
Dynamic Analysis

CMPT 745
Software Engineering

Nick Sumner
wsumner@sfu.ca

2

Dynamic Analysis

● Sometimes we want to study or adapt the behavior of executions of a
program

3

Dynamic Analysis

● Sometimes we want to study or adapt the behavior of executions of a
program

– Did my program ever …?

4

Dynamic Analysis

● Sometimes we want to study or adapt the behavior of executions of a
program

– Did my program ever …?
– Why/how did … happen?

5

Dynamic Analysis

● Sometimes we want to study or adapt the behavior of executions of a
program

– Did my program ever …?
– Why/how did … happen?
– Where am I spending time?

6

Dynamic Analysis

● Sometimes we want to study or adapt the behavior of executions of a
program

– Did my program ever …?
– Why/how did … happen?
– Where am I spending time?
– Where might I parallelize?

7

Dynamic Analysis

● Sometimes we want to study or adapt the behavior of executions of a
program

– Did my program ever …?
– Why/how did … happen?
– Where am I spending time?
– Where might I parallelize?
– Tolerate errors

8

Dynamic Analysis

● Sometimes we want to study or adapt the behavior of executions of a
program

– Did my program ever …?
– Why/how did … happen?
– Where am I spending time?
– Where might I parallelize?
– Tolerate errors
– Manage memory / resources.

9

e.g. Reverse Engineering

Static CFG (from e.g. Apple Fairplay):

This is the result of a control flow flattening obfuscaton.
[http://tigress.cs.arizona.edu/transformPage/docs/flatten/]

http://tigress.cs.arizona.edu/transformPage/docs/flatten/

10

e.g. Reverse Engineering

Static CFG (from e.g. Apple Fairplay):

Dynamically Simplified CFG:

This is the result of a control flow flattening obfuscaton.
[http://tigress.cs.arizona.edu/transformPage/docs/flatten/]

http://tigress.cs.arizona.edu/transformPage/docs/flatten/

11

How?

● Can record the execution

12

How?

● Can record the execution
– Record to a trace
– Analyze post mortem / offline
– Scalability issues: need enough space to store it

13

How?

● Can record the execution
– Record to a trace
– Analyze post mortem / offline
– Scalability issues: need enough space to store it

● Can perform analysis online

14

How?

● Can record the execution
– Record to a trace
– Analyze post mortem / offline
– Scalability issues: need enough space to store it

● Can perform analysis online
– Instrument the program to collect useful facts
– Modified program invokes code to 'analyze' itself

15

How?

● Can record the execution
– Record to a trace
– Analyze post mortem / offline
– Scalability issues: need enough space to store it

● Can perform analysis online
– Instrument the program to collect useful facts
– Modified program invokes code to 'analyze' itself

● Can do both!
– Lightweight recording
– Instrument a replayed instance of the execution

16

How?

● Can record the execution
– Record to a trace
– Analyze post mortem / offline
– Scalability issues: need enough space to store it

● Can perform analysis online
– Instrument the program to collect useful facts
– Modified program invokes code to 'analyze' itself

● Can do both!
– Lightweight recording
– Instrument a replayed instance of the execution

Some analyses only make sense online.
Why?

17

Simple Idea: Basic Block Profiling

Knowing where we are spending time is useful:
● Goal: Which basic blocks execute most frequently?

18

Simple Idea: Basic Block Profiling

Knowing where we are spending time is useful:
● Goal: Which basic blocks execute most frequently?

Profiling is a common dynamic analysis!

19

Simple Idea: Basic Block Profiling

Knowing where we are spending time is useful:
● Goal: Which basic blocks execute most frequently?
● How can we modify our program to find this?

20

Simple Idea: Basic Block Profiling

Knowing where we are spending time is useful:
● Goal: Which basic blocks execute most frequently?
● How can we modify our program to find this?

BB:0

BB:1 BB:2

BB:3

?

21

Simple Idea: Basic Block Profiling

Knowing where we are spending time is useful:
● Goal: Which basic blocks execute most frequently?
● How can we modify our program to find this?

BB:0

BB:1 BB:2

BB:3

count[2] += 1

x = foo()
y = bar()
...

22

Simple Idea: Basic Block Profiling

Knowing where we are spending time is useful:
● Goal: Which basic blocks execute most frequently?
● How can we modify our program to find this?

BB:0

BB:1 BB:2

BB:3

count[2] += 1

x = foo()
y = bar()
...

for i in BBs:
 count[i] = 0

for i in BBs:
 print(count[i])Start: End:

23

Simple Idea: Basic Block Profiling

Knowing where we are spending time is useful:
● Goal: Which basic blocks execute most frequently?
● How can we modify our program to find this?

BB:0

BB:1 BB:2

BB:3

count[2] += 1

x = foo()
y = bar()
...

for i in BBs:
 count[i] = 0

for i in BBs:
 print(count[i])Start: End:

24

Simple Idea: Basic Block Profiling

● Big concern: How efficient is it?
– The more overhead added, the less practical the tool

25

Simple Idea: Basic Block Profiling

● Big concern: How efficient is it?
– The more overhead added, the less practical the tool

count[0] += 1
…

count[1] += 1
…

count[5] += 1
…

count[6] += 1
…

count[4] += 1
…

count[2] += 1
…

count[3] += 1
…

26

Simple Idea: Basic Block Profiling

● Big concern: How efficient is it?
– The more overhead added, the less practical the tool

– Can we do better?

count[0] += 1
…

count[1] += 1
…

count[5] += 1
…

count[6] += 1
…

count[4] += 1
…

count[2] += 1
…

count[3] += 1
…

27

Simple Idea: Basic Block Profiling

● Big concern: How efficient is it?
– The more overhead added, the less practical the tool

– Can we do better?

count[0] += 1
…

count[1] += 1
…

count[5] += 1
…

count[6] += 1
…

count[4] += 1
…

count[2] += 1
…

count[3] += 1
…

count[1] = count[4] = count[2] + count[3]

28

Simple Idea: Basic Block Profiling

● Big concern: How efficient is it?
– The more overhead added, the less practical the tool

– Can we do better?

count[0] += 1
…

count[1] += 1
…

count[5] += 1
…

count[6] += 1
…

count[4] += 1
…

count[2] += 1
…

count[3] += 1
…

count[1] = count[4] = count[2] + count[3]
count[0] = count[6] = count[1] + count[5]

29

Simple Idea: Basic Block Profiling

● Big concern: How efficient is it?
– The more overhead added, the less practical the tool

– Can we do better?

count[0] += 1
…

count[1] += 1
…

count[5] += 1
…

count[6] += 1
…

count[4] += 1
…

count[2] += 1
…

count[3] += 1
…

count[1] = count[4] = count[2] + count[3]
count[0] = count[6] = count[1] + count[5]

30

Efficiency Tactics

● Abstraction

31

Efficiency Tactics

● Abstraction
● Identify & avoid redundant information

32

Efficiency Tactics

● Abstraction
● Identify & avoid redundant information
● Sampling

33

Efficiency Tactics

● Abstraction
● Identify & avoid redundant information
● Sampling
● Compression / encoding

34

Efficiency Tactics

● Abstraction
● Identify & avoid redundant information
● Sampling
● Compression / encoding
● Profile guided instrumentation

35

Efficiency Tactics

● Abstraction
● Identify & avoid redundant information
● Sampling
● Compression / encoding
● Profile guided instrumentation
● Thread local analysis

36

Efficiency Tactics

● Abstraction
● Identify & avoid redundant information
● Sampling
● Compression / encoding
● Profile guided instrumentation
● Thread local analysis
● Inference

37

How / When to Instrument

● Source / IR Instrumentation
– LLVM, CIL, Soot, Wala
– During (re)compilation
– Requires an analysis dedicated build

38

How / When to Instrument

● Source / IR Instrumentation
– LLVM, CIL, Soot, Wala
– During (re)compilation
– Requires an analysis dedicated build

● Static Binary Rewriting
– Diablo, DynamoRIO, SecondWrite,
– Applies to arbitrary binaries
– Imprecise IR info, but more complete binary behavior

39

How / When to Instrument

● Source / IR Instrumentation
– LLVM, CIL, Soot, Wala
– During (re)compilation
– Requires an analysis dedicated build

● Static Binary Rewriting
– Diablo, DynamoRIO, SecondWrite,
– Applies to arbitrary binaries
– Imprecise IR info, but more complete binary behavior

● Dynamic Binary Instrumentation
– Valgrind, Pin, Qemu (& other Vms)
– Can adapt at runtime, but less info than IR

40

How / When to Instrument

● Source / IR Instrumentation
– LLVM, CIL, Soot, Wala
– During (re)compilation
– Requires an analysis dedicated build

● Static Binary Rewriting
– Diablo, DynamoRIO, SecondWrite,
– Applies to arbitrary binaries
– Imprecise IR info, but more complete binary behavior

● Dynamic Binary Instrumentation
– Valgrind, Pin, Qemu (& other Vms)
– Can adapt at runtime, but less info than IR

● Black Box Dynamic Analysis

41

Phases of Dynamic Analysis

In general, 2-3 phases occur:

1) Instrumentation
– Add code to the program for data collection/analysis

42

Phases of Dynamic Analysis

In general, 2-3 phases occur:

1) Instrumentation
– Add code to the program for data collection/analysis

2) Execution
– Run the program an analyze its actual behavior

43

Phases of Dynamic Analysis

In general, 2-3 phases occur:

1) Instrumentation
– Add code to the program for data collection/analysis

2) Execution
– Run the program an analyze its actual behavior

3) (Optional) Postmortem Analysis
– Perform any analysis that can be deferred after termination

44

Phases of Dynamic Analysis

In general, 2-3 phases occur:

1) Instrumentation
– Add code to the program for data collection/analysis

2) Execution
– Run the program an analyze its actual behavior

3) (Optional) Postmortem Analysis
– Perform any analysis that can be deferred after termination

Very, very common mistake to mix 1 & 2.

45

Static Instrumentation

1) Compile whole program to IR

foo.c
bar.c
baz.c prog.ll

46

Static Instrumentation

1) Compile whole program to IR

2) Instrument / add code directly to the IR

foo.c
bar.c
baz.c prog.ll prog’.ll

47

Static Instrumentation

1) Compile whole program to IR

2) Instrument / add code directly to the IR

3) Generate new program that performs analysis

foo.c
bar.c
baz.c prog.ll prog’.ll

48

Static Instrumentation

1) Compile whole program to IR

2) Instrument / add code directly to the IR

3) Generate new program that performs analysis

4) Execute

foo.c
bar.c
baz.c prog.ll prog’.ll

Test Cases

Results

49

Dynamic Binary Instrumentation (DBI)

1) Compile program as usual

2) Run program under analysis framework

(Valgrind, PIN, Qemu, etc)

valgrind --tool=memcheck ./myBuggyProgram

50

Dynamic Binary Instrumentation (DBI)

1) Compile program as usual

2) Run program under analysis framework

(Valgrind, PIN, Qemu, etc)
3) Instrument & execute in same command:

– Fetch & instrument each basic block individually
– Execute each basic block

valgrind --tool=memcheck ./myBuggyProgram

Example: Test Case Reduction

52

Testing and Dynamic Analysis

● In some cases, just running a program with different inputs is enough

53

Testing and Dynamic Analysis

● In some cases, just running a program with different inputs is enough
– Carefully selected inputs can target the analysis
– The result of running the program reveals coarse information about its

behavior

54

Testing and Dynamic Analysis

● In some cases, just running a program with different inputs is enough
– Carefully selected inputs can target the analysis
– The result of running the program reveals coarse information about its

behavior

● Intuitively, even just testing is a dynamic analysis
– It requires no transformation
– The result is just the success or failure of tests

55

Testing and Dynamic Analysis

● In some cases, just running a program with different inputs is enough
– Carefully selected inputs can target the analysis
– The result of running the program reveals coarse information about its

behavior

● Intuitively, even just testing is a dynamic analysis
– It requires no transformation
– The result is just the success or failure of tests

● But even that is interesting to consider....

56

Bug reports are problematic

● Failing inputs can be large and complex
a r h w l n y e u m g k o w h > ` p

MB? GB?

57

Bug reports are problematic

● Failing inputs can be large and complex
a r h w l n y e u m g k o w h > ` p

MB? GB? What is relevant and essential to the bug?

58

Bug reports are problematic

a r h w l n y e u m g k o w h > ` p

● Failing inputs can be large and complex

a b cBug 2

a b cBug 3

a b cBug 1

59

Bug reports are problematic

a r h w l n y e u m g k o w h > ` p

● Failing inputs can be large and complex

a b cBug 2

a b cBug 3

a b cBug 1

1) Are these reports the same bug?
2) Can we make it easier to reproduce?

60

Bug reports are problematic

a r h w l n y e u m g k o w h > ` p

● Failing inputs can be large and complex

a b cBug 2

a b cBug 3

a b cBug 1

a b cBug

61

Bug reports are problematic

a r h w l n y e u m g k o w h > ` p

● Failing inputs can be large and complex

a b cBug 2

a b cBug 3

a b cBug 1

a b cBug

1) Same? Yes!
2) Easier? Yes! And easier to understand!

62

Bug reports are problematic

a r h w l n y e u m g k o w h > ` p

● Failing inputs can be large and complex

a b cBug 2

a b cBug 3

a b cBug 1

a b cBug

Test Case Reduction: finding smaller test cases that reproduce a failure

63

Classically – Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>

http://en.wikipedia.org/wiki/File:Netscape_2_logo.gif

print

64

Classically – Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>

http://en.wikipedia.org/wiki/File:Netscape_2_logo.gif

print

65

Classically – Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>
Intuition: trial and error

66

Classically – Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7> = c
Intuition: trial and error
1) Start w/ a failing text configuration c

67

Classically – Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>
Intuition: trial and error
1) Start w/ a failing text configuration c
2) Try removing subsets (Δ) of input elements ({δ})

68

Classically – Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>
Intuition: trial and error
1) Start w/ a failing text configuration c
2) Try removing subsets (Δ) of input elements ({δ})
3) Failure still exists → new input is “better”

69

Classically – Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>
Intuition: trial and error
1) Start w/ a failing text configuration c
2) Try removing subsets (Δ) of input elements ({δ})
3) Failure still exists → new input is “better”
4) Repeat on the new input

70

Classically – Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>
Intuition: trial and error
1) Start w/ a failing text configuration c
2) Try removing subsets (Δ) of input elements ({δ})
3) Failure still exists → new input is “better”
4) Repeat on the new input

When do we stop? / What is our goal?
● Global Minimum: c : ∀ |c'|<|c|, c'

71

Classically – Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>
Intuition: trial and error
1) Start w/ a failing text configuration c
2) Try removing subsets (Δ) of input elements ({δ})
3) Failure still exists → new input is “better”
4) Repeat on the new input

When do we stop? / What is our goal?
● Global Minimum: c : ∀ |c'|<|c|, c'

Smallest subset of the original
input reproducing the failure

72

Classically – Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>
Intuition: trial and error
1) Start w/ a failing text configuration c
2) Try removing subsets (Δ) of input elements ({δ})
3) Failure still exists → new input is “better”
4) Repeat on the new input

When do we stop? / What is our goal?
● Global Minimum: c : ∀ |c'|<|c|, c'

Smallest subset of the original
input reproducing the failure

Completely impractical! Why?

73

Classically – Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>
Intuition: trial and error
1) Start w/ a failing text configuration c
2) Try removing subsets (Δ) of input elements ({δ})
3) Failure still exists → new input is “better”
4) Repeat on the new input

When do we stop? / What is our goal?
● Global Minimum: c : ∀ |c'|<|c|, c'
● Local Minimum: c : ∀ c'⊂c, c'

74

Classically – Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>
Intuition: trial and error
1) Start w/ a failing text configuration c
2) Try removing subsets (Δ) of input elements ({δ})
3) Failure still exists → new input is “better”
4) Repeat on the new input

When do we stop? / What is our goal?
● Global Minimum: c : ∀ |c'|<|c|, c'
● Local Minimum: c : ∀ c'⊂c, c'

No subset of the result can
reproduce the failure.

75

Classically – Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>
Intuition: trial and error
1) Start w/ a failing text configuration c
2) Try removing subsets (Δ) of input elements ({δ})
3) Failure still exists → new input is “better”
4) Repeat on the new input

When do we stop? / What is our goal?
● Global Minimum: c : ∀ |c'|<|c|, c'
● Local Minimum: c : ∀ c'⊂c, c'

No subset of the result can
reproduce the failure.

How does this differ from a global minimum?
Is it still problematic?

76

Classically – Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>
Intuition: trial and error
1) Start w/ a failing text configuration c
2) Try removing subsets (Δ) of input elements ({δ})
3) Failure still exists → new input is “better”
4) Repeat on the new input

When do we stop? / What is our goal?
● Global Minimum: c : ∀ |c'|<|c|, c'
● Local Minimum: c : ∀ c'⊂c, c'
● 1-Minimal: c: ∀ δ ∈ c, (c-{δ})

77

Classically – Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>
Intuition: trial and error
1) Start w/ a failing text configuration c
2) Try removing subsets (Δ) of input elements ({δ})
3) Failure still exists → new input is “better”
4) Repeat on the new input

When do we stop? / What is our goal?
● Global Minimum: c : ∀ |c'|<|c|, c'
● Local Minimum: c : ∀ c'⊂c, c'
● 1-Minimal: c: ∀ δ ∈ c, (c-{δ})

No one element can be removed
and still reproduce the failure

78

Classically – Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>
Intuition: trial and error
1) Start w/ a failing text configuration c
2) Try removing subsets (Δ) of input elements ({δ})
3) Failure still exists → new input is “better”
4) Repeat on the new input

When do we stop? / What is our goal?
● Global Minimum: c : ∀ |c'|<|c|, c'
● Local Minimum: c : ∀ c'⊂c, c'
● 1-Minimal: c: ∀ δ ∈ c, (c-{δ})

No one element can be removed
and still reproduce the failure

This is the classic goal.
In practice, the formalism may not pay for itself
in terms of quality or efficiency! (Be pragmatic!)

79

Classically – Delta Debugging
1 2 3 4 5 6 7 8

Does binary search work?

80

Classically – Delta Debugging
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

81

Classically – Delta Debugging
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

So what should we do?

82

Classically – Delta Debugging
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

So what should we do?

We refine the granularity

83

Classically – Delta Debugging
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

84

Classically – Delta Debugging
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

85

Classically – Delta Debugging
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

86

Classically – Delta Debugging
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

87

Classically – Delta Debugging
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

And now check complements

88

Classically – Delta Debugging
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

89

Classically – Delta Debugging
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

90

Classically – Delta Debugging
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 5 6 7 8

91

Classically – Delta Debugging
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 5 6 7 8
1 2 5 6 7 8

92

Classically – Delta Debugging
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 5 6 7 8
1 2 5 6 7 8
1 2 5 6 7 8

What's clever about how we recurse?

93

Classically – Delta Debugging
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 5 6 7 8
1 2 5 6 7 8
1 2 5 6 7 8
1 2 5 6 7 8
1 2 5 6 7 8

94

Classically – Delta Debugging
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 5 6 7 8
1 2 5 6 7 8
1 2 5 6 7 8
1 2 5 6 7 8
1 2 5 6 7 8
1 2 7 8
1 2 7 8 So close! How many more?

95

Classically – Delta Debugging
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 5 6 7 8
1 2 5 6 7 8
1 2 5 6 7 8
1 2 5 6 7 8
1 2 5 6 7 8
1 2 7 8
1 2 7 8

1 2 7 8
1 2 7 8
1 2 7 8
1 2 7 8
1 2 7 8
1 2 7 8

Done?

96

Classically – Delta Debugging
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 5 6 7 8
1 2 5 6 7 8
1 2 5 6 7 8
1 2 5 6 7 8
1 2 5 6 7 8
1 2 7 8
1 2 7 8

1 2 7 8
1 2 7 8
1 2 7 8
1 2 7 8
1 2 7 8
1 2 7 8
1 7 8
1 7 8
1 7 8
1 7 8
1 7 8
1 7 8

Done?

97

Classically – Delta Debugging
ddmin(c) = ddmin2(c, 2) Defined over

c - the input / configuration
n - the # of partitions

98

Classically – Delta Debugging

1 2 3 4 5 6 7 8c =

ddmin(c) = ddmin2(c, 2)

99

Classically – Delta Debugging

1 2 3 4 5 6 7 8c =

Δ1 Δ2 Δ3 Δ4

ddmin(c) = ddmin2(c, 2)

n = 4

100

Classically – Delta Debugging

1 2 3 4 5 6 7 8c =
n = 4

∇1

Δ1 Δ2 Δ3 Δ4

ddmin(c) = ddmin2(c, 2)

101

Classically – Delta Debugging

ddmin2(c,n)=

ddmin(c) = ddmin2(c, 2)

102

Classically – Delta Debugging

ddmin2(c,n)=

ddmin2(Δi, 2) If ... (a)

Δi = {3,4} (a) 1 2 3 4 5 6 7 8

ddmin(c) = ddmin2(c, 2)

Try each partition

103

Classically – Delta Debugging

ddmin2(c,n)=

1 2 3 4 5 6 7 8

If ... (a)
If ... (b)

Δi = {3,4} (a)
(b)

1 2 3 4 5 6 7 8

ddmin(c) = ddmin2(c, 2)

Try each complement

ddmin2(Δi, 2)
ddmin2(∇i, max(n-1,2))

104

ddmin2(Δi, 2)
ddmin2(∇i, max(n-1,2))

Classically – Delta Debugging

ddmin2(c,n)=

1 2 3 4 5 6 7 8

If ... (a)
If ... (b)

Δi = {3,4} (a)
(b)

1 2 3 4 5 6 7 8

ddmin(c) = ddmin2(c, 2)

105

Classically – Delta Debugging

ddmin2(c,n)=

1 2 3 4 5 6 7 8

If ... (a)
If ... (b)
If ... (c)

Δi = {3,4} (a)
(b)
(c) n < |c|

1 2 3 4 5 6 7 8

ddmin(c) = ddmin2(c, 2)

Refine the granularity

ddmin2(Δi, 2)
ddmin2(∇i, max(n-1,2))
ddmin2(c, min(|c|,2n))

106

ddmin2(Δi, 2)
ddmin2(∇i, max(n-1,2))
ddmin2(c, min(|c|,2n))

Classically – Delta Debugging

ddmin2(c,n)=

1 2 3 4 5 6 7 8

If ... (a)
If ... (b)
If ... (c)

Δi = {3,4} (a)
(b)
(c) n < |c|

1 2 3 4 5 6 7 8

ddmin(c) = ddmin2(c, 2)

107

Classically – Delta Debugging

ddmin2(c,n)=

ddmin2(Δi, 2)
ddmin2(∇i, max(n-1,2))
ddmin2(c, min(|c|,2n))
c

1 2 3 4 5 6 7 8

If ... (a)
If ... (b)
If ... (c)
otherwise

Δi = {3,4} (a)
(b)
(c) n < |c|

1 2 3 4 5 6 7 8

ddmin(c) = ddmin2(c, 2)

Finish

108

Classically – Delta Debugging

● Worst Case: |c|2 + 3|c| tests
– All tests unresolved until maximum granularity
– Testing complement succeeds

109

Classically – Delta Debugging

● Worst Case: |c|2 + 3|c| tests
– All tests unresolved until maximum granularity
– Testing complement succeeds

● Best Case: # tests ≤ 2log2(|c|)
– Falling back to binary search!

110

Classically – Delta Debugging

● Worst Case: |c|2 + 3|c| tests
– All tests unresolved until maximum granularity
– Testing complement succeeds

● Best Case: # tests ≤ 2log2(|c|)
– Falling back to binary search!

● Minimality
– When will it only be locally minimal?
– When will it only be 1-minimal?

111

Classically – Delta Debugging

● Worst Case: |c|2 + 3|c| tests
– All tests unresolved until maximum granularity
– Testing complement succeeds

● Best Case: # tests ≤ 2log2(|c|)
– Falling back to binary search!

● Minimality
– When will it only be locally minimal?
– When will it only be 1-minimal?
– Does formal minimality even matter?

112

Classically – Delta Debugging

● Observation:
In practice DD may revisit elements in order to guarantee minimality

113

Classically – Delta Debugging

● Observation:
In practice DD may revisit elements in order to guarantee minimality

ddmin2(∇i, max(n-1,2))
1 2 3 4 5 6 7 8

114

Classically – Delta Debugging

● Observation:
In practice DD may revisit elements in order to guarantee minimality

1 2 3 4 5 6 7 8

1 2 5 6 7 8
...ddmin2(∇i, max(n-1,2))

1 2 3 4 5 6 7 8

115

Classically – Delta Debugging

● Observation:
In practice DD may revisit elements in order to guarantee minimality

● If guaranteeing 1-minimality does not matter
the algorithm can drop to linear time!
– In practice this can be effective for what developers may care about

1 2 3 4 5 6 7 8

1 2 5 6 7 8
...ddmin2(∇i, max(n-1,2))

1 2 3 4 5 6 7 8

116

Classically – Delta Debugging

● Observation:
In practice DD may revisit elements in order to guarantee minimality

● If guaranteeing 1-minimality does not matter
the algorithm can drop to linear time!
– In practice this can be effective for what developers may care about

1 2 3 4 5 6 7 8

1 2 5 6 7 8
...ddmin2(∇i, max(n-1,2))

1 2 3 4 5 6 7 8

Don’t get bogged down by formalism
when it doesn’t serve you!

117

Test Case Reduction in Practice

● Most problems do not use DD directly for TCR.
– It provides inspiration, but frequently behaves poorly

118

Test Case Reduction in Practice

● Most problems do not use DD directly for TCR.
– It provides inspiration, but frequently behaves poorly

● What are the possible causes of problems?

1 2 3 4
1 2 3 4
1 2 3 4

Monotonicity
matters

119

Test Case Reduction in Practice

● Most problems do not use DD directly for TCR.
– It provides inspiration, but frequently behaves poorly

● What are the possible causes of problems?

1 2 3 4
1 2 3 4
1 2 3 4

Monotonicity
matters

1 2 3 4
1 2 3 4

Determinism
matters

120

Test Case Reduction in Practice

● Most problems do not use DD directly for TCR.
– It provides inspiration, but frequently behaves poorly

● What are the possible causes of problems?

1 2 3 4
1 2 3 4
1 2 3 4

Monotonicity
matters

1 2 3 4
1 2 3 4

Determinism
matters Structure

matters

LOOP

i

RANGE

ASSIGN

5 10

INDEX EXPR

a i i 5for in [] = *

121

Test Case Reduction for Compilers

● Programs are highly structured, so TCR for compilers faces challenges

122

Test Case Reduction for Compilers

● Programs are highly structured, so TCR for compilers faces challenges
● What structures could we use to guide the process?

123

Test Case Reduction for Compilers

● Programs are highly structured, so TCR for compilers faces challenges
● What structures could we use to guide the process?

LOOP

i

RANGE

ASSIGN

5 10

INDEX EXPR

a i i 5for in [] = *

124

Test Case Reduction for Compilers

● Programs are highly structured, so TCR for compilers faces challenges
● What structures could we use to guide the process?
● What challenges still remain?

LOOP

i

RANGE

ASSIGN

5 10

INDEX EXPR

a i i 5for in [] = *

125

Generalizing Further

● What else could we think of as test case reduction?

126

Generalizing Further

● What else could we think of as test case reduction?
– Failing traces of a program?
– “ ” in a distributed system?
– “ ” microservice application?

127

Generalizing Further

● What else could we think of as test case reduction?
– Failing traces of a program?
– “ ” in a distributed system?
– “ ” microservice application?
– Automatically generated test cases?

128

Generalizing Further

● What else could we think of as test case reduction?
– Failing traces of a program?
– “ ” in a distributed system?
– “ ” microservice application?
– Automatically generated test cases?
– ...

129

Generalizing Further

● What else could we think of as test case reduction?
– Failing traces of a program?
– “ ” in a distributed system?
– “ ” microservice application?
– Automatically generated test cases?

● The ability to treat the program as an oracle is also very powerful

130

Generalizing Further

● What else could we think of as test case reduction?
– Failing traces of a program?
– “ ” in a distributed system?
– “ ” microservice application?
– Automatically generated test cases?

● The ability to treat the program as an oracle is also very powerful
– We can get new data by running the program
– This can be combined with reinforcement learning to accomplish hard tasks

131

Generalizing Further

● What else could we think of as test case reduction?
– Failing traces of a program?
– “ ” in a distributed system?
– “ ” microservice application?
– Automatically generated test cases?

● The ability to treat the program as an oracle is also very powerful
– We can get new data by running the program
– This can be combined with reinforcement learning to accomplish hard tasks
– We saw this before when discussing test suites!

Example: Memory Safety Bugs

133

Example: Finding memory safety bugs

● Memory safety bugs are one of the most common sources of
security vulnerabilities

134

Example: Finding memory safety bugs

● Memory safety bugs are one of the most common sources of
security vulnerabilities

● Effects may only be visible long after invalid behavior
– This complicates comprehension & debugging

135

Example: Finding memory safety bugs

● Memory safety bugs are one of the most common sources of
security vulnerabilities

● Effects may only be visible long after invalid behavior
– This complicates comprehension & debugging

● Two main types of issues:
– Spatial – Out of bounds stack/heap/global accesses
– Temporal – Use after free

136

Example: Finding memory safety bugs

● Memory safety bugs are one of the most common sources of
security vulnerabilities

● Effects may only be visible long after invalid behavior
– This complicates comprehension & debugging

● Two main types of issues:
– Spatial – Out of bounds stack/heap/global accesses
– Temporal – Use after free

● We would like to automatically identify & provide assistance
with high precision and low overhead
– Suitable for testing & sometimes maybe deployment!

137

Example: Finding memory safety bugs

● Most common approach – track which regions of memory are valid
– During execution!
– Updated when new memory is allocated
– Checked when pointers are accessed
– With low overhead

138

Example: Finding memory safety bugs

● Most common approach – track which regions of memory are valid
– During execution!
– Updated when new memory is allocated
– Checked when pointers are accessed
– With low overhead

● Common implementations
– Valgrind – DBI based
– AddressSanitizer – static instrumentation based

139

Example: Finding memory safety bugs

● Most common approach – track which regions of memory are valid
– During execution!
– Updated when new memory is allocated
– Checked when pointers are accessed
– With low overhead

● Common implementations
– Valgrind – DBI based
– AddressSanitizer – static instrumentation based

Note, the implementation style affects
which bugs can be recognized!

Why?

140

AddressSanitizer

● Need to track which memory is valid & check efficiently...
● Big Picture:

– Replace calls to malloc & free

141

AddressSanitizer

● Need to track which memory is valid & check efficiently...
● Big Picture:

– Replace calls to malloc & free
– Poison memory: (create red zones)

142

AddressSanitizer

● Need to track which memory is valid & check efficiently...
● Big Picture:

– Replace calls to malloc & free
– Poison memory: (create red zones)

1) around malloced chunks

ptr = malloc(sizeof(MyStruct));

ptr

143

AddressSanitizer

● Need to track which memory is valid & check efficiently...
● Big Picture:

– Replace calls to malloc & free
– Poison memory: (create red zones)

1) around malloced chunks
2) when it is freed

free(ptr);

ptr

144

AddressSanitizer

● Need to track which memory is valid & check efficiently...
● Big Picture:

– Replace calls to malloc & free
– Poison memory: (create red zones)

1) around malloced chunks
2) when it is freed
3) around buffers and local variables

void foo() {
 int buffer[5];
 ...
}

buffer[0]

buffer[6]

145

AddressSanitizer

● Need to track which memory is valid & check efficiently...
● Big Picture:

– Replace calls to malloc & free
– Poison memory: (create red zones)

1) around malloced chunks
2) when it is freed
3) around buffers and local variables

– Access of poisoned memory causes an error

146

AddressSanitizer

● Need to track which memory is valid & check efficiently...
● Big Picture:

– Replace calls to malloc & free
– Poison memory: (create red zones)

1) around malloced chunks
2) when it is freed
3) around buffers and local variables

– Access of poisoned memory causes an error

*address = ...;

instrumentation ?

147

AddressSanitizer

● Need to track which memory is valid & check efficiently...
● Big Picture:

– Replace calls to malloc & free
– Poison memory: (create red zones)

1) around malloced chunks
2) when it is freed
3) around buffers and local variables

– Access of poisoned memory causes an error

*address = ...; If (IsPoisoned(address, size)) {
 ReportError(address, size, isWrite);
}
*address = ...

instrumentation

148

AddressSanitizer

● Need to track which memory is valid & check efficiently...
● Big Picture:

– Replace calls to malloc & free
– Poison memory: (create red zones)

1) around malloced chunks
2) when it is freed
3) around buffers and local variables

– Access of poisoned memory causes an error

● The tricky part is tracking & efficiently checking redzones.

149

AddressSanitizer

● Need to track which memory is valid & check efficiently...
● Big Picture:

– Replace calls to malloc & free
– Poison memory: (create red zones)

1) around malloced chunks
2) when it is freed
3) around buffers and local variables

– Access of poisoned memory causes an error

● The tricky part is tracking & efficiently checking redzones.
– Instrumenting every memory access is costly!

150

AddressSanitizer

● Need to track which memory is valid & check efficiently...
● Big Picture:

– Replace calls to malloc & free
– Poison memory: (create red zones)

1) around malloced chunks
2) when it is freed
3) around buffers and local variables

– Access of poisoned memory causes an error

● The tricky part is tracking & efficiently checking redzones.
– Instrumenting every memory access is costly!
– We must track all memory ... inside that same memory!

151

AddressSanitizer

● Need to track which memory is valid & check efficiently...
● Big Picture:

– Replace calls to malloc & free
– Poison memory: (create red zones)

1) around malloced chunks
2) when it is freed
3) around buffers and local variables

– Access of poisoned memory causes an error

● The tricky part is tracking & efficiently checking redzones.
– Instrumenting every memory access is costly!
– We must track all memory ... inside that same memory!

This kind of issue is common in dynamic analyses.

152

AddressSanitizer – Shadow Memory

Application Memory

Need to know whether any byte of
application memory is poisoned.

153

AddressSanitizer – Shadow Memory

Application Memory Shadow Memory

● We maintain 2 views on memory

154

AddressSanitizer – Shadow Memory

Application Memory Shadow Memory

● We maintain 2 views on memory

Shadow memory of the
shadow memory!

155

AddressSanitizer – Shadow Memory

Application Memory Shadow Memory

● We maintain 2 views on memory
● Shadow Memory is pervasive in dynamic analysis

– Can be thought of as a map containing analysis data

156

AddressSanitizer – Shadow Memory

Application Memory Shadow Memory

● We maintain 2 views on memory
● Shadow Memory is pervasive in dynamic analysis

– Can be thought of as a map containing analysis data
– For every bit/byte/word/chunk/allocation/page,

maintain information in a compact table

157

AddressSanitizer – Shadow Memory

Application Memory Shadow Memory

● We maintain 2 views on memory
● Shadow Memory is pervasive in dynamic analysis

– Can be thought of as a map containing analysis data
– For every bit/byte/word/chunk/allocation/page,

maintain information in a compact table

Where have you encountered this before?

158

AddressSanitizer – Shadow Memory

Application Memory Shadow Memory

● We maintain 2 views on memory
● Shadow Memory is pervasive in dynamic analysis

– Can be thought of as a map containing analysis data
– For every bit/byte/word/chunk/allocation/page,

maintain information in a compact table
– Common in runtime support, e.g. page tables

159

AddressSanitizer – Shadow Memory

● Designing efficient analyses (& shadow memory) often requires a
careful domain insight

Encoding & abstraction
efficiency strategies

160

AddressSanitizer – Shadow Memory

● Designing efficient analyses (& shadow memory) often requires a
careful domain insight

● NOTE: Heap allocated regions are N byte aligned (N usually 8)

161

AddressSanitizer – Shadow Memory

● Designing efficient analyses (& shadow memory) often requires a
careful domain insight

● NOTE: Heap allocated regions are N byte aligned (N usually 8)
– In an N byte region, only the first k may be addressable

k

162

AddressSanitizer – Shadow Memory

● Designing efficient analyses (& shadow memory) often requires a
careful domain insight

● NOTE: Heap allocated regions are N byte aligned (N usually 8)
– In an N byte region, only the first k may be addressable
– Every N bytes has only N+1 possible states

163

AddressSanitizer – Shadow Memory

● Designing efficient analyses (& shadow memory) often requires a
careful domain insight

● NOTE: Heap allocated regions are N byte aligned (N usually 8)
– In an N byte region, only the first k may be addressable
– Every N bytes has only N+1 possible states
– Map every N bytes to 1 shadow byte encoding state as a number

4

6
7
0

5

3

-1
1
2

164

AddressSanitizer – Shadow Memory

● Designing efficient analyses (& shadow memory) often requires a
careful domain insight

● NOTE: Heap allocated regions are N byte aligned (N usually 8)
– In an N byte region, only the first k may be addressable
– Every N bytes has only N+1 possible states
– Map every N bytes to 1 shadow byte encoding state as a number

All good = 0 All bad = -1 Partly good = # good

4

6
7
0

5

3

-1
1
2

165

AddressSanitizer – Shadow Memory

● Designing efficient analyses (& shadow memory) often requires a
careful domain insight

● NOTE: Heap allocated regions are N byte aligned (N usually 8)
– In an N byte region, only the first k may be addressable
– Every N bytes has only N+1 possible states
– Map every N bytes to 1 shadow byte encoding state as a number

● What does accessing shadow memory for an address look like? (N=8)

166

AddressSanitizer – Shadow Memory

● Designing efficient analyses (& shadow memory) often requires a
careful domain insight

● NOTE: Heap allocated regions are N byte aligned (N usually 8)
– In an N byte region, only the first k may be addressable
– Every N bytes has only N+1 possible states
– Map every N bytes to 1 shadow byte encoding state as a number

● What does accessing shadow memory for an address look like? (N=8)
– Preallocate a large table

167

AddressSanitizer – Shadow Memory

● Designing efficient analyses (& shadow memory) often requires a
careful domain insight

● NOTE: Heap allocated regions are N byte aligned (N usually 8)
– In an N byte region, only the first k may be addressable
– Every N bytes has only N+1 possible states
– Map every N bytes to 1 shadow byte encoding state as a number

● What does accessing shadow memory for an address look like? (N=8)
– Preallocate a large table
– Shadow = (address >> 3) + Offset

168

AddressSanitizer – Shadow Memory

● Designing efficient analyses (& shadow memory) often requires a
careful domain insight

● NOTE: Heap allocated regions are N byte aligned (N usually 8)
– In an N byte region, only the first k may be addressable
– Every N bytes has only N+1 possible states
– Map every N bytes to 1 shadow byte encoding state as a number

● What does accessing shadow memory for an address look like? (N=8)
– Preallocate a large table
– Shadow = (address >> 3) + Offset
– With PIE, Shadow = (address >> 3)

169

AddressSanitizer – Shadow Memory

● Designing efficient analyses (& shadow memory) often requires a
careful domain insight

● NOTE: Heap allocated regions are N byte aligned (N usually 8)
– In an N byte region, only the first k may be addressable
– Every N bytes has only N+1 possible states
– Map every N bytes to 1 shadow byte encoding state as a number

● What does accessing shadow memory for an address look like? (N=8)
– Preallocate a large table
– Shadow = (address >> 3) + Offset
– With PIE, Shadow = (address >> 3)

if (*(address>>3)) {
 ReportError(...);
}
*address = ...

170

AddressSanitizer – Shadow Memory

● Designing efficient analyses (& shadow memory) often requires a
careful domain insight

● NOTE: Heap allocated regions are N byte aligned (N usually 8)
– In an N byte region, only the first k may be addressable
– Every N bytes has only N+1 possible states
– Map every N bytes to 1 shadow byte encoding state as a number

● What does accessing shadow memory for an address look like? (N=8)
– Preallocate a large table
– Shadow = (address >> 3) + Offset
– With PIE, Shadow = (address >> 3)

if (*(address>>3)) {
 ReportError(...);
}
*address = ...

Now you can also see the reason
for the numerical encoding....

171

AddressSanitizer – Shadow Memory

shadow = address >> 3
state = *shadow
if (state != 0 && (state < (address & 7) + size)) {
 ReportError(...);
}
*address = ...

● Handling accesses of size < N (N=8)

172

AddressSanitizer – Shadow Memory

shadow = address >> 3
state = *shadow
if (state != 0 && (state < (address & 7) + size)) {
 ReportError(...);
}
*address = ...

● Handling accesses of size < N (N=8)

Careful construction of states can
make runtime checks efficient

173

AddressSanitizer - Evaluating

● In dynamic analyses, we care about both overheads & result quality

174

AddressSanitizer - Evaluating

● In dynamic analyses, we care about both overheads & result quality
● Overheads

– Need to determine what resources are being consumed

175

AddressSanitizer - Evaluating

● In dynamic analyses, we care about both overheads & result quality
● Overheads

– Need to determine what resources are being consumed
– Memory –

Shadow memory capacity is cheap, but accessed shadows matter

176

AddressSanitizer - Evaluating

● In dynamic analyses, we care about both overheads & result quality
● Overheads

– Need to determine what resources are being consumed
– Memory –

Shadow memory capacity is cheap, but accessed shadows matter
– Running time –

Can effectively be free for I/O bound projects
Up to 25x overheads on some benchmarks

177

AddressSanitizer - Evaluating

● In dynamic analyses, we care about both overheads & result quality
● Overheads

– Need to determine what resources are being consumed
– Memory –

Shadow memory capacity is cheap, but accessed shadows matter
– Running time –

Can effectively be free for I/O bound projects
Up to 25x overheads on some benchmarks

● Quality
– Precision & recall matter

Where will it miss bugs?
Where will it raise false alarms?

178

AddressSanitizer - Evaluating

● False negatives
– Computed pointers that are accidentally in bounds

179

AddressSanitizer - Evaluating

● False negatives
– Computed pointers that are accidentally in bounds
– Unaligned accesses that are partially out of bounds

180

AddressSanitizer - Evaluating

● False negatives
– Computed pointers that are accidentally in bounds
– Unaligned accesses that are partially out of bounds
– Use after frees with significant churn

Example: Comparing Executions

182

Why compare traces or executions?

● Understanding the differences between two executions
(& how some differences cause others)
can help explain program behavior

183

Why compare traces or executions?

● Understanding the differences between two executions
(& how some differences cause others)
can help explain program behavior

● Several tasks could be made simpler by trace comparison

184

Why compare traces or executions?

● Understanding the differences between two executions
(& how some differences cause others)
can help explain program behavior

● Several tasks could be made simpler by trace comparison
– Debugging regressions – old vs new

185

Why compare traces or executions?

● Understanding the differences between two executions
(& how some differences cause others)
can help explain program behavior

● Several tasks could be made simpler by trace comparison
– Debugging regressions – old vs new
– Validating patches – old vs new

186

Why compare traces or executions?

● Understanding the differences between two executions
(& how some differences cause others)
can help explain program behavior

● Several tasks could be made simpler by trace comparison
– Debugging regressions – old vs new
– Validating patches – old vs new
– Understanding automated repair – old vs new

187

Why compare traces or executions?

● Understanding the differences between two executions
(& how some differences cause others)
can help explain program behavior

● Several tasks could be made simpler by trace comparison
– Debugging regressions – old vs new
– Validating patches – old vs new
– Understanding automated repair – old vs new
– Debugging with concurrency – buggy vs nonbuggy schedules

188

Why compare traces or executions?

● Understanding the differences between two executions
(& how some differences cause others)
can help explain program behavior

● Several tasks could be made simpler by trace comparison
– Debugging regressions – old vs new
– Validating patches – old vs new
– Understanding automated repair – old vs new
– Debugging with concurrency – buggy vs nonbuggy schedules
– Malware analysis – malicious vs nonmalicious run

189

Why compare traces or executions?

● Understanding the differences between two executions
(& how some differences cause others)
can help explain program behavior

● Several tasks could be made simpler by trace comparison
– Debugging regressions – old vs new
– Validating patches – old vs new
– Understanding automated repair – old vs new
– Debugging with concurrency – buggy vs nonbuggy schedules
– Malware analysis – malicious vs nonmalicious run
– Reverse engineering – desired behavior vs undesirable

190

How it might look

Correct Buggy

191

How it might look

x was 5 instead of 3

Correct Buggy

192

How it might look

x was 5 instead of 3

So y was 2 instead of 7

Correct Buggy

193

How it might look

x was 5 instead of 3

So y was 2 instead of 7

So the TRUE branch executed
instead of the FALSE branch

Correct Buggy

194

How it might look

x was 5 instead of 3

So y was 2 instead of 7

So the TRUE branch executed
instead of the FALSE branch
So the update of z was skipped

Correct Buggy

195

How it might look

x was 5 instead of 3

So y was 2 instead of 7

So the TRUE branch executed
instead of the FALSE branch
So the update of z was skipped

So the incorrect value of z was printed

Correct Buggy

196

How it might look

x was 5 instead of 3

So y was 2 instead of 7

So the TRUE branch executed
instead of the FALSE branch
So the update of z was skipped

So the incorrect value of z was printed

Correct Buggy What do we need?
● locations
● state
● flow
● causation

197

How it might look

x was 5 instead of 3

So y was 2 instead of 7

So the TRUE branch executed
instead of the FALSE branch
So the update of z was skipped

So the incorrect value of z was printed

Correct Buggy What do we need?
● locations
● state
● flow
● causation

198

How it might look

x was 5 instead of 3

So y was 2 instead of 7

So the TRUE branch executed
instead of the FALSE branch
So the update of z was skipped

So the incorrect value of z was printed

Correct Buggy What do we need?
● locations
● state
● flow
● causation

199

How it might look

x was 5 instead of 3

So y was 2 instead of 7

So the TRUE branch executed
instead of the FALSE branch
So the update of z was skipped

So the incorrect value of z was printed

Correct Buggy What do we need?
● locations
● state
● flow
● causation

200

How it might look

x was 5 instead of 3

So y was 2 instead of 7

So the TRUE branch executed
instead of the FALSE branch
So the update of z was skipped

So the incorrect value of z was printed

Correct Buggy What do we need?
● locations
● state
● flow
● causation

201

How it might look

x was 5 instead of 3

So y was 2 instead of 7

So the TRUE branch executed
instead of the FALSE branch
So the update of z was skipped

So the incorrect value of z was printed

Correct Buggy What do we need?
● locations
● state
● flow
● causation

We can construct this backward
from a point of failure/difference

202

So why not just...

● Traces can be viewed as sequences....
– Why not just do LCS based sequence alignment?

203

So why not just...

● Traces can be viewed as sequences....
– Why not just do LCS based sequence alignment?

def foo(int c):
 if c:
 while bar():
 ...

foo(...)
baz(...)
foo(...)

204

So why not just...

● Traces can be viewed as sequences....
– Why not just do LCS based sequence alignment?

def foo(int c):
 if c:
 while bar():
 ...

foo(...)
baz(...)
foo(...)

foo()

baz()

foo()

205

So why not just...

● Traces can be viewed as sequences....
– Why not just do LCS based sequence alignment?

def foo(int c):
 if c:
 while bar():
 ...

foo(...)
baz(...)
foo(...)

foo()

baz()

foo()

foo()

baz()

foo()

206

So why not just...

● Traces can be viewed as sequences....
– Why not just do LCS based sequence alignment?

def foo(int c):
 if c:
 while bar():
 ...

foo(...)
baz(...)
foo(...)

foo()

baz()

foo()

foo()

baz()

foo()

What is marked as different?

207

foo()

foo()

So why not just...

● Traces can be viewed as sequences....
– Why not just do LCS based sequence alignment?

def foo(int c):
 if c:
 while bar():
 ...

foo(...)
baz(...)
foo(...)

foo()

baz()

baz()

foo()

What is marked as different?

208

baz()

baz()

So why not just...

● Traces can be viewed as sequences....
– Why not just do LCS based sequence alignment?

def foo(int c):
 if c:
 while bar():
 ...

foo(...)
baz(...)
foo(...)

foo()

foo()

foo()

foo()

What is marked as different?

What is intuitively different?

209

baz()

baz()

So why not just...

● Traces can be viewed as sequences....
– Why not just do LCS based sequence alignment?

def foo(int c):
 if c:
 while bar():
 ...

foo(...)
baz(...)
foo(...)

foo()

foo()

foo()

foo()

What is marked as different?

What is intuitively different?

210

baz()

baz()

So why not just...

● Traces can be viewed as sequences....
– Why not just do LCS based sequence alignment?

def foo(int c):
 if c:
 while bar():
 ...

foo(...)
baz(...)
foo(...)

foo()

foo()

foo()

foo()

What is marked as different?

What is intuitively different?

Execution comparison must
account for what a program

means and does!

211

The big picture

● Fundamentally, execution comparison needs to account for

212

The big picture

● Fundamentally, execution comparison needs to account for
– Structure – How is a program organized?

213

The big picture

● Fundamentally, execution comparison needs to account for
– Structure – How is a program organized?
– Value – What are the values in the different executions?

214

The big picture

● Fundamentally, execution comparison needs to account for
– Structure – How is a program organized?
– Value – What are the values in the different executions?
– Semantics – How is the meaning of the program affected by the differences?

215

The big picture

● Fundamentally, execution comparison needs to account for
– Structure
– Value
– Semantics

● We can attack these through

216

The big picture

● Fundamentally, execution comparison needs to account for
– Structure
– Value
– Semantics

● We can attack these through
– Temporal alignment

● What parts of the trace correspond?

217

The big picture

● Fundamentally, execution comparison needs to account for
– Structure
– Value
– Semantics

● We can attack these through
– Temporal alignment

● What parts of the trace correspond?
– Spatial alignment

● What variables & values correspond across traces?

218

The big picture

● Fundamentally, execution comparison needs to account for
– Structure
– Value
– Semantics

● We can attack these through
– Temporal alignment

● What parts of the trace correspond?
– Spatial alignment

● What variables & values correspond across traces?
– Slicing

● How do differences transitively flow through a program?

219

The big picture

● Fundamentally, execution comparison needs to account for
– Structure
– Value
– Semantics

● We can attack these through
– Temporal alignment

● What parts of the trace correspond?
– Spatial alignment

● What variables & values correspond across traces?
– Slicing

● How do differences transitively flow through a program?
– Causality testing

● Which differences actually induce difference behavior?

220

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

i2

i1

?

221

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

i2

i1

?

222

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

foo()

i2

i1

?

223

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

foo()

i2

i1

?

224

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

foo()

i2

i1

?

225

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

foo()

i2

i1

?

226

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

foo()

i2

i1

?

227

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

foo()

i2

i1

?

228

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

foo()

i2

i1

?

229

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

foo()

i2

i1

?

230

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

foo()
Position along a path can be
maintained via a counter

i2

i1

?

231

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

foo()
Position along a path can be
maintained via a counter

Only need to increment along
1) back edges
2) function callsi2

i1

?

232

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

● Suppose that we know the programs are acyclic?

i2

i1

?

233

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

● Suppose that we know the programs are acyclic?

i2

i1

?

234

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

● Suppose that we know the programs are acyclic?
The position in the DAG
relates the paths

i2

i1

?

235

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

● Suppose that we know the programs are acyclic?
● Now consider the case where cycles can occur... [Sumner, ASE 2013]

How can we extend the
acyclic case?

i2

i1

?

236

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

● Suppose that we know the programs are acyclic?
● Now consider the case where cycles can occur... [Sumner, ASE 2013]

How can we extend the
acyclic case?

We can unwind the loop to make it logically acyclic

i2

i1

?

237

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

● Suppose that we know the programs are acyclic?
● Now consider the case where cycles can occur... [Sumner, ASE 2013]

How can we extend the
acyclic case?

i2

i1

?

238

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

● Suppose that we know the programs are acyclic?
● Now consider the case where cycles can occur... [Sumner, ASE 2013]

How can we extend the
acyclic case?

i2

i1

?

239

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

● Suppose that we know the programs are acyclic?
● Now consider the case where cycles can occur... [Sumner, ASE 2013]

How can we extend the
acyclic case?

...

i2

i1

?

240

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

● Suppose that we know the programs are acyclic?
● Now consider the case where cycles can occur... [Sumner, ASE 2013]

How can we extend the
acyclic case?

...

These are different iterations of one loop.
A counter for each active loop suffices (mostly).

i2

i1

?

241

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

● Suppose that we know the programs are acyclic?
● Now consider the case where cycles can occur... [Sumner, ASE 2013]

How can we extend the
acyclic case?

...

1 counter per active loop
+ the call stack disambiguates!

i2

i1

?

242

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

● Suppose that we know the programs are acyclic?
● Now consider the case where cycles can occur... [Sumner, ASE 2013]

– Can we efficiently represent this?

i2

i1

?

243

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

● Suppose that we know the programs are acyclic?
● Now consider the case where cycles can occur... [Sumner, ASE 2013]

– Can we efficiently represent this?

Call stack/context Iteration stack Instruction ID
i2

i1

?

244

Temporal Alignment

● Given i1 in T1 and i2 in T2,
– when should we say that they correspond? [Xin, PLDI 2008][Sumner, ASE 2013]
– how can we compute such relations?

● In the simplest case T1 and T2 may follow the same path
[Mellor-Crummey, ASPLOS 1989]

● Suppose that we know the programs are acyclic?
● Now consider the case where cycles can occur... [Sumner, ASE 2013]

– Can we efficiently represent this?

Call stack/context Iteration stack Instruction ID

Can be encoded/inferred Can be inferred
i2

i1

?

245

Spatial Alignment

● We must also ask what it means to compare program state across
executions

246

Spatial Alignment

● We must also ask what it means to compare program state across
executions
– How can we compare two integers X and Y?

3 != 5

247

Spatial Alignment

● We must also ask what it means to compare program state across
executions
– How can we compare two integers X and Y?
– How can we compare two pointers A and B?

0xdeadbeef in T1 = 0xcafef00d in T2?

248

Spatial Alignment

● We must also ask what it means to compare program state across
executions
– How can we compare two integers X and Y?
– How can we compare two pointers A and B?

0xdeadbeef in T1 = 0xcafef00d in T2?
If you allocated other stuff in only one run,

this can be true even without ASLR!

249

Spatial Alignment

● We must also ask what it means to compare program state across
executions
– How can we compare two integers X and Y?
– How can we compare two pointers A and B?
– How can we compare allocated regions on the heap?

Should they even be compared?!?

250

Spatial Alignment

● We must also ask what it means to compare program state across
executions
– How can we compare two integers X and Y?
– How can we compare two pointers A and B?
– How can we compare allocated regions on the heap?

Should they even be compared?!?

● In practice, comparing state across executions requires comparing
memory graphs
– We need a way to identify corresponding nodes (state elements)

251

Spatial Alignment

● We must also ask what it means to compare program state across
executions
– How can we compare two integers X and Y?
– How can we compare two pointers A and B?
– How can we compare allocated regions on the heap?

Should they even be compared?!?

● In practice, comparing state across executions requires comparing
memory graphs
– We need a way to identify corresponding nodes (state elements)

A B C

A BT1

T2

252

Spatial Alignment

● We must also ask what it means to compare program state across
executions
– How can we compare two integers X and Y?
– How can we compare two pointers A and B?
– How can we compare allocated regions on the heap?

Should they even be compared?!?

● In practice, comparing state across executions requires comparing
memory graphs
– We need a way to identify corresponding nodes (state elements)

A B C

A BT1

T2

What are the differences?

253

Spatial Alignment

● We must also ask what it means to compare program state across
executions
– How can we compare two integers X and Y?
– How can we compare two pointers A and B?
– How can we compare allocated regions on the heap?

Should they even be compared?!?

● In practice, comparing state across executions requires comparing
memory graphs
– We need a way to identify corresponding nodes (state elements)

A B C

A BT1

T2

What are the differences?
1) list.append(value++)
2) if c:
3) list.append(value++)
4) list.append(value++)

254

Spatial Alignment

● We must also ask what it means to compare program state across
executions
– How can we compare two integers X and Y?
– How can we compare two pointers A and B?
– How can we compare allocated regions on the heap?

Should they even be compared?!?

● In practice, comparing state across executions requires comparing
memory graphs
– We need a way to identify corresponding nodes (state elements)

A B C

A BT1

T2

What are the differences?
1) list.append(value++)
2) if c:
3) list.append(value++)
4) list.append(value++)

1

1

255

Spatial Alignment

● We must also ask what it means to compare program state across
executions
– How can we compare two integers X and Y?
– How can we compare two pointers A and B?
– How can we compare allocated regions on the heap?

Should they even be compared?!?

● In practice, comparing state across executions requires comparing
memory graphs
– We need a way to identify corresponding nodes (state elements)

A B C

A BT1

T2

What are the differences?
1) list.append(value++)
2) if c:
3) list.append(value++)
4) list.append(value++)

1

1 3

256

Spatial Alignment

● We must also ask what it means to compare program state across
executions
– How can we compare two integers X and Y?
– How can we compare two pointers A and B?
– How can we compare allocated regions on the heap?

Should they even be compared?!?

● In practice, comparing state across executions requires comparing
memory graphs
– We need a way to identify corresponding nodes (state elements)

A B C

A BT1

T2

What are the differences?
1) list.append(value++)
2) if c:
3) list.append(value++)
4) list.append(value++)

1

1 3

4

4

257

Spatial Alignment

● We must also ask what it means to compare program state across
executions
– How can we compare two integers X and Y?
– How can we compare two pointers A and B?
– How can we compare allocated regions on the heap?

Should they even be compared?!?

● In practice, comparing state across executions requires comparing
memory graphs
– We need a way to identify corresponding nodes (state elements)

A B C

A BT1

T2

What are the differences?
1) list.append(value++)
2) if c:
3) list.append(value++)
4) list.append(value++)

1

1 3

4

4

258

Spatial Alignment

● We must also ask what it means to compare program state across
executions
– How can we compare two integers X and Y?
– How can we compare two pointers A and B?
– How can we compare allocated regions on the heap?

Should they even be compared?!?

● In practice, comparing state across executions requires comparing
memory graphs
– We need a way to identify corresponding nodes (state elements)

A B C

A BT1

T2

What are the differences?
1) list.append(value++)
2) if c:
3) list.append(value++)
4) list.append(value++)

1

1 3

4

4

259

Spatial Alignment

● We must also ask what it means to compare program state across
executions
– How can we compare two integers X and Y?
– How can we compare two pointers A and B?
– How can we compare allocated regions on the heap?

Should they even be compared?!?

● In practice, comparing state across executions requires comparing
memory graphs
– We need a way to identify corresponding nodes (state elements)

● Again, the semantics of the program dictate the solution
– Identify heap allocations by the aligned time of allocation

A B C

A BT1

T2

1

1 3

4

4

260

Dual Slicing

● Now we can
– Identify corresponding times across executions
– Identify & compare corresponding state at those times

261

Dual Slicing

● Now we can
– Identify corresponding times across executions
– Identify & compare corresponding state at those times

● We can use these to enhance dynamic slicing by being aware of
differences! (called dual slicing)

262

Dual Slicing

● Now we can
– Identify corresponding times across executions
– Identify & compare corresponding state at those times

● We can use these to enhance dynamic slicing by being aware of
differences! (called dual slicing)
– Based on classic dynamic slicing
– Include transitive dependencies that differ or exist in only 1 execution

263

Dual Slicing

● Now we can
– Identify corresponding times across executions
– Identify & compare corresponding state at those times

● We can use these to enhance dynamic slicing by being aware of
differences! (called dual slicing)
– Based on classic dynamic slicing
– Include transitive dependencies that differ or exist in only 1 execution

1)x 1←

2)y 1←

3)print(x+y)

1)x 0←

2)y 1←

3)print(x+y)3

2

1

3

2

1

0
1 1

 1

264

Dual Slicing

● Now we can
– Identify corresponding times across executions
– Identify & compare corresponding state at those times

● We can use these to enhance dynamic slicing by being aware of
differences! (called dual slicing)
– Based on classic dynamic slicing
– Include transitive dependencies that differ or exist in only 1 execution

1)x 1←

2)y 1←

3)print(x+y)

1)x 0←

2)y 1←

3)print(x+y)3

2

1

3

2

1

0
1 1

 1

265

Dual Slicing

● Now we can
– Identify corresponding times across executions
– Identify & compare corresponding state at those times

● We can use these to enhance dynamic slicing by being aware of
differences! (called dual slicing)
– Based on classic dynamic slicing
– Include transitive dependencies that differ or exist in only 1 execution

1)x 1←

2)y 1←

3)print(x+y)

1)x 0←

2)y 1←

3)print(x+y)3

2

1

3

2

1

3

1

0
1 1

 10 1

266

Dual Slicing

● The differences in dependencies capture multiple kinds of information

267

Dual Slicing

● The differences in dependencies capture multiple kinds of information
– Value-only differences

1

0 2

1

 1

3

2

3

268

Dual Slicing

● The differences in dependencies capture multiple kinds of information
– Value-only differences
– Provenance/Source differences

1

0 2

1

 1
3

2

3

269

Dual Slicing

● The differences in dependencies capture multiple kinds of information
– Value-only differences
– Provenance/Source differences
– Missing/Extra behavior

4

1

0

4

2

1

 1
3

270

Dual Slicing

● The differences in dependencies capture multiple kinds of information
– Value-only differences
– Provenance/Source differences
– Missing/Extra behavior

● Recall: Dynamic slicing could not handle execution omission,
but dual slicing can!

271

Dual Slicing

● The differences in dependencies capture multiple kinds of information
– Value-only differences
– Provenance/Source differences
– Missing/Extra behavior

● Recall: Dynamic slicing could not handle execution omission,
but dual slicing can!

● Dual slices can be effective for concurrent debugging & exploit analysis
[Weeratunge, ISSTA 2010][Johnson, S&P 2011]

272

Adding Causation

● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences

[Ko, ICSE 2008]
Correct Buggy

https://faculty.washington.edu/ajko/papers/Ko2008JavaWhyline.pdf

273

Adding Causation

● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences

[Ko, ICSE 2008]
– But they may still contain extra information/noise...

274

Adding Causation

● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences

[Ko, ICSE 2008]
– But they may still contain extra information/noise...

1) x = ...
2) y = ...
3) if x + y > 0:
4) z = 0
5) else:
6) z = 1
7) print(z)

275

Adding Causation

● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences

[Ko, ICSE 2008]
– But they may still contain extra information/noise...

1) x = ...
2) y = ...
3) if x + y > 0:
4) z = 0
5) else:
6) z = 1
7) print(z)

Correct
x = 10
y = -1
True
z = 0

“0”

276

Adding Causation

● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences

[Ko, ICSE 2008]
– But they may still contain extra information/noise...

1) x = ...
2) y = ...
3) if x + y > 0:
4) z = 0
5) else:
6) z = 1
7) print(z)

Correct
x = 10 x = 0
y = -1 y = -2
True False
z = 0

z = 1
“0” “1”

Buggy

277

Adding Causation

● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences

[Ko, ICSE 2008]
– But they may still contain extra information/noise...

1) x = ...
2) y = ...
3) if x + y > 0:
4) z = 0
5) else:
6) z = 1
7) print(z)

11

33

77

4

Correct Buggy

6

2 2
Correct
x = 10 x = 0
y = -1 y = -2
True False
z = 0

z = 1
“0” “1”

Buggy

278

Adding Causation

● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences

[Ko, ICSE 2008]
– But they may still contain extra information/noise...

1) x = ...
2) y = ...
3) if x + y > 0:
4) z = 0
5) else:
6) z = 1
7) print(z)

11

33

77

4

Correct Buggy

6

2 2
Correct
x = 10 x = 0
y = -1 y = -2
True False
z = 0

z = 1
“0” “1”

Buggy

279

Adding Causation

● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences

[Ko, ICSE 2008]
– But they may still contain extra information/noise...

1) x = ...
2) y = ...
3) if x + y > 0:
4) z = 0
5) else:
6) z = 1
7) print(z)

11

33

77

4

Correct Buggy

6

2 2
Correct
x = 10 x = 0
y = -1 y = -2
True False
z = 0

z = 1
“0” “1”

Buggy

280

Adding Causation

● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences

[Ko, ICSE 2008]
– But they may still contain extra information/noise...

1) x = ...
2) y = ...
3) if x + y > 0:
4) z = 0
5) else:
6) z = 1
7) print(z)

11

33

77

4

Correct Buggy

6

2 2
Correct
x = 10 x = 0
y = -1 y = -2
True False
z = 0

z = 1
“0” “1”

Buggy

281

Adding Causation

● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences

[Ko, ICSE 2008]
– But they may still contain extra information/noise...

1) x = ...
2) y = ...
3) if x + y > 0:
4) z = 0
5) else:
6) z = 1
7) print(z)

11

33

77

4

Correct Buggy

6

2 2
Correct
x = 10 x = 0
y = -1 y = -2
True False
z = 0

z = 1
“0” “1”

Buggy

282

Adding Causation

● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences

[Ko, ICSE 2008]
– But they may still contain extra information/noise...

1) x = ...
2) y = ...
3) if x + y > 0:
4) z = 0
5) else:
6) z = 1
7) print(z)

11

33

77

4

Correct Buggy

6

2 2
Correct
x = 10 x = 0
y = -1 y = -2
True False
z = 0

z = 1
“0” “1”

Buggy
Dual slicing captures differences, not causes.

What does that mean here?

283

Adding Causation

● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences

[Ko, ICSE 2008]
– But they may still contain extra information/noise...

1) x = ...
2) y = ...
3) if x + y > 0:
4) z = 0
5) else:
6) z = 1
7) print(z)

11

33

77

4

Correct Buggy

6

2 2
Correct
x = 10 x = 0
y = -1 y = -2
True False
z = 0

z = 1
“0” “1”

Buggy

284

Adding Causation

● Now we can produce explanations exactly like our example!
– Can answer “Why” and “Why not” questions about behavior & differences

[Ko, ICSE 2008]
– But they may still contain extra information/noise...

1) x = ...
2) y = ...
3) if x + y > 0:
4) z = 0
5) else:
6) z = 1
7) print(z)

11

33

77

4

Correct Buggy

6

2 2
Correct
x = 10 x = 0
y = -1 y = -2
True False
z = 0

z = 1
“0” “1”

Buggy

The cost of these extra edges is high in practice!
All transitive dependencies...

285

Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research

286

Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

1

3

7

4

E1

2
1

3

7

4

E2

287

Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred 1

3

7

4

E1

2
1

3

7

4

E2

288

Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred
– Minimize the “# steps”?

1

3

7

4

E1

2
1

3

7

4

E2

289

Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred
– Minimize the “# steps”?
– Minimize the “# dependencies”?

1

3

7

4

E1

2
1

3

7

4

E2

290

Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred
– Minimize the “# steps”?
– Minimize the “# dependencies”?

1

3

7

4

E1

2
1

3

7

4

E2

What big challenges do you see with
these 2 approaches?

291

Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred
– Minimize the “# steps”?
– Minimize the “# dependencies”?
– Minimize the “# local dependencies”?

1

3

7

4

E1

2
1

3

7

4

E2

292

Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred
– Minimize the “# steps”?
– Minimize the “# dependencies”?
– Minimize the “# local dependencies”?

1

3

7

4

E1

2
1

3

7

4

E2

argmins∈sd i|sd|
∧E1[sd (E2)i]→sd (E2)i+1

∧E2[sd (E1)i]→sd (E1)i+1

293

Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred
– Minimize the “# steps”?
– Minimize the “# dependencies”?
– Minimize the “# local dependencies”?

1

3

7

4

E1

2
1

3

7

4

E2

argmins∈sd i|sd|
∧E1[sd (E2)i]→sd (E2)i+1

∧E2[sd (E1)i]→sd (E1)i+1

294

Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred
– Minimize the “# steps”?
– Minimize the “# dependencies”?
– Minimize the “# local dependencies”?

1

3

7

4

E1

2
1

3

7

4

E2

295

Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred
– Minimize the “# steps”?
– Minimize the “# dependencies”?
– Minimize the “# local dependencies”?

1

7

E1

2
3
4

1

3

7

4

E2

296

Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred
– Minimize the “# steps”?
– Minimize the “# dependencies”?
– Minimize the “# local dependencies”?

1

7

E1

2
3
4

1

3

7

4

E2

297

Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred
– Minimize the “# steps”?
– Minimize the “# dependencies”?
– Minimize the “# local dependencies”?

1

3

7

4

E1
1

3

7

4

E2

298

Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred
– Minimize the “# steps”?
– Minimize the “# dependencies”?
– Minimize the “# local dependencies”?

● There are currently unknown trade offs between
tractability, intuitiveness, and correctness

1

3

7

4

E1

2
1

3

7

4

E2

299

Adding Causation

● So what would we want an explanation to contain?
– This is an area with unsolved problems & open research
– What does it mean for one explanation to be better than another?

● There are several things we could consider
– In general, simpler explanations are preferred
– Minimize the “# steps”?
– Minimize the “# dependencies”?
– Minimize the “# local dependencies”?

● There are currently unknown trade offs between
tractability, intuitiveness, and correctness

1

3

7

4

E1

2
1

3

7

4

E2

Even local blame is actually challenging

300

Adding Causation

● Causation is often framed via “alternate worlds” & “what if” questions...
– We can answer these causality questions by running experiments!

What Should We Blame?

?

Trial

What Should We Blame?

?

Trial

What Should We Blame?

x = 5
y = 4
z = 3

x = 5
y = 4
z = 1

y = 4

?

Trial

What Should We Blame?

x = 5
y = 4
z = 3

x = 5
y = 4
z = 1

y = 4

?

Trial

What Should We Blame?

x = 5
y = 4
z = 3

x = 5
y = 4
z = 1

y = 4

?

Trial

What does this patched run even mean?

x ← 1
y ← 3
z ← 6
if False:

else: y ← 4
print(4)

Example – Altered Meaning

1)x ← input()
2)y ← input()
3)z ← input()
4)if y+z > 10:
5) y ← 5
6)else: y ← y+1
7)print(y)

x ← 0
y ← 7
z ← 3
if False:

else: y ← 8
print(8)

CorrectBuggy

Example – Altered Meaning

What should we blame here?

1)x ← input()
2)y ← input()
3)z ← input()
4)if y+z > 10:
5) y ← 5
6)else: y ← y+1
7)print(y)

x ← 0
y ← 7
z ← 3
if False:

else: y ← 8
print(8)

x ← 1
y ← 3
z ← 6
if False:

else: y ← 4
print(4)

CorrectBuggy

x ← 0
y ← 7
z ← 3
if False:

else: y ← 8
print(8)

Example – Altered Meaning

1)x ← input()
2)y ← input()
3)z ← input()
4)if y+z > 10:
5) y ← 5
6)else: y ← y+1
7)print(y)

x ← 1
y ← 3
z ← 6
if False:

else: y ← 4
print(4)

CorrectBuggy Trial

x ← 0
y ← 7
z ← 3
if False:

else: y ← 8
print(8)

x ← 0
y ← 7
z ← 3

Example – Altered Meaning

1)x ← input()
2)y ← input()
3)z ← input()
4)if y+z > 10:
5) y ← 5
6)else: y ← y+1
7)print(y)

x ← 1
y ← 3
z ← 6
if False:

else: y ← 4
print(4)

CorrectBuggy Trial

x ← 0
y ← 7
z ← 3
if False:

else: y ← 8
print(8)

x ← 0
y ← 7
z ← 3
if False:

else: y←8
print(8)

Example – Altered Meaning

1)x ← input()
2)y ← input()
3)z ← input()
4)if y+z > 10:
5) y ← 5
6)else: y ← y+1
7)print(y)

x ← 1
y ← 3
z ← 6
if False:

else: y ← 4
print(4)

CorrectBuggy Trial

x ← 0
y ← 7
z ← 3
if False:

else: y ← 8
print(8)

y ← 7

Example – Altered Meaning

1)x ← input()
2)y ← input()
3)z ← input()
4)if y+z > 10:
5) y ← 5
6)else: y ← y+1
7)print(y)

x ← 1
y ← 3
z ← 6
if False:

else: y ← 4
print(4)

CorrectBuggy Trial

x ← 0
y ← 7
z ← 3
if False:

else: y ← 8
print(8)

x ← 1
y ← 7
z ← 6

Example – Altered Meaning

1)x ← input()
2)y ← input()
3)z ← input()
4)if y+z > 10:
5) y ← 5
6)else: y ← y+1
7)print(y)

x ← 1
y ← 3
z ← 6
if False:

else: y ← 4
print(4)

CorrectBuggy Trial

x ← 0
y ← 7
z ← 3
if False:

else: y ← 8
print(8)

x ← 1
y ← 7
z ← 6
if True:
 y ← 5

print(5)

Example – Altered Meaning

1)x ← input()
2)y ← input()
3)z ← input()
4)if y+z > 10:
5) y ← 5
6)else: y ← y+1
7)print(y)

x ← 1
y ← 3
z ← 6
if False:

else: y ← 4
print(4)

CorrectBuggy Trial

x ← 1
y ← 7
z ← 6
if True:
 y ← 5

print(5)

Example – Altered Meaning

1)x ← input()
2)y ← input()
3)z ← input()
4)if y+z > 10:
5) y ← 5
6)else: y ← y+1
7)print(y)

● New control flow unlike original runs
● Occurs in large portion of real bugs

x ← 0
y ← 7
z ← 3
if False:

else: y ← 8
print(8)

x ← 1
y ← 3
z ← 6
if False:

else: y ← 4
print(4)

CorrectBuggy Trial

Dual Slicing

1)x ← input()
2)y ← input()
3)z ← input()
4)if y+z > 10:
5) y ← 5
6)else: y ← y+1
7)print(y)

7
6

2

2)y ← input()
6)y ← y+1
7)print(y)

Extract

x ← 0
y ← 7
z ← 3
if False:

else: y ← 8
print(8)

x ← 1
y ← 3
z ← 6
if False:

else: y ← 4
print(4)

CorrectBuggy

y ← 3
y ← 4
print(4)

Example – Extracted Meaning

y ← 7
y ← 8
print(8)

2)y ← input()
6)y ← y+1
7)print(y)

CorrectBuggy Trial

y ← 7 y ← 7
y ← 4
print(4)

Example – Extracted Meaning

y ← 7
y ← 8
print(8)

2)y ← input()
6)y ← y+1
7)print(y)

CorrectBuggy Trial

y ← 8
print(8)

y ← 7 y ← 7
y ← 4
print(4)

Example – Extracted Meaning

y ← 7
y ← 8
print(8)

2)y ← input()
6)y ← y+1
7)print(y)

Trial can now correctly blame y

CorrectBuggy Trial

319

Adding Causation

● Causation is often framed via “alternate worlds” & “what if” questions...
– We can answer these causality questions by running experiments!

● We perform these causality tests in both directions in order to collect
symmetric information

320

Adding Causation

● Causation is often framed via “alternate worlds” & “what if” questions...
– We can answer these causality questions by running experiments!

● We perform these causality tests in both directions in order to collect
symmetric information
– How did the buggy run behave differently than the correct one?
– How did the correct run behave differently than the buggy one?
– These questions do not have the same answer!

321

Adding Causation

● Causation is often framed via “alternate worlds” & “what if” questions...
– We can answer these causality questions by running experiments!

● We perform these causality tests in both directions in order to collect
symmetric information
– How did the buggy run behave differently than the correct one?
– How did the correct run behave differently than the buggy one?
– These questions do not have the same answer!

● In practice, there are additional issues,
and even defining causation in this context needs further research.

322

Adding Causation

● Causation is often framed via “alternate worlds” & “what if” questions...
– We can answer these causality questions by running experiments!

● We perform these causality tests in both directions in order to collect
symmetric information
– How did the buggy run behave differently than the correct one?
– How did the correct run behave differently than the buggy one?
– These questions do not have the same answer!

● In practice, there are additional issues,
and even defining causation in this context needs further research.
– Did we want to blame only y in the example?
– Pruning blame on y is necessary in many real cases, can they be refined?
– Can it be done without execution? With a stronger statistical basis?

Summing Up

324

Key Challenges

● Identifying the information you care about
– Dynamic dependence? Valid memory? Just the execution outcome?

325

Key Challenges

● Identifying the information you care about
– Dynamic dependence? Valid memory? Just the execution outcome?

● Collecting that information efficiently
– abstraction, encoding, compression, sampling, ...

326

Key Challenges

● Identifying the information you care about
– Dynamic dependence? Valid memory? Just the execution outcome?

● Collecting that information efficiently
– abstraction, encoding, compression, sampling, ...

● Selecting which executions to analyze
– Existing test suite? Always on runtime? Directed test generation?
– How does underapproximation affect your conclusions?
– Can you still achieve your objective in spite of it?

327

Key Challenges

● Identifying the information you care about
– Dynamic dependence? Valid memory? Just the execution outcome?

● Collecting that information efficiently
– abstraction, encoding, compression, sampling, ...

● Selecting which executions to analyze
– Existing test suite? Always on runtime? Directed test generation?
– How does underapproximation affect your conclusions?
– Can you still achieve your objective in spite of it?

● Doing some of the work ahead of time
– What can you precompute to improve all of the above?

328

Summary

● Analyze the actual/observed behaviors of a program

329

Summary

● Analyze the actual/observed behaviors of a program
● Modify or use the program’s behavior to collect information

330

Summary

● Analyze the actual/observed behaviors of a program
● Modify or use the program’s behavior to collect information
● Analyze the information online or offline

331

Summary

● Analyze the actual/observed behaviors of a program
● Modify or use the program’s behavior to collect information
● Analyze the information online or offline
● The precise configuration must be tailored to the objectives & insights

– Compiled vs DBI
– Online vs Postmortem
– Compressed, Encoded, Samples, ...
– ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299
	Slide 300
	Slide 301
	Slide 302
	Slide 303
	Slide 304
	Slide 305
	Slide 306
	Slide 307
	Slide 308
	Slide 309
	Slide 310
	Slide 311
	Slide 312
	Slide 313
	Slide 314
	Slide 315
	Slide 316
	Slide 317
	Slide 318
	Slide 319
	Slide 320
	Slide 321
	Slide 322
	Slide 323
	Slide 324
	Slide 325
	Slide 326
	Slide 327
	Slide 328
	Slide 329
	Slide 330
	Slide 331

