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Symbolic Execution

● As we have seen, building constraints that model code can be useful

● With care, we can even try to generate all inputs that are 
“interesting”

● Techniques for supporting this are known as symbolic execution
– (SymEx)
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Symbolic Execution

● An approach for generating test inputs.

x  input()←
y  input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10
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Symbolic Execution

● An approach for generating test inputs.

● Replace the concrete inputs of a program 
with symbolic values

x  ← symbolic()
y  ← symbolic()

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10
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y  symbolic()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

Symbolic Execution

● An approach for generating test inputs.

● Replace the concrete inputs of a program 
with symbolic values

● Execute along a path using the symbolic 
values to build a formula over the input 
symbols.

x = 2*y
y > 10

Path Constraint
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x  symbolic()←
y  symbolic()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

Symbolic Execution

● An approach for generating test inputs.

● Replace the concrete inputs of a program 
with symbolic values

● Execute along a path using the symbolic 
values to build a formula over the input 
symbols.

x = 2*y
y > 10

Path Constraint

A path constraint represents
all executions along that path
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Symbolic Execution

● An approach for generating test inputs.

● Replace the concrete inputs of a program 
with symbolic values

● Execute along a path using the symbolic 
values to build a formula over the input 
symbols.

● Solve for the symbolic symbols to find 
inputs that yield the path.

x=30
y=15

x  symbolic()←
y  symbolic()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10
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x  symbolic()←
y  symbolic()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

Symbolic Execution

● An approach for generating test inputs.

● Replace the concrete inputs of a program 
with symbolic values

● Execute along a path using the symbolic 
values to build a formula over the input 
symbols.

● Solve for the symbolic symbols to find 
inputs that yield the path.

x=2
y=1

x=30
y=15
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x  symbolic()←
y  symbolic()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

Symbolic Execution

● An approach for generating test inputs.

● Replace the concrete inputs of a program 
with symbolic values

● Execute along a path using the symbolic 
values to build a formula over the input 
symbols.

● Solve for the symbolic symbols to find 
inputs that yield the path.

x=0
y=1

x=2
y=1

x=30
y=15
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Using SymEx to solve problems

● Note that we described SymEx over traces.
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Using SymEx to solve problems

● Note that we described SymEx over traces. 
– This is dynamic symbolic execution.
– What we saw before was essentially static symbolic execution.

● Applying constraint based reasoning on traces can also yield insights
– e.g. Suppose you are given two versions of a program v1,v2 

and constraints on output ɸi in each from an input I
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Using SymEx to solve problems

● Note that we described SymEx over traces. 
– This is dynamic symbolic execution.
– What we saw before was essentially static symbolic execution.

● Applying constraint based reasoning on traces can also yield insights
– e.g. Suppose you are given two versions of a program v1,v2 

and constraints on output ɸi in each from an input I

What is wp(ɸ1)  ∧ ¬wp(ɸ2)?
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● SMT Solvers
– Satisfiability Modulo Theories
– SAT with extra logic
– Standard interfaces through SMTLIB2
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How Can We Solve Constraints?

● SMT Solvers
– Satisfiability Modulo Theories
– SAT with extra logic
– Standard interfaces through SMTLIB2

(declare-const x Int)
(declare-const y Int)
(assert (= x (* 2 y)))
(assert (> y 10))
(check-sat)
(get-model)

x = 2*y
y > 10
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How Can We Solve Constraints?

● SMT Solvers
– Satisfiability Modulo Theories
– SAT with extra logic
– Standard interfaces through SMTLIB2

(declare-const x Int)
(declare-const y Int)
(assert (= x (* 2 y)))
(assert (> y 10))
(check-sat)
(get-model)

x = 2*y
y > 10

Z3
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How Can We Solve Constraints?

● SMT Solvers
– Satisfiability Modulo Theories
– SAT with extra logic
– Standard interfaces through SMTLIB2

(declare-const x Int)
(declare-const y Int)
(assert (= x (* 2 y)))
(assert (> y 10))
(check-sat)
(get-model)

x = 2*y
y > 10

Z3 sat 
(model
    (define-fun y () Int 11)
    (define-fun x () Int 22)
)
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How Can We Solve Constraints?

● SMT Solvers
– Satisfiability Modulo Theories
– SAT with extra logic
– Standard interfaces through SMTLIB2

(declare-const x Int)
(declare-const y Int)
(assert (= x (* 2 y)))
(assert (> y 10))
(check-sat)
(get-model)

x = 2*y
y > 10

Z3 sat 
(model
    (define-fun y () Int 11)
    (define-fun x () Int 22)
)

x=22
y=11
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How Can We Solve Constraints?

● SMT Solvers
– Satisfiability Modulo Theories
– SAT with extra logic
– Standard interfaces through SMTLIB2

(declare-const x Int)
(declare-const y Int)
(assert (= x (* 2 y)))
(assert (> y 10))
(check-sat)
(get-model)

x = 2*y
y > 10

Z3 sat 
(model
    (define-fun y () Int 11)
    (define-fun x () Int 22)
)

x=22
y=11

Try it online:
http://www.rise4fun.com/Z3/tutorial/

http://www.rise4fun.com/Z3/tutorial/


26

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

x  input()←
y  input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10



27

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

x  input()←
y  input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10
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Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main approaches

x  input()←
y  input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10
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Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main approaches
– Concolic (dynamic symbolic)

x  input()←
y  input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10
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x  input()←
y  input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main approaches
– Concolic (dynamic symbolic)
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x  input()←
y  input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main approaches
– Concolic (dynamic symbolic)

(x=2*y) ∧ (x>y+10)
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Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main approaches
– Concolic (dynamic symbolic)

(x=2*y) ∧ ¬(x>y+10)

x  input()←
y  input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10
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Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main approaches
– Concolic (dynamic symbolic)

(x=2*y) ∧ ¬(x>y+10)

x  input()←
y  input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10
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Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main approaches
– Concolic (dynamic symbolic)
– Execution Generated Testing

x  input()←
y  input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10
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Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main approaches
– Concolic (dynamic symbolic)
– Execution Generated Testing

x  input()←
y  input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

X= ?
y=10
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Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main approaches
– Concolic (dynamic symbolic)
– Execution Generated Testing X=?≠20

y=10

X=20
y=10

x  input()←
y  input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10
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Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main approaches
– Concolic (dynamic symbolic)
– Execution Generated Testing X=?≠20

y=10

X=20
y=10

x  input()←
y  input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10
Execution on this side is

concrete from this point on.
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(Some) Applications

● Constructing test suites

x  input()←
y  input()←

if x == 2*y

[Cadar & Sen, 2013]

if x > y+10

x=0
y=1

x=2
y=1

x=30
y=15
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(Some) Applications

● Constructing test suites

● Targeted tests

● Automated exploit discovery & synthesis

Overflow!

Input ⊢ Overflow ^ StartsShellcode

This is the core process for
Darpa Cybersecurity Grand Challenge entries!
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(Some) Applications

● Constructing test suites

● Targeted tests

● Automated exploit discovery & synthesis

● Test driven model checking (Yogi)

● ...
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Application: Test Driven Model Checking

● While traditional testing is sampling,

Input Domain
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properties of programs!

Can the assertion
here fail?

if (p == p1) return

if (p == p2) return

assert(*p1 !=1 && ...)

*p1 = 0; ...;
*p = 1



55
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*p1 = 0; ...;
*p = 1
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Application: Test Driven Model Checking
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SymEx enables targeted tests that answer questions about a program
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Application: Test Driven Model Checking

● While traditional testing is sampling,
SymEx enables targeted tests that answer questions about a program

● Carefully choosing which questions to ask can allow us to prove 
properties of programs!

Execution Tree

Do you see any potential problems
with this approach as given?

Can the assertion
here fail?

if (p == p1) return

if (p == p2) return

assert(*p1 !=1 && ...)

*p1 = 0; ...;
*p = 1
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Challenges

● Path Explosion

● Challenging constraints

● Constraint representations & domain knowledge
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Path Explosion

● Loops
while i < j

while i < j

while i < j

...
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Path Explosion

● Loops

● Combinatorial Explosion
if c1:

if c2:

if c3:
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● Loops
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● Strategies
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Path Explosion

● Loops

● Combinatorial Explosion

● Strategies
– Search heuristics (DFS, BFS, Targeted, Merged, ...)
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Path Explosion

● Loops

● Combinatorial Explosion

● Strategies
– Search heuristics
– Memoization (Have we already analyzed this?)
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Challenging Constraints

● Intuitively, we cannot solve all constraints

if hash(password) == y:
  print(“how odd”)

What would it imply if we could?
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Challenging Constraints

● Intuitively, we cannot solve all constraints

● How can we address this?
– IDEA: Observe the actual values of variables in runs we have

if hash(password) == y:
  print(“how odd”)

password = fritter
hash(password) = HJdjdskS&8sdh
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Challenging Constraints

● Intuitively, we cannot solve all constraints

● How can we address this?
– IDEA: Observe the actual values of variables in runs we have

Substitute those observed values in challenging runs in the future

if hash(password) == y:
  print(“how odd”)

password = fritter
hash(password) = HjdjdskS&8sdh
y = HjdjdskS&8sdh
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Challenging Constraints

● Intuitively, we cannot solve all constraints

● How can we address this?
– IDEA: Observe the actual values of variables in runs we have

Substitute those observed values in challenging runs in the future
– Build a library of (input,output) pairs for challenging expressions

(Use the theory of uninterpreted functions!)
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Challenging Constraints

● Intuitively, we cannot solve all constraints

● How can we address this?
– IDEA: Observe the actual values of variables in runs we have

Substitute those observed values in challenging runs in the future
– Build a library of (input,output) pairs for challenging expressions

(Use the theory of uninterpreted functions!)

How do these affect our ability
to explore the execution tree?
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Domain Knowledge

● How should we represent memory?
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Domain Knowledge

● How should we represent memory?
– A linear arrangement of memory?
– Combinatorial aliasing relation pairs?

● Can we carefully explore interesting structures?
– Korat style enumeration

● Can we use more constrained problems than SAT/SMT?
– Many problems can use simpler constrained Horn clauses

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/nbjorner-yurifest.pdf
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● How can we speed up or remove symbolic operations?
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Interesting Directions

● How can we speed up or remove symbolic operations?
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– Indexing & memoization
– Aggressively using theory of uninterpreted functions

● Probabilistic Symbolic Execution
– How likely is one path vs another?
– Can that direct our search toward more interesting areas?
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Interesting Directions

● How can we speed up or remove symbolic operations?
– Neural strategies
– Indexing & memoization
– Aggressively using theory of uninterpreted functions

● Probabilistic Symbolic Execution
– How likely is one path vs another?
– Can that direct our search toward more interesting areas?

● Decomposing goals into smaller problems
– How can we analyze systems like Linux, Chrome, & Firefox well?

[Brown 2020]

https://www.usenix.org/conference/usenixsecurity20/presentation/brown
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Revisit: Test Driven Model Checking

● Carefully choosing which questions to ask can allow us to prove 
properties of programs!

Can the assertion
here fail?

if (p == p1) return

if (p == p2) return

assert(*p1 !=1 && ...)

*p1 = 0; ...;
*p = 1
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*p = 1
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Revisit: Test Driven Model Checking

● Carefully choosing which questions to ask can allow us to prove 
properties of programs!
– Some relationships may be hard or missing
– Full combinatorial search will not scale

Can the assertion
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if (p == p1) return

if (p == p2) return

assert(*p1 !=1 && ...)

*p1 = 0; ...;
*p = 1
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Revisit: Test Driven Model Checking

● Carefully choosing which questions to ask can allow us to prove 
properties of programs!
– Some relationships may be hard or missing
– Full combinatorial search will not scale
– We still want a proof of correctness

Can the assertion
here fail?

if (p == p1) return

if (p == p2) return

assert(*p1 !=1 && ...)

*p1 = 0; ...;
*p = 1
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Revisit: Test Driven Model Checking

● Carefully choosing which questions to ask can allow us to prove 
properties of programs!

[Beckman, TSE 2016]

Can the assertion
here fail?

if (p == p1) return

if (p == p2) return

assert(*p1 !=1 && ...)

*p1 = 0; ...;
*p = 1
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Revisit: Test Driven Model Checking

● Carefully choosing which questions to ask can allow us to prove 
properties of programs!

[Beckman, TSE 2016]

(*p1 == 1 v ...) Can the assertion
here fail?

if (p == p1) return

if (p == p2) return

assert(*p1 !=1 && ...)

*p1 = 0; ...;
*p = 1
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Revisit: Test Driven Model Checking

● Carefully choosing which questions to ask can allow us to prove 
properties of programs!

[Beckman, TSE 2016]

!(p!=p1^...)

(*p1 == 1 v ...) Can the assertion
here fail?

if (p == p1) return

if (p == p2) return

assert(*p1 !=1 && ...)

*p1 = 0; ...;
*p = 1
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Revisit: Test Driven Model Checking

● Carefully choosing which questions to ask can allow us to prove 
properties of programs!

Can the assertion
here fail?

if (p == p1) return

if (p == p2) return

assert(*p1 !=1 
&& ...)

*p1 = 0; ...;
*p = 1

[Beckman, TSE 2016]

!(p!=p1^...)

(*p1 == 1 v ...)

...
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● Carefully choosing which questions to ask can allow us to prove 
properties of programs!

Revisit: Test Driven Model Checking

Can the assertion
here fail?

if (p == p1) return

if (p == p2) return

assert(p1 !=1 && ...)

*p1 = 0; ...;
*p = 1

[Beckman, TSE 2016]

!(p!=p1^...)

(*p1 == 1 v ...)

...
The error state is

now unreachable!
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Symbolic Execution

● Increasingly scalable every year

● Can automatically generate test inputs from constraints

● The resulting symbolic formulae have many uses beyond just testing.

Try it out:
1) https://github.com/klee/klee
2) Symbolic PathFinder
3) http://research.microsoft.com/Pex/
4) http://angr.io/

https://github.com/klee/klee
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc
http://research.microsoft.com/Pex/
http://angr.io/
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