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Today

● Administrivia
● Dive right in!

– Overview

– Program Representations

– Slicing

– Basic Static Analysis

– LLVM Basics Time permitting
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Course Website

● www.cs.sfu.ca/~wsumner/teaching/880-13/
– Schedule

– Policies

– Assignments

– Paper Suggestions

http://www.cs.sfu.ca/~wsumner/teaching/880-13/
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Why are you here?

● Programs are big, complex, and difficult to 
reason about.

Design

Implement

Test & Debug

Maintain
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Why are you here?

● Programs are big, complex, and difficult to 
reason about.

Design

Implement

Test & Debug

Maintain

What is the cause of a bug?

Are there more efficient designs?

How do I find new bugs?

How do I find security vulnerabilities?
Can I protect against them?
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Why are you here?

● Programs are big, complex, and difficult to 
reason about.
– Billions in lost profits and savings

– Human casualties

– Very tired grad students
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Why are you here?

● Programs are big, complex, and difficult to 
reason about.
– Billions in lost profits and savings

– Human casualties

– Very tired grad students

People are bad at tedious, subtle tasks,
but computers are great at them! 
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Goal

● Learn how difficult tasks in development can be 
pushed onto computers.
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Goal

● Learn how difficult tasks in development can be 
pushed onto computers.
– Survey of program analysis techniques & papers

● Profiling
● Testing
● Debugging

Explaining or locating the causes of bugs
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Goal

● Learn how difficult tasks in development can be 
pushed onto computers.
– Survey of program analysis techniques & papers

● Profiling
● Testing
● Debugging
● Concurrency

How to explain race conditions?

Atomicity violations?

How to find 'Heisenbugs'?
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Goal

● Learn how difficult tasks in development can be 
pushed onto computers.
– Survey of program analysis techniques & papers

● Profiling
● Testing
● Debugging
● Concurrency
● Security

How to find vulnerabilities before attackers.
(...or as attackers)
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Structure

● First few weeks (2-3) are review & background
– I present.

– You think about papers you'd like to present
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Structure

● First few weeks (2-3) are review & background
– I present.

– You think about papers you'd like to present

● Reading foundational & new papers 
– 2 student presentations & paper discussions per 

week

– Brief critique on weeks you don't present

● 2 small projects to introduce LLVM
● Course projects presented at end.



21

Presentations

● Guidelines on website
● 2 Goals

– Help reinforce the material for the class

– Lead an interesting discussion to examine the trade 
offs of each technique. (I'll be helping.)
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Presentations

● Guidelines on website
● 2 Goals

– Help reinforce the material for the class

– Lead an interesting discussion to examine the trade 
offs of each technique. (I'll be helping.)

● Show how the technique behaves in the best 
case

● Show or lead discussion on where it might 
behave poorly
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Critiques

● Guidelines on website
● 1-2 page response to 1 paper each week that 

you do not present.
● Primarily meant to prepare you for the 

discussion on the paper that week.
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Term Projects

● Groups of 1 or 2.
● 1 page proposals due March 3.
● Find something that interests (or irritates) you 

and go after it!
– Maybe look at how these techniques can help your 

existing research
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What Could We Look At?

● Surviving Failures
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What Could We Look At?

● Surviving Failures

● Plagiarism Detection

● Malware Detection

● Identifying Information Leaks

● Automated Debugging

● Automated Test Generation

● Automated Regression Testing

● Program Guided Fuzz Testing

● Data Race Explanation

● Battery Use Profiling

● Mobile Privilege 
Protection/Reduction

● Reproducing Remote 
Bugs

● ...

● I have planned out a survey, but 
we can customize it for interest

● The last few weeks will be chosen 
by your interests already



Program 
Representations
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Program Representation

● Before we can reason about programs, we 
must have a vocabulary and a model to analyze
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Program Representation

● Before we can reason about programs, we 
must have a vocabulary and a model to analyze

● Difficult models:
– Compiled binaries

● Difficult to even separate code from data in general

– Source code
● Very language specific

● Need something better
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Program Representation

Core Representations for Analysis:

1) Abstract Syntax Trees

2) Control Flow Graphs

3) Program Dependence Graphs

4) Call Graphs

5) Points-to Graphs
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1) Abstract Syntax Trees

● Lifts the source into a canonical semantic form
– Internal nodes are operators, statements, etc.

– Leaves are values, variables, operands

for i in range(5,10):
    a[i] = i * 5

for

i range =

5 10 [] *

a i i 5



44

2) Control Flow Graphs

● Express the possible decisions and possible 
paths through a program

cond = input()
if cond:
  a = foo()
else:
  a = bar()
print(a)

cond = …
if cond:

a = foo() a = bar()

print(a)
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2) Control Flow Graphs

● Express the possible decisions and possible 
paths through a program
– Basic Blocks (Nodes) are straight line code

cond = input()
if cond:
  a = foo()
else:
  a = bar()
print(a)

cond = …
if cond:

a = foo() a = bar()

print(a)
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2) Control Flow Graphs

● Express the possible decisions and possible 
paths through a program
– Basic Blocks (Nodes) are straight line code
– Edges show how decisions can lead to different 

basic blocks

cond = input()
if cond:
  a = foo()
else:
  a = bar()
print(a)

cond = …
if cond:

a = foo() a = bar()

print(a)
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2) Control Flow Graphs

● Express the possible decisions and possible 
paths through a program
– Basic Blocks (Nodes) are straight line code
– Edges show how decisions can lead to different 

basic blocks
– Paths through the graph are potential paths through 

the program
cond = input()
if cond:
  a = foo()
else:
  a = bar()
print(a)

cond = …
if cond:

a = foo() a = bar()

print(a)
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2) Control Flow Graphs (CFGs)

● Language specific features are often abstracted 
away

sum = 0
i = 1
while 1 < N:
  i = i + 1
  sum = sum + i
print(sum)

sum = 0
i = 1

if i < N

i = i + 1
sum = sum + i

print(sum)

The 'while' is gone
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2) Control Flow Graphs (CFGs)

● Language specific features are often abstracted 
away

sum = 0
i = 1
while 1 < N:
  i = i + 1
  sum = sum + i
print(sum)

sum = 0
i = 1

if i < N

i = i + 1
sum = sum + i

print(sum)

Why is the 'if' in a different block?
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3)Program Dependence Graph (PDG)

● Instruction X depends on Y if Y can influence X
– Nodes are instructions

– An edge Y→X shows that Y influences X



51

3)Program Dependence Graph (PDG)

● Instruction X depends on Y if Y can influence X
– Nodes are instructions

– An edge Y→X shows that Y influences X

● 2 main types of influence:
– Data dependence

– Control dependence
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Data Dependence

X data depends on Y if
● There exists a path from Y to X in the CFG
● A variable/value definition at Y is used at X

1)x = …
2)y = …

…

3)x = …
4)… = x

x = …
y = …

… = y + x

?
?

?
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Control Dependence

Preliminary: X dominates Y if
● every path from the entry node to Y passes X

– strict, normal, & immediate dominance
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Control Dependence

Preliminary: X dominates Y if
● every path from the entry node to Y passes X

– strict, normal, & immediate dominance

1)sum = 0
2)i = 1
3)while 1 < N:
4)  i = i + 1
5)  sum = sum + i
6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
DOM(6)={1,2,3,6}   IDOM(6)=3
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Control Dependence

Preliminary: X dominates Y if
● every path from the entry node to Y passes X

– strict, normal, & immediate dominance

1)sum = 0
2)i = 1
3)while 1 < N:
4)  i = i + 1
5)  sum = sum + i
6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
DOM(6)={1,2,3,6}   IDOM(6)=3

What does this mean intuitively?
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Control Dependence

Preliminary: X post dominates Y if
● every path from the Y to exit passes X

– strict, normal, & immediate dominance

1)sum = 0
2)i = 1
3)while 1 < N:
4)  i = i + 1
5)  sum = sum + i
6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
PDOM(5)={3,5,6}   IPDOM(5)=3
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Control Dependence (Finally)

Y is control dependent on X iff
● Definition 1:

X directly decides whether Y executes
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Control Dependence (Finally)

Y is control dependent on X iff
● Definition 1:

● Definition 2:

X directly decides whether Y executes

● There exists a path from X to Y s.t. Y post 
dominates every node between X and Y.

● Y does not strictly post dominate X

X

…

Y
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Control Dependence
● There exists a path from X to Y s.t. Y post 

dominates every node between X and Y.

● Y does not strictly post dominate X

1)sum = 0
2)i = 1
3)while 1 < N:
4)  i = i + 1
5)  sum = sum + i
6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)What is CD(5)? CD(3)
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Control Dependence
● There exists a path from X to Y s.t. Y post 

dominates every node between X and Y.

● Y does not strictly post dominate X

1)sum = 0
2)i = 1
3)while 1 < N:
4)  i = i + 1
5)  if 0 == i%2:
6)    continue
7)  sum = sum + i
8)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)if 0 ..

6)print(sum)

7)sum = sum + i

What is CD(7)?
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Control Dependence
● There exists a path from X to Y s.t. Y post 

dominates every node between X and Y.

● Y does not strictly post dominate X

1)if X or Y:
2)  print(X)
3)print(Y)

What is CD(2)?
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Control Dependence
● There exists a path from X to Y s.t. Y post 

dominates every node between X and Y.

● Y does not strictly post dominate X

1)if X or Y:
2)  print(X)
3)print(Y)

1A)if X:

1B)if Y: 2)print(X)

3)print(Y)What is CD(2)?
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3)Program Dependence Graph(PDG)

The PDG is the combination of
● The control dependence graph
● The data dependence graph
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3)Program Dependence Graph(PDG)

The PDG is the combination of
● The control dependence graph
● The data dependence graph

Recall: Edges identify potential influence
● Debugging: What may have caused a bug?

● Security: Can sensitive information leak?

● Testing: How can I reach a statement?

● ...
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4) Call Graph (Multigraph)

● Captures the composition of a program
– Nodes are functions

– Edges show possible calls foo()

bar() baz()

quux()bam()

How should we handle 
function pointers?



66

5) Points-to Graphs

Aliasing:
● Multiple variables may denote the same 

memory location

Multiple Targets:
● One variable may potentially denote several 

different targets in memory.
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5) Points-to Graphs

Aliasing:
● Multiple variables may denote the same 

memory location

Multiple Targets:
● One variable may potentially denote several 

different targets in memory.

x.lock()
…
y.unlock()

x = password
…
broadcast(y)
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5) Points-to Graphs

● The relation (p,x) where p MAY/MUST point to x
– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5)   q = p
6) r.f = t

r
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5) Points-to Graphs

● The relation (p,x) where p MAY/MUST point to x
– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5)   q = p
6) r.f = t

r

p f
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5) Points-to Graphs

● The relation (p,x) where p MAY/MUST point to x
– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5)   q = p
6) r.f = t

r

p f

t
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5) Points-to Graphs

● The relation (p,x) where p MAY/MUST point to x
– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5)   q = p
6) r.f = t

r

p f

tq



72

5) Points-to Graphs

● The relation (p,x) where p MAY/MUST point to x
– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5)   q = p
6) r.f = t

r

p f

tq

f
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5) Points-to Graphs

● The relation (p,x) where p MAY/MUST point to x
– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5)   q = p
6) r.f = t

r

p f

tq

f

p.f.f MUST ALIAS t
    q MAY ALIAS p
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Execution Representations

● Program Representations are static
– All possible program behaviors at once

– Usually projected onto the CFG

● Execution Representations are dynamic
– Only the behavior of a single real execution

– Multiple instances of an instruction occur multiple 
times
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Control Flow Trace

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N
4)i = i + 1
5)sum = sum + i

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

6)print(sum)11 21 31 41 51 32 42 52 33 61 

11 31 41 32 42 33 61 
TTF

All Equivalent
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Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N
4)i = i + 1
5)sum = sum + i
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Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

3)if i < N

4)i = i + 1
5)sum = sum + i
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Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

3)if i < N

3)if i < N

6)print(sum)

4)i = i + 1
5)sum = sum + i

4)i = i + 1
5)sum = sum + i
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Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

3)if i < N

3)if i < N

6)print(sum)

4)i = i + 1
5)sum = sum + i

Notably a bit difficult for a human to wade through.

4)i = i + 1
5)sum = sum + i
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Program Representations

Given these models, we can start to discuss 
interesting transformations and analyses on real 
programs.

Such as...



Slicing
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Program Slicing

● The slice of a value v at a statement s is:
– the set of statements involved in computing v's 

value at s. [Weiser 82]
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Program Slicing

● The slice of a value v at a statement s is:
– the set of statements involved in computing v's 

value at s. [Weiser 82]

1)sum = 0
2)i = 1
3)while 1 < N:
4)  i = i + 1
5)  sum = sum + i
6)print(sum)
7)print(i)
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Program Slicing

● The slice of a value v at a statement s is:
– the set of statements involved in computing v's 

value at s. [Weiser 82]

1)sum = 0
2)i = 1
3)while 1 < N:
4)  i = i + 1
5)  sum = sum + i
6)print(sum)
7)print(i)
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Program Slicing

● The slice of a value v at a statement s is:
– the set of statements involved in computing v's 

value at s. [Weiser 82]

● The statements that may influence v...
– Data dependence
– Control dependence
– Compute using the PDG!
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Program Slicing Uses 

● Debugging
● Testing
● Reverse Engineering
● Optimization
● Design Profiling
● Malware analysis
● ...
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How to Slice?

● Transitive closure of edges in the PDG
– Start from v and just follow edges backward 
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How to Slice?

● Transitive closure of edges in the PDG
– Start from v and just follow edges backward 

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)
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How to Slice?

● Transitive closure of edges in the PDG
– Start from v and just follow edges backward 

3)if i < N

4)i = i + 1
5)sum = sum + i

1)sum = 0
2)i = 1

6)print(sum)
7)print(i)
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How to Slice?

● Transitive closure of edges in the PDG
– Start from v and just follow edges backward 

3)if i < N

4)i = i + 1
5)sum = sum + i

1)sum = 0
2)i = 1

6)print(sum)
7)print(i)
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How to Slice?

● Transitive closure of edges in the PDG
– Start from v and just follow edges backward 

3)if i < N

4)i = i + 1
5)sum = sum + i

1)sum = 0
2)i = 1

6)print(sum)
7)print(i)



92

How to Slice?

● Transitive closure of edges in the PDG
– Start from v and just follow edges backward 

3)if i < N

4)i = i + 1
5)sum = sum + i

1)sum = 0
2)i = 1

6)print(sum)
7)print(i)
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How to Slice?

● Transitive closure of edges in the PDG
– Start from v and just follow edges backward 

3)if i < N

4)i = i + 1
5)sum = sum + i

1)sum = 0
2)i = 1

6)print(sum)
7)print(i)
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Very Configurable

● Static vs. Dynamic (PDG vs. DDG)
● Backward vs. Forward
● Executable vs. Nonexecutable

What do forward and backward mean?

Why might a slice not be executable?
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Strengths of Static Slicing

● Considers all possible executions
– Necessary for conservative analyses

– (“Might I leak secret information?”)

● Fast to compute
● Space efficient
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Issues with Static Slicing

● Multiple program paths
a = foo() a = bar()

print(a)
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Issues with Static Slicing

● Multiple program paths

● Pointers – points-to graphs are imprecise

a = foo() a = bar()

print(a)

print(p3.a)

p1.a = … p2.a = …
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Issues with Static Slicing

● Multiple program paths

● Pointers – points-to graphs are imprecise

● Function pointers – must consider all possible 
call targets

a = foo() a = bar()

print(a)

print(p3.a)

p1.a = … p2.a = …
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Strengths of Dynamic Slicing

● Precisely considers a single execution (DDG)
– “Did I ...”

● No imprecision from aliasing or multiple paths
– Why?

● Cover fewer static program statements
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Issues with Dynamic Slicing

● Capturing a trace and computing a DDG is 
expensive
– (GB sized trace files)

● Slow to compute
– Churn a great deal of memory

● Very many statement instances and dynamic 
dependences to examine

● Misses alternative histories
– What would have happened if … ?
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Coping with Scale

Both types of slicing benefit from techniques that 
prune or focus slices on just what is interesting
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Coping with Scale

Both types of slicing benefit from techniques that 
prune or focus slices on just what is interesting
● Thin Slicing- Focus on propagating v, ignoring data 

structures [PLDI07]

● Chopping- Combine forward & backward info [ASE05]

● Confidence Analysis- Instructions used to compute 
correct values less likely to be buggy [PLDI06]

● Guided Browsers- Zoom in on demand [ICSE06]

● Much more...



Static Analysis
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Static Analysis

Static analyses consider all possible behaviors of 
a program without running it.
● Look for a property of interest

– Do I dereference NULL pointers?
– Do I leak memory?
– Do I violate a protocol specification?
– Is this file open?
– Does my program terminate?
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Static Analysis

Static analyses consider all possible behaviors of 
a program without running it.
● Look for a property of interest

– Do I dereference NULL pointers?
– Do I leak memory?
– Do I violate a protocol specification?
– Is this file open?
– Does my program terminate?

But wait? Isn't that impossible?
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Static Analysis

Static analyses consider all possible behaviors of 
a program without running it.
● Look for a property of interest

– Do I dereference NULL pointers?
– Do I leak memory?
– Do I violate a protocol specification?
– Is this file open?
– Does my program terminate?

But wait? Isn't that impossible?
● Only if answers must be perfect.
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Static Analysis

Overapproximate or underapproximate the 
problem, and try to solve this simpler version.
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Static Analysis

Overapproximate or underapproximate the 
problem, and try to solve this simpler version.
● Sound analyses

– Overapproximate
– Guaranteed to find violations of property
– May raise false alarms
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Static Analysis

Overapproximate or underapproximate the 
problem, and try to solve this simpler version.
● Sound analyses

– Overapproximate
– Guaranteed to find violations of property
– May raise false alarms

● Comlete analyses
– Underapproximate
– Reported violations are real
– May miss violations

Striking the right balance is key to a useful analysis
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Static Analysis

Modeled program behaviors

Overapproximate

Possible Program Behavior

Underapproximate

One Execution
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A Simple Example

Q: Is a particular number ever negative?
– Might be an offset into invalid memory!

Approximate the problem
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A Simple Example

Q: Is a particular number ever negative?
– Might be an offset into invalid memory!

Approximate the problem
● Concrete domain: integers
● Abstract domain: {-,0,+}  ⋃  {⊤,⊥}
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A Simple Example

Q: Is a particular number ever negative?
– Might be an offset into invalid memory!

Approximate the problem
● Concrete domain: integers
● Abstract domain: {-,0,+}  ⋃  {⊤,⊥}

concrete(x) = 5 → abstract(x) = +
concrete(y) = -3 → abstract(y) = -
concrete(z) = 0 → abstract(z) = 0

Combines sets of the concrete domain



114

A Simple Example

● Transfer Functions show how to evaluate this 
approximated program:
– + + + → +
– - + - → -
– 0 + 0 → 0
– 0 + - → -
– …
– + + - → ⊤(unknown)
– … / 0 → ⊥(undefined)
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A Simple Example

● Transfer Functions show how to evaluate this 
approximated program:
– + + + → +
– - + - → -
– 0 + 0 → 0
– 0 + - → -
– …
– + + - → ⊤(unknown)
– … / 0 → ⊥(undefined)

● Can be subtle.
– The above is not sound or complete. Why?
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A Simple Example

● Transfer Functions show how to evaluate this 
approximated program:
– + + + → +
– - + - → -
– 0 + 0 → 0
– 0 + - → -
– …
– + + - → ⊤(unknown)
– … / 0 → ⊥(undefined)

● Can be subtle.
– The above is not sound or complete. Why?

Consider a divide by 0 analysis.
What are:
        True Positives
        False Positives
        True Negatives
        False Negatives
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Data Flow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → 0
i → +
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Data Flow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → 0
i → +

sum → 0
i → +
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Data Flow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +
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Data Flow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

sum → +
i → +
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Data Flow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → 0
i → +

sum → +
i → +

sum → 0
i → +

sum → +
i → +
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Data Flow Analysis

● Now model the abstract program state and 
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → 0
i → +

sum → +
i → +

sum → +
i → +

sum → +
i → +
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Data Flow Analysis

● Now model the abstract program state and 
propagate through the CFG.
– Continue until we reach a fixed point

– (No more changes)

– Proper ordering can improve the efficiency.
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Data Flow Analysis

● Now model the abstract program state and 
propagate through the CFG.
– Continue until we reach a fixed point

– (No more changes)

– Proper ordering can improve the efficiency.

Will it always terminate?
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Data Flow Analysis

● Guarantee termination by carefully choosing
– The abstract domain

– The transfer function
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Data Flow Analysis

● Guarantee termination by carefully choosing
– The abstract domain

– The transfer function

● For basic analyses, use a monotone framework
– {-,0,+}  ⋃  {⊤,⊥}

– They define a partial order

– Abstract state can only
move up lattice

⊤

⊥

0
- +
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Data Flow Analysis

● Guarantee termination by carefully choosing
– The abstract domain

– The transfer function

● For basic analyses, use a monotone framework
– {-,0,+}  ⋃  {⊤,⊥}

– They define a partial order

– Abstract state can only
move up lattice

⊤

⊥

0
- +

Why is this enough?
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Data Flow Analysis

● Note: need to model program state at each 
statement

● Proper ordering & a work list algorithm 
improves the efficiency
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Static Analysis

● We've already seen a few static analyses:
– Call graph construction

– Points-to graph construction (What are MAY/MUST?)

– Static slicing
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Static Analysis

● We've already seen a few static analyses:
– Call graph construction

– Points-to graph construction (What are MAY/MUST?)

– Static slicing

● The choices for approximation are why these 
analyses are imprecise.
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Flow Insensitive Analysis

● Saw flow sensitive analysis
– Modeling state at each statement is expensive

– Scales to functions and small components

– Usually not beyond 1000s of lines
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Flow Insensitive Analysis

● Saw flow sensitive analysis
– Modeling state at each statement is expensive

– Scales to functions and small components

– Usually not beyond 1000s of lines

● Flow insensitive analyses aggregate into a 
global state
– Better scalability

– Less precision

– “Does this function modify global variable X?”
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Context Sensitive Analyses

● Program behavior may be dependent on the 
call stack / calling context.
– “If bar() is called by foo(), then it is exception free.”

– Can enable more precise interprocedural analyses
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Static Analysis

● We'll cover this further as necessary during the 
semester



Project 1 & LLVM



Next Week:
Dynamic Analysis,

Profiling,
Testing,

Concurrency
Security
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