
Symbolic Execution

CMPT 745
Software Engineering

Nick Sumner
wsumner@sfu.ca

Symbolic Execution

● As we have seen, building constraints that model code can be useful

Symbolic Execution

● As we have seen, building constraints that model code can be useful

● With care, we can even try to generate all inputs that are
“interesting”

Symbolic Execution

● As we have seen, building constraints that model code can be useful

● With care, we can even try to generate all inputs that are
“interesting”

● Techniques for supporting this are known as symbolic execution
– (SymEx)

5

Symbolic Execution

● An approach for generating test inputs.

x input()←
y input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

6

Symbolic Execution

● An approach for generating test inputs.

● Replace the concrete inputs of a program
with symbolic values

x ← symbolic()
y ← symbolic()

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

7

Symbolic Execution

● An approach for generating test inputs.

● Replace the concrete inputs of a program
with symbolic values

● Execute along a path using the symbolic
values to build a formula over the input
symbols.

x symbolic()←
y symbolic()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

8

x symbolic()←
y symbolic()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

Symbolic Execution

● An approach for generating test inputs.

● Replace the concrete inputs of a program
with symbolic values

● Execute along a path using the symbolic
values to build a formula over the input
symbols.

x = 2*y
y > 10

Path Constraint

9

x symbolic()←
y symbolic()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

Symbolic Execution

● An approach for generating test inputs.

● Replace the concrete inputs of a program
with symbolic values

● Execute along a path using the symbolic
values to build a formula over the input
symbols.

x = 2*y
y > 10

Path Constraint

A path constraint represents
all executions along that path

10

Symbolic Execution

● An approach for generating test inputs.

● Replace the concrete inputs of a program
with symbolic values

● Execute along a path using the symbolic
values to build a formula over the input
symbols.

● Solve for the symbolic symbols to find
inputs that yield the path.

x=30
y=15

x symbolic()←
y symbolic()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

11

x symbolic()←
y symbolic()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

Symbolic Execution

● An approach for generating test inputs.

● Replace the concrete inputs of a program
with symbolic values

● Execute along a path using the symbolic
values to build a formula over the input
symbols.

● Solve for the symbolic symbols to find
inputs that yield the path.

x=2
y=1

x=30
y=15

12

x symbolic()←
y symbolic()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

Symbolic Execution

● An approach for generating test inputs.

● Replace the concrete inputs of a program
with symbolic values

● Execute along a path using the symbolic
values to build a formula over the input
symbols.

● Solve for the symbolic symbols to find
inputs that yield the path.

x=0
y=1

x=2
y=1

x=30
y=15

13

Using SymEx to solve problems

● Note that we described SymEx over traces.

14

Using SymEx to solve problems

● Note that we described SymEx over traces.
– This is dynamic symbolic execution.
– What we saw before was essentially static symbolic execution.

15

Using SymEx to solve problems

● Note that we described SymEx over traces.
– This is dynamic symbolic execution.
– What we saw before was essentially static symbolic execution.

● Applying constraint based reasoning on traces can also yield insights

16

Using SymEx to solve problems

● Note that we described SymEx over traces.
– This is dynamic symbolic execution.
– What we saw before was essentially static symbolic execution.

● Applying constraint based reasoning on traces can also yield insights
– e.g. Suppose you are given two versions of a program v1,v2

17

Using SymEx to solve problems

● Note that we described SymEx over traces.
– This is dynamic symbolic execution.
– What we saw before was essentially static symbolic execution.

● Applying constraint based reasoning on traces can also yield insights
– e.g. Suppose you are given two versions of a program v1,v2

and constraints on output ɸi in each from an input I

18

Using SymEx to solve problems

● Note that we described SymEx over traces.
– This is dynamic symbolic execution.
– What we saw before was essentially static symbolic execution.

● Applying constraint based reasoning on traces can also yield insights
– e.g. Suppose you are given two versions of a program v1,v2

and constraints on output ɸi in each from an input I

What is wp(ɸ1) ∧ ¬wp(ɸ2)?

19

How Can We Solve Constraints?

● SMT Solvers
– Satisfiability Modulo Theories
– SAT with extra logic
– Standard interfaces through SMTLIB2

20

How Can We Solve Constraints?

● SMT Solvers
– Satisfiability Modulo Theories
– SAT with extra logic
– Standard interfaces through SMTLIB2

x = 2*y
y > 10

21

How Can We Solve Constraints?

● SMT Solvers
– Satisfiability Modulo Theories
– SAT with extra logic
– Standard interfaces through SMTLIB2

(declare-const x Int)
(declare-const y Int)
(assert (= x (* 2 y)))
(assert (> y 10))
(check-sat)
(get-model)

x = 2*y
y > 10

22

How Can We Solve Constraints?

● SMT Solvers
– Satisfiability Modulo Theories
– SAT with extra logic
– Standard interfaces through SMTLIB2

(declare-const x Int)
(declare-const y Int)
(assert (= x (* 2 y)))
(assert (> y 10))
(check-sat)
(get-model)

x = 2*y
y > 10

Z3

23

How Can We Solve Constraints?

● SMT Solvers
– Satisfiability Modulo Theories
– SAT with extra logic
– Standard interfaces through SMTLIB2

(declare-const x Int)
(declare-const y Int)
(assert (= x (* 2 y)))
(assert (> y 10))
(check-sat)
(get-model)

x = 2*y
y > 10

Z3 sat
(model
 (define-fun y () Int 11)
 (define-fun x () Int 22)
)

24

How Can We Solve Constraints?

● SMT Solvers
– Satisfiability Modulo Theories
– SAT with extra logic
– Standard interfaces through SMTLIB2

(declare-const x Int)
(declare-const y Int)
(assert (= x (* 2 y)))
(assert (> y 10))
(check-sat)
(get-model)

x = 2*y
y > 10

Z3 sat
(model
 (define-fun y () Int 11)
 (define-fun x () Int 22)
)

x=22
y=11

25

How Can We Solve Constraints?

● SMT Solvers
– Satisfiability Modulo Theories
– SAT with extra logic
– Standard interfaces through SMTLIB2

(declare-const x Int)
(declare-const y Int)
(assert (= x (* 2 y)))
(assert (> y 10))
(check-sat)
(get-model)

x = 2*y
y > 10

Z3 sat
(model
 (define-fun y () Int 11)
 (define-fun x () Int 22)
)

x=22
y=11

Try it online:
http://www.rise4fun.com/Z3/tutorial/

http://www.rise4fun.com/Z3/tutorial/

26

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

x input()←
y input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

27

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

x input()←
y input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

28

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main approaches

x input()←
y input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

29

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main approaches
– Concolic (dynamic symbolic)

x input()←
y input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

30

x input()←
y input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main approaches
– Concolic (dynamic symbolic)

31

x input()←
y input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main approaches
– Concolic (dynamic symbolic)

(x=2*y) ∧ (x>y+10)

32

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main approaches
– Concolic (dynamic symbolic)

(x=2*y) ∧ ¬(x>y+10)

x input()←
y input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

33

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main approaches
– Concolic (dynamic symbolic)

(x=2*y) ∧ ¬(x>y+10)

x input()←
y input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

34

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main approaches
– Concolic (dynamic symbolic)
– Execution Generated Testing

x input()←
y input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

35

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main approaches
– Concolic (dynamic symbolic)
– Execution Generated Testing

x input()←
y input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

X= ?
y=10

36

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main approaches
– Concolic (dynamic symbolic)
– Execution Generated Testing X=?≠20

y=10

X=20
y=10

x input()←
y input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

37

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main approaches
– Concolic (dynamic symbolic)
– Execution Generated Testing X=?≠20

y=10

X=20
y=10

x input()←
y input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10
Execution on this side is

concrete from this point on.

38

(Some) Applications

● Constructing test suites

39

(Some) Applications

● Constructing test suites

x input()←
y input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

x=0
y=1

x=2
y=1

x=30
y=15

40

(Some) Applications

● Constructing test suites

● Targeted tests

41

(Some) Applications

● Constructing test suites

● Targeted tests

42

(Some) Applications

● Constructing test suites

● Targeted tests

43

(Some) Applications

● Constructing test suites

● Targeted tests

● Automated exploit discovery & synthesis

44

(Some) Applications

● Constructing test suites

● Targeted tests

● Automated exploit discovery & synthesis

Overflow!

45

(Some) Applications

● Constructing test suites

● Targeted tests

● Automated exploit discovery & synthesis

Overflow!

46

(Some) Applications

● Constructing test suites

● Targeted tests

● Automated exploit discovery & synthesis

Overflow!

Input ⊢ Overflow ^ StartsShellcode

This is the core process for
Darpa Cybersecurity Grand Challenge entries!

47

(Some) Applications

● Constructing test suites

● Targeted tests

● Automated exploit discovery & synthesis

● Test driven model checking (Yogi)

● ...

48

Application: Test Driven Model Checking

● While traditional testing is sampling,

Input Domain

49

Application: Test Driven Model Checking

● While traditional testing is sampling,
SymEx enables targeted tests that answer questions about a program

Input Domain

50

Application: Test Driven Model Checking

● While traditional testing is sampling,
SymEx enables targeted tests that answer questions about a program

Input Domain

?

51

Application: Test Driven Model Checking

● While traditional testing is sampling,
SymEx enables targeted tests that answer questions about a program

Input Domain

52

Application: Test Driven Model Checking

● While traditional testing is sampling,
SymEx enables targeted tests that answer questions about a program

Input Domain

53

Application: Test Driven Model Checking

● While traditional testing is sampling,
SymEx enables targeted tests that answer questions about a program

● Carefully choosing which questions to ask can allow us to prove
properties of programs!

54

Application: Test Driven Model Checking

● While traditional testing is sampling,
SymEx enables targeted tests that answer questions about a program

● Carefully choosing which questions to ask can allow us to prove
properties of programs!

Can the assertion
here fail?

if (p == p1) return

if (p == p2) return

assert(*p1 !=1 && ...)

*p1 = 0; ...;
*p = 1

55

Application: Test Driven Model Checking

● While traditional testing is sampling,
SymEx enables targeted tests that answer questions about a program

● Carefully choosing which questions to ask can allow us to prove
properties of programs!

Execution Tree

Can the assertion
here fail?

if (p == p1) return

if (p == p2) return

assert(*p1 !=1 && ...)

*p1 = 0; ...;
*p = 1

56

Application: Test Driven Model Checking

● While traditional testing is sampling,
SymEx enables targeted tests that answer questions about a program

● Carefully choosing which questions to ask can allow us to prove
properties of programs!

Execution Tree

Can the assertion
here fail?

if (p == p1) return

if (p == p2) return

assert(*p1 !=1 && ...)

*p1 = 0; ...;
*p = 1

57

Application: Test Driven Model Checking

● While traditional testing is sampling,
SymEx enables targeted tests that answer questions about a program

● Carefully choosing which questions to ask can allow us to prove
properties of programs!

Execution Tree

Do you see any potential problems
with this approach as given?

Can the assertion
here fail?

if (p == p1) return

if (p == p2) return

assert(*p1 !=1 && ...)

*p1 = 0; ...;
*p = 1

58

Challenges

● Path Explosion

● Challenging constraints

● Constraint representations & domain knowledge

59

Path Explosion

● Loops
while i < j

while i < j

while i < j

...

60

Path Explosion

● Loops

● Combinatorial Explosion
if c1:

if c2:

if c3:

61

Path Explosion

● Loops

● Combinatorial Explosion

● Strategies

62

Path Explosion

● Loops

● Combinatorial Explosion

● Strategies
– Search heuristics (DFS, BFS, Targeted, Merged, ...)

63

Path Explosion

● Loops

● Combinatorial Explosion

● Strategies
– Search heuristics
– Memoization (Have we already analyzed this?)

64

Challenging Constraints

● Intuitively, we cannot solve all constraints

if hash(password) == y:
 print(“how odd”)

What would it imply if we could?

65

Challenging Constraints

● Intuitively, we cannot solve all constraints

● How can we address this?

66

Challenging Constraints

● Intuitively, we cannot solve all constraints

● How can we address this?
– IDEA: Observe the actual values of variables in runs we have

if hash(password) == y:
 print(“how odd”)

password = fritter
hash(password) = HJdjdskS&8sdh

67

Challenging Constraints

● Intuitively, we cannot solve all constraints

● How can we address this?
– IDEA: Observe the actual values of variables in runs we have

Substitute those observed values in challenging runs in the future

if hash(password) == y:
 print(“how odd”)

password = fritter
hash(password) = HjdjdskS&8sdh
y = HjdjdskS&8sdh

68

Challenging Constraints

● Intuitively, we cannot solve all constraints

● How can we address this?
– IDEA: Observe the actual values of variables in runs we have

Substitute those observed values in challenging runs in the future
– Build a library of (input,output) pairs for challenging expressions

(Use the theory of uninterpreted functions!)

69

Challenging Constraints

● Intuitively, we cannot solve all constraints

● How can we address this?
– IDEA: Observe the actual values of variables in runs we have

Substitute those observed values in challenging runs in the future
– Build a library of (input,output) pairs for challenging expressions

(Use the theory of uninterpreted functions!)

How do these affect our ability
to explore the execution tree?

70

Domain Knowledge

● How should we represent memory?

71

Domain Knowledge

● How should we represent memory?
– A linear arrangement of memory?
– Combinatorial aliasing relation pairs?

72

Domain Knowledge

● How should we represent memory?
– A linear arrangement of memory?
– Combinatorial aliasing relation pairs?

● Can we carefully explore interesting structures?
– Korat style enumeration

73

Domain Knowledge

● How should we represent memory?
– A linear arrangement of memory?
– Combinatorial aliasing relation pairs?

● Can we carefully explore interesting structures?
– Korat style enumeration

● Can we use more constrained problems than SAT/SMT?
– Many problems can use simpler constrained Horn clauses

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/nbjorner-yurifest.pdf

74

Interesting Directions

● How can we speed up or remove symbolic operations?

75

Interesting Directions

● How can we speed up or remove symbolic operations?
– Neural strategies

76

Interesting Directions

● How can we speed up or remove symbolic operations?
– Neural strategies
– Indexing & memoization

77

Interesting Directions

● How can we speed up or remove symbolic operations?
– Neural strategies
– Indexing & memoization
– Aggressively using theory of uninterpreted functions

78

Interesting Directions

● How can we speed up or remove symbolic operations?
– Neural strategies
– Indexing & memoization
– Aggressively using theory of uninterpreted functions

● Probabilistic Symbolic Execution
– How likely is one path vs another?
– Can that direct our search toward more interesting areas?

79

Interesting Directions

● How can we speed up or remove symbolic operations?
– Neural strategies
– Indexing & memoization
– Aggressively using theory of uninterpreted functions

● Probabilistic Symbolic Execution
– How likely is one path vs another?
– Can that direct our search toward more interesting areas?

● Decomposing goals into smaller problems
– How can we analyze systems like Linux, Chrome, & Firefox well?

[Brown 2020]

https://www.usenix.org/conference/usenixsecurity20/presentation/brown

80

Revisit: Test Driven Model Checking

● Carefully choosing which questions to ask can allow us to prove
properties of programs!

Can the assertion
here fail?

if (p == p1) return

if (p == p2) return

assert(*p1 !=1 && ...)

*p1 = 0; ...;
*p = 1

81

Revisit: Test Driven Model Checking

● Carefully choosing which questions to ask can allow us to prove
properties of programs!
– Some relationships may be hard or missing

Can the assertion
here fail?

if (p == p1) return

if (p == p2) return

assert(*p1 !=1 && ...)

*p1 = 0; ...;
*p = 1

82

Revisit: Test Driven Model Checking

● Carefully choosing which questions to ask can allow us to prove
properties of programs!
– Some relationships may be hard or missing
– Full combinatorial search will not scale

Can the assertion
here fail?

if (p == p1) return

if (p == p2) return

assert(*p1 !=1 && ...)

*p1 = 0; ...;
*p = 1

83

Revisit: Test Driven Model Checking

● Carefully choosing which questions to ask can allow us to prove
properties of programs!
– Some relationships may be hard or missing
– Full combinatorial search will not scale
– We still want a proof of correctness

Can the assertion
here fail?

if (p == p1) return

if (p == p2) return

assert(*p1 !=1 && ...)

*p1 = 0; ...;
*p = 1

84

Revisit: Test Driven Model Checking

● Carefully choosing which questions to ask can allow us to prove
properties of programs!

[Beckman, TSE 2016]

Can the assertion
here fail?

if (p == p1) return

if (p == p2) return

assert(*p1 !=1 && ...)

*p1 = 0; ...;
*p = 1

85

Revisit: Test Driven Model Checking

● Carefully choosing which questions to ask can allow us to prove
properties of programs!

[Beckman, TSE 2016]

(*p1 == 1 v ...) Can the assertion
here fail?

if (p == p1) return

if (p == p2) return

assert(*p1 !=1 && ...)

*p1 = 0; ...;
*p = 1

86

Revisit: Test Driven Model Checking

● Carefully choosing which questions to ask can allow us to prove
properties of programs!

[Beckman, TSE 2016]

!(p!=p1^...)

(*p1 == 1 v ...) Can the assertion
here fail?

if (p == p1) return

if (p == p2) return

assert(*p1 !=1 && ...)

*p1 = 0; ...;
*p = 1

87

Revisit: Test Driven Model Checking

● Carefully choosing which questions to ask can allow us to prove
properties of programs!

Can the assertion
here fail?

if (p == p1) return

if (p == p2) return

assert(*p1 !=1
&& ...)

*p1 = 0; ...;
*p = 1

[Beckman, TSE 2016]

!(p!=p1^...)

(*p1 == 1 v ...)

...

88

● Carefully choosing which questions to ask can allow us to prove
properties of programs!

Revisit: Test Driven Model Checking

Can the assertion
here fail?

if (p == p1) return

if (p == p2) return

assert(p1 !=1 && ...)

*p1 = 0; ...;
*p = 1

[Beckman, TSE 2016]

!(p!=p1^...)

(*p1 == 1 v ...)

...
The error state is

now unreachable!

89

Symbolic Execution

● Increasingly scalable every year

90

Symbolic Execution

● Increasingly scalable every year

● Can automatically generate test inputs from constraints

91

Symbolic Execution

● Increasingly scalable every year

● Can automatically generate test inputs from constraints

● The resulting symbolic formulae have many uses beyond just testing.

92

Symbolic Execution

● Increasingly scalable every year

● Can automatically generate test inputs from constraints

● The resulting symbolic formulae have many uses beyond just testing.

Try it out:
1) https://github.com/klee/klee
2) Symbolic PathFinder
3) http://research.microsoft.com/Pex/
4) http://angr.io/

https://github.com/klee/klee
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc
http://research.microsoft.com/Pex/
http://angr.io/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92

