↦ )
2( ↦⊥ )

3( ↦⊥ )
4( ↦⊥ )}

 unit =
old =  ⊥
new 
=

sum → 0
i → +

sum → 0
i → +

sum → ⊤
i → +

sum → +
i → +

sum → ⊤
i → +

4

sum →⊤
i → +

Done!
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Effect of Approximation

● There are several possible sources of imprecision
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Effect of Approximation

● There are several possible sources of imprecision

...

1)x = 2
2)y = 1

3)x = 2
4)y = 1

5)c = x * y
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Effect of Approximation

● There are several possible sources of imprecision

...

1)x = 2
2)y = 1

3)x = -2
4)y = -1

5)c = x * y

x→ +, y→ + x→ -, y→ -

c→ ?
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Effect of Approximation

● There are several possible sources of imprecision

● 2 Key sources are

– Control flow
● Many different paths are summarized together
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Effect of Approximation

● There are several possible sources of imprecision

● 2 Key sources are

– Control flow
● Many different paths are summarized together

– Abstraction
● Deliberately throwing away information
● Granularity of program state affects correlations across 

variables
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Effect of Approximation

● We compute results with maximal fixed points 
(MFP) in the lattice
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Effect of Approximation

● We compute results with maximal fixed points 
(MFP) in the lattice

● Ideal solution is a Meet Over all Paths (MOP)
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Effect of Approximation

● We compute results with maximal fixed points 
(MFP) in the lattice

● Ideal solution is a Meet Over all Paths (MOP)

For one path p:   fp(⊥) = fn(fn-1(...f1(f0(⊥))))
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Effect of Approximation

● We compute results with maximal fixed points 
(MFP) in the lattice

● Ideal solution is a Meet Over all Paths (MOP)

For one path p:   fp(⊥) = fn(fn-1(...f1(f0(⊥))))
For all paths p:    ⨅pfp(⊥)
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Effect of Approximation

● We compute results with maximal fixed points 
(MFP) in the lattice

● Ideal solution is a Meet Over all Paths (MOP)

● Are they different?
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Effect of Approximation

● We compute results with maximal fixed points 
(MFP) in the lattice

● Ideal solution is a Meet Over all Paths (MOP)

● Are they different?

– Sometimes. But sometime solutions are perfect.
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Effect of Approximation

● We compute results with maximal fixed points 
(MFP) in the lattice

● Ideal solution is a Meet Over all Paths (MOP)

● Are they different?

– Sometimes. But sometime solutions are perfect.

– When f() is distributive, MFP=MOP

f(x ⨅ y ⨅ z) = f(x) ⨅ f(y) ⨅ f(z)
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Effect of Approximation

● We compute results with maximal fixed points 
(MFP) in the lattice

● Ideal solution is a Meet Over all Paths (MOP)

● Are they different?

– Sometimes. But sometime solutions are perfect.

– When f() is distributive, MFP=MOP

f(x ⨅ y ⨅ z) = f(x) ⨅ f(y) ⨅ f(z)

– This applies to an important  class of problems called 
bitvector frameworks.
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Bitvector Frameworks

● When the property concerns subsets of a finite set, 
the abstract domain & lattice are easy:

– Concrete: D = {a, b, c, d, … }

– Abstract: ℘(D) = { {}, {a}, {b}, …, {a, b}, {a, c}, …}

– Lattice: Defined by subset relation:

D

{}

{a} {b} {c} ...

{a,b} {a,c} {b,c}... {b,d} ...

...
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Bitvector Frameworks

● When the property concerns subsets of a finite set, 
the abstract domain & lattice are easy:

– Concrete: D = {a, b, c, d, … }

– Abstract: ℘(D) = { {}, {a}, {b}, …, {a, b}, {a, c}, …}

– Lattice: Defined by subset relation:

D

{}

{a} {b} {c} ...

{a,b} {a,c} {b,c}... {b,d} ...

...

What would the
meet operator be?
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Bitvector Frameworks

● Why is this convenient?

– Hint: bitvector frameworks
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Bitvector Frameworks

● Why is this convenient?

– Hint: bitvector frameworks

– X={a,b}, Y={c,d} → X⨆Y = {a,b}{c,d} = {a,b,c,d}

– We can implement the abstract state using efficient 
bitvectors!
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Effect of Approximation

● If approximation yields imprecise results, why do we 
do it?
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Recap: Dataflow Analysis

Analyze complex behavior with approximation:
● Abstract domain: e.g. {-,0,+}  ⋃  {⊤,⊥}
● Transfer functions: - + + → ⊤
● Bounded domain lattice height:
● Concern for false + & -

⊤

⊥

0- +
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Recap: Dataflow Analysis

Analyze complex behavior with approximation:
● Abstract domain: e.g. {-,0,+}  ⋃  {⊤,⊥}
● Transfer functions: - + + → ⊤
● Bounded domain lattice height:
● Concern for false + & -

Implementation:
● Computing using work lists
● Speeding up by sorting CFG nodes

⊤

⊥

0- +
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Recap: Dataflow Analysis

Analyze complex behavior with approximation:
● Abstract domain: e.g. {-,0,+}  ⋃  {⊤,⊥}
● Transfer functions: - + + → ⊤
● Bounded domain lattice height:
● Concern for false + & -

Implementation:
● Computing using work lists
● Speeding up by sorting CFG nodes

⊤

⊥

0- +

Let's see an example
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File Policy Analysis

Goal: Identify potential misuses of open/closed files
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File Policy Analysis

Goal: Identify potential misuses of open/closed files
● Files may be open or closed
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File Policy Analysis

Goal: Identify potential misuses of open/closed files
● Files may be open or closed
● Many operations may only occur on open files

e.g. read, write, print, flush, close, …
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File Policy Analysis

Goal: Identify potential misuses of open/closed files
● Files may be open or closed
● Many operations may only occur on open files

e.g. read, write, print, flush, close, …

What should our design actually be?
● Abstract domain?
● Transfer functions?
● Lattice?
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File Policy Analysis

Goal: Identify potential misuses of open/closed files
● Files may be open or closed
● Many operations may only occur on open files

e.g. read, write, print, flush, close, …

What should our design actually be?
● Abstract domain?
● Transfer functions?
● Lattice?

[DEMO]
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Flow Insensitive Analysis

● Saw flow sensitive analysis

– Modeling state at each statement is expensive

– Scales to functions and small components

– Usually not beyond 1000s of lines without care
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Flow Insensitive Analysis

● Saw flow sensitive analysis

– Modeling state at each statement is expensive

– Scales to functions and small components

– Usually not beyond 1000s of lines without care

● Flow insensitive analyses aggregate into a global 
state

– Better scalability

– Less precision

– “Does this function modify global variable X?”
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Context Sensitive Analyses

● Program behavior may be dependent on the call 
stack / calling context.

– “If bar() is called by foo(), then it is exception free.”

– Can enable more precise interprocedural analyses
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Context Sensitive Analyses

● Program behavior may be dependent on the call 
stack / calling context.

– “If bar() is called by foo(), then it is exception free.”

– Can enable more precise interprocedural analyses

Can you imagine how to solve this?
What problems might arise?
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Context Sensitivity

● Recall that we can extract a call graph

– Just as you are doing in your first project!

a()

b() c()

def a():
  b()
  …
  b()

def b():
  …
  c()

def c():
  …

The behavior of c() could be
affected by each “...”

Modeling them can make
analysis more precise.
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Context Sensitivity

● Simplest Approach

– Add edges between call sites & targets
– Perform data flow on this larger graph

Example from Stephen Chong

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1
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Context Sensitivity

● Simplest Approach

– Add edges between call sites & targets
– Perform data flow on this larger graph

Example from Stephen Chong

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

main()

p(a)

y = 1y = 0

return a
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Context Sensitivity

● Simplest Approach

– Add edges between call sites & targets
– Perform data flow on this larger graph

Example from Stephen Chong

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

main()

p(a)

y = 1y = 0

return a
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Context Sensitivity

● Simplest Approach

– Add edges between call sites & targets
– Perform data flow on this larger graph

Example from Stephen Chong

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

main()

p(a)

y = 1y = 0

return a
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Context Sensitivity

● Simplest Approach

– Add edges between call sites & targets
– Perform data flow on this larger graph

Example from Stephen Chong

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

main()

p(a)

y = 1y = 0

return a

a=7
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Context Sensitivity

● Simplest Approach

– Add edges between call sites & targets
– Perform data flow on this larger graph

Example from Stephen Chong

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

main()

p(a)

y = 1y = 0

return a

a=7 a=7
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Context Sensitivity

● Simplest Approach

– Add edges between call sites & targets
– Perform data flow on this larger graph

Example from Stephen Chong

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

main()

p(a)

y = 1y = 0

return a

a=7 a=7

a=7
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Context Sensitivity

● Simplest Approach

– Add edges between call sites & targets
– Perform data flow on this larger graph

Example from Stephen Chong

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

main()

p(a)

y = 1y = 0

return a

a=7 a=7

a=7

r=7
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Context Sensitivity

● Simplest Approach

– Add edges between call sites & targets
– Perform data flow on this larger graph

Example from Stephen Chong

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

main()

p(a)

y = 1y = 0

return a

a=7 a=7

a=7

r=7
a=17
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Context Sensitivity

● Simplest Approach

– Add edges between call sites & targets
– Perform data flow on this larger graph

Example from Stephen Chong

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

main()

p(a)

y = 1y = 0

return a

a=7 a=⊤

a=7

r=7
a=17
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Context Sensitivity

● Simplest Approach

– Add edges between call sites & targets
– Perform data flow on this larger graph

Example from Stephen Chong

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

main()

p(a)

y = 1y = 0

return a

a=7 a=⊤

a=⊤

r=7
a=17
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Context Sensitivity

● Simplest Approach

– Add edges between call sites & targets
– Perform data flow on this larger graph

Example from Stephen Chong

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

main()

p(a)

y = 1y = 0

return a

a=7 a=⊤

a=⊤

r=⊤
a=⊤

z=⊤
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Context Sensitivity

● Information from one call site can flow to a 
mismatched return site!
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Context Sensitivity

● Information from one call site can flow to a 
mismatched return site!

● How could we address it?
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Context Sensitivity

● Solution 2: Inlining

– Make a copy of the function at each call site
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Context Sensitivity

● Solution 2: Inlining

– Make a copy of the function at each call site

● What problems arise?
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Context Sensitivity

● Solution 2: Inlining

– Make a copy of the function at each call site

● What problems arise?

● What other strategies can we use?
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Context Sensitivity

● Solution 3: Make a Copy

– Make one copy of each function per call site
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Context Sensitivity

● Solution 3: Make a Copy

– Make one copy of each function per call site

1) def main():
2)   a()
3)   a()

4) def a():
5)   b()

6) def b():
7)   pass
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Context Sensitivity

● Solution 3: Make a Copy

– Make one copy of each function per call site

1) def main():
2)   a()
3)   a()

4) def a():
5)   b()

6) def b():
7)   pass

call a()

return a()
call a()

return a()

main()
call b()

return b()

a()##2

call b()

return b()

a()##3

pass

b()##5
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Context Sensitivity

● Solution 3: Make a Copy

– Make one copy of each function per call site

1) def main():
2)   a()
3)   a()

4) def a():
5)   b()

6) def b():
7)   pass

call a()

return a()
call a()

return a()

main()
call b()

return b()

a()##2

call b()

return b()

a()##3

pass

b()##5

So far,
so good
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Context Sensitivity

● Solution 3: Make a Copy

– Make one copy of each function per call site

1) def main():
2)   a()
3)   a()

4) def a():
5)   b()

6) def b():
7)   pass

call a()

return a()
call a()

return a()

main()
call b()

return b()

a()##2

call b()

return b()

a()##3

pass

b()##5

better, but
not perfect
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Context Sensitivity

● Solution 3: Make a Copy

– Make one copy of each function per call site

1) def main():
2)   a()
3)   a()

4) def a():
5)   b()

6) def b():
7)   pass

call a()

return a()
call a()

return a()

main()
call b()

return b()

a()##2

call b()

return b()

a()##3

pass

b()##5

How can we improve it?
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Context Sensitivity

Generalized:

● Make a bounded number of copies
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Context Sensitivity

Generalized:

● Make a bounded number of copies

● Choose a key/feature that determines which copy to 
use

– Bounded calling context/call stack (call site sensitivity)

– Allocation sites of objects (object sensitivity)
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Context Sensitivity

● Solution 4: Make a logical copy
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Context Sensitivity

● Solution 4: Make a logical copy

– Instead of actually making a copy, just keep track of the 
context information (the key) during analysis

– Compute results (called procedure summaries) for each 
logical copy of a function.

– Modify the treatment of calls slightly:

On foo(in) with context C:
If (foo,C) doesn't have a summary, process foo(in) in C and 
save the result to S.
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Context Sensitivity

● Solution 4: Make a logical copy

– Instead of actually making a copy, just keep track of the 
context information (the key) during analysis

– Compute results (called procedure summaries) for each 
logical copy of a function.

– Modify the treatment of calls slightly:

On foo(in) with context C:
If (foo,C) doesn't have a summary, process foo(in) in C and 
save the result to S.

If the summary S already approximates foo(in), use S

Otherwise, process foo(in) in C and update S with (in⨅S.in).
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Context Sensitivity

● Solution 4: Make a logical copy

– Instead of actually making a copy, just keep track of the 
context information (the key) during analysis

– Compute results (called procedure summaries) for each 
logical copy of a function.

– Modify the treatment of calls slightly:

On foo(in) with context C:
If (foo,C) doesn't have a summary, process foo(in) in C and 
save the result to S.

If the summary S already approximates foo(in), use S

Otherwise, process foo(in) in C and update S with (in⨅S.in).

If the result changes, reprocess all callers of (foo,C)
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● In some cases, context sensitive analysis can be 
reduced to special forms of graph reachability.
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Context Sensitivity - IFDS

● In some cases, context sensitive analysis can be 
reduced to special forms of graph reachability.

– Set of dataflow facts D is finite

– Transfer functions are distributive [f(x⨅y)=f(x)⨅f(y)]

– Domain and range of transfer functions is (D) �
– Lattice ordering is set containment
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Context Sensitivity - IFDS

● In some cases, context sensitive analysis can be 
reduced to special forms of graph reachability.

– Set of dataflow facts D is finite

– Transfer functions are distributive [f(x⨅y)=f(x)⨅f(y)]

– Domain and range of transfer functions is (D) �
– Lattice ordering is set containment

(Interprocedural Finite Distributive Subsets)
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Context Sensitivity - IFDS

● Consider an undefined variable analysis...

a = 7

b = a

c = d
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● Consider an undefined variable analysis...
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Context Sensitivity - IFDS

● Consider an undefined variable analysis...

a = 7

b = a

c = d

a b c d



173

Context Sensitivity - IFDS

● Consider an undefined variable analysis...

a = 7

b = a

c = d

a b c d

a is defined,
so make it unreachable
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Context Sensitivity - IFDS

● Consider an undefined variable analysis...

a = 7

b = a

c = d

a b c d

c is unchanged,
so propagate its reachability
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Context Sensitivity - IFDS

● Consider an undefined variable analysis...

a = 7

b = a

c = d

a b c d
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Context Sensitivity - IFDS

● Consider an undefined variable analysis...

a = 7

b = a

c = d

a b c d
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Context Sensitivity - IFDS

● Consider an undefined variable analysis...

a = 7

b = a

c = d

a b c d

c and d are reachable here.
They are undefined at this point.
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Context Sensitivity - IFDS

● Consider an undefined variable analysis…

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

p(a)

y = 1y = 0

return a
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Context Sensitivity - IFDS

● Consider an undefined variable analysis…

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

p(a)

y = 1y = 0

return a

(
1

)
1

(
2

)
2
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Context Sensitivity - IFDS

● Consider an undefined variable analysis…

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

p(a)

y = 1y = 0

return a

(
1

)
1

(
2

)
2

string: (
1
 )

2
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Context Sensitivity - IFDS

● Consider an undefined variable analysis…

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

p(a)

y = 1y = 0

return a

(
1

)
1

(
2

)
2

string: (
1
 )

2
unreachable
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Context Sensitivity - IFDS

● Consider an undefined variable analysis…

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

p(a)

y = 1y = 0

return a

(
1

)
1

(
2

)
2

string: (
1
 )

1
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Context Sensitivity - IFDS

● Consider an undefined variable analysis…

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

p(a)

y = 1y = 0

return a

(
1

)
1

(
2

)
2

string: (
1
 )

1
(

2
)

2
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Context Sensitivity - IFDS

● Consider an undefined variable analysis…

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

p(a)

y = 1y = 0

return a

(
1

)
1

(
2

)
2

string: (
1
 )

1
(

2
)

2
reachable
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Context Sensitivity - IFDS

● Consider an undefined variable analysis…

● A fact f holds before a node if f is CFL-Reachable in a 
language of matched parentheses

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

p(a)

y = 1y = 0

return a

(
1

)
1

(
2

)
2
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Context Sensitivity - IFDS

[Reps, POPL 1995]
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Context Sensitivity - IFDS

● Does constant propagation fit our definition of 
IFDS?
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Context Sensitivity - IFDS

● Does constant propagation fit our definition of 
IFDS?

● Can you think of ways that it could be made to fit 
into IFDS?
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Dataflow Configurations

Can be configured in many ways:
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Dataflow Configurations

Can be configured in many ways:

● Forward / Backward (e.g. reaching vs liveness)

● May / Must ( vs ∩ in lattice when paths ∏)

● Sensitivity {Path? Flow? Context?}

The configuration is ultimately driven by the 
property/problem of interest
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Static Analysis

● We've already seen a few static analyses:

– Call graph construction

– Points-to graph construction (What are MAY/MUST?)

– Static slicing
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Static Analysis

● We've already seen a few static analyses:

– Call graph construction

– Points-to graph construction (What are MAY/MUST?)

– Static slicing

● The choices for approximation are why these analyses 
are imprecise.
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Other (Traditionally) Static Approaches

● Type based analyses

● Bounded state exploration

● Symbolic execution

● Model checking

Many of these have been integrated into dynamic 
analyses, as we shall see over the semester.
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Static Analysis Summary

● Considers all possible executions
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– Must my program always …?
– May my program ever …?
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Static Analysis Summary

● Considers all possible executions

● Approximates program behavior to fight 
undecidability

● Can answer queries like:
– Must my program always …?
– May my program ever …?

● Dataflow analysis is one common form of static 
analysis
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