
Program Analysis & Reliability

CMPT 880
Special Topics:

Nick Sumner - Spring 2014

Much adapted from Xiangyu Zhang, Antony Hosking, Sorin Lerner,
Jonathan Aldrich, Sam Blackshear

2

Today

● Administrivia
● Dive right in!

– Overview

– Program Representations

– Slicing

– Basic Static Analysis

– LLVM Basics Time permitting

3

Course Website

● www.cs.sfu.ca/~wsumner/teaching/880-13/
– Schedule

– Policies

– Assignments

– Paper Suggestions

http://www.cs.sfu.ca/~wsumner/teaching/880-13/

4

Why are you here?

● Programs are big, complex, and difficult to
reason about.

Design

Implement

Test & Debug

Maintain

5

Why are you here?

● Programs are big, complex, and difficult to
reason about.

Design

Implement

Test & Debug

Maintain

Are there more efficient designs?

6

Why are you here?

● Programs are big, complex, and difficult to
reason about.

Design

Implement

Test & Debug

Maintain

What is the cause of a bug?

Are there more efficient designs?

7

Why are you here?

● Programs are big, complex, and difficult to
reason about.

Design

Implement

Test & Debug

Maintain

What is the cause of a bug?

Are there more efficient designs?

How do I find new bugs?

8

Why are you here?

● Programs are big, complex, and difficult to
reason about.

Design

Implement

Test & Debug

Maintain

What is the cause of a bug?

Are there more efficient designs?

How do I find new bugs?

How do I find security vulnerabilities?
Can I protect against them?

9

Why are you here?

● Programs are big, complex, and difficult to
reason about.
– Billions in lost profits and savings

– Human casualties

– Very tired grad students

10

Why are you here?

● Programs are big, complex, and difficult to
reason about.
– Billions in lost profits and savings

– Human casualties

– Very tired grad students

People are bad at tedious, subtle tasks,
but computers are great at them!

11

Goal

● Learn how difficult tasks in development can be
pushed onto computers.

12

Goal

● Learn how difficult tasks in development can be
pushed onto computers.
– Survey of program analysis techniques & papers

13

Goal

● Learn how difficult tasks in development can be
pushed onto computers.
– Survey of program analysis techniques & papers

● Profiling

(Speed, Potential Concurrency, Memory, ...)

14

Goal

● Learn how difficult tasks in development can be
pushed onto computers.
– Survey of program analysis techniques & papers

● Profiling
● Testing

More effective tests. Bridge testing & verification

15

Goal

● Learn how difficult tasks in development can be
pushed onto computers.
– Survey of program analysis techniques & papers

● Profiling
● Testing
● Debugging

Explaining or locating the causes of bugs

16

Goal

● Learn how difficult tasks in development can be
pushed onto computers.
– Survey of program analysis techniques & papers

● Profiling
● Testing
● Debugging
● Concurrency

How to explain race conditions?

Atomicity violations?

How to find 'Heisenbugs'?

17

Goal

● Learn how difficult tasks in development can be
pushed onto computers.
– Survey of program analysis techniques & papers

● Profiling
● Testing
● Debugging
● Concurrency
● Security

How to find vulnerabilities before attackers.
(...or as attackers)

18

Structure

● First few weeks (2-3) are review & background
– I present.

– You think about papers you'd like to present

19

Structure

● First few weeks (2-3) are review & background
– I present.

– You think about papers you'd like to present

● Reading foundational & new papers
– 2 student presentations & paper discussions per

week

– Brief critique on weeks you don't present

20

Structure

● First few weeks (2-3) are review & background
– I present.

– You think about papers you'd like to present

● Reading foundational & new papers
– 2 student presentations & paper discussions per

week

– Brief critique on weeks you don't present

● 2 small projects to introduce LLVM
● Course projects presented at end.

21

Presentations

● Guidelines on website
● 2 Goals

– Help reinforce the material for the class

– Lead an interesting discussion to examine the trade
offs of each technique. (I'll be helping.)

22

Presentations

● Guidelines on website
● 2 Goals

– Help reinforce the material for the class

– Lead an interesting discussion to examine the trade
offs of each technique. (I'll be helping.)

● Show how the technique behaves in the best
case

● Show or lead discussion on where it might
behave poorly

23

Critiques

● Guidelines on website
● 1-2 page response to 1 paper each week that

you do not present.
● Primarily meant to prepare you for the

discussion on the paper that week.

24

Term Projects

● Groups of 1 or 2.
● 1 page proposals due March 3.
● Find something that interests (or irritates) you

and go after it!
– Maybe look at how these techniques can help your

existing research

25

What Could We Look At?

● Surviving Failures

26

What Could We Look At?

● Surviving Failures

● Plagiarism Detection

27

What Could We Look At?

● Surviving Failures

● Plagiarism Detection

● Malware Detection

28

What Could We Look At?

● Surviving Failures

● Plagiarism Detection

● Malware Detection

● Identifying Information Leaks

29

What Could We Look At?

● Surviving Failures

● Plagiarism Detection

● Malware Detection

● Identifying Information Leaks

● Automated Debugging

30

What Could We Look At?

● Surviving Failures

● Plagiarism Detection

● Malware Detection

● Identifying Information Leaks

● Automated Debugging

● Automated Test Generation

31

What Could We Look At?

● Surviving Failures

● Plagiarism Detection

● Malware Detection

● Identifying Information Leaks

● Automated Debugging

● Automated Test Generation

● Automated Regression Testing

32

What Could We Look At?

● Surviving Failures

● Plagiarism Detection

● Malware Detection

● Identifying Information Leaks

● Automated Debugging

● Automated Test Generation

● Automated Regression Testing

● Program Guided Fuzz Testing

33

What Could We Look At?

● Surviving Failures

● Plagiarism Detection

● Malware Detection

● Identifying Information Leaks

● Automated Debugging

● Automated Test Generation

● Automated Regression Testing

● Program Guided Fuzz Testing

● Data Race Explanation

34

What Could We Look At?

● Surviving Failures

● Plagiarism Detection

● Malware Detection

● Identifying Information Leaks

● Automated Debugging

● Automated Test Generation

● Automated Regression Testing

● Program Guided Fuzz Testing

● Data Race Explanation

● Battery Use Profiling

35

What Could We Look At?

● Surviving Failures

● Plagiarism Detection

● Malware Detection

● Identifying Information Leaks

● Automated Debugging

● Automated Test Generation

● Automated Regression Testing

● Program Guided Fuzz Testing

● Data Race Explanation

● Battery Use Profiling

● Mobile Privilege
Protection/Reduction

36

What Could We Look At?

● Surviving Failures

● Plagiarism Detection

● Malware Detection

● Identifying Information Leaks

● Automated Debugging

● Automated Test Generation

● Automated Regression Testing

● Program Guided Fuzz Testing

● Data Race Explanation

● Battery Use Profiling

● Mobile Privilege
Protection/Reduction

● Reproducing Remote
Bugs

● ...

37

What Could We Look At?

● Surviving Failures

● Plagiarism Detection

● Malware Detection

● Identifying Information Leaks

● Automated Debugging

● Automated Test Generation

● Automated Regression Testing

● Program Guided Fuzz Testing

● Data Race Explanation

● Battery Use Profiling

● Mobile Privilege
Protection/Reduction

● Reproducing Remote
Bugs

● ...

● I have planned out a survey, but
we can customize it for interest

● The last few weeks will be chosen
by your interests already

Program
Representations

39

Program Representation

● Before we can reason about programs, we
must have a vocabulary and a model to analyze

40

Program Representation

● Before we can reason about programs, we
must have a vocabulary and a model to analyze

● Difficult models:
– Compiled binaries

● Difficult to even separate code from data in general

– Source code
● Very language specific

41

Program Representation

● Before we can reason about programs, we
must have a vocabulary and a model to analyze

● Difficult models:
– Compiled binaries

● Difficult to even separate code from data in general

– Source code
● Very language specific

● Need something better

42

Program Representation

Core Representations for Analysis:

1) Abstract Syntax Trees

2) Control Flow Graphs

3) Program Dependence Graphs

4) Call Graphs

5) Points-to Graphs

43

1) Abstract Syntax Trees

● Lifts the source into a canonical semantic form
– Internal nodes are operators, statements, etc.

– Leaves are values, variables, operands

for i in range(5,10):
 a[i] = i * 5

for

i range =

5 10 [] *

a i i 5

44

2) Control Flow Graphs

● Express the possible decisions and possible
paths through a program

cond = input()
if cond:
 a = foo()
else:
 a = bar()
print(a)

cond = …
if cond:

a = foo() a = bar()

print(a)

45

2) Control Flow Graphs

● Express the possible decisions and possible
paths through a program
– Basic Blocks (Nodes) are straight line code

cond = input()
if cond:
 a = foo()
else:
 a = bar()
print(a)

cond = …
if cond:

a = foo() a = bar()

print(a)

46

2) Control Flow Graphs

● Express the possible decisions and possible
paths through a program
– Basic Blocks (Nodes) are straight line code
– Edges show how decisions can lead to different

basic blocks

cond = input()
if cond:
 a = foo()
else:
 a = bar()
print(a)

cond = …
if cond:

a = foo() a = bar()

print(a)

47

2) Control Flow Graphs

● Express the possible decisions and possible
paths through a program
– Basic Blocks (Nodes) are straight line code
– Edges show how decisions can lead to different

basic blocks
– Paths through the graph are potential paths through

the program
cond = input()
if cond:
 a = foo()
else:
 a = bar()
print(a)

cond = …
if cond:

a = foo() a = bar()

print(a)

48

2) Control Flow Graphs (CFGs)

● Language specific features are often abstracted
away

sum = 0
i = 1
while 1 < N:
 i = i + 1
 sum = sum + i
print(sum)

sum = 0
i = 1

if i < N

i = i + 1
sum = sum + i

print(sum)

The 'while' is gone

49

2) Control Flow Graphs (CFGs)

● Language specific features are often abstracted
away

sum = 0
i = 1
while 1 < N:
 i = i + 1
 sum = sum + i
print(sum)

sum = 0
i = 1

if i < N

i = i + 1
sum = sum + i

print(sum)

Why is the 'if' in a different block?

50

3)Program Dependence Graph (PDG)

● Instruction X depends on Y if Y can influence X
– Nodes are instructions

– An edge Y→X shows that Y influences X

51

3)Program Dependence Graph (PDG)

● Instruction X depends on Y if Y can influence X
– Nodes are instructions

– An edge Y→X shows that Y influences X

● 2 main types of influence:
– Data dependence

– Control dependence

52

Data Dependence

X data depends on Y if
● There exists a path from Y to X in the CFG
● A variable/value definition at Y is used at X

1)x = …
2)y = …

…

3)x = …
4)… = x

x = …
y = …

… = y + x

?
?

?

53

Control Dependence

Preliminary: X dominates Y if
● every path from the entry node to Y passes X

– strict, normal, & immediate dominance

54

Control Dependence

Preliminary: X dominates Y if
● every path from the entry node to Y passes X

– strict, normal, & immediate dominance

1)sum = 0
2)i = 1
3)while 1 < N:
4) i = i + 1
5) sum = sum + i
6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
DOM(6)={1,2,3,6} IDOM(6)=3

55

Control Dependence

Preliminary: X dominates Y if
● every path from the entry node to Y passes X

– strict, normal, & immediate dominance

1)sum = 0
2)i = 1
3)while 1 < N:
4) i = i + 1
5) sum = sum + i
6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
DOM(6)={1,2,3,6} IDOM(6)=3

What does this mean intuitively?

56

Control Dependence

Preliminary: X post dominates Y if
● every path from the Y to exit passes X

– strict, normal, & immediate dominance

1)sum = 0
2)i = 1
3)while 1 < N:
4) i = i + 1
5) sum = sum + i
6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
PDOM(5)={3,5,6} IPDOM(5)=3

57

Control Dependence (Finally)

Y is control dependent on X iff
● Definition 1:

X directly decides whether Y executes

58

Control Dependence (Finally)

Y is control dependent on X iff
● Definition 1:

● Definition 2:

X directly decides whether Y executes

● There exists a path from X to Y s.t. Y post
dominates every node between X and Y.

● Y does not strictly post dominate X

X

…

Y

59

Control Dependence
● There exists a path from X to Y s.t. Y post

dominates every node between X and Y.

● Y does not strictly post dominate X

1)sum = 0
2)i = 1
3)while 1 < N:
4) i = i + 1
5) sum = sum + i
6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)What is CD(5)? CD(3)

60

Control Dependence
● There exists a path from X to Y s.t. Y post

dominates every node between X and Y.

● Y does not strictly post dominate X

1)sum = 0
2)i = 1
3)while 1 < N:
4) i = i + 1
5) if 0 == i%2:
6) continue
7) sum = sum + i
8)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)if 0 ..

6)print(sum)

7)sum = sum + i

What is CD(7)?

61

Control Dependence
● There exists a path from X to Y s.t. Y post

dominates every node between X and Y.

● Y does not strictly post dominate X

1)if X or Y:
2) print(X)
3)print(Y)

What is CD(2)?

62

Control Dependence
● There exists a path from X to Y s.t. Y post

dominates every node between X and Y.

● Y does not strictly post dominate X

1)if X or Y:
2) print(X)
3)print(Y)

1A)if X:

1B)if Y: 2)print(X)

3)print(Y)What is CD(2)?

63

3)Program Dependence Graph(PDG)

The PDG is the combination of
● The control dependence graph
● The data dependence graph

64

3)Program Dependence Graph(PDG)

The PDG is the combination of
● The control dependence graph
● The data dependence graph

Recall: Edges identify potential influence
● Debugging: What may have caused a bug?

● Security: Can sensitive information leak?

● Testing: How can I reach a statement?

● ...

65

4) Call Graph (Multigraph)

● Captures the composition of a program
– Nodes are functions

– Edges show possible calls foo()

bar() baz()

quux()bam()

How should we handle
function pointers?

66

5) Points-to Graphs

Aliasing:
● Multiple variables may denote the same

memory location

Multiple Targets:
● One variable may potentially denote several

different targets in memory.

67

5) Points-to Graphs

Aliasing:
● Multiple variables may denote the same

memory location

Multiple Targets:
● One variable may potentially denote several

different targets in memory.

x.lock()
…
y.unlock()

x = password
…
broadcast(y)

68

5) Points-to Graphs

● The relation (p,x) where p MAY/MUST point to x
– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5) q = p
6) r.f = t

r

69

5) Points-to Graphs

● The relation (p,x) where p MAY/MUST point to x
– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5) q = p
6) r.f = t

r

p f

70

5) Points-to Graphs

● The relation (p,x) where p MAY/MUST point to x
– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5) q = p
6) r.f = t

r

p f

t

71

5) Points-to Graphs

● The relation (p,x) where p MAY/MUST point to x
– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5) q = p
6) r.f = t

r

p f

tq

72

5) Points-to Graphs

● The relation (p,x) where p MAY/MUST point to x
– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5) q = p
6) r.f = t

r

p f

tq

f

73

5) Points-to Graphs

● The relation (p,x) where p MAY/MUST point to x
– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5) q = p
6) r.f = t

r

p f

tq

f

p.f.f MUST ALIAS t
 q MAY ALIAS p

74

Execution Representations

● Program Representations are static
– All possible program behaviors at once

– Usually projected onto the CFG

● Execution Representations are dynamic
– Only the behavior of a single real execution

– Multiple instances of an instruction occur multiple
times

75

Control Flow Trace

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N
4)i = i + 1
5)sum = sum + i

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

6)print(sum)11 21 31 41 51 32 42 52 33 61

11 31 41 32 42 33 61
TTF

All Equivalent

76

Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N
4)i = i + 1
5)sum = sum + i

77

Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

3)if i < N

4)i = i + 1
5)sum = sum + i

78

Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

3)if i < N

3)if i < N

6)print(sum)

4)i = i + 1
5)sum = sum + i

4)i = i + 1
5)sum = sum + i

79

Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

3)if i < N

3)if i < N

6)print(sum)

4)i = i + 1
5)sum = sum + i

Notably a bit difficult for a human to wade through.

4)i = i + 1
5)sum = sum + i

80

Program Representations

Given these models, we can start to discuss
interesting transformations and analyses on real
programs.

Such as...

Slicing

82

Program Slicing

● The slice of a value v at a statement s is:
– the set of statements involved in computing v's

value at s. [Weiser 82]

83

Program Slicing

● The slice of a value v at a statement s is:
– the set of statements involved in computing v's

value at s. [Weiser 82]

1)sum = 0
2)i = 1
3)while 1 < N:
4) i = i + 1
5) sum = sum + i
6)print(sum)
7)print(i)

84

Program Slicing

● The slice of a value v at a statement s is:
– the set of statements involved in computing v's

value at s. [Weiser 82]

1)sum = 0
2)i = 1
3)while 1 < N:
4) i = i + 1
5) sum = sum + i
6)print(sum)
7)print(i)

85

Program Slicing

● The slice of a value v at a statement s is:
– the set of statements involved in computing v's

value at s. [Weiser 82]

● The statements that may influence v...
– Data dependence
– Control dependence
– Compute using the PDG!

86

Program Slicing Uses

● Debugging
● Testing
● Reverse Engineering
● Optimization
● Design Profiling
● Malware analysis
● ...

87

How to Slice?

● Transitive closure of edges in the PDG
– Start from v and just follow edges backward

88

How to Slice?

● Transitive closure of edges in the PDG
– Start from v and just follow edges backward

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

89

How to Slice?

● Transitive closure of edges in the PDG
– Start from v and just follow edges backward

3)if i < N

4)i = i + 1
5)sum = sum + i

1)sum = 0
2)i = 1

6)print(sum)
7)print(i)

90

How to Slice?

● Transitive closure of edges in the PDG
– Start from v and just follow edges backward

3)if i < N

4)i = i + 1
5)sum = sum + i

1)sum = 0
2)i = 1

6)print(sum)
7)print(i)

91

How to Slice?

● Transitive closure of edges in the PDG
– Start from v and just follow edges backward

3)if i < N

4)i = i + 1
5)sum = sum + i

1)sum = 0
2)i = 1

6)print(sum)
7)print(i)

92

How to Slice?

● Transitive closure of edges in the PDG
– Start from v and just follow edges backward

3)if i < N

4)i = i + 1
5)sum = sum + i

1)sum = 0
2)i = 1

6)print(sum)
7)print(i)

93

How to Slice?

● Transitive closure of edges in the PDG
– Start from v and just follow edges backward

3)if i < N

4)i = i + 1
5)sum = sum + i

1)sum = 0
2)i = 1

6)print(sum)
7)print(i)

94

Very Configurable

● Static vs. Dynamic (PDG vs. DDG)
● Backward vs. Forward
● Executable vs. Nonexecutable

What do forward and backward mean?

Why might a slice not be executable?

95

Strengths of Static Slicing

● Considers all possible executions
– Necessary for conservative analyses

– (“Might I leak secret information?”)

● Fast to compute
● Space efficient

96

Issues with Static Slicing

● Multiple program paths
a = foo() a = bar()

print(a)

97

Issues with Static Slicing

● Multiple program paths

● Pointers – points-to graphs are imprecise

a = foo() a = bar()

print(a)

print(p3.a)

p1.a = … p2.a = …

98

Issues with Static Slicing

● Multiple program paths

● Pointers – points-to graphs are imprecise

● Function pointers – must consider all possible
call targets

a = foo() a = bar()

print(a)

print(p3.a)

p1.a = … p2.a = …

99

Strengths of Dynamic Slicing

● Precisely considers a single execution (DDG)
– “Did I ...”

● No imprecision from aliasing or multiple paths
– Why?

● Cover fewer static program statements

100

Issues with Dynamic Slicing

● Capturing a trace and computing a DDG is
expensive
– (GB sized trace files)

● Slow to compute
– Churn a great deal of memory

● Very many statement instances and dynamic
dependences to examine

● Misses alternative histories
– What would have happened if … ?

101

Coping with Scale

Both types of slicing benefit from techniques that
prune or focus slices on just what is interesting

102

Coping with Scale

Both types of slicing benefit from techniques that
prune or focus slices on just what is interesting
● Thin Slicing- Focus on propagating v, ignoring data

structures [PLDI07]

● Chopping- Combine forward & backward info [ASE05]

● Confidence Analysis- Instructions used to compute
correct values less likely to be buggy [PLDI06]

● Guided Browsers- Zoom in on demand [ICSE06]

● Much more...

Static Analysis

104

Static Analysis

Static analyses consider all possible behaviors of
a program without running it.
● Look for a property of interest

– Do I dereference NULL pointers?
– Do I leak memory?
– Do I violate a protocol specification?
– Is this file open?
– Does my program terminate?

105

Static Analysis

Static analyses consider all possible behaviors of
a program without running it.
● Look for a property of interest

– Do I dereference NULL pointers?
– Do I leak memory?
– Do I violate a protocol specification?
– Is this file open?
– Does my program terminate?

But wait? Isn't that impossible?

106

Static Analysis

Static analyses consider all possible behaviors of
a program without running it.
● Look for a property of interest

– Do I dereference NULL pointers?
– Do I leak memory?
– Do I violate a protocol specification?
– Is this file open?
– Does my program terminate?

But wait? Isn't that impossible?
● Only if answers must be perfect.

107

Static Analysis

Overapproximate or underapproximate the
problem, and try to solve this simpler version.

108

Static Analysis

Overapproximate or underapproximate the
problem, and try to solve this simpler version.
● Sound analyses

– Overapproximate
– Guaranteed to find violations of property
– May raise false alarms

109

Static Analysis

Overapproximate or underapproximate the
problem, and try to solve this simpler version.
● Sound analyses

– Overapproximate
– Guaranteed to find violations of property
– May raise false alarms

● Comlete analyses
– Underapproximate
– Reported violations are real
– May miss violations

Striking the right balance is key to a useful analysis

110

Static Analysis

Modeled program behaviors

Overapproximate

Possible Program Behavior

Underapproximate

One Execution

111

A Simple Example

Q: Is a particular number ever negative?
– Might be an offset into invalid memory!

Approximate the problem

112

A Simple Example

Q: Is a particular number ever negative?
– Might be an offset into invalid memory!

Approximate the problem
● Concrete domain: integers
● Abstract domain: {-,0,+} ⋃ {⊤,⊥}

113

A Simple Example

Q: Is a particular number ever negative?
– Might be an offset into invalid memory!

Approximate the problem
● Concrete domain: integers
● Abstract domain: {-,0,+} ⋃ {⊤,⊥}

concrete(x) = 5 → abstract(x) = +
concrete(y) = -3 → abstract(y) = -
concrete(z) = 0 → abstract(z) = 0

Combines sets of the concrete domain

114

A Simple Example

● Transfer Functions show how to evaluate this
approximated program:
– + + + → +
– - + - → -
– 0 + 0 → 0
– 0 + - → -
– …
– + + - → ⊤(unknown)
– … / 0 → ⊥(undefined)

115

A Simple Example

● Transfer Functions show how to evaluate this
approximated program:
– + + + → +
– - + - → -
– 0 + 0 → 0
– 0 + - → -
– …
– + + - → ⊤(unknown)
– … / 0 → ⊥(undefined)

● Can be subtle.
– The above is not sound or complete. Why?

116

A Simple Example

● Transfer Functions show how to evaluate this
approximated program:
– + + + → +
– - + - → -
– 0 + 0 → 0
– 0 + - → -
– …
– + + - → ⊤(unknown)
– … / 0 → ⊥(undefined)

● Can be subtle.
– The above is not sound or complete. Why?

Consider a divide by 0 analysis.
What are:
 True Positives
 False Positives
 True Negatives
 False Negatives

117

Data Flow Analysis

● Now model the abstract program state and
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → 0
i → +

118

Data Flow Analysis

● Now model the abstract program state and
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → 0
i → +

sum → 0
i → +

119

Data Flow Analysis

● Now model the abstract program state and
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

120

Data Flow Analysis

● Now model the abstract program state and
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → 0
i → +

sum → 0
i → +

sum → 0
i → +

sum → +
i → +

121

Data Flow Analysis

● Now model the abstract program state and
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → 0
i → +

sum → +
i → +

sum → 0
i → +

sum → +
i → +

122

Data Flow Analysis

● Now model the abstract program state and
propagate through the CFG.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
7)print(i)

sum → 0
i → +

sum → +
i → +

sum → +
i → +

sum → +
i → +

123

Data Flow Analysis

● Now model the abstract program state and
propagate through the CFG.
– Continue until we reach a fixed point

– (No more changes)

– Proper ordering can improve the efficiency.

124

Data Flow Analysis

● Now model the abstract program state and
propagate through the CFG.
– Continue until we reach a fixed point

– (No more changes)

– Proper ordering can improve the efficiency.

Will it always terminate?

125

Data Flow Analysis

● Guarantee termination by carefully choosing
– The abstract domain

– The transfer function

126

Data Flow Analysis

● Guarantee termination by carefully choosing
– The abstract domain

– The transfer function

● For basic analyses, use a monotone framework
– {-,0,+} ⋃ {⊤,⊥}

– They define a partial order

– Abstract state can only
move up lattice

⊤

⊥

0
- +

127

Data Flow Analysis

● Guarantee termination by carefully choosing
– The abstract domain

– The transfer function

● For basic analyses, use a monotone framework
– {-,0,+} ⋃ {⊤,⊥}

– They define a partial order

– Abstract state can only
move up lattice

⊤

⊥

0
- +

Why is this enough?

128

Data Flow Analysis

● Note: need to model program state at each
statement

● Proper ordering & a work list algorithm
improves the efficiency

129

Static Analysis

● We've already seen a few static analyses:
– Call graph construction

– Points-to graph construction (What are MAY/MUST?)

– Static slicing

130

Static Analysis

● We've already seen a few static analyses:
– Call graph construction

– Points-to graph construction (What are MAY/MUST?)

– Static slicing

● The choices for approximation are why these
analyses are imprecise.

131

Flow Insensitive Analysis

● Saw flow sensitive analysis
– Modeling state at each statement is expensive

– Scales to functions and small components

– Usually not beyond 1000s of lines

132

Flow Insensitive Analysis

● Saw flow sensitive analysis
– Modeling state at each statement is expensive

– Scales to functions and small components

– Usually not beyond 1000s of lines

● Flow insensitive analyses aggregate into a
global state
– Better scalability

– Less precision

– “Does this function modify global variable X?”

133

Context Sensitive Analyses

● Program behavior may be dependent on the
call stack / calling context.
– “If bar() is called by foo(), then it is exception free.”

– Can enable more precise interprocedural analyses

134

Static Analysis

● We'll cover this further as necessary during the
semester

Project 1 & LLVM

Next Week:
Dynamic Analysis,

Profiling,
Testing,

Concurrency
Security

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136

