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Formalism is just a tool

● Formal systems are common
– High school algebra
– Classic formal logic
– Euclidean geometry

● They serve multiple useful purposes
– Limit the possibilities that you may consider
– Check whether reasoning is correct
– Enable automated techniques for finding solutions

● Choosing the right tool for the job can be hard
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Formalism is just a tool

● Several specific systems are common
(in CS and program analysis)
– Order Theory
– Formal Grammars & Automata
– Formal Logic (Classical & otherwise)

● We are going to revisit these (quickly) with some insights on how they 
can useful in practice.
– Most students don’t seem to remember them
– Even fewer learn that formalism can be useful!
– These techniques are critical for static program analysis



Order Theory
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Order Theory

● Order theory is a field examining how we compare elements of a set.
● Simplest example is numbers on a number line:

● ≤ is a total order on ℤ.
– Intuitively,  a, b  , either a ≤ b or b ≤∀ ∈ ℤ  a

0 1 2 3 4-4 -3 -2 -1
Set: ℤ Relation: ≤
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● We often want to compare complex data
– Ordinal, multidimensional, ...

0 1 2 3 40
1
2

(1,1)
(2,2) What is the result of

(1,1) ≤ (2,2)?

We can take ≤ to be
componentwise comparison.



  

Order Theory

● We often want to compare complex data
– Ordinal, multidimensional, ...

0 1 2 3 40
1
2 (1,2)

(2,1)
What is the result of

(1,2) ≤ (2,1)?
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Order Theory

● We often want to compare complex data
– Ordinal, multidimensional, ...

● Componentwise comparison with tuples yields a partial order
– Intuitively, not all elements are comparable

0 1 2 3 40
1
2 (1,2)

(1,1) (2,1)
(2,2) Which of these 4

elements are comparable?
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How does a
total order compare?
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ab ⪯str xabyz
ab ⪯seq xaybz

{a,b}  {⊆ a,b,x,y,z}
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Partial Orders

● We can express the structure of partial orders using (semi-)lattices.

● If unique least/greatest elements exist, we call them 
(bottom)/ (top⊥ ⊤ )
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● We are often interested in upper and lower bounds.
– A join a  b is the least upper bound of a and b⊔
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● We are often interested in upper and lower bounds.
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Partial Orders

● We are often interested in upper and lower bounds.
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– Bounds must be unique and may not exist.
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● We are often interested in upper and lower bounds.
– A join a  b is the least upper bound of a and b⊔
– A meet a  b is the greatest lower bound of and and b⊓
– Bounds must be unique and may not exist.
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(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)
(2,2)

What is the 
structure shown?
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Partial Orders

● A product of lattices (partial orders) yields a lattice (partial order)
– We already saw componentwise orderings for tuples.

This is the same.

L1 × L2

Z  × ZZ Z

A total order is a partial order.
Products of total orders are partial orders
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– Monotonicity

(X, ⊑x),  (Y, ⊑y),  f: X → Y
x1 ⊑x x2   →   f(x1) ⊑y f(x2)     (f is monotonic)



  

Partial Orders

● A product of lattices (partial orders) yields a lattice (partial order)
– We already saw componentwise orderings for tuples.

This is the same.

● Several expected principles naturally apply
– Monotonicity
– Continuity
– Fixed Points
– ...



  

Partial Orders

● A product of lattices (partial orders) yields a lattice (partial order)
– We already saw componentwise orderings for tuples.

This is the same.

● Several expected principles naturally apply
– Monotonicity
– Continuity
– Fixed Points
– ...

● We can even consider different orders for the same sets!



  

Partial Orders

● A product of lattices (partial orders) yields a lattice (partial order)
– We already saw componentwise orderings for tuples.

This is the same.

● Several expected principles naturally apply
– Monotonicity
– Continuity
– Fixed Points
– ...

● We can even consider different orders for the same sets!

0

1

-1

...

...



  

Partial Orders
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● Several expected principles naturally apply
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– Fixed Points
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● We can even consider different orders for the same sets!
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Partial Orders

● A product of lattices (partial orders) yields a lattice (partial order)
– We already saw componentwise orderings for tuples.

This is the same.

● Several expected principles naturally apply
– Monotonicity
– Continuity
– Fixed Points
– ...

● We can even consider different orders for the same sets!

⊤

⊥

0

1

-1

...

...

⊤

⊥

0-1 1... ...

Combining a set with
 & ⊤  like this yields a⊥

flat lattice.



  

Partial Orders

● A product of lattices (partial orders) yields a lattice (partial order)
– We already saw componentwise orderings for tuples.

This is the same.

● Several expected principles naturally apply
– Monotonicity
– Continuity
– Fixed Points
– ...

● We can even consider different orders for the same sets!
– Careful structuring of our orderings can express different things.

What do these two lattices express?
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Partial Orders

● A product of lattices (partial orders) yields a lattice (partial order)
– We already saw componentwise orderings for tuples.

This is the same.

● Several expected principles naturally apply
– Monotonicity
– Continuity
– Fixed Points
– ...

● We can even consider different orders for the same sets!
– Careful structuring of our orderings can express different things.

What do these two lattices express?
– Many use cases can also be affected by the height of a lattice.

⊤

⊥

0

1

-1

...

...

⊤

⊥

0-1 1... ... height
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– concurrency & distributed systems
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Partial Orders

● Partial orders & lattices can be very useful
– A formal structure for reasoning about relative value
– modern cryptography
– concurrency & distributed systems
– dataflow analysis & proving program properties

if x > 0

y = 2 y = 3

print(y)

What can the last line print?
2 or 3? (set lattice)
unknown? (flat lattice)
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Formal Grammars & Automata

● Grammars define the structure of elements in a set
– Alternatively, they generate the set via structure

● They commonly define formal languages
– Sets of strings over a defined alphabet

● They are effective at constraining sets & search spaces
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Regular Languages & Finite Automata

● A regular language can be expressed via a regular expression
● Finite automata can be used to recognize or generate elements of a 

regular language
● Recall, regular languages cannot express matched parentheses (Dyck 

languages)

anbn
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Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language 

recognition

Start = A
A → cBd
B → eBf

| g

cengfnd

A

c B d

e B f

Generating symbols out of order
acts as a form of memory.



  

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language 

recognition

Start = A
A → cBd
B → eBf

| g

cengfnd

A

c B d

e B f
...

B

g
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Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language 

recognition
● Augmenting a finite automaton with a stack enables recognition and 

generation (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x    y

z B

A

t

a   
A

u

b   
B

xAyS

Is this behavior similar to something more familiar?
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Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language 

recognition
● Augmenting a finite automaton with a stack enables recognition and 

generation (via pushdown automata)
● Adding additional rules can extend the expressiveness
● Grammars can constrain far more than strings.

– graphs
– semantic objects (furniture layout? sequences of actions? ...)
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}
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Context Free Grammars & Pushdown Automata
● Context free grammars play a key role in

– Precise static program analysis
– Program synthesis

if (e) {
...

}

Automated Repair

true
false
{?} == {?}
{?} < {?}
{?} <= {?}
{?} || {?}
{?} && {?}
{?} == {?} || {?}
...
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Context Free Grammars & Pushdown Automata

[ Gu 2019]

● Context free grammars play a key role in
– Precise static program analysis
– Program synthesis
– Prediction and machine learning on programs

[Just 2017]

http://summit.sfu.ca/system/files/iritems1/19358/etd20354.pdf
https://homes.cs.washington.edu/~rjust/publ/customized_mutants_issta_2017.pdf


  

Context Free Grammars & Pushdown Automata
● Context free grammars play a key role in

– Precise static program analysis
– Program synthesis
– Prediction and machine learning on programs
– Compact encodings of complex sets
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Formal Logic

● Formal logic is a systematic approach to reasoning
– Separate the messy content of an argument from its structure

● Sometimes the process can be automated
– e.g. satisfiability problems, type inference, ...

● Program analysis has actually been one of the driving forces behind 
satisfiability in recent years.
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● You likely already know either propositional or first order logic
– Systems for reasoning about the truth of sentences

● Atoms abstract away the actors of the sentences
– Constants: #t, #f
– Variables: x, y, z, ...

● Connectives relate the atoms & other propositions to each other
– ¬ (Not),  ∧ (And),  ∨ (or)
– → (Implies),  ↔(Iff)x ∧ ¬y ∧ z
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● First order logic augments with
– Quantifiers- ∃ (there exists), ∀ (for all)
– Functions & Relations- e.g. father(x), Elephant(y)

● Sentences can be true or false

● An interpretation I of the world along with the rules of logic 
determine truth via judgment (⊢)

I ⊢ x and I ⊢ y iff I ⊢ x ∧ y
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Classical Logic

● Satisfiability
– A sentence s is satisfiable ↔ ∃I (I⊢s)

● Validity
– A sentence s is valid ↔ ∀I (I⊢s)

● We will see later how these can be used for a wide variety of tasks
– Bug finding
– Model checking (proving correctness)
– Explaining defects
– ...
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Inference using classical logic

● Rules express how some judgments enable others

● Proofs can be written by stacking rules

Γ ⊢ x ∆ ⊢ yΓ, ∆ ⊢ x ∧ y

Wadler, “A Taste of Linear Logic”. 2014.
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● It can be useful to modify or limit rules of inference
– Suppose a compiler cannot prove variable x is an int.

Is it reasonable for the compile to assume x is a string?

● Constructivism argues that truth comes from direct evidence.
– We cannot merely assume p or not p, we must have evidence

● Intuitionistic logic restricts the rules of inference to require direct 
evidence
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● Classic logic includes several rules including

 ⊢ p ∨ ¬p Γ ⊢ ¬¬pΓ ⊢ p
Double negation

elimination
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Intuitionistic & Constructive Logic

● Classic logic includes several rules including

● Intuitionistic logic excludes these to require direct evidence

● Note, this is commonly used in type systems

 ⊢ p ∨ ¬p Γ ⊢ ¬¬pΓ ⊢ p
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Classical & intuitionistic logic

have trouble expressing consumable facts
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Γ,A,A,∆ ⊢ pΓ,A,∆ ⊢ p Γ,∆⊢ pΓ,A,∆ ⊢ p
Idea: Some facts (resources)
require careful accounting
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– [Intuitionistic] as before
– <Linear> cannot be used with contraction or weakening
– In essence, linear facts must be consumed exactly once in a proof.

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)

Logics that remove additional rules
from intuitionistic logic are substructural
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Linear & Substructural Logic

● Linear logic denotes separates facts into two kinds
– [Intuitionistic] as before
– <Linear> cannot be used with contraction or weakening
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Linear & Substructural Logic

● Linear logic denotes separates facts into two kinds
– [Intuitionistic] as before
– <Linear> cannot be used with contraction or weakening
– In essence, linear facts must be consumed exactly once in a proof.

● This forms the backbone of ownership types in languages like Rust!

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)

struct Thing(u32);
let a = Thing(5);
let b = a;
let c = a;

⊢ a:Thing
a:Thing ⊢ b:Thing
Error  (⊢ c:?)
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● Given facts, the logics we have seen consider what is true/false

● Programs reason about facts that change over time
– How do facts at one state

affect facts at another?

x ∧ ¬y ∧ z
double sqrt(double n,
            double threshold) {
  double x = 1;
  while (true) {
    double newX = (x + n/x) / 2;
    if (abs(x – nx) < threshold)
      break;
    x = nx
  }
  return x;
}
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● Given facts, the logics we have seen consider what is true/false

● Programs reason about facts that change over time
– How do facts at one state

affect facts at another?
– Does this do what is

expected?
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null pointer?

x ∧ ¬y ∧ z
double sqrt(double n,
            double threshold) {
  double x = 1;
  while (true) {
    double newX = (x + n/x) / 2;
    if (abs(x – nx) < threshold)
      break;
    x = nx
  }
  return x;
}

y = w[20]
x = *y + 5



  

Hoare Logic

● Given facts, the logics we have seen consider what is true/false

● Programs reason about facts that change over time
– How do facts at one state

affect facts at another?
– Does this do what is

expected?
– Will I dereference a

null pointer?

x ∧ ¬y ∧ z
double sqrt(double n,
            double threshold) {
  double x = 1;
  while (true) {
    double newX = (x + n/x) / 2;
    if (abs(x – nx) < threshold)
      break;
    x = nx
  }
  return x;
}

y = w[20]
x = *y + 5

We want a logic that reasons
about changes in state.
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Precondition Command
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after C.

{φ}C{ψ}
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Hoare Logic

● Hoare logic reasons about the behavior of programs and program 
fragments

● If φ holds before C, ψ will hold after

● A weakest precondition wp(C,ψ) captures all states leading to ψ 
after C.

{φ}C{ψ}
{x=3 ∧ y=2}x ← 5{x=5}

{#t}x←5{x=5}{???}if c then x←5{x=5}



  

Hoare Logic

● Hoare logic reasons about the behavior of programs and program 
fragments

● If φ holds before C, ψ will hold after

● A weakest precondition wp(C,ψ) captures all states leading to ψ 
after C.

{φ}C{ψ}
{x=3 ∧ y=2}x ← 5{x=5}

{#t}x←5{x=5}{???}if c then x←5{x=5}

You already have an intuition
for weakest preconditions
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x ← 5
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Store Command



  

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● A store/state σ is a partial function mapping variables to values
– Commands in a program can modify the store

{x=5}x ← 5
σ={x↦3, y↦1}σ={x↦5, y↦1}

Store Command Conditions



  

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● A store/state σ is a partial function mapping variables to values
– Commands in a program can modify the store

{x=3 ∧ y=2}
{x=5}x ← 5

σ={x↦3, y↦1}σ={x↦5, y↦1}
Store Command Conditions

?



  

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● A store/state σ is a partial function mapping variables to values
– Commands in a program can modify the store

{x=3 ∧ y=2}
{x=5}x ← 5

σ={x↦3, y↦1}σ={x↦5, y↦1}
Store Command

This was technically true,
but not so useful

(...or even compatible with our states)
Conditions



  

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● A store/state σ is a partial function mapping variables to values
– Commands in a program can modify the store

–  σ∈Σ(all possible states), and we can reason about subsets of Σ

{x=3 ∧ y=2}
{x=5}x ← 5

σ={x↦3, y↦1}σ={x↦5, y↦1}
Store Command Conditions
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x ← 5

σ={x↦3, y↦1}
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Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

x ← 5

σ={x↦3, y↦1}

σ={x↦5, y↦1}{x=5} Each set of states corresponds
to a condition defining the set



  

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

x ← 5

σ={x↦3, y↦1}

σ={x↦5, y↦1}{x=5}

{x=3}



  

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

x ← 5

σ={x↦3, y↦1}

σ={x↦5, y↦1}{x=5}

{x=3}
Commands map sets to sets



  

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

x ← 5

σ={x↦3, y↦1}

σ={x↦5, y↦1}{x=5}

{x=3}{x=7}



  

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

x ← 5

σ={x↦3, y↦1}

σ={x↦5, y↦1}{x=5}

{#t} All states lead
to the postcondition!



  

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

x ← 5

σ={x↦3, y↦1}

σ={x↦5, y↦1}{x=5}

{#t}

Have we already seen a way
do describe this structure?
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● What do we really mean by captures all states?

● wp(C,ψ) =  ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

x ← 5

{x=5} ψ= {x=5}



  

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● wp(C,ψ) =  ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

x ← 5

{x=5}

{x=3}

ψ= {x=5}

{x=3} 



  

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● wp(C,ψ) =  ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

x ← 5

{x=5}
{x=4}

ψ= {x=5}

{x=3} ⨆ {x=4}    = ?



  

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● wp(C,ψ) =  ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

x ← 5

{x=5}
{x=4}

ψ= {x=5}

{x=3} ⨆ {x=4}    = ?{x=3} → {x=3 ∨ x=4}{x=4} → {x=3 ∨ x=4}



  

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● wp(C,ψ) =  ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

x ← 5

{x=5}
{x=4}

ψ= {x=5}

{x=3} ⨆ {x=4}    = {x=3 ∨ x=4}{x=3} → {x=3 ∨ x=4}{x=4} → {x=3 ∨ x=4}



  

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● wp(C,ψ) =  ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

x ← 5

{x=5} ψ= {x=5}

{x=3} ⨆ {x=4} ⨆ {x=5}    = {3 ≤ x ∧ x ≤ 5}{x=5} {x=3} → {3 ≤ x ∧ x ≤ 5}{x=4} → {3 ≤ x ∧ x ≤ 5}{x=5} → {3 ≤ x ∧ x ≤ 5}



  

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● wp(C,ψ) =  ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

x ← 5

{x=5} ψ= {x=5}

{x=3} ⨆ {x=4} ⨆ {x=5} ⨆ ...     = {#T}{x=3} → {#T}{x=4} → {#T}...



  

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● wp(C,ψ) =  ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

Intuitively, B is at least as general as A
(it holds in at least as many states)
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● We may also consider/compute other relationships

C
Pre

Post ψ

φ



  

Hoare Logic

● What do we really mean by captures all states?

● wp(C,ψ) =  ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

● Technically, these are Weakest Sufficient Preconditions
● We may also consider/compute other relationships

– Weakest Sufficient Preconditions (wsp)

C
Pre

Post ψ

φ

What states φ lead to ψ?

?

“Given ψ, what must be true for it to hold?”
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● What do we really mean by captures all states?

● wp(C,ψ) =  ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

● Technically, these are Weakest Sufficient Preconditions
● We may also consider/compute other relationships

– Weakest Sufficient Preconditions
– Strongest Necessary Postconditions (snp)

C
Pre

Post ψ

φ

What states ψ must φ lead to?

?“Given φ, what is guaranteed when it holds?”



  

Hoare Logic

● What do we really mean by captures all states?

● wp(C,ψ) =  ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

● Technically, these are Weakest Sufficient Preconditions
● We may also consider/compute other relationships

– Weakest Sufficient Preconditions
– Strongest Necessary Postconditions
– Strongest Necessary Preconditions (snpre) C

Pre

Post ψ

φ?

What states φ lead to ψ?

“Given ψ, what if false at φ would exclude it?”
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● What do we really mean by captures all states?

● wp(C,ψ) =  ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

● Technically, these are Weakest Sufficient Preconditions
● We may also consider/compute other relationships

– Weakest Sufficient Preconditions
– Strongest Necessary Postconditions
– Strongest Necessary Preconditions (snpre) C

Pre

Post ψ

?

Then how does this differ from wsp?

What states φ lead to ψ?

φ
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● What do we really mean by captures all states?

● wp(C,ψ) =  ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

● Technically, these are Weakest Sufficient Preconditions
● We may also consider/compute other relationships

– Weakest Sufficient Preconditions
– Strongest Necessary Postconditions
– Strongest Necessary Preconditions C

Pre

Post ψ

?

WSP
φ@pre → ψ@post

SNPre
φ@pre ← ψ@post

φ
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● What do we really mean by captures all states?

● wp(C,ψ) =  ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

● Technically, these are Weakest Sufficient Preconditions
● We may also consider/compute other relationships

– Weakest Sufficient Preconditions
– Strongest Necessary Postconditions
– Strongest Necessary Preconditions C

Pre

Post ψ

?

WSP
φ@pre → ψ@post

SNPre
φ@pre ← ψ@postSince solving them is technically impossible,

these differ in practice!

φ
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● What do we really mean by captures all states?

● wp(C,ψ) =  ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

● Technically, these are Weakest Sufficient Preconditions
● We may also consider/compute other relationships

– Weakest Sufficient Preconditions
– Strongest Necessary Postconditions
– Strongest Necessary Preconditions C

Pre

Post ψ

?

WSP
φ@pre → ψ@post

SNPre
φ@pre ← ψ@postSince solving them is technically impossible,

these differ in practice!

SNPre
WSP
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● What do we really mean by captures all states?

● wp(C,ψ) =  ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

● Technically, these are Weakest Sufficient Preconditions
● We may also consider/compute other relationships

– Weakest Sufficient Preconditions
– Strongest Necessary Postconditions
– Strongest Necessary Preconditions

In practice, SNPre captures precondition assertions well
[Cousot 2013]

C
Pre

Post ψ

? SNPre
WSP

https://www.microsoft.com/en-us/research/wp-content/uploads/2013/01/paper-1.pdf
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● What do we really mean by captures all states?

● wp(C,ψ) =  ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

● Technically, these are Weakest Sufficient Preconditions
● We may also consider/compute other relationships

– Weakest Sufficient Preconditions
– Strongest Necessary Postconditions
– Strongest Necessary Preconditions
– Weakest Liberal Preconditions

C
Pre

Post ψ

?

What states φ lead to ψ
or do not terminate?

φ
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{x<5}



  

Hoare Logic – weakest preconditions

● Inference rules for weakest preconditionswp(x ← E,ψ) = [E/x]ψwp(S; T,ψ) = wp(S, wp(T,ψ))



  

Hoare Logic – weakest preconditions

● Inference rules for weakest preconditionswp(x ← E,ψ) = [E/x]ψwp(S; T,ψ) = wp(S, wp(T,ψ))
b ← 7;

{a + 7 < 5}
{x<5}x ← a + b

???
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● Inference rules for weakest preconditionswp(x ← E,ψ) = [E/x]ψwp(S; T,ψ) = wp(S, wp(T,ψ))
b ← 7;

{a + 7 < 5}
{x<5}x ← a + b

???
{a + b < 5}



  

Hoare Logic – weakest preconditions

● Inference rules for weakest preconditionswp(x ← E,ψ) = [E/x]ψwp(S; T,ψ) = wp(S, wp(T,ψ))
b ← 7;

{a + 7 < 5}
{x<5}x ← a + b
{a + b < 5}
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● Inference rules for weakest preconditionswp(x ← E,ψ) = [E/x]ψwp(S; T,ψ) = wp(S, wp(T,ψ))wp(if B then S else T,ψ)= B → wp(S,ψ) ∧ ¬B → wp(T,ψ)
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● Inference rules for weakest preconditionswp(x ← E,ψ) = [E/x]ψwp(S; T,ψ) = wp(S, wp(T,ψ))wp(if B then S else T,ψ)= B → wp(S,ψ) ∧ ¬B → wp(T,ψ)
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● Inference rules for weakest preconditionswp(x ← E,ψ) = [E/x]ψwp(S; T,ψ) = wp(S, wp(T,ψ))wp(if B then S else T,ψ)= B → wp(S,ψ) ∧ ¬B → wp(T,ψ)
if c then
  d = y + 2
else
  d = y + 5
x/d



  

Hoare Logic – weakest preconditions

● Inference rules for weakest preconditionswp(x ← E,ψ) = [E/x]ψwp(S; T,ψ) = wp(S, wp(T,ψ))wp(if B then S else T,ψ)= B → wp(S,ψ) ∧ ¬B → wp(T,ψ)

{d ≠ 0}

if c then
  d = y + 2
else
  d = y + 5
x/d

{ ??? }



  

Hoare Logic – weakest preconditions

● Inference rules for weakest preconditionswp(x ← E,ψ) = [E/x]ψwp(S; T,ψ) = wp(S, wp(T,ψ))wp(if B then S else T,ψ)= B → wp(S,ψ) ∧ ¬B → wp(T,ψ)

{d ≠ 0}
{y+5 ≠ 0}

{y+2 ≠ 0}if c then
  d = y + 2
else
  d = y + 5
x/d

{ ??? }



  

Hoare Logic – weakest preconditions

● Inference rules for weakest preconditionswp(x ← E,ψ) = [E/x]ψwp(S; T,ψ) = wp(S, wp(T,ψ))wp(if B then S else T,ψ)= B → wp(S,ψ) ∧ ¬B → wp(T,ψ)

{d ≠ 0}
{y+5 ≠ 0}

{y+2 ≠ 0}
{c → y+2 ≠ 0  ∧¬c → y+5 ≠ 0}

if c then
  d = y + 2
else
  d = y + 5
x/d



  

Hoare Logic

● Careful points
– Redefinition of variables
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a = 3*c

Pre: {a < 5, c < 2}

Post: {??}
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Hoare Logic

● Careful points
– Redefinition of variables

b = a + 2
a = 3*c

Pre: {a < 5, c < 2}

Post: {??}

It can be necessary to
rename variables that 

are redefined.



  

Hoare Logic

● Careful points
– Redefinition of variables
– Pointers

*a = *a + 5
Pre: {??}

Post: {*a + *b < 10}



  

Hoare Logic

● Careful points
– Redefinition of variables
– Pointers

*a = *a + 5
Pre: {??}

Post: {*a + *b < 10}

Efficiently modeling memory is challenging!
Newer logics target this directly.

(points-to analysis allows for weak and strong updates)
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Hoare Logic

● Careful points
– Redefinition of variables
– Pointers
– Loops

Loops run head first into undecidability!
They require deriving an inductive invariant.
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{φ}C{ψ} while B do S done
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{φ}C{ψ} while B do S done
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Hoare Logic

● Careful points
– Redefinition of variables
– Pointers
– Loops

{φ}C{ψ} while B do S done

{Inv ∧ B}  S {Inv} exit
continue{φ → Inv} enter

{Inv ∧ ¬B  → ψ}



  

Hoare Logic

● Careful points
– Redefinition of variables
– Pointers
– Loops

{φ}C{ψ} while B do S done

{Inv ∧ B}  S {Inv} exit
continue
enter

Automatically inferring such invariants
is used for verifying safe:

avionics
machine learning
...

{φ → Inv}
{Inv ∧ ¬B  → ψ}
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or arbitrarily many times [].

● Separation logic (informally) distinguishes separate facts (counting), 
allowing them to be used separately
– This helps to solve reasoning about pointers as we saw earlier
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Facts separated by * do not “mix” (overlap)



  

Separation Logic

● Linear logic allows facts to be used exactly once <>
or arbitrarily many times [].

● Separation logic (informally) distinguishes separate facts (counting), 
allowing them to be used separately

● Hoare logic is extended with a separating conjunction

{x↦y * y↦x}x = z{x↦z * y↦x}
Suppose we used ∧ instead, what problem exists?

*



  

Separation Logic

● Linear logic allows facts to be used exactly once <>
or arbitrarily many times [].

● Separation logic (informally) distinguishes separate facts (counting), 
allowing them to be used separately

● Hoare logic is extended with a separating conjunction 

● Separation logic enables efficient compositional reasoning
– It is the backbone of Facebook’s Infer engine!
– It combines Hoare logic with a substructural logic

{x↦y * y↦x}x = z{x↦z * y↦x}
*
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Separation Logic

● The frame rule enables reasoning about the logical footprint of a 
command

● Part of the power is that frames can be inferred via bi-abduction

{φ}C{ψ}{φ * r}C{ψ * r}



Solving Problems
Using Logic
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Solving problems using logic

● We will look at a few ways logic can attack real problems
● The exact techniques may have flaws,

but how they attack problems with logic is interesting
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foo(a,b,c) {
  if (a != null) {
    b = c;
    t = new...;
    c.f = t;
  }
  d = a;
  if (d != null) {
    b.f.g = 10;
  }
}

[Margoor & Komondoor, 2015]
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  }
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[Margoor & Komondoor, 2015]

Can accessing the field g
cause a null pointer exception?
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Discovering & Disproving Bugs

foo(a,b,c) {
  if (a != null) {
    b = c;
    t = new...;
    c.f = t;
  }
  d = a;
  if (d != null) {
    b.f.g = 10;
  }
}

{b.f=null}
{b.f=null ∧ d≠null}
{b.f=null ∧ a≠null}

{(b≠c ∧ b.f=null ∧ a≠null) v ( b=c t∧ =null ∧ a≠null)}
{b≠c ∧ b.f=null ∧ a≠null}
{#f}

[Margoor & Komondoor, 2015]

Note: this can be
automated within a tool!

Safe!
{(a≠null → #f) v (a=null → b.f=null  a≠null)}∧   = #f 



  

Localizing Bugs

int arr[3];
...
if (index != 1) {
  index = 2;
} else {
  index = index + 2;
}
i = index;
print(arr[i]);

[Jose & Majumdar, 2011]
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assert(0 ≤ i < 3) should hold

When the starting index is 1,
i is out of bounds

int arr[3];
...
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}
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print(arr[i]);

[Jose & Majumdar, 2011]
index1 = 1
 ∧ guard1 = (index1 ≠ 1)
 ∧ index2 = 2
 ∧ index3 = (index1 + 2)
 ∧ (guard1  i=→ index2)
 ∧ (¬guard1  i=→ index3)
 ∧ (0 ≤ i < 3)

P

snp(P,#t)
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but we can use that!
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Localizing Bugs

assert(0 ≤ i < 3) should hold

When the starting index is 1,
i is out of bounds

int arr[3];
...
if (index != 1) {
  index = 2;
} else {
  index = index + 2;
}
i = index;
print(arr[i]);

[Jose & Majumdar, 2011]
index1 = 1
 ∧ guard1 = (index1 ≠ 1)
 ∧ index2 = 2
 ∧ index3 = (index1 + 2)
 ∧ (guard1  i=→ index2)
 ∧ (¬guard1  i=→ index3)
 ∧ (0 ≤ i < 3) Minimum unsat cores & partial MAX-SAT

can discover the conflicts

Must SAT Max # satisfiable

Could not SAT;
Blame for inconsistency

These constraints define our goal,
so they are essential

Some of these constraints
conflict with our goal
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Further notes

● We will explore this further within Symbolic Execution
● Recognizing invariants & likely invariants can tackle many problems
● Interpolants can help synthesize information as if “out of thin air”
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Recap

● Formalism is a tool that can simplify reasoning about tasks
● Many solutions involve a careful combination of

– order theory (for comparison)
– formal grammars (for structure)
– formal logic (for inference)
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