
Introduction

CMPT 479/745
Software Engineering: Theory and Practice

Nick Sumner
wsumner@sfu.ca

Introduction

CMPT 479/745
Software Engineering: Theory and Practice

Nick Sumner
wsumner@sfu.ca

Introduction

CMPT 479/745
Software Engineering: Theory and Practice

Nick Sumner
wsumner@sfu.ca

Introduction

● Who am I?
– Nick Sumner (wsumner@sfu.ca)
– Research Faculty (Software Engineering, Compilers, Program Analysis)

Introduction

● Who am I?
– Nick Sumner (wsumner@sfu.ca)
– Research Faculty

● Who is your TA?
– Shadab Romani

Introduction

● Who am I?
– Nick Sumner (wsumner@sfu.ca)
– Research Faculty

● Who is your TA?
– Shadab Romani

● What is the course website?
– http://www.cs.sfu.ca/~wsumner/teaching/745/

http://www.cs.sfu.ca/~wsumner/teaching/745/

Introduction

● Who am I?
– Nick Sumner (wsumner@sfu.ca)
– Research Faculty

● Who is your TA?
– Shadab Romani

● What is the course website?
– http://www.cs.sfu.ca/~wsumner/teaching/745/

● Where can you discuss course issues?
– CourSys

https://coursys.sfu.ca/2021sp-cmpt-745-x1/discussion/

http://www.cs.sfu.ca/~wsumner/teaching/745/
https://coursys.sfu.ca/2021sp-cmpt-745-x1/discussion/

What is this class?

● Software engineering (informally)
– Systematic approaches for managing risk while producing or providing

software.

What is this class?

● Software engineering (informally)
– Systematic approaches for managing risk while producing or providing

software.

– How can we write code that is adaptable to changing requirements?

What is this class?

● Software engineering (informally)
– Systematic approaches for managing risk while producing or providing

software.

– How can we write code that is adaptable to changing requirements?
– How can you know that code is correct or discover its incorrectness?

What is this class?

● Software engineering (informally)
– Systematic approaches for managing risk while producing or providing

software.

– How can we write code that is adaptable to changing requirements?
– How can you know that code is correct or discover its incorrectness?
– Can you defend against attackers?

What is this class?

● Software engineering (informally)
– Systematic approaches for managing risk while producing or providing

software.

– How can we write code that is adaptable to changing requirements?
– How can you know that code is correct or discover its incorrectness?
– Can you defend against attackers?
– Can you discover what attackers have done?

What is this class?

● Software engineering (informally)
– Systematic approaches for managing risk while producing or providing

software.

– How can we write code that is adaptable to changing requirements?
– How can you know that code is correct or discover its incorrectness?
– Can you defend against attackers?
– Can you discover what attackers have done?
– Can you automatically generate software?

What is this class?

● Software engineering (informally)
– Systematic approaches for managing risk while producing or providing

software.

– How can we write code that is adaptable to changing requirements?
– How can you know that code is correct or discover its incorrectness?
– Can you defend against attackers?
– Can you discover what attackers have done?
– Can you automatically generate software?

Programs are themselves data that you can
construct, analyze, transform, synthesize, ...

What is this class?

● Software engineering (informally)
– Systematic approaches for managing risk while producing or providing

software.

– How can we write code that is adaptable to changing requirements?
– How can you know that code is correct or discover its incorrectness?
– Can you defend against attackers?
– Can you discover what attackers have done?
– Can you automatically generate software?

– Spans techniques from novel logics to rigorous empirical assessment.
– Rich interaction between theory and practice matter.

What is this class?

● Software engineering (informally)
– Systematic approaches for managing risk while producing or providing

software.

– How can we write code that is adaptable to changing requirements?
– How can you know that code is correct or discover its incorrectness?
– Can you defend against attackers?
– Can you discover what attackers have done?
– Can you automatically generate software?

– Spans techniques from novel logics to rigorous empirical assessment.
– Rich interaction between theory and practice matter.

I will expect you to

What is this class?

● Software engineering (informally)
– Systematic approaches for managing risk while producing or providing

software.

– How can we write code that is adaptable to changing requirements?
– How can you know that code is correct or discover its incorrectness?
– Can you defend against attackers?
– Can you discover what attackers have done?
– Can you automatically generate software?

– Spans techniques from novel logics to rigorous empirical assessment.
– Rich interaction between theory and practice matter.

I will expect you to
 reason formally.

What is this class?

● Software engineering (informally)
– Systematic approaches for managing risk while producing or providing

software.

– How can we write code that is adaptable to changing requirements?
– How can you know that code is correct or discover its incorrectness?
– Can you defend against attackers?
– Can you discover what attackers have done?
– Can you automatically generate software?

– Spans techniques from novel logics to rigorous empirical assessment.
– Rich interaction between theory and practice matter.

I will expect you to
 reason formally.
 reason practically.

What is this class?

● Software engineering (informally)
– Systematic approaches for managing risk while producing or providing

software.

– How can we write code that is adaptable to changing requirements?
– How can you know that code is correct or discover its incorrectness?
– Can you defend against attackers?
– Can you discover what attackers have done?
– Can you automatically generate software?

– Spans techniques from novel logics to rigorous empirical assessment.
– Rich interaction between theory and practice matter.

I will expect you to
 reason formally.
 reason practically.
 apply formalism to solve practical problems.

What is this class?

● Software engineering (informally)
– Systematic approaches for managing risk while producing or providing

software.

– How can we write code that is adaptable to changing requirements?
– How can you know that code is correct or discover its incorrectness?
– Can you defend against attackers?
– Can you discover what attackers have done?
– Can you automatically generate software?

– Spans techniques from novel logics to rigorous empirical assessment.
– Rich interaction between theory and practice matter.

I will expect you to
 reason formally.
 reason practically.
 apply formalism to solve practical problems.
 recognize that practice may differ from formalism.

What is this class?

Software
Engineering

What is this class?

Software
Engineering

This Class

What is this class?

Software
Engineering

This Class
There is too much breadth.
There is too much depth.

What is this class?

● Important things we will not cover (nonexhaustive)

What is this class?

● Important things we will not cover (nonexhaustive)
– Social aspects of software engineering
– Project planning and management (Agile vs agile vs ...)
– Requirements management
– SLOs, SLA, and most SRE
– Monoliths vs Services vs Microservices
– Middleware management
– ...

What is this class?

● Important things we will not cover (nonexhaustive)
– Social aspects of software engineering
– Project planning and management (Agile vs agile vs ...)
– Requirements management
– SLOs, SLA, and most SRE
– Monoliths vs Services vs Microservices
– Middleware management
– ...

These are worthwhile topics.
Seek them elsewhere.

What is this class?

● What we will (likely) cover
– Foundations of software design
– Performance & bottleneck analysis
– Testing
– Formal models of programs
– Symbolic execution and automated test generation
– Dynamic analysis
– Static analysis
– Parallelism & concurrency
– Software security
– Program synthesis

What is this class?

● What we will (likely) cover
– Foundations of software design
– Performance & bottleneck analysis
– Testing
– Formal models of programs
– Symbolic execution and automated test generation
– Dynamic analysis
– Static analysis
– Parallelism & concurrency
– Software security
– Program synthesis

What is this class?

● What we will (likely) cover
– Foundations of software design
– Performance & bottleneck analysis
– Testing
– Formal models of programs
– Symbolic execution and automated test generation
– Dynamic analysis
– Static analysis
– Parallelism & concurrency
– Software security
– Program synthesis

What is this class?

● What we will (likely) cover
– Foundations of software design
– Performance & bottleneck analysis
– Testing
– Formal models of programs
– Symbolic execution and automated test generation
– Dynamic analysis
– Static analysis
– Parallelism & concurrency
– Software security
– Program synthesis

What is this class?

● What we will (likely) cover
– Foundations of software design
– Performance & bottleneck analysis
– Testing
– Formal models of programs
– Symbolic execution and automated test generation
– Dynamic analysis
– Static analysis
– Parallelism & concurrency
– Software security
– Program synthesis

What is this class?

● What we will (likely) cover
– Foundations of software design
– Performance & bottleneck analysis
– Testing
– Formal models of programs
– Symbolic execution and automated test generation
– Dynamic analysis
– Static analysis
– Parallelism & concurrency
– Software security
– Program synthesis

What is this class?

● What we will (likely) cover
– Foundations of software design
– Performance & bottleneck analysis
– Testing
– Formal models of programs
– Symbolic execution and automated test generation
– Dynamic analysis
– Static analysis
– Parallelism & concurrency
– Software security
– Program synthesis

● https://www.cs.sfu.ca/~wsumner/teaching/745/21/schedule.html

https://www.cs.sfu.ca/~wsumner/teaching/745/21/schedule.html

What is this class?

● What we will (likely) cover
– Foundations of software design
– Performance & bottleneck analysis
– Testing
– Formal models of programs
– Symbolic execution and automated test generation
– Dynamic analysis
– Static analysis
– Parallelism & concurrency
– Software security
– Program synthesis

● https://www.cs.sfu.ca/~wsumner/teaching/745/19/schedule.html

There is still far too much!
We will focus on breadth over depth.

https://www.cs.sfu.ca/~wsumner/teaching/745/19/schedule.html

What is this class?

● What we will (likely) cover

This Course

What is this class?

● What we will (likely) cover

CMPT 373
CMPT 473

My Seminar

This Course

How will the class be structured?

● Grading:
– Assignments (weekly): 50%
– Exams: 25%
– Term Project: 25%

How will the class be structured?

● Grading:
– Assignments (weekly): 50%
– Exams: 25%
– Term Project: 25%

● Assignments
– A short programming and/or written assignment each week
– Demonstrate understanding & application of in class material
– Will expect you to think critically & independently

How will the class be structured?

● Grading:
– Assignments (weekly): 50%
– Exams: 25%
– Term Project: 25%

● Assignments
– A short programming and/or written assignment each week
– Demonstrate understanding & application of in class material
– Will expect you to think critically & independently

● Exams
– Just the final
– Demonstrate competence & application of course material

How will the class be structured?

● Term Projects:
– An open ended project that demonstrates competence

How will the class be structured?

● Term Projects:
– An open ended project that demonstrates competence
– Address real world problems in software engineering

How will the class be structured?

● Term Projects:
– An open ended project that demonstrates competence
– Address real world problems in software engineering
– Develop a new tool or technique to address the problem

How will the class be structured?

● Term Projects:
– An open ended project that demonstrates competence
– Address real world problems in software engineering
– Develop a new tool or technique to address the problem

– For undergrads, I have preplanned projects if you want them
– Grads should come up with a proposal of their own

How will the class be structured?

● Term Projects:
– An open ended project that demonstrates competence
– Address real world problems in software engineering
– Develop a new tool or technique to address the problem

– For undergrads, I have preplanned projects if you want them
– Grads should come up with a proposal of their own
– Discussing with me in advance is recommended
– Initial proposals due by Feb 24. Meetings w/me on 24th & 25th.

How will the class be structured?

● Term Projects:
– An open ended project that demonstrates competence
– Address real world problems in software engineering
– Develop a new tool or technique to address the problem

– For undergrads, I have preplanned projects if you want them
– Grads should come up with a proposal of their own
– Discussing with me in advance is recommended
– Initial proposals due by Feb 24. Meetings w/me on 24th & 25th.

I want you to walk away with a project you are proud of.
It may lead to a paper.
It may to a business.
It may lead to a tool.

Policies & Expectations
● Late Submissions

– None accepted in general (3 late days to spend throughout semester)

Policies & Expectations
● Late Submissions

– None accepted in general (3 late days to spend throughout semester)

● Cheating
– Any instance results in a score of 0 for the entire assignment involved.
– Repeat offenders will be reported and recommended for immediate failure in

the course.

Policies & Expectations
● Late Submissions

– None accepted in general (3 late days to spend throughout semester)

● Cheating
– Any instance results in a score of 0 for the entire assignment involved.
– Repeat offenders will be reported and recommended for immediate failure in

the course.
It is better to get 0 credit than to cheat!

Policies & Expectations
● Late Submissions

– None accepted in general (3 late days to spend throughout semester)

● Cheating
– Any instance results in a score of 0 for the entire assignment involved.
– Repeat offenders will be reported and recommended for immediate failure in

the course.
– Per SFU policy, sharing your solution to an assignment is dishonesty.

Do not post solutions for assignments to github or elsewhere.

Policies & Expectations
● Late Submissions

– None accepted in general (3 late days to spend throughout semester)

● Cheating
– Any instance results in a score of 0 for the entire assignment involved.
– Repeat offenders will be reported and recommended for immediate failure in

the course.

● Expected Workload
– Strong should expect to spend 9-10 hours outside of class per week.
– If you are missing some skills, you should expect to spend more.
– This is not a required class.

If you are only here for credit, it is better to leave.

Policies & Expectations
● Late Submissions

– None accepted in general (3 late days to spend throughout semester)

● Cheating
– Any instance results in a score of 0 for the entire assignment involved.
– Repeat offenders will be reported and recommended for immediate failure in

the course.

● Expected Workload
– Strong should expect to spend 9-10 hours outside of class per week.
– If you are missing some skills, you should expect to spend more.
– This is not a required class.

If you are only here for credit, it is better to leave.

● Attendance
– You don’t have to attend, but all in class materials are your responsibility

Let’s get started

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

