
Static Analysis 
and

Dataflow Analysis



2

Static Analysis

Static analyses consider all possible behaviors of a 
program without running it.



3

Static Analysis

Static analyses consider all possible behaviors of a 
program without running it.

● Look for a property of interest



4

Static Analysis

Static analyses consider all possible behaviors of a 
program without running it.

● Look for a property of interest
– Do I dereference NULL pointers?



5

Static Analysis

Static analyses consider all possible behaviors of a 
program without running it.

● Look for a property of interest
– Do I dereference NULL pointers?
– Do I leak memory?



6

Static Analysis

Static analyses consider all possible behaviors of a 
program without running it.

● Look for a property of interest
– Do I dereference NULL pointers?
– Do I leak memory?
– Do I violate a protocol specification?



7

Static Analysis

Static analyses consider all possible behaviors of a 
program without running it.

● Look for a property of interest
– Do I dereference NULL pointers?
– Do I leak memory?
– Do I violate a protocol specification?
– Is this file open?



8

Static Analysis

Static analyses consider all possible behaviors of a 
program without running it.

● Look for a property of interest
– Do I dereference NULL pointers?
– Do I leak memory?
– Do I violate a protocol specification?
– Is this file open?
– Does my program terminate?



9

Static Analysis

Static analyses consider all possible behaviors of a 
program without running it.

● Look for a property of interest
– Do I dereference NULL pointers?
– Do I leak memory?
– Do I violate a protocol specification?
– Is this file open?
– Does my program terminate?

But wait? Isn't that impossible?



10

Static Analysis

HALT?

Brief Review of
Undecidability

“Does my program terminate?”



11

Static Analysis

HALT?

P

Brief Review of
Undecidability



12

Static Analysis

or

HALT?

P

Brief Review of
Undecidability



13

Static Analysis

or

HALT?

P

Brief Review of
Undecidability

if HALT?( P , P ):
while True: { }

else
return True

PP

P P

or

=H'

HALT?



14

Static Analysis

or

HALT?

P

Brief Review of
Undecidability

H'

H'

?

if HALT?( P , P ):
while True: { }

else
return True

PP

P P

or

=H'

HALT?



15

Static Analysis

or

HALT?

P

Brief Review of
Undecidability

H'

H'

?

It's a classic paradox!

if HALT?( P , P ):
while True: { }

else
return True

PP

P P

or

=H'

HALT?



16

Static Analysis

Static analyses consider all possible behaviors of a 
program without running it.

● Look for a property of interest
– Do I dereference NULL pointers?
– Do I leak memory?
– Do I violate a protocol specification?
– Is this file open?
– Does my program terminate?

But wait? Isn't that impossible?



17

Static Analysis

Static analyses consider all possible behaviors of a 
program without running it.

● Look for a property of interest
– Do I dereference NULL pointers?
– Do I leak memory?
– Do I violate a protocol specification?
– Is this file open?
– Does my program terminate?

But wait? Isn't that impossible?

● Only if answers must be perfect.



18

Static Analysis

Static analyses consider all possible behaviors of a 
program without running it.

● Look for a property of interest
– Do I dereference NULL pointers?
– Do I leak memory?
– Do I violate a protocol specification?
– Is this file open?
– Does my program terminate?

But wait? Isn't that impossible?

● Only if answers must be perfect.
HALT?



19

Static Analysis

Static analyses consider all possible behaviors of a 
program without running it.

● Look for a property of interest
– Do I dereference NULL pointers?
– Do I leak memory?
– Do I violate a protocol specification?
– Is this file open?
– Does my program terminate?

But wait? Isn't that impossible?

● Only if answers must be perfect.
HALT?

?



20

Static Analysis

Overapproximate or underapproximate the problem, 
and try to solve this simpler version.



21

Static Analysis

Overapproximate or underapproximate the problem, 
and try to solve this simpler version.

● Sound analyses
– Overapproximate
– Guaranteed to find violations of property
– May raise false alarms



22

Static Analysis

Overapproximate or underapproximate the problem, 
and try to solve this simpler version.

● Sound analyses
– Overapproximate
– Guaranteed to find violations of property
– May raise false alarms

● Complete analyses
– Underapproximate
– Reported violations are real
– May miss violations



23

Static Analysis

Overapproximate or underapproximate the problem, 
and try to solve this simpler version.

● Sound analyses
– Overapproximate
– Guaranteed to find violations of property
– May raise false alarms

● Complete analyses
– Underapproximate
– Reported violations are real
– May miss violations

Striking the right balance is key to a useful analysis



24

Approximation

Modeled program behaviors

Possible Program Behavior



25

Approximation

Modeled program behaviors

Overapproximate

Possible Program Behavior

Consider some behaviors possible when they are not.



26

Approximation

Modeled program behaviors

Overapproximate

Possible Program Behavior

Underapproximate

Ignore some behaviors that are possible.



27

Approximation

● Dynamic Analysis

– Analyzed ⊆ Feasible
– As # tests ↑, Analyzed → Feasible

Analyzed

Feasible



28

Approximation

● Dynamic Analysis

– Analyzed ⊆ Feasible
– As # tests ↑, Analyzed → Feasible

● Static Analysis

– Feasible ⊆ Analyzed



29

Approximation

● Dynamic Analysis

– Analyzed ⊆ Feasible
– As # tests ↑, Analyzed → Feasible

● Static Analysis

– Feasible ⊆ Analyzed

Analyzed

Feasible



30

Approximation

● Dynamic Analysis

– Analyzed ⊆ Feasible
– As # tests ↑, Analyzed → Feasible

● Static Analysis

– Feasible ⊆ Analyzed
– As infeasible paths ↓, Analyzed → Feasible

Analyzed
Feasible



31

Approximation

● Dynamic Analysis

– Analyzed ⊆ Feasible
– As # tests ↑, Analyzed → Feasible

● Static Analysis

– Feasible ⊆ Analyzed
– As infeasible paths ↓, Analyzed → Feasible

● The two areas complement each other

– Static analysis can help generate useful tests
– Dynamic analysis can help identify infeasibility



32

Abstract Interpretation

Q: Is a particular number ever negative?
– Might be an offset into invalid memory!

Approximate the program's behavior



33

Abstract Interpretation

Q: Is a particular number ever negative?
– Might be an offset into invalid memory!

Approximate the program's behavior

● Concrete domain: integers
● Abstract domain: {-,0,+}  ⋃  {⊤,⊥}



34

Abstract Interpretation

Q: Is a particular number ever negative?
– Might be an offset into invalid memory!

Approximate the program's behavior

● Concrete domain: integers
● Abstract domain: {-,0,+}  ⋃  {⊤,⊥}

concrete(x) =  5  
concrete(y) = -3 
concrete(z) =  0  

Combines sets of the concrete domain

  ↦ abstract(x) = +
  ↦ abstract(y) = -
  ↦ abstract(z) = 0



35

Abstract Interpretation

● Transfer Functions show how to evaluate this 
approximated program:



36

Abstract Interpretation

● Transfer Functions show how to evaluate this 
approximated program:
– + + + → +
– - + - → -
– 0 + 0 → 0
– 0 + - → -
– …
– + + - → ⊤(unknown / might vary)
– … / 0 → ⊥(undefined)



37

Abstract Interpretation

● Transfer Functions show how to evaluate this 
approximated program:
– + + + → +
– - + - → -
– 0 + 0 → 0
– 0 + - → -
– …
– + + - → ⊤(unknown / might vary)
– … / 0 → ⊥(undefined)

This type of approximation is called
abstract interpretation.



38

Abstract Interpretation

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)



39

Abstract Interpretation

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

2
s 0↦
i↦⊥

1
s↦⊥
i↦⊥



40

Abstract Interpretation

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

2
s 0↦
i↦⊥

3
s 0↦
i 1↦

3
s 0↦
i +↦

1
s↦⊥
i↦⊥



41

Abstract Interpretation

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

2
s 0↦
i↦⊥

3
s 0↦
i 1↦

3
s 0↦
i +↦

6
s 0↦
i +↦

7
s 0↦
i +↦

1
s↦⊥
i↦⊥



42

Abstract Interpretation

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

2
s 0↦
i↦⊥

3
s 0↦
i 1↦

3
s 0↦
i +↦

6
s 0↦
i +↦

7
s 0↦
i +↦

4
s 0↦
i +↦

5
s 0↦
i +↦

1
s↦⊥
i↦⊥



43

Abstract Interpretation

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

2
s 0↦
i↦⊥

3
s 0↦
i 1↦

3
s 0↦
i +↦

6
s 0↦
i +↦

7
s 0↦
i +↦

4
s 0↦
i +↦

5
s 0↦
i +↦

3
s +↦
i +↦

1
s↦⊥
i↦⊥



44

Abstract Interpretation

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

2
s 0↦
i↦⊥

3
s 0↦
i 1↦

3
s 0↦
i +↦

6
s 0↦
i +↦

7
s 0↦
i +↦

4
s 0↦
i +↦

5
s 0↦
i +↦

3
s +↦
i +↦

6
s +↦
i +↦

7
s +↦
i +↦

1
s↦⊥
i↦⊥



45

Abstract Interpretation

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

2
s 0↦
i↦⊥

3
s 0↦
i 1↦

3
s 0↦
i +↦

6
s 0↦
i +↦

7
s 0↦
i +↦

4
s 0↦
i +↦

5
s 0↦
i +↦

3
s +↦
i +↦

6
s +↦
i +↦

7
s +↦
i +↦

4
s +↦
i +↦

5
s +↦
i +↦

1
s↦⊥
i↦⊥



46

Abstract Interpretation

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

Does the process ever end?

2
s 0↦
i↦⊥

3
s 0↦
i 1↦

3
s 0↦
i +↦

6
s 0↦
i +↦

7
s 0↦
i +↦

4
s 0↦
i +↦

5
s 0↦
i +↦

3
s +↦
i +↦

6
s +↦
i +↦

7
s +↦
i +↦

4
s +↦
i +↦

5
s +↦
i +↦

1
s↦⊥
i↦⊥



47

Abstract Interpretation

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

2
s 0↦
i↦⊥

3
s 0↦
i 1↦

3
s 0↦
i +↦

6
s 0↦
i +↦

7
s 0↦
i +↦

4
s 0↦
i +↦

5
s 0↦
i +↦

3
s +↦
i +↦

6
s +↦
i +↦

7
s +↦
i +↦

4
s +↦
i +↦

5
s +↦
i +↦

1
s↦⊥
i↦⊥



48

Abstract Interpretation

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

Can the final sum ever be negative?

2
s 0↦
i↦⊥

3
s 0↦
i 1↦

3
s 0↦
i +↦

6
s 0↦
i +↦

7
s 0↦
i +↦

4
s 0↦
i +↦

5
s 0↦
i +↦

3
s +↦
i +↦

6
s +↦
i +↦

7
s +↦
i +↦

4
s +↦
i +↦

5
s +↦
i +↦

1
s↦⊥
i↦⊥



49

Abstract Interpretation

● Guarantee termination by carefully choosing

– The abstract domain

– The transfer function



50

Abstract Interpretation

● Guarantee termination by carefully choosing

– The abstract domain

– The transfer function

● For basic analyses, use a monotone framework
Loosely:   <CFG, Transfer Function, Lattice Abstraction>



51

Abstract Interpretation

● Guarantee termination by carefully choosing

– The abstract domain

– The transfer function

● For basic analyses, use a monotone framework

– {-,0,+}  ⋃  {⊤,⊥}

– They define a partial order

– Abstract state can only
move up lattice at a statement

⊤

⊥

0- +



52

Abstract Interpretation

● Guarantee termination by carefully choosing

– The abstract domain

– The transfer function

● For basic analyses, use a monotone framework

– {-,0,+}  ⋃  {⊤,⊥}

– They define a partial order

– Abstract state can only
move up lattice at a statement

Why does this specific
example terminate?

⊤

⊥

0- +



53

Abstract Interpretation

● Guarantee termination by carefully choosing

– The abstract domain

– The transfer function

● For basic analyses, use a monotone framework

● But in theory a lattice need not be finite!
(ranges/intervals, linear constraints, ...)



54

Abstract Interpretation

● Guarantee termination by carefully choosing

– The abstract domain

– The transfer function

● For basic analyses, use a monotone framework

● But in theory a lattice need not be finite!

– Widening operators can still make it feasible

(e.g., heuristically raise to )⊤



55

Abstract Interpretation

● What properties should a good abstraction have?



56

Abstract Interpretation

● What properties should a good abstraction have?

{1, 5}

Concrete

{1, 4}



57

Abstract Interpretation

● What properties should a good abstraction have?

{1, 5}

{1, 4, 5}

Concrete

{1, 4}



58

Abstract Interpretation

● What properties should a good abstraction have?

{1, 5}

{1, 4, 5}

Concrete

{1, 4}

{1, 2, 3, …}

ℤ



59

Abstract Interpretation

● What properties should a good abstraction have?

{1, 5}

⊤

⊥

0- +{1, 4, 5}

Concrete Abstract

{1, 4}

{1, 2, 3, …}

ℤ



60

Abstract Interpretation

● What properties should a good abstraction have?

{1, 5}

⊤

⊥

0- +{1, 4, 5}

Concrete Abstract

{1, 4}

{1, 2, 3, …}

ℤ

α



61

Abstract Interpretation

● What properties should a good abstraction have?

{1, 5}

⊤

⊥

0- +{1, 4, 5}

Concrete Abstract

{1, 4}

{1, 2, 3, …}

ℤ

α

γ



62

Abstract Interpretation

● What properties should a good abstraction have?

{1, 5}

⊤

⊥

0- +{1, 4, 5}

Concrete Abstract

{1, 4}

{1, 2, 3, …}

ℤ

α

γ

s ⊆ γ(α(s))



63

Abstract Interpretation

● What properties should a good abstraction have?

{1, 5}

⊤

⊥

0- +{1, 4, 5}

Concrete Abstract

{1, 4}

{1, 2, 3, …}

ℤ

α

γ

s ⊆ γ(α(s))

No concrete values were
discarded by abstraction



64

Dataflow Analysis

● Dataflow analysis performs model checking of 
abstract interpretations



65

Dataflow Analysis

● Dataflow analysis performs model checking of 
abstract interpretations

● Meet Operator (⨅) combines results across program 
paths



66

Dataflow Analysis

● Dataflow analysis performs model checking of 
abstract interpretations

● Meet Operator (⨅) combines results across program 
paths

A B

C

x
A

+↦ x
B

-↦

x
C
↦?

x
A

 x⨅
B
 = ? 



67

Dataflow Analysis

● Dataflow analysis performs model checking of 
abstract interpretations

● Meet Operator (⨅) combines results across program 
paths

A B

C

x
A

+↦ x
B

-↦

x
C
↦?

x
A

 x⨅
B
 = α(x

A
)⨆α(x

B
) = ? 



68

Dataflow Analysis

● Dataflow analysis performs model checking of 
abstract interpretations

● Meet Operator (⨅) combines results across program 
paths

A B

C

x
A

+↦ x
B

-↦
⊤

⊥

0- +

x
C
↦?

x
A

 x⨅
B
 = α(x

A
)⨆α(x

B
) = ? 



69

Dataflow Analysis

● Dataflow analysis performs model checking of 
abstract interpretations

● Meet Operator (⨅) combines results across program 
paths

A B

C

x
A

+↦ x
B

-↦
⊤

⊥

0- +

x
C
↦?

x
A

 x⨅
B
 = α(x

A
)⨆α(x

B
) = ? 



70

Dataflow Analysis

● Dataflow analysis performs model checking of 
abstract interpretations

● Meet Operator (⨅) combines results across program 
paths

A B

C

x
A

+↦ x
B

-↦
⊤

⊥

0- +

x
C
↦⊤

x
A

 x⨅
B
 = α(x

A
)⨆α(x

B
) = ⊤



71

Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → ⊥
i → ⊥



72

Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → ⊥
i → ⊥

sum → 0
i → +



73

Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → ⊥
i → ⊥

sum → 0
i → +

sum → 0
i → +



74

Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → ⊥
i → ⊥

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +



75

Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → ⊥
i → ⊥

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +



76

Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → ⊥
i → ⊥

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +



77

Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → ⊥
i → ⊥

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +



78

Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → ⊥
i → ⊥

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

sum → +
i → +



79

Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → ⊥
i → ⊥

sum → 
i → +

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

sum → +
i → +

Meet Operator
sum was 0, but
what should it be now?

?



80

Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

sum → +
i → +

sum → ⊥
i → ⊥

sum → 
i → +

sum → 0
i → +

sum → 0
i → +

?
The value across all executions is not -, 0, or +,
so it is simply unknown/anything. (⊤)



81

Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

sum → +
i → +

sum → ⊥
i → ⊥

sum → ⊤ 
i → +

sum → 0
i → +

sum → 0
i → +



82

Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → 0
i → +

sum → ⊤
i → +

sum → 0
i → +

sum → +
i → +

sum → ⊥
i → ⊥

sum → ⊤ 
i → +

sum → 0
i → +

sum → 0
i → +



83

Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → ⊥
i → ⊥

sum → ⊤ 
i → +

sum → ⊤
i → +

sum → 0
i → +

sum → 0
i → +

sum → ⊤
i → +

sum → 0
i → +

sum → +
i → +



84

Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → ⊥
i → ⊥

sum → ⊤ 
i → +

sum → ⊤
i → +

sum → 0
i → +

sum → 0
i → +

sum → ⊤
i → +

sum → ⊤
i → +

sum → +
i → +



85

Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

– Continue until we reach a fixed point

(No more changes)



86

Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

– Continue until we reach a fixed point

(No more changes)

– Proper ordering can improve the efficiency.

(Topological Order, Strongly Connected Components)



87

Dataflow Analysis

● Now model the abstract program state and 
propagate through the CFG.

– Continue until we reach a fixed point

(No more changes)

– Proper ordering can improve the efficiency.
● (Topological Order, Strongly Connected Components)

Will it always terminate?



88

Dataflow Analysis

● Note: need to model program state before and after 
each statement

● Proper ordering & a work list algorithm improves 
the efficiency



89

Worklist Algorithms

work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new

1

2

3

4



90

Worklist Algorithms

1

2

3

4

work: 1 2 3 4

state:

{ 1( ↦⊥)
2( ↦⊥)

3( ↦⊥)
4( ↦⊥) }

work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new



91

Worklist Algorithms

1

2

3

4

work:

1

2 3 4

state:

{ 2( ↦⊥)

3( ↦⊥)
4( ↦⊥)

 unit =

}1( ↦⊥)

work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new



92

Worklist Algorithms

1

2

3

4

work:

1

2 3 4

state:

{ 2( ↦⊥)

3( ↦⊥)
4( ↦⊥)

 unit =
old =  ⊥

}1( ↦⊥)

work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new



93

Worklist Algorithms

1

2

3

4

work:

1

2 3 4

state:

{ 2( ↦⊥)

3( ↦⊥)
4( ↦⊥)

 unit =
old =  ⊥
new 
=

sum → 0
i → +

}1( ↦⊥)

work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new



94

Worklist Algorithms

1

2

3

4

work:

1

2 3 4

state:

{ 1( ↦ )
2( ↦⊥)

3( ↦⊥)
4( ↦⊥)

 unit =
old =  ⊥
new 
=

sum → 0
i → +

sum → 0
i → + }

work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new



95

Worklist Algorithms

1

2

3

4

work:

2

3 4

state:

{ 1( ↦ )
2( ↦⊥ )

3( ↦⊥)
4( ↦⊥)

 unit =
old =  ⊥
new 
=

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

}

work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new



96

Worklist Algorithms

1

2

3

4

work:

3

4

state:

{ 1( ↦ )
2( ↦⊥ )

3( ↦⊥ )

 unit =
old =  ⊥
new 
=

sum → +
i → +

sum → 0
i → +

sum → 0
i → +

2
sum → +
i → +

2 was added back to the list

4( ↦⊥) }

work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new



97

Worklist Algorithms

1

2

3

4

work:

state:

{ 1( ↦ )
2( ↦⊥ )

3( ↦⊥ )
4( ↦⊥ )}

 unit =
old =  ⊥
new 
=

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

2
sum → +
i → +

4

sum → 0
i → +

work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new



98

work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new

Worklist Algorithms

1

2

3

4

work:

state:

{ 1( ↦ )
2( ↦⊥ )

3( ↦⊥ )
4( ↦⊥ )}

 unit =
old =  ⊥
new 
=

sum → 0
i → +

sum → 0
i → +

sum → ⊤
i → +

4
sum → +
i → +

sum → 0
i → +

2

4,3 were added back to the list

sum →⊤
i → +

3



99

Worklist Algorithms

1

2

3

4

work:

state:

{ 1( ↦ )
2( ↦⊥ )

3( ↦⊥ )
4( ↦⊥ )}

 unit =
old =  ⊥
new 
=

sum → 0
i → +

sum → 0
i → +

sum → ⊤
i → +

sum → +
i → +

sum → ⊤
i → +

4

sum →⊤
i → +

3

work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new



100

Worklist Algorithms

1

2

3

4

work:

state:

{ 1( ↦ )
2( ↦⊥ )

3( ↦⊥ )
4( ↦⊥ )}

 unit =
old =  ⊥
new 
=

sum → +
i → +

sum → 0
i → +

sum → ⊤
i → +

sum → +
i → +

sum → ⊤
i → +

3

sum → +
i → +

No change

work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new



101

work = nodes()
state(n) = ⊥ ∀ n ∈ nodes()
while work ≠ ∅:
     unit = take(work)
     old = state(unit)
     before = ∏state(p)
                  ∀ p  preds(unit)∈
     new = transfer(before, unit)
     if old ≠ after:
         work = work ∪ succs(unit)
         state(unit) = new

Worklist Algorithms

1

2

3

4

work:

state:

{ 1( ↦ )
2( ↦⊥ )

3( ↦⊥ )
4( ↦⊥ )}

 unit =
old =  ⊥
new 
=

sum → 0
i → +

sum → 0
i → +

sum → ⊤
i → +

sum → +
i → +

sum → ⊤
i → +

4

sum →⊤
i → +

Done!



102

Effect of Approximation

● There are several possible sources of imprecision



103

Effect of Approximation

● There are several possible sources of imprecision

...

1)x = 2
2)y = 1

3)x = 2
4)y = 1

5)c = x * y



104

Effect of Approximation

● There are several possible sources of imprecision

...

1)x = 2
2)y = 1

3)x = -2
4)y = -1

5)c = x * y

x→ +, y→ + x→ -, y→ -

c→ ?



105

Effect of Approximation

● There are several possible sources of imprecision

● 2 Key sources are

– Control flow
● Many different paths are summarized together



106

Effect of Approximation

● There are several possible sources of imprecision

● 2 Key sources are

– Control flow
● Many different paths are summarized together

– Abstraction
● Deliberately throwing away information
● Granularity of program state affects correlations across 

variables



107

Effect of Approximation

● We compute results with maximal fixed points 
(MFP) in the lattice



108

Effect of Approximation

● We compute results with maximal fixed points 
(MFP) in the lattice

● Ideal solution is a Meet Over all Paths (MOP)



109

Effect of Approximation

● We compute results with maximal fixed points 
(MFP) in the lattice

● Ideal solution is a Meet Over all Paths (MOP)

For one path p:   fp(⊥) = fn(fn-1(...f1(f0(⊥))))



110

Effect of Approximation

● We compute results with maximal fixed points 
(MFP) in the lattice

● Ideal solution is a Meet Over all Paths (MOP)

For one path p:   fp(⊥) = fn(fn-1(...f1(f0(⊥))))
For all paths p:    ⨅pfp(⊥)



111

Effect of Approximation

● We compute results with maximal fixed points 
(MFP) in the lattice

● Ideal solution is a Meet Over all Paths (MOP)

● Are they different?



112

Effect of Approximation

● We compute results with maximal fixed points 
(MFP) in the lattice

● Ideal solution is a Meet Over all Paths (MOP)

● Are they different?

– Sometimes. But sometime solutions are perfect.



113

Effect of Approximation

● We compute results with maximal fixed points 
(MFP) in the lattice

● Ideal solution is a Meet Over all Paths (MOP)

● Are they different?

– Sometimes. But sometime solutions are perfect.

– When f() is distributive, MFP=MOP

f(x ⨅ y ⨅ z) = f(x) ⨅ f(y) ⨅ f(z)



114

Effect of Approximation

● We compute results with maximal fixed points 
(MFP) in the lattice

● Ideal solution is a Meet Over all Paths (MOP)

● Are they different?

– Sometimes. But sometime solutions are perfect.

– When f() is distributive, MFP=MOP

f(x ⨅ y ⨅ z) = f(x) ⨅ f(y) ⨅ f(z)

– This applies to an important  class of problems called 
bitvector frameworks.



115

Bitvector Frameworks

● When the property concerns subsets of a finite set, 
the abstract domain & lattice are easy:

– Concrete: D = {a, b, c, d, … }

– Abstract: ℘(D) = { {}, {a}, {b}, …, {a, b}, {a, c}, …}

– Lattice: Defined by subset relation:

D

{}

{a} {b} {c} ...

{a,b} {a,c} {b,c}... {b,d} ...

...



116

Bitvector Frameworks

● When the property concerns subsets of a finite set, 
the abstract domain & lattice are easy:

– Concrete: D = {a, b, c, d, … }

– Abstract: ℘(D) = { {}, {a}, {b}, …, {a, b}, {a, c}, …}

– Lattice: Defined by subset relation:

D

{}

{a} {b} {c} ...

{a,b} {a,c} {b,c}... {b,d} ...

...

What would the
meet operator be?



117

Bitvector Frameworks

● Why is this convenient?

– Hint: bitvector frameworks



118

Bitvector Frameworks

● Why is this convenient?

– Hint: bitvector frameworks

– X={a,b}, Y={c,d} → X⨆Y = {a,b}{c,d} = {a,b,c,d}

– We can implement the abstract state using efficient 
bitvectors!



119

Effect of Approximation

● If approximation yields imprecise results, why do we 
do it?



120

Recap: Dataflow Analysis

Analyze complex behavior with approximation:
● Abstract domain: e.g. {-,0,+}  ⋃  {⊤,⊥}
● Transfer functions: - + + → ⊤
● Bounded domain lattice height:
● Concern for false + & -

⊤

⊥

0- +



121

Recap: Dataflow Analysis

Analyze complex behavior with approximation:
● Abstract domain: e.g. {-,0,+}  ⋃  {⊤,⊥}
● Transfer functions: - + + → ⊤
● Bounded domain lattice height:
● Concern for false + & -

Implementation:
● Computing using work lists
● Speeding up by sorting CFG nodes

⊤

⊥

0- +



122

Recap: Dataflow Analysis

Analyze complex behavior with approximation:
● Abstract domain: e.g. {-,0,+}  ⋃  {⊤,⊥}
● Transfer functions: - + + → ⊤
● Bounded domain lattice height:
● Concern for false + & -

Implementation:
● Computing using work lists
● Speeding up by sorting CFG nodes

⊤

⊥

0- +

Let's see an example



123

File Policy Analysis

Goal: Identify potential misuses of open/closed files



124

File Policy Analysis

Goal: Identify potential misuses of open/closed files
● Files may be open or closed



125

File Policy Analysis

Goal: Identify potential misuses of open/closed files
● Files may be open or closed
● Many operations may only occur on open files

e.g. read, write, print, flush, close, …



126

File Policy Analysis

Goal: Identify potential misuses of open/closed files
● Files may be open or closed
● Many operations may only occur on open files

e.g. read, write, print, flush, close, …

What should our design actually be?
● Abstract domain?
● Transfer functions?
● Lattice?



127

File Policy Analysis

Goal: Identify potential misuses of open/closed files
● Files may be open or closed
● Many operations may only occur on open files

e.g. read, write, print, flush, close, …

What should our design actually be?
● Abstract domain?
● Transfer functions?
● Lattice?

[DEMO]



128

Flow Insensitive Analysis

● Saw flow sensitive analysis

– Modeling state at each statement is expensive

– Scales to functions and small components

– Usually not beyond 1000s of lines without care



129

Flow Insensitive Analysis

● Saw flow sensitive analysis

– Modeling state at each statement is expensive

– Scales to functions and small components

– Usually not beyond 1000s of lines without care

● Flow insensitive analyses aggregate into a global 
state

– Better scalability

– Less precision

– “Does this function modify global variable X?”



130

Context Sensitive Analyses

● Program behavior may be dependent on the call 
stack / calling context.

– “If bar() is called by foo(), then it is exception free.”

– Can enable more precise interprocedural analyses



131

Context Sensitive Analyses

● Program behavior may be dependent on the call 
stack / calling context.

– “If bar() is called by foo(), then it is exception free.”

– Can enable more precise interprocedural analyses

Can you imagine how to solve this?
What problems might arise?



132

Context Sensitivity

● Recall that we can extract a call graph

– Just as you are doing in your first project!

a()

b() c()

def a():
  b()
  …
  b()

def b():
  …
  c()

def c():
  …

The behavior of c() could be
affected by each “...”

Modeling them can make
analysis more precise.



133

Context Sensitivity

● Simplest Approach

– Add edges between call sites & targets
– Perform data flow on this larger graph

Example from Stephen Chong

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1



134

Context Sensitivity

● Simplest Approach

– Add edges between call sites & targets
– Perform data flow on this larger graph

Example from Stephen Chong

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

main()

p(a)

y = 1y = 0

return a



135

Context Sensitivity

● Simplest Approach

– Add edges between call sites & targets
– Perform data flow on this larger graph

Example from Stephen Chong

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

main()

p(a)

y = 1y = 0

return a



136

Context Sensitivity

● Simplest Approach

– Add edges between call sites & targets
– Perform data flow on this larger graph

Example from Stephen Chong

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

main()

p(a)

y = 1y = 0

return a



137

Context Sensitivity

● Simplest Approach

– Add edges between call sites & targets
– Perform data flow on this larger graph

Example from Stephen Chong

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

main()

p(a)

y = 1y = 0

return a

a=7



138

Context Sensitivity

● Simplest Approach

– Add edges between call sites & targets
– Perform data flow on this larger graph

Example from Stephen Chong

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

main()

p(a)

y = 1y = 0

return a

a=7 a=7



139

Context Sensitivity

● Simplest Approach

– Add edges between call sites & targets
– Perform data flow on this larger graph

Example from Stephen Chong

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

main()

p(a)

y = 1y = 0

return a

a=7 a=7

a=7



140

Context Sensitivity

● Simplest Approach

– Add edges between call sites & targets
– Perform data flow on this larger graph

Example from Stephen Chong

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

main()

p(a)

y = 1y = 0

return a

a=7 a=7

a=7

r=7



141

Context Sensitivity

● Simplest Approach

– Add edges between call sites & targets
– Perform data flow on this larger graph

Example from Stephen Chong

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

main()

p(a)

y = 1y = 0

return a

a=7 a=7

a=7

r=7
a=17



142

Context Sensitivity

● Simplest Approach

– Add edges between call sites & targets
– Perform data flow on this larger graph

Example from Stephen Chong

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

main()

p(a)

y = 1y = 0

return a

a=7 a=⊤

a=7

r=7
a=17



143

Context Sensitivity

● Simplest Approach

– Add edges between call sites & targets
– Perform data flow on this larger graph

Example from Stephen Chong

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

main()

p(a)

y = 1y = 0

return a

a=7 a=⊤

a=⊤

r=7
a=17



144

Context Sensitivity

● Simplest Approach

– Add edges between call sites & targets
– Perform data flow on this larger graph

Example from Stephen Chong

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

main()

p(a)

y = 1y = 0

return a

a=7 a=⊤

a=⊤

r=⊤
a=⊤

z=⊤



145

Context Sensitivity

● Information from one call site can flow to a 
mismatched return site!



146

Context Sensitivity

● Information from one call site can flow to a 
mismatched return site!

● How could we address it?



147

Context Sensitivity

● Solution 2: Inlining

– Make a copy of the function at each call site



148

Context Sensitivity

● Solution 2: Inlining

– Make a copy of the function at each call site

● What problems arise?



149

Context Sensitivity

● Solution 2: Inlining

– Make a copy of the function at each call site

● What problems arise?

● What other strategies can we use?



150

Context Sensitivity

● Solution 3: Make a Copy

– Make one copy of each function per call site



151

Context Sensitivity

● Solution 3: Make a Copy

– Make one copy of each function per call site

1) def main():
2)   a()
3)   a()

4) def a():
5)   b()

6) def b():
7)   pass



152

Context Sensitivity

● Solution 3: Make a Copy

– Make one copy of each function per call site

1) def main():
2)   a()
3)   a()

4) def a():
5)   b()

6) def b():
7)   pass

call a()

return a()
call a()

return a()

main()
call b()

return b()

a()##2

call b()

return b()

a()##3

pass

b()##5



153

Context Sensitivity

● Solution 3: Make a Copy

– Make one copy of each function per call site

1) def main():
2)   a()
3)   a()

4) def a():
5)   b()

6) def b():
7)   pass

call a()

return a()
call a()

return a()

main()
call b()

return b()

a()##2

call b()

return b()

a()##3

pass

b()##5

So far,
so good



154

Context Sensitivity

● Solution 3: Make a Copy

– Make one copy of each function per call site

1) def main():
2)   a()
3)   a()

4) def a():
5)   b()

6) def b():
7)   pass

call a()

return a()
call a()

return a()

main()
call b()

return b()

a()##2

call b()

return b()

a()##3

pass

b()##5

better, but
not perfect



155

Context Sensitivity

● Solution 3: Make a Copy

– Make one copy of each function per call site

1) def main():
2)   a()
3)   a()

4) def a():
5)   b()

6) def b():
7)   pass

call a()

return a()
call a()

return a()

main()
call b()

return b()

a()##2

call b()

return b()

a()##3

pass

b()##5

How can we improve it?



156

Context Sensitivity

Generalized:

● Make a bounded number of copies



157

Context Sensitivity

Generalized:

● Make a bounded number of copies

● Choose a key/feature that determines which copy to 
use

– Bounded calling context/call stack (call site sensitivity)

– Allocation sites of objects (object sensitivity)



158

Context Sensitivity

● Solution 4: Make a logical copy



159

Context Sensitivity

● Solution 4: Make a logical copy

– Instead of actually making a copy, just keep track of the 
context information (the key) during analysis



160

Context Sensitivity

● Solution 4: Make a logical copy

– Instead of actually making a copy, just keep track of the 
context information (the key) during analysis

– Compute results (called procedure summaries) for each 
logical copy of a function.



161

Context Sensitivity

● Solution 4: Make a logical copy

– Instead of actually making a copy, just keep track of the 
context information (the key) during analysis

– Compute results (called procedure summaries) for each 
logical copy of a function.

– Modify the treatment of calls slightly:

On foo(in) with context C:



162

Context Sensitivity

● Solution 4: Make a logical copy

– Instead of actually making a copy, just keep track of the 
context information (the key) during analysis

– Compute results (called procedure summaries) for each 
logical copy of a function.

– Modify the treatment of calls slightly:

On foo(in) with context C:
If (foo,C) doesn't have a summary, process foo(in) in C and 
save the result to S.



163

Context Sensitivity

● Solution 4: Make a logical copy

– Instead of actually making a copy, just keep track of the 
context information (the key) during analysis

– Compute results (called procedure summaries) for each 
logical copy of a function.

– Modify the treatment of calls slightly:

On foo(in) with context C:
If (foo,C) doesn't have a summary, process foo(in) in C and 
save the result to S.

If the summary S already approximates foo(in), use S



164

Context Sensitivity

● Solution 4: Make a logical copy

– Instead of actually making a copy, just keep track of the 
context information (the key) during analysis

– Compute results (called procedure summaries) for each 
logical copy of a function.

– Modify the treatment of calls slightly:

On foo(in) with context C:
If (foo,C) doesn't have a summary, process foo(in) in C and 
save the result to S.

If the summary S already approximates foo(in), use S

Otherwise, process foo(in) in C and update S with (in⨅S.in).



165

Context Sensitivity

● Solution 4: Make a logical copy

– Instead of actually making a copy, just keep track of the 
context information (the key) during analysis

– Compute results (called procedure summaries) for each 
logical copy of a function.

– Modify the treatment of calls slightly:

On foo(in) with context C:
If (foo,C) doesn't have a summary, process foo(in) in C and 
save the result to S.

If the summary S already approximates foo(in), use S

Otherwise, process foo(in) in C and update S with (in⨅S.in).

If the result changes, reprocess all callers of (foo,C)



166

Context Sensitivity - IFDS

● In some cases, context sensitive analysis can be 
reduced to special forms of graph reachability.



167

Context Sensitivity - IFDS

● In some cases, context sensitive analysis can be 
reduced to special forms of graph reachability.

– Set of dataflow facts D is finite

– Transfer functions are distributive [f(x⨅y)=f(x)⨅f(y)]

– Domain and range of transfer functions is (D) �
– Lattice ordering is set containment



168

Context Sensitivity - IFDS

● In some cases, context sensitive analysis can be 
reduced to special forms of graph reachability.

– Set of dataflow facts D is finite

– Transfer functions are distributive [f(x⨅y)=f(x)⨅f(y)]

– Domain and range of transfer functions is (D) �
– Lattice ordering is set containment

(Interprocedural Finite Distributive Subsets)



169

Context Sensitivity - IFDS

● Consider an undefined variable analysis...

a = 7

b = a

c = d



170

Context Sensitivity - IFDS

● Consider an undefined variable analysis...

a = 7

b = a

c = d

a b c d



171

Context Sensitivity - IFDS

● Consider an undefined variable analysis...

a = 7

b = a

c = d

a b c d



172

Context Sensitivity - IFDS

● Consider an undefined variable analysis...

a = 7

b = a

c = d

a b c d



173

Context Sensitivity - IFDS

● Consider an undefined variable analysis...

a = 7

b = a

c = d

a b c d

a is defined,
so make it unreachable



174

Context Sensitivity - IFDS

● Consider an undefined variable analysis...

a = 7

b = a

c = d

a b c d

c is unchanged,
so propagate its reachability



175

Context Sensitivity - IFDS

● Consider an undefined variable analysis...

a = 7

b = a

c = d

a b c d



176

Context Sensitivity - IFDS

● Consider an undefined variable analysis...

a = 7

b = a

c = d

a b c d



177

Context Sensitivity - IFDS

● Consider an undefined variable analysis...

a = 7

b = a

c = d

a b c d

c and d are reachable here.
They are undefined at this point.



178

Context Sensitivity - IFDS

● Consider an undefined variable analysis…

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

p(a)

y = 1y = 0

return a



179

Context Sensitivity - IFDS

● Consider an undefined variable analysis…

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

p(a)

y = 1y = 0

return a

(
1

)
1

(
2

)
2



180

Context Sensitivity - IFDS

● Consider an undefined variable analysis…

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

p(a)

y = 1y = 0

return a

(
1

)
1

(
2

)
2

string: (
1
 )

2



181

Context Sensitivity - IFDS

● Consider an undefined variable analysis…

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

p(a)

y = 1y = 0

return a

(
1

)
1

(
2

)
2

string: (
1
 )

2
unreachable



182

Context Sensitivity - IFDS

● Consider an undefined variable analysis…

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

p(a)

y = 1y = 0

return a

(
1

)
1

(
2

)
2

string: (
1
 )

1



183

Context Sensitivity - IFDS

● Consider an undefined variable analysis…

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

p(a)

y = 1y = 0

return a

(
1

)
1

(
2

)
2

string: (
1
 )

1
(

2
)

2



184

Context Sensitivity - IFDS

● Consider an undefined variable analysis…

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

p(a)

y = 1y = 0

return a

(
1

)
1

(
2

)
2

string: (
1
 )

1
(

2
)

2
reachable



185

Context Sensitivity - IFDS

● Consider an undefined variable analysis…

● A fact f holds before a node if f is CFL-Reachable in a 
language of matched parentheses

def main():
  x = 7
  r = p(x)
  x = r
  z = p(x+10)

def p(a):
  if a < 9:
    y = 0
  else:
    y = 1

x = 7
call p(x)

if a < 9

r = return p(x)
x = r
call p(x+10)

z = return p(x+10)

p(a)

y = 1y = 0

return a

(
1

)
1

(
2

)
2



186

Context Sensitivity - IFDS

[Reps, POPL 1995]



187

Context Sensitivity - IFDS

● Does constant propagation fit our definition of 
IFDS?



188

Context Sensitivity - IFDS

● Does constant propagation fit our definition of 
IFDS?

● Can you think of ways that it could be made to fit 
into IFDS?



189

Dataflow Configurations

Can be configured in many ways:



190

Dataflow Configurations

Can be configured in many ways:

● Forward / Backward (e.g. reaching vs liveness)



191

Dataflow Configurations

Can be configured in many ways:

● Forward / Backward (e.g. reaching vs liveness)

● May / Must ( vs ∩ in lattice when paths ∏)



192

Dataflow Configurations

Can be configured in many ways:

● Forward / Backward (e.g. reaching vs liveness)

● May / Must ( vs ∩ in lattice when paths ∏)

● Sensitivity {Path? Flow? Context?}



193

Dataflow Configurations

Can be configured in many ways:

● Forward / Backward (e.g. reaching vs liveness)

● May / Must ( vs ∩ in lattice when paths ∏)

● Sensitivity {Path? Flow? Context?}

The configuration is ultimately driven by the 
property/problem of interest



194

Static Analysis

● We've already seen a few static analyses:

– Call graph construction

– Points-to graph construction (What are MAY/MUST?)

– Static slicing



195

Static Analysis

● We've already seen a few static analyses:

– Call graph construction

– Points-to graph construction (What are MAY/MUST?)

– Static slicing

● The choices for approximation are why these analyses 
are imprecise.



196

Other (Traditionally) Static Approaches

● Type based analyses

● Bounded state exploration

● Symbolic execution

● Model checking

Many of these have been integrated into dynamic 
analyses, as we shall see over the semester.



197

Static Analysis Summary

● Considers all possible executions



198

Static Analysis Summary

● Considers all possible executions

● Approximates program behavior to fight 
undecidability



199

Static Analysis Summary

● Considers all possible executions

● Approximates program behavior to fight 
undecidability

● Can answer queries like:
– Must my program always …?
– May my program ever …?



200

Static Analysis Summary

● Considers all possible executions

● Approximates program behavior to fight 
undecidability

● Can answer queries like:
– Must my program always …?
– May my program ever …?

● Dataflow analysis is one common form of static 
analysis


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200

