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Dynamic Analysis

● Sometimes we want to study or adapt the behavior of executions of a 
program

– Did my program ever …?
– Why/how did … happen?
– Where am I spending time?
– Where might I parallelize?
– Tolerate errors
– Manage memory / resources.
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e.g. Reverse Engineering

Static CFG (from e.g. Apple Fairplay):

This is the result of a control flow flattening obfuscaton.
[http://tigress.cs.arizona.edu/transformPage/docs/flatten/]

http://tigress.cs.arizona.edu/transformPage/docs/flatten/


10

e.g. Reverse Engineering

Static CFG (from e.g. Apple Fairplay):

Dynamically Simplified CFG:

This is the result of a control flow flattening obfuscaton.
[http://tigress.cs.arizona.edu/transformPage/docs/flatten/]

http://tigress.cs.arizona.edu/transformPage/docs/flatten/
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How?

● Can record the execution
– Record to a trace
– Analyze post mortem / offline
– Scalability issues: need enough space to store it

● Can perform analysis online
– Instrument the program to collect useful facts
– Modified program invokes code to 'analyze' itself

● Can do both!
– Lightweight recording
– Instrument a replayed instance of the execution

Some analyses only make sense online.
Why?
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Knowing where we are spending time is useful:
● Goal: Which basic blocks execute most frequently?

Profiling is a common dynamic analysis!
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BB:0

BB:1 BB:2

BB:3

?
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● Big concern: How efficient is it?
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count[0] += 1
…

count[1] += 1
…
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Simple Idea: Basic Block Profiling

● Big concern: How efficient is it?
– The more overhead added, the less practical the tool

– Can we do better?

count[0] += 1
…

count[1] += 1
…

count[5] += 1
…

count[6] += 1
…

count[4] += 1
…

count[2] += 1
…

count[3] += 1
…

count[1] = count[4] = count[2] + count[3]
count[0] = count[6] = count[1] + count[5]
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Efficiency Tactics

● Abstraction
● Identify & avoid redundant information
● Sampling
● Compression / encoding
● Profile guided instrumentation
● Thread local analysis
● Inference
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How / When to Instrument

● Source / IR Instrumentation
– LLVM, CIL, Soot, Wala
– During (re)compilation
– Requires an analysis dedicated build

● Static Binary Rewriting
– Diablo, DynamoRIO, SecondWrite, 
– Applies to arbitrary binaries
– Imprecise IR info, but more complete binary behavior

● Dynamic Binary Instrumentation
– Valgrind, Pin, Qemu (& other Vms)
– Can adapt at runtime, but less info than IR

● Black Box Dynamic Analysis



41

Phases of Dynamic Analysis

In general, 2-3 phases occur:

1)  Instrumentation
– Add code to the program for data collection/analysis



42

Phases of Dynamic Analysis

In general, 2-3 phases occur:

1)  Instrumentation
– Add code to the program for data collection/analysis

2)  Execution
– Run the program an analyze its actual behavior



43

Phases of Dynamic Analysis

In general, 2-3 phases occur:

1)  Instrumentation
– Add code to the program for data collection/analysis

2)  Execution
– Run the program an analyze its actual behavior

3)  (Optional) Postmortem Analysis
– Perform any analysis that can be deferred after termination



44

Phases of Dynamic Analysis

In general, 2-3 phases occur:

1)  Instrumentation
– Add code to the program for data collection/analysis

2)  Execution
– Run the program an analyze its actual behavior

3)  (Optional) Postmortem Analysis
– Perform any analysis that can be deferred after termination

Very, very common mistake to mix 1 & 2.



45

Static Instrumentation

1)  Compile whole program to IR

foo.c
bar.c
baz.c prog.ll



46

Static Instrumentation

1)  Compile whole program to IR

2)  Instrument / add code directly to the IR

foo.c
bar.c
baz.c prog.ll prog’.ll



47

Static Instrumentation

1)  Compile whole program to IR

2)  Instrument / add code directly to the IR

3)  Generate new program that performs analysis

foo.c
bar.c
baz.c prog.ll prog’.ll



48

Static Instrumentation

1)  Compile whole program to IR

2)  Instrument / add code directly to the IR

3)  Generate new program that performs analysis

4)  Execute

foo.c
bar.c
baz.c prog.ll prog’.ll

Test Cases

Results
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Dynamic Binary Instrumentation (DBI)

1)  Compile program as usual

2)  Run program under analysis framework

(Valgrind, PIN, Qemu, etc)

valgrind --tool=memcheck ./myBuggyProgram
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Dynamic Binary Instrumentation (DBI)

1)  Compile program as usual

2)  Run program under analysis framework

(Valgrind, PIN, Qemu, etc)
3)  Instrument & execute in same command:

– Fetch & instrument each basic block individually
– Execute each basic block

valgrind --tool=memcheck ./myBuggyProgram



Example: Test Case Reduction
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Testing and Dynamic Analysis

● In some cases, just running a program with different inputs is enough
– Carefully selected inputs can target the analysis
– The result of running the program reveals coarse information about its 

behavior

● Intuitively, even just testing is a dynamic analysis
– It requires no transformation
– The result is just the success or failure of tests

● But even that is interesting to consider....
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● Failing inputs can be large and complex
a r h w l n y e u m g k o w h > ` p

MB? GB? What is relevant and essential to the bug?
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Bug reports are problematic

a r h w l n y e u m g k o w h > ` p

● Failing inputs can be large and complex

a b cBug 2

a b cBug 3

a b cBug 1

1) Are these reports the same bug?
2) Can we make it easier to reproduce?



60

Bug reports are problematic

a r h w l n y e u m g k o w h > ` p

● Failing inputs can be large and complex

a b cBug 2

a b cBug 3

a b cBug 1

a b cBug



61

Bug reports are problematic

a r h w l n y e u m g k o w h > ` p

● Failing inputs can be large and complex

a b cBug 2

a b cBug 3

a b cBug 1

a b cBug

1) Same? Yes!
2) Easier? Yes! And easier to understand!
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Bug reports are problematic

a r h w l n y e u m g k o w h > ` p

● Failing inputs can be large and complex

a b cBug 2

a b cBug 3

a b cBug 1

a b cBug

Test Case Reduction: finding smaller test cases that reproduce a failure
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print
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Classically – Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>
Intuition: trial and error
1) Start w/ a failing text configuration c
2) Try removing subsets (Δ) of input elements ({δ})
3) Failure still exists → new input is “better”
4) Repeat on the new input

When do we stop? / What is our goal?
● Global Minimum: c : ∀ |c'|<|c|, c'

Smallest subset of the original
input reproducing the failure

Completely impractical! Why?
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Classically – Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>
Intuition: trial and error
1) Start w/ a failing text configuration c
2) Try removing subsets (Δ) of input elements ({δ})
3) Failure still exists → new input is “better”
4) Repeat on the new input

When do we stop? / What is our goal?
● Global Minimum: c : ∀ |c'|<|c|, c'
● Local Minimum: c : ∀ c'⊂c, c'

No subset of the result can
reproduce the failure.

How does this differ from a global minimum?
Is it still problematic?
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Classically – Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>
Intuition: trial and error
1) Start w/ a failing text configuration c
2) Try removing subsets (Δ) of input elements ({δ})
3) Failure still exists → new input is “better”
4) Repeat on the new input

When do we stop? / What is our goal?
● Global Minimum: c : ∀ |c'|<|c|, c'
● Local Minimum: c : ∀ c'⊂c, c'
● 1-Minimal: c: ∀ δ ∈ c, (c-{δ})
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Classically – Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>
Intuition: trial and error
1) Start w/ a failing text configuration c
2) Try removing subsets (Δ) of input elements ({δ})
3) Failure still exists → new input is “better”
4) Repeat on the new input
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● Global Minimum: c : ∀ |c'|<|c|, c'
● Local Minimum: c : ∀ c'⊂c, c'
● 1-Minimal: c: ∀ δ ∈ c, (c-{δ})

No one element can be removed
and still reproduce the failure
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Classically – Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>
Intuition: trial and error
1) Start w/ a failing text configuration c
2) Try removing subsets (Δ) of input elements ({δ})
3) Failure still exists → new input is “better”
4) Repeat on the new input

When do we stop? / What is our goal?
● Global Minimum: c : ∀ |c'|<|c|, c'
● Local Minimum: c : ∀ c'⊂c, c'
● 1-Minimal: c: ∀ δ ∈ c, (c-{δ})

No one element can be removed
and still reproduce the failure

This is the classic goal.
In practice, the formalism may not pay for itself
in terms of quality or efficiency! (Be pragmatic!)
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Classically – Delta Debugging
1 2 3 4 5 6 7 8

Does binary search work?
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Classically – Delta Debugging
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

So what should we do?

We refine the granularity
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Classically – Delta Debugging
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

And now check complements
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Classically – Delta Debugging
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
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1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
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What's clever about how we recurse?
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Classically – Delta Debugging
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Done?



97

Classically – Delta Debugging
ddmin(c) =  ddmin2(c, 2) Defined over

c - the input / configuration
n - the # of partitions
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Classically – Delta Debugging

1 2 3 4 5 6 7 8c = 

ddmin(c) =  ddmin2(c, 2)
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Classically – Delta Debugging

1 2 3 4 5 6 7 8c = 

Δ1 Δ2 Δ3 Δ4

ddmin(c) =  ddmin2(c, 2)

n = 4
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Classically – Delta Debugging

1 2 3 4 5 6 7 8c = 
n = 4

∇1

Δ1 Δ2 Δ3 Δ4

ddmin(c) =  ddmin2(c, 2)
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Classically – Delta Debugging

ddmin2(c,n)=

ddmin(c) =  ddmin2(c, 2)
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Classically – Delta Debugging

ddmin2(c,n)=

ddmin2(Δi, 2) If ... (a)

Δi = {3,4} (a) 1 2 3 4 5 6 7 8

ddmin(c) =  ddmin2(c, 2)

Try each partition
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Classically – Delta Debugging

ddmin2(c,n)=

1 2 3 4 5 6 7 8

If ... (a)
If ... (b)

Δi = {3,4} (a)
(b)

1 2 3 4 5 6 7 8

ddmin(c) =  ddmin2(c, 2)

Try each complement

ddmin2(Δi, 2)
ddmin2(∇i, max(n-1,2))
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ddmin2(Δi, 2)
ddmin2(∇i, max(n-1,2))

Classically – Delta Debugging

ddmin2(c,n)=

1 2 3 4 5 6 7 8

If ... (a)
If ... (b)

Δi = {3,4} (a)
(b)

1 2 3 4 5 6 7 8

ddmin(c) =  ddmin2(c, 2)
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Classically – Delta Debugging

ddmin2(c,n)=

1 2 3 4 5 6 7 8

If ... (a)
If ... (b)
If ... (c)

Δi = {3,4} (a)
(b)
(c)  n < |c|

1 2 3 4 5 6 7 8

ddmin(c) =  ddmin2(c, 2)

Refine the granularity

ddmin2(Δi, 2)
ddmin2(∇i, max(n-1,2))
ddmin2(c, min(|c|,2n))
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ddmin2(Δi, 2)
ddmin2(∇i, max(n-1,2))
ddmin2(c, min(|c|,2n))

Classically – Delta Debugging

ddmin2(c,n)=

1 2 3 4 5 6 7 8

If ... (a)
If ... (b)
If ... (c)

Δi = {3,4} (a)
(b)
(c)  n < |c|

1 2 3 4 5 6 7 8

ddmin(c) =  ddmin2(c, 2)
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Classically – Delta Debugging

ddmin2(c,n)=

ddmin2(Δi, 2)
ddmin2(∇i, max(n-1,2))
ddmin2(c, min(|c|,2n))
c

1 2 3 4 5 6 7 8

If ... (a)
If ... (b)
If ... (c)
otherwise

Δi = {3,4} (a)
(b)
(c)  n < |c|

1 2 3 4 5 6 7 8

ddmin(c) =  ddmin2(c, 2)

Finish
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Classically – Delta Debugging

● Worst Case: |c|2 + 3|c| tests
– All tests unresolved until maximum granularity
– Testing complement succeeds

● Best Case: # tests  ≤  2log2(|c|)
– Falling back to binary search!

● Minimality
– When will it only be locally minimal?
– When will it only be 1-minimal? 
– Does formal minimality even matter?
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Classically – Delta Debugging

● Observation:
In practice DD may revisit elements in order to guarantee minimality

ddmin2(∇i, max(n-1,2))
1 2 3 4 5 6 7 8
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Classically – Delta Debugging

● Observation:
In practice DD may revisit elements in order to guarantee minimality

1 2 3 4 5 6 7 8

1 2 5 6 7 8
...ddmin2(∇i, max(n-1,2))

1 2 3 4 5 6 7 8
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Classically – Delta Debugging

● Observation:
In practice DD may revisit elements in order to guarantee minimality

● If guaranteeing 1-minimality does not matter
the algorithm can drop to linear time!
– In practice this can be effective for what developers may care about
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Classically – Delta Debugging

● Observation:
In practice DD may revisit elements in order to guarantee minimality

● If guaranteeing 1-minimality does not matter
the algorithm can drop to linear time!
– In practice this can be effective for what developers may care about

1 2 3 4 5 6 7 8

1 2 5 6 7 8
...ddmin2(∇i, max(n-1,2))

1 2 3 4 5 6 7 8

Don’t get bogged down by formalism
when it doesn’t serve you!
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Test Case Reduction in Practice

● Most problems do not use DD directly for TCR.
– It provides inspiration, but frequently behaves poorly

● What are the possible causes of problems?

1 2 3 4
1 2 3 4
1 2 3 4

Monotonicity
matters

1 2 3 4
1 2 3 4

Determinism
matters
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Test Case Reduction in Practice

● Most problems do not use DD directly for TCR.
– It provides inspiration, but frequently behaves poorly

● What are the possible causes of problems?

1 2 3 4
1 2 3 4
1 2 3 4

Monotonicity
matters

1 2 3 4
1 2 3 4

Determinism
matters Structure

matters

LOOP

i

RANGE

ASSIGN

5 10

INDEX EXPR

a i i 5for in [ ] = *
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● Programs are highly structured, so TCR for compilers faces challenges
● What structures could we use to guide the process?

LOOP

i

RANGE

ASSIGN

5 10

INDEX EXPR

a i i 5for in [ ] = *
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Test Case Reduction for Compilers

● Programs are highly structured, so TCR for compilers faces challenges
● What structures could we use to guide the process?
● What challenges still remain?

LOOP

i

RANGE

ASSIGN

5 10

INDEX EXPR

a i i 5for in [ ] = *



125

Generalizing Further
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Generalizing Further

● What else could we think of as test case reduction?
– Failing traces of a program?
– “                     ” in a distributed system?
– “                     ” microservice application?
– Automatically generated test cases?

● The ability to treat the program as an oracle is also very powerful
– We can get new data by running the program
– This can be combined with reinforcement learning to accomplish hard tasks
– We saw this before when discussing test suites!



Example: Memory Safety Bugs
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Example: Finding memory safety bugs

● Memory safety bugs are one of the most common sources of
security vulnerabilities

● Effects may only be visible long after invalid behavior
– This complicates comprehension & debugging

● Two main types of issues:
– Spatial – Out of bounds stack/heap/global accesses
– Temporal – Use after free

● We would like to automatically identify & provide assistance
with high precision and low overhead
– Suitable for testing & sometimes maybe deployment!
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Example: Finding memory safety bugs

● Most common approach – track which regions of memory are valid
– During execution!
– Updated when new memory is allocated
– Checked when pointers are accessed
– With low overhead

● Common implementations
– Valgrind – DBI based
– AddressSanitizer – static instrumentation based

Note, the implementation style affects 
which bugs can be recognized!

Why?
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● Big Picture:

– Replace calls to malloc & free
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AddressSanitizer

● Need to track which memory is valid & check efficiently...
● Big Picture:

– Replace calls to malloc & free
– Poison memory: (create red zones)

1) around malloced chunks

ptr = malloc(sizeof(MyStruct));

ptr
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AddressSanitizer

● Need to track which memory is valid & check efficiently...
● Big Picture:

– Replace calls to malloc & free
– Poison memory: (create red zones)

1) around malloced chunks
2) when it is freed

free(ptr);

ptr
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AddressSanitizer

● Need to track which memory is valid & check efficiently...
● Big Picture:

– Replace calls to malloc & free
– Poison memory: (create red zones)

1) around malloced chunks
2) when it is freed
3) around buffers and local variables

void foo() {
  int buffer[5];
  ...
}

buffer[0]

buffer[6]
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AddressSanitizer

● Need to track which memory is valid & check efficiently...
● Big Picture:

– Replace calls to malloc & free
– Poison memory: (create red zones)

1) around malloced chunks
2) when it is freed
3) around buffers and local variables

– Access of poisoned memory causes an error
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AddressSanitizer

● Need to track which memory is valid & check efficiently...
● Big Picture:

– Replace calls to malloc & free
– Poison memory: (create red zones)

1) around malloced chunks
2) when it is freed
3) around buffers and local variables

– Access of poisoned memory causes an error

*address = ...;

instrumentation ?
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AddressSanitizer

● Need to track which memory is valid & check efficiently...
● Big Picture:

– Replace calls to malloc & free
– Poison memory: (create red zones)

1) around malloced chunks
2) when it is freed
3) around buffers and local variables

– Access of poisoned memory causes an error

*address = ...; If (IsPoisoned(address, size)) {
  ReportError(address, size, isWrite);
}
*address = ...

instrumentation
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● Big Picture:
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● The tricky part is tracking & efficiently checking redzones.
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● Big Picture:

– Replace calls to malloc & free
– Poison memory: (create red zones)

1) around malloced chunks
2) when it is freed
3) around buffers and local variables

– Access of poisoned memory causes an error

● The tricky part is tracking & efficiently checking redzones.
– Instrumenting every memory access is costly!
– We must track all memory ... inside that same memory!
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AddressSanitizer

● Need to track which memory is valid & check efficiently...
● Big Picture:

– Replace calls to malloc & free
– Poison memory: (create red zones)

1) around malloced chunks
2) when it is freed
3) around buffers and local variables

– Access of poisoned memory causes an error

● The tricky part is tracking & efficiently checking redzones.
– Instrumenting every memory access is costly!
– We must track all memory ... inside that same memory!

This kind of issue is common in dynamic analyses.
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AddressSanitizer – Shadow Memory

Application Memory

Need to know whether any byte of 
application memory is poisoned.
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● We maintain 2 views on memory
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AddressSanitizer – Shadow Memory

Application Memory Shadow Memory

● We maintain 2 views on memory

Shadow memory of the
shadow memory!
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AddressSanitizer – Shadow Memory

Application Memory Shadow Memory

● We maintain 2 views on memory
● Shadow Memory is pervasive in dynamic analysis

– Can be thought of as a map containing analysis data
– For every bit/byte/word/chunk/allocation/page, 

maintain information in a compact table

Where have you encountered this before?
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AddressSanitizer – Shadow Memory

Application Memory Shadow Memory

● We maintain 2 views on memory
● Shadow Memory is pervasive in dynamic analysis

– Can be thought of as a map containing analysis data
– For every bit/byte/word/chunk/allocation/page, 

maintain information in a compact table
– Common in runtime support, e.g. page tables
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AddressSanitizer – Shadow Memory

● Designing efficient analyses (& shadow memory) often requires a 
careful domain insight

Encoding & abstraction 
efficiency strategies
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● Designing efficient analyses (& shadow memory) often requires a 
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● NOTE: Heap allocated regions are N byte aligned (N usually 8)
– In an N byte region, only the first k may be addressable

k
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AddressSanitizer – Shadow Memory

● Designing efficient analyses (& shadow memory) often requires a 
careful domain insight

● NOTE: Heap allocated regions are N byte aligned (N usually 8)
– In an N byte region, only the first k may be addressable
– Every N bytes has only N+1 possible states
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AddressSanitizer – Shadow Memory

● Designing efficient analyses (& shadow memory) often requires a 
careful domain insight

● NOTE: Heap allocated regions are N byte aligned (N usually 8)
– In an N byte region, only the first k may be addressable
– Every N bytes has only N+1 possible states
– Map every N bytes to 1 shadow byte encoding state as a number

4

6
7
0

5

3

-1
1
2
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AddressSanitizer – Shadow Memory

● Designing efficient analyses (& shadow memory) often requires a 
careful domain insight

● NOTE: Heap allocated regions are N byte aligned (N usually 8)
– In an N byte region, only the first k may be addressable
– Every N bytes has only N+1 possible states
– Map every N bytes to 1 shadow byte encoding state as a number

All good = 0 All bad = -1 Partly good = # good

4

6
7
0

5

3

-1
1
2
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AddressSanitizer – Shadow Memory

● Designing efficient analyses (& shadow memory) often requires a 
careful domain insight

● NOTE: Heap allocated regions are N byte aligned (N usually 8)
– In an N byte region, only the first k may be addressable
– Every N bytes has only N+1 possible states
– Map every N bytes to 1 shadow byte encoding state as a number

● What does accessing shadow memory for an address look like? (N=8)
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AddressSanitizer – Shadow Memory

● Designing efficient analyses (& shadow memory) often requires a 
careful domain insight

● NOTE: Heap allocated regions are N byte aligned (N usually 8)
– In an N byte region, only the first k may be addressable
– Every N bytes has only N+1 possible states
– Map every N bytes to 1 shadow byte encoding state as a number
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– Preallocate a large table
– Shadow = (address >> 3) + Offset
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AddressSanitizer – Shadow Memory

● Designing efficient analyses (& shadow memory) often requires a 
careful domain insight

● NOTE: Heap allocated regions are N byte aligned (N usually 8)
– In an N byte region, only the first k may be addressable
– Every N bytes has only N+1 possible states
– Map every N bytes to 1 shadow byte encoding state as a number

● What does accessing shadow memory for an address look like? (N=8)
– Preallocate a large table
– Shadow = (address >> 3) + Offset
– With PIE, Shadow = (address >> 3)
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AddressSanitizer – Shadow Memory

● Designing efficient analyses (& shadow memory) often requires a 
careful domain insight

● NOTE: Heap allocated regions are N byte aligned (N usually 8)
– In an N byte region, only the first k may be addressable
– Every N bytes has only N+1 possible states
– Map every N bytes to 1 shadow byte encoding state as a number

● What does accessing shadow memory for an address look like? (N=8)
– Preallocate a large table
– Shadow = (address >> 3) + Offset
– With PIE, Shadow = (address >> 3)

if (*(address>>3)) {
  ReportError(...);
}
*address = ...
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AddressSanitizer – Shadow Memory

● Designing efficient analyses (& shadow memory) often requires a 
careful domain insight

● NOTE: Heap allocated regions are N byte aligned (N usually 8)
– In an N byte region, only the first k may be addressable
– Every N bytes has only N+1 possible states
– Map every N bytes to 1 shadow byte encoding state as a number

● What does accessing shadow memory for an address look like? (N=8)
– Preallocate a large table
– Shadow = (address >> 3) + Offset
– With PIE, Shadow = (address >> 3)

if (*(address>>3)) {
  ReportError(...);
}
*address = ...

Now you can also see the reason 
for the numerical encoding....
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AddressSanitizer – Shadow Memory

shadow = address >> 3
state = *shadow
if (state != 0 && (state < (address & 7) + size)) {
  ReportError(...);
}
*address = ...

● Handling accesses of size < N (N=8)
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AddressSanitizer – Shadow Memory

shadow = address >> 3
state = *shadow
if (state != 0 && (state < (address & 7) + size)) {
  ReportError(...);
}
*address = ...

● Handling accesses of size < N (N=8)

Careful construction of states can 
make runtime checks efficient
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AddressSanitizer - Evaluating

● In dynamic analyses, we care about both overheads & result quality
● Overheads

– Need to determine what resources are being consumed
– Memory –

Shadow memory capacity is cheap, but accessed shadows matter
– Running time –

Can effectively be free for I/O bound projects
Up to 25x overheads on some benchmarks

● Quality
– Precision & recall matter

Where will it miss bugs?
Where will it raise false alarms?
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AddressSanitizer - Evaluating

● False negatives
– Computed pointers that are accidentally in bounds
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● False negatives
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AddressSanitizer - Evaluating

● False negatives
– Computed pointers that are accidentally in bounds
– Unaligned accesses that are partially out of bounds
– Use after frees with significant churn



Example: Comparing Executions
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Why compare traces or executions?

● Understanding the differences between two executions
(& how some differences cause others)
can help explain program behavior

● Several tasks could be made simpler by trace comparison
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– Understanding automated repair – old vs new
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Why compare traces or executions?

● Understanding the differences between two executions
(& how some differences cause others)
can help explain program behavior

● Several tasks could be made simpler by trace comparison
– Debugging regressions – old vs new
– Validating patches – old vs new
– Understanding automated repair – old vs new
– Debugging with concurrency – buggy vs nonbuggy schedules
– Malware analysis – malicious vs nonmalicious run
– Reverse engineering – desired behavior vs undesirable
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How it might look

x was 5 instead of 3

So y was 2 instead of 7

So the TRUE branch executed
instead of the FALSE branch
So the update of z was skipped

So the incorrect value of z was printed

Correct Buggy What do we need?
● locations
● state
● flow
● causation

We can construct this backward
from a point of failure/difference
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● Traces can be viewed as sequences....
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def foo(int c):
  if c:
    while bar():
      ...

foo(...)
baz(...)
foo(...)

foo()

baz()

baz()

foo()

What is marked as different?



208

baz()

baz()

So why not just...

● Traces can be viewed as sequences....
– Why not just do LCS based sequence alignment?

def foo(int c):
  if c:
    while bar():
      ...

foo(...)
baz(...)
foo(...)

foo()

foo()

foo()

foo()

What is marked as different?

What is intuitively different?



209

baz()

baz()

So why not just...

● Traces can be viewed as sequences....
– Why not just do LCS based sequence alignment?

def foo(int c):
  if c:
    while bar():
      ...

foo(...)
baz(...)
foo(...)

foo()

foo()

foo()

foo()

What is marked as different?

What is intuitively different?



210

baz()

baz()

So why not just...

● Traces can be viewed as sequences....
– Why not just do LCS based sequence alignment?

def foo(int c):
  if c:
    while bar():
      ...

foo(...)
baz(...)
foo(...)

foo()

foo()

foo()

foo()

What is marked as different?

What is intuitively different?

Execution comparison must
account for what a program

means and does!
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The big picture

● Fundamentally, execution comparison needs to account for
– Structure
– Value
– Semantics

● We can attack these through
– Temporal alignment

● What parts of the trace correspond?
– Spatial alignment

● What variables & values correspond across traces?
– Slicing

● How do differences transitively flow through a program?
– Causality testing

● Which differences actually induce difference behavior?
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Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

i2

i1
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● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

foo()
Position along a path can be 
maintained via a counter

i2

i1
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Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

foo()
Position along a path can be 
maintained via a counter

Only need to increment along
1) back edges
2) function callsi2

i1

?



232

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

● Suppose that we know the programs are acyclic?

i2

i1

?



233

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

● Suppose that we know the programs are acyclic?

i2

i1

?



234

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

● Suppose that we know the programs are acyclic?
The position in the DAG 
relates the paths 

i2

i1

?
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● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

● Suppose that we know the programs are acyclic?
● Now consider the case where cycles can occur... [Sumner, ASE 2013]

How can we extend the 
acyclic case?

We can unwind the loop to make it logically acyclic

i2

i1

?
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● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

● Suppose that we know the programs are acyclic?
● Now consider the case where cycles can occur... [Sumner, ASE 2013]

How can we extend the 
acyclic case?

...
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Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

● Suppose that we know the programs are acyclic?
● Now consider the case where cycles can occur... [Sumner, ASE 2013]

How can we extend the 
acyclic case?

...

These are different iterations of one loop.
A counter for each active loop suffices (mostly).

i2

i1

?
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Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

● Suppose that we know the programs are acyclic?
● Now consider the case where cycles can occur... [Sumner, ASE 2013]

How can we extend the 
acyclic case?

...

1 counter per active loop
+ the call stack disambiguates!

i2

i1

?
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Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

● Suppose that we know the programs are acyclic?
● Now consider the case where cycles can occur... [Sumner, ASE 2013]

– Can we efficiently represent this?
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– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]
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Call stack/context Iteration stack Instruction ID
i2

i1
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Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

● Suppose that we know the programs are acyclic?
● Now consider the case where cycles can occur... [Sumner, ASE 2013]

– Can we efficiently represent this?

Call stack/context Iteration stack Instruction ID

Can be encoded/inferred Can be inferred
i2

i1

?
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Spatial Alignment

● We must also ask what it means to compare program state across 
executions
– How can we compare two integers X and Y?
– How can we compare two pointers A and B?

0xdeadbeef in T1   =   0xcafef00d in T2?
If you allocated other stuff in only one run,

this can be true even without ASLR!
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– How can we compare two pointers A and B?
– How can we compare allocated regions on the heap?

Should they even be compared?!?
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● We must also ask what it means to compare program state across 
executions
– How can we compare two integers X and Y?
– How can we compare two pointers A and B?
– How can we compare allocated regions on the heap?

Should they even be compared?!?

● In practice, comparing state across executions requires comparing 
memory graphs
– We need a way to identify corresponding nodes (state elements)

A B C

A BT1

T2

What are the differences?
1) list.append(value++)
2) if c:
3)     list.append(value++)
4) list.append(value++)
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Spatial Alignment

● We must also ask what it means to compare program state across 
executions
– How can we compare two integers X and Y?
– How can we compare two pointers A and B?
– How can we compare allocated regions on the heap?

Should they even be compared?!?

● In practice, comparing state across executions requires comparing 
memory graphs
– We need a way to identify corresponding nodes (state elements)

A B C

A BT1

T2

What are the differences?
1) list.append(value++)
2) if c:
3)     list.append(value++)
4) list.append(value++)

1

1
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● We must also ask what it means to compare program state across 
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A BT1
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What are the differences?
1) list.append(value++)
2) if c:
3)     list.append(value++)
4) list.append(value++)

1
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● We must also ask what it means to compare program state across 
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Spatial Alignment

● We must also ask what it means to compare program state across 
executions
– How can we compare two integers X and Y?
– How can we compare two pointers A and B?
– How can we compare allocated regions on the heap?

Should they even be compared?!?

● In practice, comparing state across executions requires comparing 
memory graphs
– We need a way to identify corresponding nodes (state elements)

● Again, the semantics of the program dictate the solution
– Identify heap allocations by the aligned time of allocation

A B C

A BT1

T2

1

1 3

4

4
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Dual Slicing

● Now we can
– Identify corresponding times across executions
– Identify & compare corresponding state at those times

● We can use these to enhance dynamic slicing by being aware of 
differences! (called dual slicing)
– Based on classic dynamic slicing
– Include transitive dependencies that differ or exist in only 1 execution

1)x  1←

2)y  1←

3)print(x+y)

1)x  0←

2)y  1←

3)print(x+y)3

2

1

3

2

1

0            
1 1  

  1
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Dual Slicing

● Now we can
– Identify corresponding times across executions
– Identify & compare corresponding state at those times

● We can use these to enhance dynamic slicing by being aware of 
differences! (called dual slicing)
– Based on classic dynamic slicing
– Include transitive dependencies that differ or exist in only 1 execution

1)x  1←

2)y  1←

3)print(x+y)

1)x  0←

2)y  1←

3)print(x+y)3

2

1
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Dual Slicing

● Now we can
– Identify corresponding times across executions
– Identify & compare corresponding state at those times

● We can use these to enhance dynamic slicing by being aware of 
differences! (called dual slicing)
– Based on classic dynamic slicing
– Include transitive dependencies that differ or exist in only 1 execution

1)x  1←

2)y  1←

3)print(x+y)

1)x  0←

2)y  1←

3)print(x+y)3

2

1

3

2

1

3

1

0            
1 1  

  10              1
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Dual Slicing

● The differences in dependencies capture multiple kinds of information
– Value-only differences

1

0            2

1

  1

3

2

3
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Dual Slicing

● The differences in dependencies capture multiple kinds of information
– Value-only differences
– Provenance/Source differences

1

0            2

1

  1
3

2
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Dual Slicing

● The differences in dependencies capture multiple kinds of information
– Value-only differences
– Provenance/Source differences
– Missing/Extra behavior

4

1

0            

4

2

1

  1
3
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● The differences in dependencies capture multiple kinds of information
– Value-only differences
– Provenance/Source differences
– Missing/Extra behavior

● Recall: Dynamic slicing could not handle execution omission,
but dual slicing can!
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Dual Slicing

● The differences in dependencies capture multiple kinds of information
– Value-only differences
– Provenance/Source differences
– Missing/Extra behavior

● Recall: Dynamic slicing could not handle execution omission,
but dual slicing can!

● Dual slices can be effective for concurrent debugging & exploit analysis
[Weeratunge, ISSTA 2010][Johnson, S&P 2011]
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Adding Causation

● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences

[Ko, ICSE 2008]
Correct Buggy

https://faculty.washington.edu/ajko/papers/Ko2008JavaWhyline.pdf
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● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences

[Ko, ICSE 2008]
– But they may still contain extra information/noise...

1) x = ...
2) y = ...
3) if x + y > 0:
4)     z = 0
5) else:
6)     z = 1
7) print(z)
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Adding Causation

● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences

[Ko, ICSE 2008]
– But they may still contain extra information/noise...

1) x = ...
2) y = ...
3) if x + y > 0:
4)     z = 0
5) else:
6)     z = 1
7) print(z)

Correct
x = 10
y = -1
True
z = 0

“0”
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● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences

[Ko, ICSE 2008]
– But they may still contain extra information/noise...

1) x = ...
2) y = ...
3) if x + y > 0:
4)     z = 0
5) else:
6)     z = 1
7) print(z)

Correct
x = 10 x = 0
y = -1 y = -2
True False
z = 0

z = 1
“0” “1”

Buggy
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Adding Causation

● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences

[Ko, ICSE 2008]
– But they may still contain extra information/noise...

1) x = ...
2) y = ...
3) if x + y > 0:
4)     z = 0
5) else:
6)     z = 1
7) print(z)

11

33

77

4

Correct Buggy

6

2 2
Correct
x = 10 x = 0
y = -1 y = -2
True False
z = 0

z = 1
“0” “1”

Buggy
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● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences
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– But they may still contain extra information/noise...
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4)     z = 0
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Adding Causation

● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences

[Ko, ICSE 2008]
– But they may still contain extra information/noise...

1) x = ...
2) y = ...
3) if x + y > 0:
4)     z = 0
5) else:
6)     z = 1
7) print(z)

11

33

77

4

Correct Buggy

6

2 2
Correct
x = 10 x = 0
y = -1 y = -2
True False
z = 0

z = 1
“0” “1”

Buggy
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● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences

[Ko, ICSE 2008]
– But they may still contain extra information/noise...

1) x = ...
2) y = ...
3) if x + y > 0:
4)     z = 0
5) else:
6)     z = 1
7) print(z)

11

33

77

4

Correct Buggy

6

2 2
Correct
x = 10 x = 0
y = -1 y = -2
True False
z = 0

z = 1
“0” “1”

Buggy
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Adding Causation

● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences

[Ko, ICSE 2008]
– But they may still contain extra information/noise...

1) x = ...
2) y = ...
3) if x + y > 0:
4)     z = 0
5) else:
6)     z = 1
7) print(z)

11

33

77

4

Correct Buggy

6

2 2
Correct
x = 10 x = 0
y = -1 y = -2
True False
z = 0

z = 1
“0” “1”

Buggy
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Adding Causation

● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences

[Ko, ICSE 2008]
– But they may still contain extra information/noise...

1) x = ...
2) y = ...
3) if x + y > 0:
4)     z = 0
5) else:
6)     z = 1
7) print(z)

11

33

77

4

Correct Buggy

6

2 2
Correct
x = 10 x = 0
y = -1 y = -2
True False
z = 0

z = 1
“0” “1”

Buggy
Dual slicing captures differences, not causes.

What does that mean here?
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Adding Causation

● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences

[Ko, ICSE 2008]
– But they may still contain extra information/noise...

1) x = ...
2) y = ...
3) if x + y > 0:
4)     z = 0
5) else:
6)     z = 1
7) print(z)

11

33

77

4

Correct Buggy

6

2 2
Correct
x = 10 x = 0
y = -1 y = -2
True False
z = 0

z = 1
“0” “1”

Buggy
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Adding Causation

● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences

[Ko, ICSE 2008]
– But they may still contain extra information/noise...

1) x = ...
2) y = ...
3) if x + y > 0:
4)     z = 0
5) else:
6)     z = 1
7) print(z)

11

33

77

4

Correct Buggy

6

2 2
Correct
x = 10 x = 0
y = -1 y = -2
True False
z = 0

z = 1
“0” “1”

Buggy

The cost of these extra edges is high in practice!
All transitive dependencies...
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Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?
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Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred 1
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Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred
– Minimize the “# steps”?
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Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred
– Minimize the “# steps”?
– Minimize the “# dependencies”?
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Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred
– Minimize the “# steps”?
– Minimize the “# dependencies”?

1

3

7

4

E1

2
1

3

7

4

E2

What big challenges do you see with
these 2 approaches?
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Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred
– Minimize the “# steps”?
– Minimize the “# dependencies”?
– Minimize the “# local dependencies”?
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Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred
– Minimize the “# steps”?
– Minimize the “# dependencies”?
– Minimize the “# local dependencies”?

1

3

7

4

E1

2
1

3

7

4

E2

argmins∈sd i|sd|
∧E1[ sd (E2)i ]→sd (E2)i+1

∧E2[ sd (E1)i ]→sd (E1)i+1
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Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred
– Minimize the “# steps”?
– Minimize the “# dependencies”?
– Minimize the “# local dependencies”?

1

3

7
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2
1

3

7

4

E2

argmins∈sd i|sd|
∧E1[ sd (E2)i ]→sd (E2)i+1

∧E2[ sd (E1)i ]→sd (E1)i+1
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Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred
– Minimize the “# steps”?
– Minimize the “# dependencies”?
– Minimize the “# local dependencies”?
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Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred
– Minimize the “# steps”?
– Minimize the “# dependencies”?
– Minimize the “# local dependencies”?
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Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred
– Minimize the “# steps”?
– Minimize the “# dependencies”?
– Minimize the “# local dependencies”?
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Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred
– Minimize the “# steps”?
– Minimize the “# dependencies”?
– Minimize the “# local dependencies”?
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Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred
– Minimize the “# steps”?
– Minimize the “# dependencies”?
– Minimize the “# local dependencies”?

● There are currently unknown trade offs between
tractability, intuitiveness, and correctness
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Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred
– Minimize the “# steps”?
– Minimize the “# dependencies”?
– Minimize the “# local dependencies”?

● There are currently unknown trade offs between
tractability, intuitiveness, and correctness

1

3

7

4

E1

2
1

3

7

4

E2

Even local blame is actually challenging
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Adding Causation

● Causation is often framed via “alternate worlds” & “what if” questions...
– We can answer these causality questions by running experiments!



  

What Should We Blame?

?

Trial



  

What Should We Blame?

?

Trial



  

What Should We Blame?

x = 5
y = 4
z = 3

x = 5
y = 4
z = 1

y = 4

?

Trial



  

What Should We Blame?

x = 5
y = 4
z = 3

x = 5
y = 4
z = 1

y = 4

?

Trial



  

What Should We Blame?

x = 5
y = 4
z = 3

x = 5
y = 4
z = 1

y = 4

?

Trial

What does this patched run even mean?



  

x ← 1
y ← 3
z ← 6
if False:

else: y ← 4
print(4)

Example – Altered Meaning

1)x ← input()
2)y ← input()
3)z ← input()
4)if y+z > 10:
5)  y ← 5
6)else: y ← y+1
7)print(y)

x ← 0
y ← 7
z ← 3
if False:

else: y ← 8
print(8)

CorrectBuggy



  

Example – Altered Meaning

What should we blame here?

1)x ← input()
2)y ← input()
3)z ← input()
4)if y+z > 10:
5)  y ← 5
6)else: y ← y+1
7)print(y)

x ← 0
y ← 7
z ← 3
if False:

else: y ← 8
print(8)

x ← 1
y ← 3
z ← 6
if False:

else: y ← 4
print(4)

CorrectBuggy



  

x ← 0
y ← 7
z ← 3
if False:

else: y ← 8
print(8)

Example – Altered Meaning

1)x ← input()
2)y ← input()
3)z ← input()
4)if y+z > 10:
5)  y ← 5
6)else: y ← y+1
7)print(y)

x ← 1
y ← 3
z ← 6
if False:

else: y ← 4
print(4)

CorrectBuggy Trial



  

x ← 0
y ← 7
z ← 3
if False:

else: y ← 8
print(8)

x ← 0
y ← 7
z ← 3

Example – Altered Meaning

1)x ← input()
2)y ← input()
3)z ← input()
4)if y+z > 10:
5)  y ← 5
6)else: y ← y+1
7)print(y)

x ← 1
y ← 3
z ← 6
if False:

else: y ← 4
print(4)

CorrectBuggy Trial



  

x ← 0
y ← 7
z ← 3
if False:

else: y ← 8
print(8)

x ← 0
y ← 7
z ← 3
if False:

else: y←8
print(8)

Example – Altered Meaning

1)x ← input()
2)y ← input()
3)z ← input()
4)if y+z > 10:
5)  y ← 5
6)else: y ← y+1
7)print(y)

x ← 1
y ← 3
z ← 6
if False:

else: y ← 4
print(4)

CorrectBuggy Trial



  

x ← 0
y ← 7
z ← 3
if False:

else: y ← 8
print(8)

y ← 7

Example – Altered Meaning

1)x ← input()
2)y ← input()
3)z ← input()
4)if y+z > 10:
5)  y ← 5
6)else: y ← y+1
7)print(y)

x ← 1
y ← 3
z ← 6
if False:

else: y ← 4
print(4)

CorrectBuggy Trial



  

x ← 0
y ← 7
z ← 3
if False:

else: y ← 8
print(8)

x ← 1
y ← 7
z ← 6

Example – Altered Meaning

1)x ← input()
2)y ← input()
3)z ← input()
4)if y+z > 10:
5)  y ← 5
6)else: y ← y+1
7)print(y)

x ← 1
y ← 3
z ← 6
if False:

else: y ← 4
print(4)

CorrectBuggy Trial



  

x ← 0
y ← 7
z ← 3
if False:

else: y ← 8
print(8)

x ← 1
y ← 7
z ← 6
if True:
  y ← 5

print(5)

Example – Altered Meaning

1)x ← input()
2)y ← input()
3)z ← input()
4)if y+z > 10:
5)  y ← 5
6)else: y ← y+1
7)print(y)

x ← 1
y ← 3
z ← 6
if False:

else: y ← 4
print(4)

CorrectBuggy Trial



  

x ← 1
y ← 7
z ← 6
if True:
  y ← 5

print(5)

Example – Altered Meaning

1)x ← input()
2)y ← input()
3)z ← input()
4)if y+z > 10:
5)  y ← 5
6)else: y ← y+1
7)print(y)

● New control flow unlike original runs
● Occurs in large portion of real bugs

x ← 0
y ← 7
z ← 3
if False:

else: y ← 8
print(8)

x ← 1
y ← 3
z ← 6
if False:

else: y ← 4
print(4)

CorrectBuggy Trial



  

Dual Slicing

1)x ← input()
2)y ← input()
3)z ← input()
4)if y+z > 10:
5)  y ← 5
6)else: y ← y+1
7)print(y)

7
6

2

2)y ← input()
6)y ← y+1
7)print(y)

Extract

x ← 0
y ← 7
z ← 3
if False:

else: y ← 8
print(8)

x ← 1
y ← 3
z ← 6
if False:

else: y ← 4
print(4)

CorrectBuggy



  

y ← 3
y ← 4
print(4)

Example – Extracted Meaning

y ← 7
y ← 8
print(8)

2)y ← input()
6)y ← y+1
7)print(y)

CorrectBuggy Trial



  

y ← 7 y ← 7
y ← 4
print(4)

Example – Extracted Meaning

y ← 7
y ← 8
print(8)

2)y ← input()
6)y ← y+1
7)print(y)

CorrectBuggy Trial



  

y ← 8
print(8)

y ← 7 y ← 7
y ← 4
print(4)

Example – Extracted Meaning

y ← 7
y ← 8
print(8)

2)y ← input()
6)y ← y+1
7)print(y)

Trial can now correctly blame y

CorrectBuggy Trial
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Adding Causation

● Causation is often framed via “alternate worlds” & “what if” questions...
– We can answer these causality questions by running experiments!

● We perform these causality tests in both directions in order to collect 
symmetric information
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– We can answer these causality questions by running experiments!

● We perform these causality tests in both directions in order to collect 
symmetric information
– How did the buggy run behave differently than the correct one?
– How did the correct run behave differently than the buggy one?
– These questions do not have the same answer!
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● Causation is often framed via “alternate worlds” & “what if” questions...
– We can answer these causality questions by running experiments!

● We perform these causality tests in both directions in order to collect 
symmetric information
– How did the buggy run behave differently than the correct one?
– How did the correct run behave differently than the buggy one?
– These questions do not have the same answer!

● In practice, there are additional issues,
and even defining causation in this context needs further research.
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Adding Causation

● Causation is often framed via “alternate worlds” & “what if” questions...
– We can answer these causality questions by running experiments!

● We perform these causality tests in both directions in order to collect 
symmetric information
– How did the buggy run behave differently than the correct one?
– How did the correct run behave differently than the buggy one?
– These questions do not have the same answer!

● In practice, there are additional issues,
and even defining causation in this context needs further research.
– Did we want to blame only y in the example?
– Pruning blame on y is necessary in many real cases, can they be refined?
– Can it be done without execution? With a stronger statistical basis?



Summing Up
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● Identifying the information you care about
– Dynamic dependence? Valid memory? Just the execution outcome?
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– How does underapproximation affect your conclusions?
– Can you still achieve your objective in spite of it?
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Key Challenges

● Identifying the information you care about
– Dynamic dependence? Valid memory? Just the execution outcome?

● Collecting that information efficiently
– abstraction, encoding, compression, sampling, ...

● Selecting which executions to analyze
– Existing test suite? Always on runtime? Directed test generation?
– How does underapproximation affect your conclusions?
– Can you still achieve your objective in spite of it?

● Doing some of the work ahead of time
– What can you precompute to improve all of the above?
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Summary

● Analyze the actual/observed behaviors of a program
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● Analyze the actual/observed behaviors of a program
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Summary

● Analyze the actual/observed behaviors of a program
● Modify or use the program’s behavior to collect information
● Analyze the information online or offline
● The precise configuration must be tailored to the objectives & insights

– Compiled vs DBI
– Online vs Postmortem
– Compressed, Encoded, Samples, ...
– ...
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