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– Nick Sumner (wsumner@sfu.ca)
– Research Faculty

● Who is your TA?
– Shadab Romani

● What is the course website?
– http://www.cs.sfu.ca/~wsumner/teaching/745/

● Where can you discuss course issues?
– CourSys

https://coursys.sfu.ca/2021sp-cmpt-745-x1/discussion/

http://www.cs.sfu.ca/~wsumner/teaching/745/
https://coursys.sfu.ca/2021sp-cmpt-745-x1/discussion/
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construct, analyze, transform, synthesize, ...
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– How can we write code that is adaptable to changing requirements?
– How can you know that code is correct or discover its incorrectness?
– Can you defend against attackers?
– Can you discover what attackers have done?
– Can you automatically generate software?

– Spans techniques from novel logics to rigorous empirical assessment.
– Rich interaction between theory and practice matter.

I will expect you to 
     reason formally.
     reason practically.
     apply formalism to solve practical problems.
     recognize that practice may differ from formalism.
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Seek them elsewhere.
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● What we will (likely) cover
– Foundations of software design
– Performance & bottleneck analysis
– Testing
– Formal models of programs
– Symbolic execution and automated test generation
– Dynamic analysis
– Static analysis
– Parallelism & concurrency
– Software security
– Program synthesis

● https://www.cs.sfu.ca/~wsumner/teaching/745/19/schedule.html

There is still far too much!
We will focus on breadth over depth.

https://www.cs.sfu.ca/~wsumner/teaching/745/19/schedule.html
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– Will expect you to think critically & independently

● Exams
– Just the final
– Demonstrate competence & application of course material
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● Term Projects:
– An open ended project that demonstrates competence
– Address real world problems in software engineering
– Develop a new tool or technique to address the problem

– For undergrads, I have preplanned projects if you want them
– Grads should come up with a proposal of their own
– Discussing with me in advance is recommended
– Initial proposals due by Feb 24. Meetings w/me on 24th & 25th.

I want you to walk away with a project you are proud of.
It may lead to a paper.
It may to a business.
It may lead to a tool.
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Policies & Expectations
● Late Submissions

– None accepted in general (3 late days to spend throughout semester)

● Cheating
– Any instance results in a score of 0 for the entire assignment involved.
– Repeat offenders will be reported and recommended for immediate failure in 

the course.

● Expected Workload
– Strong should expect to spend 9-10 hours outside of class per week.
– If you are missing some skills, you should expect to spend more.
– This is not a required class.

If you are only here for credit, it is better to leave.

● Attendance
– You don’t have to attend, but all in class materials are your responsibility



Let’s get started
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