CMPT 745
Software Engineering

Basic Formalisms for Software Engineering

Nick Sumner
wsumner@sfu.ca

Formalism is just a tool

- Formal systems are common

Formalism is just a tool

- Formal systems are common
- High school algebra
- Classic formal logic
- Euclidean geometry

Formalism is just a tool

- Formal systems are common
- High school algebra
- Classic formal logic
- Euclidean geometry
- They serve multiple useful purposes

Formalism is just a tool

- Formal systems are common
- High school algebra
- Classic formal logic
- Euclidean geometry
- They serve multiple useful purposes
- Limit the possibilities that you may consider
- Check whether reasoning is correct
- Enable automated techniques for finding solutions

Formalism is just a tool

- Formal systems are common
- High school algebra
- Classic formal logic
- Euclidean geometry
- They serve multiple useful purposes
- Limit the possibilities that you may consider
- Check whether reasoning is correct
- Enable automated techniques for finding solutions
- Choosing the right tool for the job can be hard

Formalism is just a tool

- Several specific systems are common (in CS and program analysis)

Formalism is just a tool

- Several specific systems are common
(in CS and program analysis)
- Order Theory

How to compare elements of a set

Formalism is just a tool

- Several specific systems are common
(in CS and program analysis)
- Order Theory
- Formal Grammars \& Automata

Use structure to constrain the elements of a set

Formalism is just a tool

- Several specific systems are common
(in CS and program analysis)
- Order Theory
- Formal Grammars \& Automata
- Formal Logic (Classical \& otherwise)

How and when to infer facts

Formalism is just a tool

- Several specific systems are common (in CS and program analysis)
- Order Theory
- Formal Grammars \& Automata
- Formal Logic (Classical \& otherwise)
- We are going to revisit these (quickly) with some insights on how they can useful in practice.

Formalism is just a tool

- Several specific systems are common (in CS and program analysis)
- Order Theory
- Formal Grammars \& Automata
- Formal Logic (Classical \& otherwise)
- We are going to revisit these (quickly) with some insights on how they can useful in practice.
- Most students don't seem to remember them

Formalism is just a tool

- Several specific systems are common
(in CS and program analysis)
- Order Theory
- Formal Grammars \& Automata
- Formal Logic (Classical \& otherwise)
- We are going to revisit these (quickly) with some insights on how they can useful in practice.
- Most students don't seem to remember them
- Even fewer learn that formalism can be useful!

Formalism is just a tool

- Several specific systems are common
(in CS and program analysis)
- Order Theory
- Formal Grammars \& Automata
- Formal Logic (Classical \& otherwise)
- We are going to revisit these (quickly) with some insights on how they can useful in practice.
- Most students don't seem to remember them
- Even fewer learn that formalism can be useful!
- These techniques are critical for static program analysis

Order Theory

Order Theory

- Order theory is a field examining how we compare elements of a set.

Order Theory

- Order theory is a field examining how we compare elements of a set.
- Simplest example is numbers on a number line:

Order Theory

- Order theory is a field examining how we compare elements of a set.
- Simplest example is numbers on a number line:

Order Theory

- Order theory is a field examining how we compare elements of a set.
- Simplest example is numbers on a number line:

- \leq is a total order on \mathbb{Z}.
- Intuitively, $\forall \mathrm{a}, \mathrm{b} \in \mathbb{Z}$, either $\mathrm{a} \leq \mathrm{b}$ or $\mathrm{b} \leq \mathrm{a}$

Order Theory

- We often want to compare complex data

Order Theory

- We often want to compare complex data
- Ordinal, multidimensional, ...

Order Theory

- We often want to compare complex data
- Ordinal, multidimensional, ...

Order Theory

- We often want to compare complex data
- Ordinal, multidimensional, ...

Order Theory

- We often want to compare complex data
- Ordinal, multidimensional, ...

What is the result of $(1,1) \leq(2,2)$?

Order Theory

- We often want to compare complex data
- Ordinal, multidimensional, ...

Order Theory

- We often want to compare complex data
- Ordinal, multidimensional, ...

What is the result of $(1,2) \leq(2,1)$?

Order Theory

- We often want to compare complex data
- Ordinal, multidimensional, ...

- Componentwise comparison with tuples yields a partial order

Order Theory

- We often want to compare complex data
- Ordinal, multidimensional, ...

- Componentwise comparison with tuples yields a partial order
- Intuitively, not all elements are comparable

Order Theory

- We often want to compare complex data
- Ordinal, multidimensional, ...

Which of these 4 elements are comparable?

- Componentwise comparison with tuples yields a partial order
- Intuitively, not all elements are comparable

Partial Orders

- A relation \leq is a partial order on a set \mathbf{S} if $\forall a, b, c \in S$
- Reflexive:

$$
a \leq a
$$

- Antisymmetric:
- Transitive:
$a \leq b \& b \leq a \Rightarrow a=b$
$a \leq b \& b \leq c \Rightarrow a \leq c$

Partial Orders

- A relation \leq is a partial order on a set \mathbf{S} if $\forall a, b, c \in S$
- Reflexive: $\quad a \leq a$
- Antisymmetric:

$$
\begin{aligned}
& a \leq b \& b \leq a \Rightarrow a=b \\
& a \leq b \& b \leq c \Rightarrow a \leq c
\end{aligned}
$$

- Transitive:

Partial Orders

- A relation \leq is a partial order on a set \mathbf{S} if $\forall a, b, c \in S$
- Reflexive: $\quad a \leq a$
- Antisymmetric:
$a \leq b \& b \leq a \Rightarrow a=b$
- Transitive:
$a \leq b \& b \leq c \Rightarrow a \leq c$

Partial Orders

- A relation \leq is a partial order on a set \mathbf{S} if $\forall a, b, c \in S$
- Reflexive:

$$
\begin{aligned}
& a \leq a \\
& a \leq b \& b \leq a \Rightarrow a=b \\
& a \leq b \& b \leq c \Rightarrow a \leq c
\end{aligned}
$$

How does a total order compare?

Partial Orders

- A relation \leq is a partial order on a set S if $\forall a, b, c \in S$
- Reflexive:
$a \leq a$
- Antisymmetric:
$a \leq b \& b \leq a \Rightarrow a=b$
- Transitive: $a \leq b \& b \leq c \Rightarrow a \leq c$
- When reasoning about partial orders, we prefer \sqsubseteq

Partial Orders

- A relation \leq is a partial order on a set S if $\forall a, b, c \in S$
- Reflexive:
$a \leq a$
- Antisymmetric:
$a \leq b \& b \leq a \Rightarrow a=b$
- Transitive:
$a \leq b \& b \leq c \Rightarrow a \leq c$
- When reasoning about partial orders, we prefer \sqsubseteq
- Common partial orders include
- substring, subsequence, subset relationships

Partial Orders

- A relation \leq is a partial order on a set S if $\forall a, b, c \in S$

$$
\begin{gathered}
a b \leq_{\text {str }} \text { xabyz } \\
\text { ab } \leq_{\text {seq }} \text { xaybz } \\
\{a, b\} \subseteq\{a, b, x, y, z\}
\end{gathered}
$$

- Common partial orders include
- substring, subsequence, subset relationships

Partial Orders

- A relation \leq is a partial order on a set S if $\forall a, b, c \in S$
- Reflexive:
- Antisymmetric:
$a \leq a$
$a \leq b \& b \leq a \Rightarrow a=b$
- Transitive: $\mathrm{a} \leq \mathrm{b} \& \mathrm{~b} \leq \mathrm{c} \Rightarrow \mathrm{a} \leq \mathrm{c}$
- When reasoning about partial orders, we prefer \sqsubseteq
- Common partial orders include
- substring, subsequence, subset relationships
- componentwise orderings

Partial Orders

- A relation \leq is a partial order on a set S if $\forall a, b, c \in S$

$$
\begin{aligned}
& (1,1) \sqsubseteq(1,2) \\
& (1,1) \sqsubseteq(2,2)
\end{aligned}
$$

- Common partial orders include
- substring, subsequence, subset relationships
- componentwise orderings

Partial Orders

- A relation \leq is a partial order on a set S if $\forall a, b, c \in S$
- Reflexive:
- Antisymmetric:
$a \leq a$
$a \leq b \& b \leq a \Rightarrow a=b$
- Transitive: $\mathrm{a} \leq \mathrm{b} \& \mathrm{~b} \leq \mathrm{c} \Rightarrow \mathrm{a} \leq \mathrm{c}$
- When reasoning about partial orders, we prefer \sqsubseteq
- Common partial orders include
- substring, subsequence, subset relationships
- componentwise orderings
- functions (considering all input/output mappings)

Partial Orders

- A relation \leq is a partial order on a set S if $\forall a, b, c \in S$

$$
f(x)=x+1 \sqsubseteq g(x)=x+2
$$

- Common partial orders include
- substring, subsequence, subset relationships
- componentwise orderings
- functions (considering all input/output mappings)

Partial Orders

- A relation \leq is a partial order on a set S if $\forall a, b, c \in S$

$$
f(x)=x+1 \sqsubseteq g(x)=x+2
$$

- Common partial orders include
- substring, subsequence, subset relationships
- componentwise orderings
- functions (considering all input/output mappings)

Partial Orders

- A relation \leq is a partial order on a set S if $\forall a, b, c \in S$

$$
\begin{gathered}
f(x)=x+1 \sqsubseteq g(x)=x+2 \\
h(x)=x \sqsubseteq \quad i(x)=-x
\end{gathered}
$$

- Common partial orders include
- substring, subsequence, subset relationships
- componentwise orderings
- functions (considering all input/output mappings)

Partial Orders

- A relation \leq is a partial order on a set S if $\forall a, b, c \in S$

$$
\begin{gathered}
f(x)=x+1 \sqsubseteq g(x)=x+2 \\
h(x)=x \sqsubseteq \quad \text { ㄷ }(x)=-x
\end{gathered}
$$

- Common partial orders include
- substring, subsequence, subset relationships
- componentwise orderings
- functions (considering all input/output mappings)

Partial Orders

- We can express the structure of partial orders using (semi-)lattices.

Partial Orders

- We can express the structure of partial orders using (semi-)lattices.

Partial Orders

- We can express the structure of partial orders using (semi-)lattices.

Partial Orders

- We can express the structure of partial orders using (semi-)lattices.

Partial Orders

- We can express the structure of partial orders using (semi-)lattices.

Partial Orders

- We can express the structure of partial orders using (semi-)lattices.

- If unique least/greatest elements exist, we call them \perp (bottom)/T(top)

Partial Orders

- We are often interested in upper and lower bounds.

Partial Orders

- We are often interested in upper and lower bounds.
- A join $a \leq b$ is the least upper bound of a and b

Partial Orders

- We are often interested in upper and lower bounds.
- A join $a \leq b$ is the least upper bound of a and b

Partial Orders

- We are often interested in upper and lower bounds.
- A join $a \leq b$ is the least upper bound of a and b

$$
a \sqsubseteq(a \sqcup b) \quad \& \quad b \sqsubseteq(a \sqcup b) \quad \& \quad(a \sqsubseteq c \& b \sqsubseteq c \rightarrow(a \sqcup b) \sqsubseteq c)
$$

Partial Orders

- We are often interested in upper and lower bounds.
- A join $a \Delta b$ is the least upper bound of a and b
- A meet a Π b is the greatest lower bound of and and b

Partial Orders

- We are often interested in upper and lower bounds.
- A join $a \Delta b$ is the least upper bound of a and b
- A meet a Π b is the greatest lower bound of and and b

Partial Orders

- We are often interested in upper and lower bounds.
- A join a $ப b$ is the least upper bound of a and b
- A meet a Πb is the greatest lower bound of and and b
- Bounds must be unique and may not exist.

Partial Orders

- We are often interested in upper and lower bounds.
- A join a $ப b$ is the least upper bound of a and b
- A meet a Πb is the greatest lower bound of and and b
- Bounds must be unique and may not exist.

Partial Orders

- We are often interested in upper and lower bounds.
- A join a $ப b$ is the least upper bound of a and b
- A meet a Π b is the greatest lower bound of and and b
- Bounds must be unique and may not exist.

What is $A \sqcup B$?

Partial Orders

- We are often interested in upper and lower bounds.
- A join a $ப b$ is the least upper bound of a and b
- A meet a Πb is the greatest lower bound of and and b
- Bounds must be unique and may not exist.

What is $\mathrm{A} \square \mathrm{B}$?
What is $B \sqcup C$?

Partial Orders

- We are often interested in upper and lower bounds.
- A join a $ப b$ is the least upper bound of a and b
- A meet a Πb is the greatest lower bound of and and b
- Bounds must be unique and may not exist.

What is $A \sqcup B$?
What is $B \sqcup C$?
What is $D \sqcup E$?

Partial Orders

- We are often interested in upper and lower bounds.
- A join a $ப b$ is the least upper bound of a and b
- A meet a Πb is the greatest lower bound of and and b
- Bounds must be unique and may not exist.
- $\forall S^{\prime} \subseteq S$,

Partial Orders

- We are often interested in upper and lower bounds.
- A join a $ப b$ is the least upper bound of a and b
- A meet a Πb is the greatest lower bound of and and b
- Bounds must be unique and may not exist.
$-\quad \forall S^{\prime} \subseteq S, \exists \sqcup S^{\prime} \& \sqcap S^{\prime} \Rightarrow$ lattice

Partial Orders

- We are often interested in upper and lower bounds.
- A join a $\sqcup b$ is the least upper bound of a and b
- A meet a Πb is the greatest lower bound of and and b
- Bounds must be unique and may not exist.
- $\forall S^{\prime} \subseteq S, \exists \sqcup S^{\prime} \& \sqcap S^{\prime} \Rightarrow$ lattice, $\exists \sqcup S^{\prime}$ or $\exists \sqcap S^{\prime} \Rightarrow$ semilattice

Partial Orders

- We are often interested in upper and lower bounds.
- A join a $ப b$ is the least upper bound of a and b
- A meet a Πb is the greatest lower bound of and and b
- Bounds must be unique and may not exist.
- $\forall S^{\prime} \subseteq S, \exists \sqcup S^{\prime} \& \sqcap S^{\prime} \Rightarrow$ lattice, $\exists \sqcup S^{\prime}$ or $\exists \sqcap S^{\prime} \Rightarrow$ semilattice

Partial Orders

- A product of lattices (partial orders) yields a lattice (partial order)

$$
L_{1} \times L_{2}
$$

Partial Orders

- A product of lattices (partial orders) yields a lattice (partial order)
- We already saw componentwise orderings for tuples. This is the same.

$$
\begin{aligned}
& L_{1} \times L_{2} \\
& \mathbb{Z} \times \mathbb{Z}
\end{aligned}
$$

Partial Orders

- A product of lattices (partial orders) yields a lattice (partial order)
- We already saw componentwise orderings for tuples. This is the same.

$$
\begin{aligned}
& L_{1} \times L_{2} \\
& \mathbb{Z} \times \mathbb{Z}
\end{aligned}
$$

A total order is a partial order. Products of total orders are partial orders

Partial Orders

- A product of lattices (partial orders) yields a lattice (partial order)
- We already saw componentwise orderings for tuples.

This is the same.

- Several expected principles naturally apply

Partial Orders

- A product of lattices (partial orders) yields a lattice (partial order)
- We already saw componentwise orderings for tuples.

This is the same.

- Several expected principles naturally apply
- Monotonicity

$$
\left(X, \sqsubseteq_{x}\right),\left(Y, \sqsubseteq_{y}\right), f: X \rightarrow Y
$$

Partial Orders

- A product of lattices (partial orders) yields a lattice (partial order)
- We already saw componentwise orderings for tuples.

This is the same.

- Several expected principles naturally apply
- Monotonicity

$$
\begin{aligned}
& \left(X, \sqsubseteq_{x}\right),\left(Y, \sqsubseteq_{y}\right), f: X \rightarrow Y \\
& x_{1} \sqsubseteq_{x} x_{2} \rightarrow f\left(x_{1}\right) \sqsubseteq_{\mathrm{y}} f\left(\mathrm{x}_{2}\right) \quad \text { (f is monotonic) }
\end{aligned}
$$

Partial Orders

- A product of lattices (partial orders) yields a lattice (partial order)
- We already saw componentwise orderings for tuples. This is the same.
- Several expected principles naturally apply
- Monotonicity
- Continuity
- Fixed Points
- ...

Partial Orders

- A product of lattices (partial orders) yields a lattice (partial order)
- We already saw componentwise orderings for tuples. This is the same.
- Several expected principles naturally apply
- Monotonicity
- Continuity
- Fixed Points
-
- We can even consider different orders for the same sets!

Partial Orders

- We can even consider different orders for the same sets!

Partial Orders

- We can even consider different orders for the same sets!

Partial Orders

- We can even consider different orders for the same sets!

Partial Orders

- We can even consider different orders for the same sets!

Partial Orders

- We can even consider different orders for the same sets!

Partial Orders

- We can even consider different orders for the same sets!
- Careful structuring of our orderings can express different things. What do these two lattices express?

Partial Orders

- We can even consider different orders for the same sets!
- Careful structuring of our orderings can express different things. What do these two lattices express?
- Many use cases can also be affected by the height of a lattice.

Partial Orders

- Partial orders \& lattices can be very useful

Partial Orders

- Partial orders \& lattices can be very useful
- A formal structure for reasoning about relative value

Partial Orders

- Partial orders \& lattices can be very useful
- A formal structure for reasoning about relative value
- modern cryptography (including post-quantum)

Partial Orders

- Partial orders \& lattices can be very useful
- A formal structure for reasoning about relative value
- modern cryptography
- concurrency \& distributed systems

Partial Orders

- Partial orders \& lattices can be very useful
- A formal structure for reasoning about relative value
- modern cryptography
- concurrency \& distributed systems

Partial Orders

- Partial orders \& lattices can be very useful
- A formal structure for reasoning about relative value
- modern cryptography
- concurrency \& distributed systems
- dataflow analysis \& proving program properties

Partial Orders

- Partial orders \& lattices can be very useful
- A formal structure for reasoning about relative value
- modern cryptography
- concurrency \& distributed systems
- dataflow analysis \& proving program properties

```
if x > 0
```


print(y)

Partial Orders

- Partial orders \& lattices can be very useful
- A formal structure for reasoning about relative value
- modern cryptography
- concurrency \& distributed systems
- dataflow analysis \& proving program properties

What can the last line print? if $\mathrm{x}>0$

print(y)

Partial Orders

- Partial orders \& lattices can be very useful
- A formal structure for reasoning about relative value
- modern cryptography
- concurrency \& distributed systems
- dataflow analysis \& proving program properties

What can the last line print? if $\mathrm{x}>0$
2 or 3? (set lattice)

print (y)

Partial Orders

- Partial orders \& lattices can be very useful
- A formal structure for reasoning about relative value
- modern cryptography
- concurrency \& distributed systems
- dataflow analysis \& proving program properties

What can the last line print? if $\mathbf{x}>0$ 2 or 3? (set lattice) unknown? (flat lattice)

print(y)

Formal Grammars \& Automata

Formal Grammars \& Automata

- Grammars define the structure of elements in a set
- Alternatively, they generate the set via structure

Formal Grammars \& Automata

- Grammars define the structure of elements in a set
- Alternatively, they generate the set via structure
- They commonly define formal languages
- Sets of strings over a defined alphabet

Formal Grammars \& Automata

- Grammars define the structure of elements in a set
- Alternatively, they generate the set via structure
- They commonly define formal languages
- Sets of strings over a defined alphabet
- They are effective at constraining sets \& search spaces

Regular Languages \& Finite Automata

- A regular language can be expressed via a regular expression

Regular Languages \& Finite Automata

- A regular language can be expressed via a regular expression

Regular Languages \& Finite Automata

- A regular language can be expressed via a regular expression

```
regex }->\mathrm{ symbol
    | ```regex ``
    regex
    regex `|`regex
    regex regex
```

e.g. $a(b c \mid c d)^{*} e$ defines L containing abccdbce

Regular Languages \& Finite Automata

- A regular language can be expressed via a regular expression
- Finite automata can be used to recognize or generate elements of a regular language

Regular Languages \& Finite Automata

- A regular language can be expressed via a regular expression
- Finite automata can be used to recognize or generate elements of a regular language

Regular Languages \& Finite Automata

- A regular language can be expressed via a regular expression
- Finite automata can be used to recognize or generate elements of a regular language

e.g. $a(b c \mid c d)^{*} e$ recognizes L containing abccdbce

Regular Languages \& Finite Automata

- A regular language can be expressed via a regular expression
- Finite automata can be used to recognize or generate elements of a regular language

e.g. $a(b c \mid c d)^{*} e$ recognizes L containing abccdbce

Regular Languages \& Finite Automata

- A regular language can be expressed via a regular expression
- Finite automata can be used to recognize or generate elements of a regular language

e.g. $a(b c \mid c d)^{*} e$ recognizes L containing abccdbce

Regular Languages \& Finite Automata

- A regular language can be expressed via a regular expression
- Finite automata can be used to recognize or generate elements of a regular language

e.g. $a(b c \mid c d)^{*} e$ recognizes L containing abccdbce

Regular Languages \& Finite Automata

- A regular language can be expressed via a regular expression
- Finite automata can be used to recognize or generate elements of a regular language

e.g. $a(b c \mid c d)^{*} e$ recognizes L containing abccdbce

Regular Languages \& Finite Automata

- A regular language can be expressed via a regular expression
- Finite automata can be used to recognize or generate elements of a regular language
- Recall, regular languages cannot express matched parentheses (Dyck languages)

$$
a^{n} b^{n}
$$

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition

$$
\begin{aligned}
& \text { Start }=\mathrm{A} \\
& \mathrm{~A} \rightarrow \mathrm{cBd} \\
& \mathrm{~B} \xrightarrow[\mathrm{eBf}]{ } \\
& \mathrm{l}
\end{aligned}
$$

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition

$$
\begin{aligned}
& \text { Start = A } \\
& \text { A } \rightarrow \text { cBd } \\
& \text { B } \xrightarrow{\rightarrow} \mathrm{eBf} \\
& \mathrm{~g} \\
& \mathrm{ce}^{\mathrm{n}} \mathrm{gf}^{\mathrm{n}} \mathrm{~d}
\end{aligned}
$$

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition
Start $=\mathrm{A}$
$\mathrm{A} \rightarrow \mathrm{cBd}$
$\mathrm{B} \rightarrow \mathrm{eBf}$
I

This requires some kind of memory

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition

Start $=\mathrm{A}$
$\mathrm{A} \rightarrow \mathrm{cBd}$
$\mathrm{B} \rightarrow \mathrm{eBf}$
1 g
$c e^{n} g f^{n} d$

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition

$$
\begin{aligned}
& \text { Start = A } \\
& \text { A } \rightarrow \mathrm{cBd} \\
& \mathrm{~B} \xrightarrow[\mathrm{eBf}]{\mathrm{g}} \\
& \mathrm{ce}^{\mathrm{n}} \mathrm{gf}{ }^{\mathrm{n}} \mathrm{~d}
\end{aligned}
$$

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition

$$
\begin{gathered}
\text { Start = A } \\
\text { A } \rightarrow \text { cBd } \\
\text { B } \xrightarrow{\rightarrow} \mathrm{eBf} \\
\mathrm{~g} \\
\mathrm{ce}^{\mathrm{n}} \mathrm{gf}^{\mathrm{n}} \mathrm{~d}
\end{gathered}
$$

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition

Generating symbols out of order acts as a form of memory.

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition
- The grammar for regular expressions was a CFG!

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition
- The grammar for regular expressions was a CFG!

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)
$\mathrm{S} \rightarrow \mathrm{xAy\mid zB}$
$\mathrm{~A} \rightarrow \mathrm{aA} \mid \mathrm{t}$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{u}$

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{xAy} \mid \mathrm{zB} \\
& \mathrm{~A} \rightarrow \mathrm{aA} \mid \mathrm{t} \\
& \mathrm{~B} \rightarrow \mathrm{bB} \mid \mathrm{u}
\end{aligned}
$$

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)
$\mathrm{S} \rightarrow \mathrm{xAy\mid zB}$
$\mathrm{~A} \rightarrow \mathrm{aA} \mid \mathrm{t}$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{u}$

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)
$\mathrm{S} \rightarrow \mathrm{xAy\mid zB}$
$\mathrm{~A} \rightarrow \mathrm{aA} \mid \mathrm{t}$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{u}$

xaaty

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)
$\mathrm{S} \rightarrow \mathrm{xAy\mid zB}$
$\mathrm{~A} \rightarrow \mathrm{aA} \mid \mathrm{t}$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{u}$

xaaty

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)
$\mathrm{S} \rightarrow \mathrm{xAy\mid zB}$
$\mathrm{~A} \rightarrow \mathrm{aA} \mid \mathrm{t}$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{u}$

xaaty

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)
$\mathrm{S} \rightarrow \mathrm{xAy\mid zB}$
$\mathrm{~A} \rightarrow \mathrm{aA} \mid \mathrm{t}$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{u}$

xaaty

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)
$\mathrm{S} \rightarrow \mathrm{xAy\mid zB}$
$\mathrm{~A} \rightarrow \mathrm{aA} \mid \mathrm{t}$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{u}$

xaaty

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)
$\mathrm{S} \rightarrow \mathrm{xAy\mid zB}$
$\mathrm{~A} \rightarrow \mathrm{aA} \mid \mathrm{t}$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{u}$

xaaty

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)
$\mathrm{S} \rightarrow \mathrm{xAy\mid zB}$
$\mathrm{~A} \rightarrow \mathrm{aA} \mid \mathrm{t}$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{u}$

xaaty

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)
$\mathrm{S} \rightarrow \mathrm{xAy\mid zB}$
$\mathrm{~A} \rightarrow \mathrm{aA} \mid \mathrm{t}$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{u}$

xaaty

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)
$\mathrm{S} \rightarrow \mathrm{xAy\mid zB}$
$\mathrm{~A} \rightarrow \mathrm{aA} \mid \mathrm{t}$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{u}$

xaaty

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)
$\mathrm{S} \rightarrow \mathrm{xAy\mid zB}$
$\mathrm{~A} \rightarrow \mathrm{aA} \mid \mathrm{t}$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{u}$

xaaty

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)
$\mathrm{S} \rightarrow \mathrm{xAy\mid zB}$
$\mathrm{~A} \rightarrow \mathrm{aA} \mid \mathrm{t}$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{u}$

xaaty

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)

$\rightarrow x A y \mid z B$

S xAy

Is this behavior similar to something more familiar?

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)
- Adding additional rules can extend the expressiveness
- context sensitive languages
- tree adjoining grammars
- ...

Context Free Grammars \& Pushdown Automata

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)
- Adding additional rules can extend the expressiveness
- Grammars can constrain far more than strings.
- graphs
- semantic objects (furniture layout? sequences of actions? ...)

Context Free Grammars \& Pushdown Automata

- Context free grammars play a key role in

Context Free Grammars \& Pushdown Automata

- Context free grammars play a key role in
- Precise static program analysis

Context Free Grammars \& Pushdown Automata

- Context free grammars play a key role in
- Precise static program analysis
- Program synthesis

Context Free Grammars \& Pushdown Automata

- Context free grammars play a key role in
- Precise static program analysis
- Program synthesis

```
if (e) {
}
```


Context Free Grammars \& Pushdown Automata

- Context free grammars play a key role in
- Precise static program analysis
- Program synthesis

Automated Repair

true

false

Context Free Grammars \& Pushdown Automata

- Context free grammars play a key role in
- Precise static program analysis
- Program synthesis

Automated Repair

$$
\begin{aligned}
& \text { true } \\
& \text { false } \\
& \{?\}=\{?\} \\
& \{?\}<\{?\} \\
& \{?\}<=\{?\}
\end{aligned}
$$

Context Free Grammars \& Pushdown Automata

- Context free grammars play a key role in
- Precise static program analysis
- Program synthesis

Automated Repair

Context Free Grammars \& Pushdown Automata

- Context free grammars play a key role in
- Precise static program analysis
- Program synthesis

Automated Repair

Context Free Grammars \& Pushdown Automata

- Context free grammars play a key role in
- Precise static program analysis
- Program synthesis
- Prediction and machine learning on programs

Context Free Grammars \& Pushdown Automata

- Context free grammars play a key role in
- Precise static program analysis
- Program synthesis
- Prediction and machine learning on programs

[Gu 2019]

Context Free Grammars \& Pushdown Automata

- Context free grammars play a key role in
- Precise static program analysis
- Program synthesis
- Prediction and machine learning on programs

-hiddenRep-

[Gu 2019]

Context Free Grammars \& Pushdown Automata

- Context free grammars play a key role in
- Precise static program analysis
- Program synthesis
- Prediction and machine learning on programs
- Compact encodings of complex sets

Formal Logic

Formal Logic

- Formal logic is a systematic approach to reasoning
- Separate the messy content of an argument from its structure

Formal Logic

- Formal logic is a systematic approach to reasoning
- Separate the messy content of an argument from its structure
- Sometimes the process can be automated
- e.g. satisfiability problems, type inference, ...

Formal Logic

- Formal logic is a systematic approach to reasoning
- Separate the messy content of an argument from its structure
- Sometimes the process can be automated
- e.g. satisfiability problems, type inference, ...
- Program analysis has actually been one of the driving forces behind satisfiability in recent years.

Classical Logic

- You likely already know either propositional or first order logic
- Systems for reasoning about the truth of sentences

Classical Logic

- You likely already know either propositional or first order logic
- Systems for reasoning about the truth of sentences
- Atoms abstract away the actors of the sentences
- Constants: \#t, \#f
- Variables: $\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots$

Classical Logic

- You likely already know either propositional or first order logic
- Systems for reasoning about the truth of sentences
- Atoms abstract away the actors of the sentences
- Constants: \#t, \#f
- Variables: $\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots$
- Connectives relate the atoms \& other propositions to each other
- \neg (Not), \wedge (And), \vee (or)
- \rightarrow (Implies), \leftrightarrow (Iff)

Classical Logic

- You likely already know either propositional or first order logic
- Systems for reasoning about the truth of sentences
- Atoms abstract away the actors of the sentences
- Constants: \#t, \#f
- Variables: $\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots$
- Connectives relate the atoms \& other propositions to each other
- \neg (Not), \wedge (And), \vee (or)
- \rightarrow (Implies), \leftrightarrow (Iff)

$$
x \wedge \neg y \wedge z
$$

Classical Logic

- First order logic augments with

Classical Logic

- First order logic augments with
- Quantifiers- \exists (there exists), \forall (for all)
- Functions \& Relations- e.g. father(x), Elephant(y)

Classical Logic

- First order logic augments with
- Quantifiers- \exists (there exists), \forall (for all)
- Functions \& Relations- e.g. father(x), Elephant(y)
- Sentences can be true or false

Classical Logic

- First order logic augments with
- Quantifiers- \exists (there exists), \forall (for all)
- Functions \& Relations- e.g. father(x), Elephant(y)
- Sentences can be true or false

$$
\forall \mathrm{x}(\text { Elephant }(\mathrm{x}) \rightarrow \operatorname{Grey}(\mathrm{x}))
$$

Classical Logic

- First order logic augments with
- Quantifiers- \exists (there exists), \forall (for all)
- Functions \& Relations- e.g. father(x), Elephant(y)
- Sentences can be true or false
$\forall \mathrm{x}(\operatorname{Elephant}(\mathrm{x}) \rightarrow \operatorname{Grey}(\mathrm{x}))$
$\forall \mathrm{x}(\operatorname{Elephant}(\mathrm{x}) \rightarrow$ Elephant $(\operatorname{father}(\mathrm{x})))$

Classical Logic

- First order logic augments with
- Quantifiers- \exists (there exists), \forall (for all)
- Functions \& Relations- e.g. father(x), Elephant(y)
- Sentences can be true or false
- An interpretation I of the world along with the rules of logic determine truth via judgment (\vdash)

Classical Logic

- First order logic augments with
- Quantifiers- \exists (there exists), \forall (for all)
- Functions \& Relations- e.g. father(x), Elephant(y)
- Sentences can be true or false
- An interpretation I of the world along with the rules of logic determine truth via judgment (\vdash)

$$
\mathrm{I} \vdash \mathrm{x} \text { and } \mathrm{I} \vdash \mathrm{y} \text { iff } \mathrm{I} \vdash \mathrm{x} \wedge \mathrm{y}
$$

Classical Logic

- Satisfiability
- A sentence s is satisfiable $\leftrightarrow \exists \mathrm{I}$ (Iヶs)

Classical Logic

- Satisfiability
- A sentence s is satisfiable $\leftrightarrow \exists \mathrm{I}$ (Iヶs)
- Validity
- A sentence s is valid $\leftrightarrow \forall \mathrm{I}$ (Iヶs)

Classical Logic

- Satisfiability
- A sentence s is satisfiable $\leftrightarrow \exists \mathrm{I}$ (I-s)
- Validity
- A sentence s is valid $\longleftrightarrow \forall \mathrm{I}$ (I-s)
- We will see later how these can be used for a wide variety of tasks

Classical Logic

- Satisfiability
- A sentence s is satisfiable $\leftrightarrow \exists \mathrm{I}$ (I \vdash s)
- Validity
- A sentence s is valid $\leftrightarrow \forall \mathrm{I}$ (I \vdash s)
- We will see later how these can be used for a wide variety of tasks
- Bug finding
- Model checking (proving correctness)
- Explaining defects
- ...

Inference using classical logic

- Rules express how some judgments enable others

Inference using classical logic

- Rules express how some judgments enable others

$$
\Gamma \vdash x \quad \Delta \vdash y
$$

$\Gamma, \Delta \vdash \mathrm{x} \wedge \mathrm{y}$

Inference using classical logic

- Rules express how some judgments enable others

$$
\Gamma \vdash \mathrm{x} \quad \Delta \vdash \mathrm{y}
$$

$\Gamma, \Delta \vdash \mathrm{x} \wedge \mathrm{y}$

Inference using classical logic

- Rules express how some judgments enable others

$$
\frac{\Gamma \vdash \mathrm{x} \quad \Delta \vdash \mathrm{y}}{\Gamma, \Delta \vdash \mathrm{x} \wedge \mathrm{y}}
$$

- Proofs can be written by stacking rules

Inference using classical logic

- Rules express how some judgments enable others

- Proofs can be written by stacking rules

$$
\frac{\frac{\overline{A \vdash A}}{} \mathrm{Id} \quad \frac{A \rightarrow B \vdash A \rightarrow B}{} \mathrm{Id} \quad \overline{A \vdash A}}{\mathrm{Id}} \rightarrow-\mathrm{E}
$$

Wadler, "A Taste of Linear Logic". 2014.

Intuitionistic \& Constructive Logic

- It can be useful to modify or limit rules of inference

Intuitionistic \& Constructive Logic

- It can be useful to modify or limit rules of inference
- Suppose a compiler cannot prove variable x is an int. Is it reasonable for the compile to assume x is a string?

Intuitionistic \& Constructive Logic

- It can be useful to modify or limit rules of inference
- Suppose a compiler cannot prove variable x is an int. Is it reasonable for the compile to assume x is a string?
- Constructivism argues that truth comes from direct evidence.
- We cannot merely assume p or not p, we must have evidence

Intuitionistic \& Constructive Logic

- It can be useful to modify or limit rules of inference
- Suppose a compiler cannot prove variable x is an int. Is it reasonable for the compile to assume x is a string?
- Constructivism argues that truth comes from direct evidence.
- We cannot merely assume p or not p, we must have evidence
- Intuitionistic logic restricts the rules of inference to require direct evidence

Intuitionistic \& Constructive Logic

- Classic logic includes several rules including

Intuitionistic \& Constructive Logic

- Classic logic includes several rules including

$$
\begin{gathered}
F-\mathrm{p} \vee \neg \mathrm{p} \\
\text { Law of excluded middle }
\end{gathered}
$$

Intuitionistic \& Constructive Logic

- Classic logic includes several rules including

Intuitionistic \& Constructive Logic

- Classic logic includes several rules including

- Intuitionistic logic excludes these to require direct evidence

Intuitionistic \& Constructive Logic

- Classic logic includes several rules including

- Intuitionistic logic excludes these to require direct evidence
- Note, this is commonly used in type systems

Linear \& Substructural Logic

 sellsBurritos(store) \vdash buyBurrito(me,store)has10Dollars(me)

Linear \& Substructural Logic

sellsBurritos(store) \vdash has10Dollars(me) buyBurrito(me,store) \wedge buyBurrito(me,store)

Linear \& Substructural Logic

sellsBurritos(store) \vdash buyburrito(me,store) \wedge buyBurrito(me,store) \wedge buyBurrito(me,store)

Linear \& Substructural Logic

sellsBurritos(store) has10Dollars(me)
\vdash buyBurrito(me,store) \wedge buyBurrito(me,store) \wedge buyBurrito(me,store) \wedge buyBurrito(me,store)

Linear \& Substructural Logic

sellsBurritos(store) \vdash buyBurrito(me,store) \wedge buyBurrito(me,store)
 \wedge buyBurrito(me,store)
 \wedge buyBurrito(me,store)

Classical \& intuitionistic logic have trouble expressing consumable facts

Linear \& Substructural Logic

- Linear logic denotes separates facts into two kinds
- [Intuitionistic] as before
- <Linear> cannot be used with contraction or weakening

Linear \& Substructural Logic

sellsBurritos(store) has10Dollars(me) buyBurrito(me,store)

- Linear logic denotes separates facts into two kinds
- [Intuitionistic] as before
- <Linear> cannot be used with contraction or weakening

$$
\frac{\Gamma, \Delta \vdash \mathrm{p}}{\Gamma, \mathrm{~A}, \Delta \vdash \mathrm{p}}
$$

Linear \& Substructural Logic

sellsBurritos(store) has10Dollars(me) - buyBurrito(me,store)

- Linear logic denotes separates facts into two kinds
- [Intuitionistic] as before
- <Linear> cannot be used with contraction or weakening
- In essence, linear facts must be consumed exactly once in a proof.

Linear \& Substructural Logic

sellsBurritos(store) \vdash buyBurrito(me,store) has10Dollars(me)

- Linear logic denotes separates facts into two kinds
- [Intuitionistic] as before
- <Linear> cannot be used with contraction or weakening
- In essence, linear facts must be consumed exactly once in a proof.

Idea: Some facts (resources) require careful accounting

Linear \& Substructural Logic

$\begin{aligned} & \text { sellsBurritos(store) } \\ & \text { has10Dollars(me) }\end{aligned}-$ buyBurrito(me,store)

- Linear logic denotes separates facts into two kinds
- [Intuitionistic] as before
- <Linear> cannot be used with contraction or weakening
- In essence, linear facts must be consumed exactly once in a proof.

Logics that remove additional rules from intuitionistic logic are substructural

Linear \& Substructural Logic

sellsBurritos(store) has10Dollars(me) buyBurrito(me,store)

- Linear logic denotes separates facts into two kinds
- [Intuitionistic] as before
- <Linear> cannot be used with contraction or weakening
- In essence, linear facts must be consumed exactly once in a proof.
- This forms the backbone of ownership types in languages like Rust!

Linear \& Substructural Logic

sellsBurritos(store) has10Dollars(me) buyBurrito(me,store)

- Linear logic denotes separates facts into two kinds
- [Intuitionistic] as before
- <Linear> cannot be used with contraction or weakening
- In essence, linear facts must be consumed exactly once in a proof.
- This forms the backbone of ownership types in languages like Rust!

```
struct Thing(u32);
let a = Thing(5);
let b = a;
let c = a;
```


Linear \& Substructural Logic

sellsBurritos(store) has10Dollars(me) buyBurrito(me,store)

- Linear logic denotes separates facts into two kinds
- [Intuitionistic] as before
- <Linear> cannot be used with contraction or weakening
- In essence, linear facts must be consumed exactly once in a proof.
- This forms the backbone of ownership types in languages like Rust!

```
struct Thing(u32);
let a = Thing(5);
let b = a;
let c = a;
```

- a:Thing

Linear \& Substructural Logic

sellsBurritos(store) has10Dollars(me) buyBurrito(me,store)

- Linear logic denotes separates facts into two kinds
- [Intuitionistic] as before
- <Linear> cannot be used with contraction or weakening
- In essence, linear facts must be consumed exactly once in a proof.
- This forms the backbone of ownership types in languages like Rust!

```
struct Thing(u32);
let a = Thing(5);
let b = a;
let c = a;
```

F a:Thing
a :Thing $\mathfrak{\vdash}$ b:Thing

Linear \& Substructural Logic

sellsBurritos(store) has10Dollars(me) buyBurrito(me,store)

- Linear logic denotes separates facts into two kinds
- [Intuitionistic] as before
- <Linear> cannot be used with contraction or weakening
- In essence, linear facts must be consumed exactly once in a proof.
- This forms the backbone of ownership types in languages like Rust!

```
struct Thing(u32);
let a = Thing(5);
let b = a;
let c = a;
```

$\stackrel{a}{ }+$ Thing
a.Thing $ト$ b:Thing

Linear \& Substructural Logic

sellsBurritos(store) has10Dollars(me) buyBurrito(me,store)

- Linear logic denotes separates facts into two kinds
- [Intuitionistic] as before
- <Linear> cannot be used with contraction or weakening
- In essence, linear facts must be consumed exactly once in a proof.
- This forms the backbone of ownership types in languages like Rust!

```
struct Thing(u32);
let a = Thing(5);
let b = a;
let c = a;
```

```
F a:Thing
```

F a:Thing
a:Thing
a:Thing
Error (F c:?)

```
Error (F c:?)
```


Hoare Logic

- Given facts, the logics we have seen consider what is true/false

Hoare Logic

- Given facts, the logics we have seen consider what is true/false

$$
x \wedge \neg y \wedge z
$$

Hoare Logic

- Given facts, the logics we have seen consider what is true/false

$$
x \wedge \neg y \wedge z
$$

- Programs reason about facts that change over time

Hoare Logic

- Given facts, the logics we have seen consider what is true/false

$\mathrm{X} \wedge \neg \mathrm{\square} \wedge \mathrm{Z}$

- Programs reason about facts that change over time
- How do facts at one state affect facts at another?

Hoare Logic

- Given facts, the logics we have seen consider what is true/false
- Programs reason about facts that change over time
- How do facts at one state affect facts at another?

```
double sqrt(double n,
                                    double threshold) {
    double x = 1;
    while (true) {
    double newX = (x - n/x) / 2;
    if (abs(x - nx) < threshold)
        break;
    x = nx
}
return x
}
```


Hoare Logic

- Given facts, the logics we have seen consider what is true/false
- Programs reason about facts that change over time
- How do facts at one state affect facts at another?
- Does this do what is expected?

```
double sqrt(double n,
                double threshold) {
    double x = 1;
    while (true) {
    double newX = (x + n/x) / 2;
    if (abs(x - nx) < threshold)
        break;
        x = nx
    }
    return x;
}
```


Hoare Logic

- Given facts, the logics we have seen consider what is true/false

$\mathrm{X} \wedge \neg \mathrm{Z} \wedge \mathrm{Z}$

- Programs reason about facts that change over time
- How do facts at one state affect facts at another?
- Does this do what is expected?
- Will I dereference a null pointer?

```
double sqrt(double n,
double threshold) {
    double x = 1;
    while (true)
    double newX = (x + n/x) / 2;
    if (abs(x - nx) < threshold)
        break;
    x = nx
}
return x;
    y=w[20]
```


Hoare Logic

- Given facts, the logics we have seen consider what is true/false
- Programs reason about facts that change over time
- How do facts at one state affect facts at another?
- Does this do what is expected?
- Will I dereference a null pointer?

```
double sqrt(double n,
double threshold) {
double x = 1;
while (true)
    double newX = (x + n/x) / 2;
    if (abs(x - nx) < threshold)
        break;
    x = nx
```

We want a logic that reasons about changes in state.

```
y = w[20]
x = *y + 5
```


Hoare Logic

- Hoare logic reasons about the behavior of programs and program fragments

Hoare Logic

- Hoare logic reasons about the behavior of programs and program fragments

$$
\{\varphi\} C\{\psi\}
$$

Precondition

Hoare Logic

- Hoare logic reasons about the behavior of programs and program fragments

Precondition

$-\{\varphi \underset{\Delta}{\mid c}\{\psi\}$
Command

Hoare Logic

- Hoare logic reasons about the behavior of programs and program fragments

Precondition

Command

Postcondition

Hoare Logic

- Hoare logic reasons about the behavior of programs and program fragments

$$
\{\varphi\} C\{\psi\}
$$

- If φ holds before C, Ψ will hold after

$$
\{x=3 \wedge y=2\} x \leftarrow 5\{x=5\}
$$

Hoare Logic

- Hoare logic reasons about the behavior of programs and program fragments

$$
\{\varphi\} C\{\psi\}
$$

- If φ holds before C, Ψ will hold after

$$
\{x=3 \wedge y=2\} x \leftarrow 5\{x=5\}
$$

- A weakest precondition $\mathrm{wp}(\mathrm{C}, \Psi)$ captures all states leading to ψ after C.

Hoare Logic

- Hoare logic reasons about the behavior of programs and program fragments

$$
\{\varphi\} C\{\psi\}
$$

- If φ holds before C, Ψ will hold after

$$
\{x=3 \wedge y=2\} x \leftarrow 5\{x=5\}
$$

- A weakest precondition $\mathrm{wp}(\mathrm{C}, \Psi)$ captures all states leading to ψ after C.

$$
\{\# t\} x \leftarrow 5\{x=5\}
$$

Hoare Logic

- Hoare logic reasons about the behavior of programs and program fragments

$$
\{\varphi\} C\{\psi\}
$$

- If φ holds before C, Ψ will hold after

$$
\{x=3 \wedge y=2\} x \leftarrow 5\{x=5\}
$$

- A weakest precondition $\mathrm{wp}(\mathrm{C}, \Psi)$ captures all states leading to ψ after C.

$$
\begin{gathered}
\{\# \mathrm{t}\} \times \leftarrow 5\{\mathrm{x}=5\} \\
\{? ? ?\} \text { if } \mathrm{c} \text { then } \mathrm{x} \leftarrow 5\{\mathrm{x}=5\}
\end{gathered}
$$

Hoare Logic

- Hoare logic reasons about the behavior of programs and program fragments

$$
\{\varphi\} C\{\psi\}
$$

- If φ holds before C, Ψ will hold after

$$
\left\{\mathrm{x}=3 \wedge \begin{array}{l}
\text { You already have an intuition } \\
\text { for weakest preconditions }
\end{array}\right.
$$

- A weakest precondition $\omega(\mathrm{C}, \Psi)$ captures all states leading to ψ after C.

$$
\begin{gathered}
\{\# \mathrm{t}\} \times \leftarrow 5\{\mathrm{x}=5\} \\
\{? ?\}\} \text { if } \mathrm{c} \text { then } \mathrm{x} \leftarrow 5\{\mathrm{x}=5\}
\end{gathered}
$$

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?
- A store/state σ is a partial function mapping variables to values

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?
- A store/state σ is a partial function mapping variables to values
- Commands in a program can modify the store

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?
- A store/state σ is a partial function mapping variables to values
- Commands in a program can modify the store

Command

$$
x \leftarrow 5
$$

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?
- A store/state σ is a partial function mapping variables to values
- Commands in a program can modify the store

$$
\begin{array}{cc}
\begin{array}{c}
\text { Store }
\end{array} & \text { Command } \\
\sigma=\{\mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1\} & \mathrm{x} \leftarrow 5
\end{array}
$$

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?
- A store/state σ is a partial function mapping variables to values
- Commands in a program can modify the store

$$
\begin{array}{cc}
\text { Store } & \text { Command } \\
\sigma=\{\mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1\} \\
\downarrow & \\
\sigma=\{\mathrm{x} \mapsto 5, \mathrm{y} \mapsto 1\} &
\end{array}
$$

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?
- A store/state σ is a partial function mapping variables to values
- Commands in a program can modify the store

Store Command Conditions

$$
\sigma=\{\mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1\}
$$

$$
x \leftarrow 5
$$

$$
\sigma=\{\mathrm{x} \mapsto 5, \mathrm{y} \mapsto 1\}
$$

$$
\{x=5\}
$$

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?
- A store/state σ is a partial function mapping variables to values
- Commands in a program can modify the store

$$
\begin{array}{ccc}
\text { Store } & \text { Command } & \begin{array}{c}
\text { Conditions } \\
\{\mathrm{x}=3 \wedge \mathrm{y}=2\}
\end{array} \\
\sigma=\{\mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1\} & \mathrm{x} \leftarrow 5 & \\
\sigma=\{\mathrm{x} \mapsto 5, \mathrm{y} \mapsto 1\} & & \{\mathrm{x}=5\}
\end{array}
$$

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?
- A store/state σ is a partial function mapp This was technically true,
- Commands in a program can modify the stc but not so useful
(...or even compatible with our states)
Store
$\sigma=\{\mathrm{X} \mapsto 3, \mathrm{y} \mapsto 1\}$

Command
Conditions
$\{\mathrm{x}=3 \wedge \mathrm{y}=2\}$
$x \leftarrow 5$
$\sigma=\{\mathrm{x} \mapsto 5, \mathrm{y} \mapsto 1\}$

$$
\{x=5\}
$$

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?
- A store/state σ is a partial function mapping variables to values
- Commands in a program can modify the store

$$
\begin{array}{ccc}
\text { Store } & \text { Command } & \begin{array}{c}
\text { Conditions }
\end{array} \\
\sigma=\{\mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1\} & \mathrm{x} \leftarrow 3 \wedge \mathrm{y}= \\
\sigma=\{\mathrm{x} \mapsto 5, \mathrm{y} \mapsto 1\} & & \{\mathrm{x}=5\}
\end{array}
$$

- $\quad \sigma \in \Sigma$ (all possible states), and we can reason about subsets of Σ

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?

$$
\sigma=\{\mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1\}
$$

$$
x \leftarrow 5
$$

$$
\sigma=\{\mathrm{x} \mapsto 5, \mathrm{y} \mapsto 1\}
$$

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?

$$
\sigma=\{\mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1\}
$$

$$
x \leftarrow 5
$$

$$
\sigma=\{\mathrm{x} \mapsto 5, \mathrm{y} \mapsto 1\}
$$

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?

$$
\sigma=\{\mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1\}
$$

$x \leftarrow 5$
$\sigma=\{\mathrm{x} \mapsto 5, \mathrm{y} \mapsto 1\}$

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?

$$
\sigma=\{\mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1\}
$$

$x \leftarrow 5$
Each set of states corresponds to a condition defining the set
$\sigma=\{\mathrm{x} \mapsto 5, \mathrm{y} \mapsto 1\}$

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?

$$
x \leftarrow 5
$$

$$
\sigma=\{\mathrm{x} \mapsto 5, \mathrm{y} \mapsto 1\}
$$

Commands map sets to sets

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?

All states lead to the postcondition!

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?

Have we already seen a way do describe this structure?

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?
- $w p(C, \Psi)=\square\{x \mid\{x\} \subset\{\Psi\}\}$
- Where $(A \rightarrow B) \vdash(A<B)$

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?
- $\begin{aligned} \text { wp }(C, \Psi) & =\sqcup\{x \mid\{x\} C\{\Psi\}\} \\ - \text { Where } & (A \rightarrow B) \vdash(A<B)\end{aligned}$

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?
- wp $(C, \Psi)=\square\{x \mid\{x\} C\{\Psi\} \beta$
- Where $(\mathrm{A} \rightarrow \mathrm{B}) \vdash^{(\mathrm{A}<\mathrm{B})}$

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?
- $\begin{aligned} \text { wp }(C, \Psi) & =\sqcup\{x \mid\{x\} C\{\Psi\}\} \\ - \text { Where } & (A \rightarrow B) \vdash(A<B)\end{aligned}$

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?
- wp(C, $\Psi)=\frac{\sqcup\{x \mid\{x\} C\{\Psi\} \beta}{- \text { Where }(A \rightarrow B) \vdash(A<B)}$

$$
\begin{array}{cc}
\left\{\begin{aligned}
\{x=3\} \\
=? \\
x \leftarrow 5
\end{aligned}\right. \\
\{x=5\} & \\
\Psi=\{x=4\} \\
& \\
\{x=5\}
\end{array}
$$

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?
- $\begin{aligned} \text { wp }(C, \Psi) & =\sqcup\{x \mid\{x\} C\{\Psi\}\} \\ - \text { Where } & (A \rightarrow B) \vdash(A<B)\end{aligned}$

$$
\begin{aligned}
& \{\mathrm{x}=3\} \bigsqcup\{\mathrm{x}=4\} \\
& \quad=?
\end{aligned}
$$

$\{x=4\}$

$$
x \leftarrow 5
$$

$$
\begin{aligned}
& \{x=3\} \rightarrow\{x=3 \vee x=4\} \\
& \{x=4\} \rightarrow\{x=3 \vee x=4\}
\end{aligned}
$$

$$
\{x=5\}
$$

$$
\psi=\{x=5\}
$$

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?
- wp $(C, \Psi)=\square\{x \mid\{x\} C\{\psi\} \beta$
- Where $(\mathrm{A} \rightarrow \mathrm{B}) \vdash(\mathrm{A}<\mathrm{B})$

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?
- wp $(C, \psi)=\square\{x \mid\{x\} \subset\{\psi\}\}$
- Where $(\mathrm{A} \rightarrow \mathrm{B}) \vdash(\mathrm{A}<\mathrm{B})$

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?
- $\begin{aligned} \text { wp }(C, \Psi) & =\sqcup\{x \mid\{x\} C\{\Psi\}\} \\ - \text { Where } & (A \rightarrow B) \vdash(A<B)\end{aligned}$

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?
- wp $(C, \Psi)=$\begin{tabular}{l}
- Where $(A \rightarrow B \mid\{x\} C\{\Psi\}\}$

\hline$(A<B)$
\end{tabular}

Intuitively, B is at least as general as A (it holds in at least as many states)

Hoare Logic - weakest preconditions

- What do we really mean by captures all states?
- $w p(C, \Psi)=\bigsqcup\{x \mid\{x\} C\{\psi\}\}$
- Where $(\mathrm{A} \rightarrow \mathrm{B}) \vdash(\mathrm{A}<\mathrm{B})$
- Technically, these are Weakest Sufficient Preconditions

Hoare Logic

- What do we really mean by captures all states?
- $w p(C, \Psi)=\bigsqcup\{x \mid\{x\} \subset\{\Psi\}\}$
- Where $(\mathrm{A} \rightarrow \mathrm{B}) \vdash(\mathrm{A}<\mathrm{B})$
- Technically, these are Weakest Sufficient Preconditions
- We may also consider/compute other relationships

Hoare Logic

- What do we really mean by captures all states?
- $w p(C, \Psi)=\bigsqcup\{x \mid\{x\} C\{\psi\}\}$
- Where $(A \rightarrow B) \vdash(A<B)$
- Technically, these are Weakest Sufficient Preconditions
- We may also consider/compute other relationships

Pre

Post

Hoare Logic

- What do we really mean by captures all states?
- wp $(C, \Psi)=\bigsqcup\{x \mid\{x\} \subset\{\Psi\}\}$
- Where $(\mathrm{A} \rightarrow \mathrm{B}) \vdash(\mathrm{A}<\mathrm{B})$
- Technically, these are Weakest Sufficient Preconditions
- We may also consider/compute other relationships
- Weakest Sufficient Preconditions (wsp)

What states φ lead to ψ ?

"Given ψ, what must be true for it to hold?"

Pre

C

Post

Hoare Logic

- What do we really mean by captures all states?
- wp $(C, \Psi)=\bigsqcup\{x \mid\{x\} \subset\{\Psi\}\}$
- Where $(\mathrm{A} \rightarrow \mathrm{B}) \vdash(\mathrm{A}<\mathrm{B})$
- Technically, these are Weakest Sufficient Preconditions
- We may also consider/compute other relationships
- Weakest Sufficient Preconditions
- Strongest Necessary Postconditions (snp) What states ψ must φ lead to?
"Given φ, what is guaranteed when it holds?"
φ
C

Hoare Logic

- What do we really mean by captures all states?
- wp $(C, \Psi)=\bigsqcup\{x \mid\{x\} \subset\{\Psi\}\}$
- Where $(\mathrm{A} \rightarrow \mathrm{B}) \vdash(\mathrm{A} \subset \mathrm{B})$
- Technically, these are Weakest Sufficient Preconditions
- We may also consider/compute other relationships
- Weakest Sufficient Preconditions
- Strongest Necessary Postconditions
- Strongest Necessary Preconditions (snpre)

What states φ lead to ψ ?
"Given ψ, what if false at φ would exclude it?"

Hoare Logic

- What do we really mean by captures all states?
- wp $(C, \Psi)=\bigsqcup\{x \mid\{x\} \subset\{\Psi\}\}$
- Where $(\mathrm{A} \rightarrow \mathrm{B}) \vdash(\mathrm{A}<\mathrm{B})$
- Technically, these are Weakest Sufficient Preconditions
- We may also consider/compute other relationships
- Weakest Sufficient Preconditions
- Strongest Necessary Postconditions
- Strongest Necessary Preconditions (snpre)

Then how does this differ from wsp?

Hoare Logic

- What do we really mean by captures all states?
- wp $(C, \Psi)=\bigsqcup\{x \mid\{x\} \subset\{\Psi\}\}$
- Where $(A \rightarrow B) \vdash(A<B)$
- Technically, these are Weakest Sufficient Preconditions
- We may also consider/compute other relationships
- Weakest Sufficient Preconditions
- Strongest Necessary Postconditions
- Strongest Necessary Preconditions

WSP
SNPre
$\varphi @$ pre $\rightarrow \boldsymbol{\psi} @$ post $\quad \varphi @$ pre $\leftarrow \Psi @$ post
Post

Hoare Logic

- What do we really mean by captures all states?
- wp $(C, \Psi)=\bigsqcup\{x \mid\{x\} \subset\{\Psi\}\}$
- Where $(\mathrm{A} \rightarrow \mathrm{B}) \vdash(\mathrm{A}<\mathrm{B})$
- Technically, these are Weakest Sufficient Preconditions
- We may also consider/compute other relationships
- Weakest Sufficient Preconditions
- Strongest Necessary Postconditions
- Strongest Necessary Preconditions

WSP SNPre
Since solving them is technically impossible, these differ in practice!

Hoare Logic

- What do we really mean by captures all states?
- wp $(C, \Psi)=\bigsqcup\{x \mid\{x\} \subset\{\Psi\}\}$
- Where $(\mathrm{A} \rightarrow \mathrm{B}) \vdash(\mathrm{A}<\mathrm{B})$
- Technically, these are Weakest Sufficient Preconditions
- We may also consider/compute other relationships
- Weakest Sufficient Preconditions
- Strongest Necessary Postconditions
- Strongest Necessary Preconditions

WSP SNPre
Since solving them is technically impossible, these differ in practice!

Hoare Logic

- What do we really mean by captures all states?
- wp $(C, \Psi)=\bigsqcup\{x \mid\{x\} \subset\{\Psi\}\}$
- Where $(\mathrm{A} \rightarrow \mathrm{B}) \vdash(\mathrm{A} \subset \mathrm{B})$
- Technically, these are Weakest Sufficient Preconditions
- We may also consider/compute other relationships
- Weakest Sufficient Preconditions
- Strongest Necessary Postconditions
- Strongest Necessary Preconditions

In practice, SNPre captures precondition assertions well [Cousot 2013]

Hoare Logic

- What do we really mean by captures all states?
- wp $(C, \Psi)=\bigsqcup\{x \mid\{x\} \subset\{\Psi\}\}$
- Where $(A \rightarrow B) \vdash(A<B)$
- Technically, these are Weakest Sufficient Preconditions
- We may also consider/compute other relationships
- Weakest Sufficient Preconditions
- Strongest Necessary Postconditions
- Strongest Necessary Preconditions

Pre

- Weakest Liberal Preconditions

What states φ lead to ψ or do not terminate?

Hoare Logic - weakest preconditions

- Inference rules for weakest preconditions

Hoare Logic - weakest preconditions

- Inference rules for weakest preconditions

$$
\mathrm{wp}(\mathrm{x} \leftarrow \mathrm{E}, \psi)=[\mathrm{E} / \mathrm{x}] \psi
$$

Hoare Logic - weakest preconditions

- Inference rules for weakest preconditions

$$
\begin{array}{cc}
\operatorname{wp}(\mathrm{x} \leftarrow \mathrm{E}, \psi)=[\mathrm{E} / \mathrm{x}] \psi \quad & \left\{\begin{array}{r}
? ? ?
\end{array}\right\} \\
& \mathrm{x} \leftarrow \mathrm{a}+\mathrm{b} \\
& \{\mathrm{x}<5\}
\end{array}
$$

Hoare Logic - weakest preconditions

- Inference rules for weakest preconditions

$$
\begin{array}{cc}
w p(x \leftarrow E, \psi)=[\mathrm{E} / \mathrm{x}] \psi \quad & \{\mathrm{a}+\mathrm{b}<5\} \\
& x \leftarrow \mathrm{a}+\mathrm{b} \\
& \{\mathrm{x}<5\}
\end{array}
$$

Hoare Logic - weakest preconditions

- Inference rules for weakest preconditions

$$
\begin{aligned}
& \operatorname{wp}(\mathrm{x} \leftarrow \mathrm{E}, \psi)=[\mathrm{E} / \mathrm{x}] \psi \\
& \operatorname{wp}(\mathrm{S} ; \mathrm{T}, \psi)=\operatorname{wp}(\mathrm{S}, \operatorname{wp}(\mathrm{~T}, \psi))
\end{aligned}
$$

Hoare Logic - weakest preconditions

- Inference rules for weakest preconditions

$$
\begin{aligned}
& \mathrm{wp}(\mathrm{x} \leftarrow \mathrm{E}, \psi)=[\mathrm{E} / \mathrm{x}] \psi \\
& \mathrm{wp}(\mathrm{~S} ; \mathrm{T}, \psi)=\operatorname{wp}(\mathrm{S}, \operatorname{wp}(\mathrm{~T}, \psi))
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{c}
? ? ? \\
\mathrm{~b} \leftarrow 7 ;
\end{array}\right\} \\
& \begin{array}{l}
\mathrm{x} \leftarrow \mathrm{a}+\mathrm{b} \\
\{\mathrm{x}<5\}
\end{array}
\end{aligned}
$$

Hoare Logic - weakest preconditions

- Inference rules for weakest preconditions

$$
\begin{aligned}
& \operatorname{wp}(\mathrm{x} \leftarrow \mathrm{E}, \psi)=[\mathrm{E} / \mathrm{x}] \psi \\
& \operatorname{wp}(\mathrm{S} ; \mathrm{T}, \psi)=\operatorname{wp}(\mathrm{S}, \operatorname{wp}(\mathrm{~T}, \psi))
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{c}
? ? ? \\
b \leftarrow 7 ;
\end{array}\right\} \\
& \{a+b<5\} \\
& x \leftarrow a+b \\
& \{x<5\}
\end{aligned}
$$

Hoare Logic - weakest preconditions

- Inference rules for weakest preconditions

$$
\begin{aligned}
& \operatorname{wp}(\mathrm{x} \leftarrow \mathrm{E}, \psi)=[\mathrm{E} / \mathrm{x}] \psi \\
& \operatorname{wp}(\mathrm{S} ; \mathrm{T}, \psi)=\operatorname{wp}(\mathrm{S}, \operatorname{wp}(\mathrm{~T}, \psi))
\end{aligned}
$$

$$
\begin{aligned}
& \{a+7<5\} \\
& b \leftarrow 7 ; \\
& \{a+b<5\} \\
& x \leftarrow a+b \\
& \{x<5\}
\end{aligned}
$$

Hoare Logic - weakest preconditions

- Inference rules for weakest preconditions

$$
\begin{aligned}
& \operatorname{Wp}(\mathrm{x} \leftarrow \mathrm{E}, \Psi)=[\mathrm{E} / \mathrm{x}] \Psi \\
& \mathrm{wp}(\mathrm{~S} ; \mathrm{T}, \Psi)=\mathrm{wp}(\mathrm{~S}, \mathrm{wp}(\mathrm{~T}, \Psi)) \\
& \mathrm{wp}(\text { if } \mathrm{B} \text { then } \mathrm{S} \text { else } \mathrm{T}, \Psi) \\
& \quad=\mathrm{B} \rightarrow \operatorname{wp}(\mathrm{~S}, \Psi) \wedge \neg \mathrm{B} \rightarrow \mathrm{wp}(\mathrm{~T}, \Psi)
\end{aligned}
$$

Hoare Logic - weakest preconditions

- Inference rules for weakest preconditions

$$
\begin{aligned}
& \mathrm{wp}(\mathrm{x} \leftarrow \mathrm{E}, \Psi)=[\mathrm{E} / \mathrm{x}] \Psi \\
& \mathrm{wp}(\mathrm{~S} ; \mathrm{T}, \Psi)=\mathrm{wp}(\mathrm{~S}, \mathrm{wp}(\mathrm{~T}, \Psi)) \\
& \mathrm{wp}(\text { if } \mathrm{B} \text { then } \mathrm{S} \text { else } \mathrm{T}, \Psi) \\
& \quad=\mathrm{B} \rightarrow \mathrm{wp}(\mathrm{~S}, \Psi) \wedge \square \mathrm{B} \rightarrow \mathrm{wp}(\mathrm{~T}, \Psi)
\end{aligned}
$$

Hoare Logic - weakest preconditions

- Inference rules for weakest preconditions

```
wp}(\textrm{x}\leftarrow\textrm{E},\Psi)=[\textrm{E}/\textrm{x}]
wp(S;T,\Psi) = wp(S, wp(T,\Psi))
wp(if B then S else T,\Psi)
    = B }->\textrm{wp}(\textrm{S},\Psi)\wedge\neg\textrm{B}->\textrm{wp}(\textrm{T},\Psi
```

if c then
$d=y+2$
else
$d=y+5$
x / d

Hoare Logic - weakest preconditions

- Inference rules for weakest preconditions

$$
\begin{aligned}
& w p(\mathrm{x} \leftarrow \mathrm{E}, \psi)=[\mathrm{E} / \mathrm{x}] \psi \\
& \mathrm{wp}(\mathrm{~S} ; \mathrm{T}, \psi)=\mathrm{wp}(\mathrm{~S}, \mathrm{wp}(\mathrm{~T}, \psi)) \\
& \mathrm{wp}(\text { if } \mathrm{B} \text { then } \mathrm{S} \text { else } \mathrm{T}, \psi) \\
& \quad=\mathrm{B} \rightarrow \operatorname{wp}(\mathrm{~S}, \psi) \wedge \neg \mathrm{B} \rightarrow \mathrm{wp}(\mathrm{~T}, \psi) \\
& \begin{array}{l}
\text { if c then } \\
\mathrm{d}=\mathrm{y}+2
\end{array} \\
& \begin{array}{c}
\text { else } \\
\mathrm{d}=y+5 \\
\mathrm{x} / \mathrm{d}
\end{array}
\end{aligned}
$$

Hoare Logic - weakest preconditions

- Inference rules for weakest preconditions

$$
\begin{aligned}
& \mathrm{wp}(\mathrm{x} \leftarrow \mathrm{E}, \Psi)=[\mathrm{E} / \mathrm{x}] \Psi \\
& \text { wp }(\mathrm{S} ; \mathrm{T}, \Psi)=\mathrm{wp}(\mathrm{~S}, \mathrm{wp}(\mathrm{~T}, \psi)) \\
& \text { wp(if B then S else T, } \psi \text {) } \\
& =\mathrm{B} \rightarrow \operatorname{wp}(\mathrm{~S}, \psi) \wedge \neg \mathrm{B} \rightarrow \mathrm{wp}(\mathrm{~T}, \psi) \\
& \begin{array}{c|l}
\text { if c then } & \{? ? ?\} \\
d=y+2 & \{y+2 \neq 0\} \\
\text { else } & \\
\begin{array}{c}
d=y+5 \\
x / d
\end{array} & \{y+5 \neq 0\} \\
\{d \neq 0\}
\end{array}
\end{aligned}
$$

Hoare Logic - weakest preconditions

- Inference rules for weakest preconditions

$$
\begin{aligned}
& \mathrm{wp}(\mathrm{x} \leftarrow \mathrm{E}, \Psi)=[\mathrm{E} / \mathrm{x}] \Psi \\
& \operatorname{wp}(S ; T, \Psi)=\operatorname{wp}(S, w p(T, \Psi)) \\
& \text { wp (if } \mathrm{B} \text { then } \mathrm{S} \text { else } \mathrm{T}, \Psi \text {) } \\
& =\mathrm{B} \rightarrow \operatorname{wp}(\mathrm{~S}, \Psi) \wedge \neg \mathrm{B} \rightarrow \mathrm{wp}(\mathrm{~T}, \Psi) \\
& \begin{array}{c|l}
\text { if c then } & \left\{\begin{array}{l}
\{c \rightarrow y+2 \neq 0 \wedge \neg c \rightarrow y+5 \neq 0\} \\
d=y+2
\end{array}\right. \\
\begin{array}{c}
\{y+2 \neq 0\} \\
\text { else } \begin{array}{c}
d=y+5
\end{array} \\
\text { x/d }
\end{array} & \begin{array}{l}
\{y+5 \neq 0\} \\
\{d \neq 0\}
\end{array}
\end{array}
\end{aligned}
$$

Hoare Logic

- Careful points
- Redefinition of variables

$$
\text { Pre: } \begin{aligned}
\{a & <5, c<2\} \\
b & =a+2 \\
a & =3 * c
\end{aligned}
$$

Post: \{??\}

Hoare Logic

- Careful points
- Redefinition of variables

$$
\text { Pre: } \begin{aligned}
\{a & <5, c<2\} \\
b & =a+2 \\
a & =3 * c
\end{aligned}
$$

Post: \{??\}

It can be necessary to rename variables that are redefined.

Hoare Logic

- Careful points
- Redefinition of variables

$$
\text { Pre: } \begin{aligned}
\{a & <5, c<2\} \\
b & =a+2 \\
a & =3 * c
\end{aligned}
$$

Post: \{??\}

It can be necessary to rename variables that are redefined.

Hoare Logic

- Careful points
- Redefinition of variables
- Pointers

$$
\begin{aligned}
& \text { Pre: \{??\} } \\
& \text { *a = *a + } 5 \\
& \text { Post: }\left\{{ }^{*} \mathrm{a}+{ }^{*} \mathrm{~b}<10\right\}
\end{aligned}
$$

Hoare Logic

- Careful points
- Redefinition of variables
- Pointers

$$
\begin{aligned}
\text { Pre: } & \{? ?\} \\
& \text { *a }=* a+5 \\
\text { Post: } & \left\{{ }^{*} a+{ }^{*} b<10\right\}
\end{aligned}
$$

Efficiently modeling memory is challenging! Newer logics target this directly.
 (points-to analysis allows for weak and strong updates)

Hoare Logic

- Careful points
- Redefinition of variables
- Pointers
- Loops

Hoare Logic

- Careful points
- Redefinition of variables
- Pointers Loops run head first into undecidability!
- Loops They require deriving an inductive invariant.

Hoare Logic

- Careful points
- Redefinition of variables
- Pointers
- Loops

$\{\varphi\} C\{\psi\} \quad$ while \mathbf{B} do \mathbf{S} done

Hoare Logic

- Careful points
- Redefinition of variables
- Pointers
- Loops

$\{\varphi\} C\{\psi\} \quad$ while \mathbf{B} do \mathbf{S} done

$$
\text { Inv } \wedge \neg \mathrm{B} \rightarrow \Psi \quad \text { exit }
$$

Hoare Logic

- Careful points
- Redefinition of variables
- Pointers
- Loops

$\{\varphi\} C\{\psi\} \quad$ while \mathbf{B} do \mathbf{S} done

$$
\begin{array}{cl}
\{\operatorname{Inv} \wedge \neg \mathrm{B} \rightarrow \psi\} & \text { exit } \\
\{\operatorname{Inv} \wedge \mathrm{B}\} & \mathrm{S}\{\text { Inv }\}
\end{array} \mathrm{continue} \text { ent }
$$

Hoare Logic

- Careful points
- Redefinition of variables
- Pointers
- Loops

$\{\varphi\} C\{\psi\} \quad$ while \mathbf{B} do \mathbf{S} done

$$
\begin{array}{cl}
\{\operatorname{Inv} \wedge \neg \mathrm{B} \rightarrow \psi\} & \text { exit } \\
\{\operatorname{Inv} \wedge \mathrm{B}\} \mathrm{S}\{\operatorname{Inv}\} & \text { continue } \\
\{\varphi \rightarrow \operatorname{Inv}\} & \text { enter }
\end{array}
$$

Hoare Logic

- Careful points
- Redefinition of va
- Pointers
- Loops

Automatically inferring such invariants
is used for verifying safe: avionics machine learning

$$
\{\varphi\} C\{\psi\} \quad \text { while } \mathbf{B} \text { do } \mathbf{S} \text { done }
$$

$$
\begin{array}{cl}
\{\operatorname{Inv} \wedge \neg \mathrm{B} \rightarrow \psi\} & \text { exit } \\
\{\operatorname{Inv} \wedge \mathrm{B}\} \mathrm{S}\{\operatorname{Inv}\} & \text { continue } \\
\{\varphi \rightarrow \operatorname{Inv}\} & \text { enter }
\end{array}
$$

Separation Logic

- Linear logic allows facts to be used exactly once <> or arbitrarily many times [].

Separation Logic

- Linear logic allows facts to be used exactly once <> or arbitrarily many times [].
- Separation logic (informally) distinguishes separate facts (counting), allowing them to be used separately

Separation Logic

- Linear logic allows facts to be used exactly once <> or arbitrarily many times [].
- Separation logic (informally) distinguishes separate facts (counting), allowing them to be used separately
- This helps to solve reasoning about pointers as we saw earlier

Separation Logic

- Linear logic allows facts to be used exactly once <> or arbitrarily many times [].
- Separation logic (informally) distinguishes separate facts (counting), allowing them to be used separately
- Hoare logic is extended with a separating conjunction *

Separation Logic

- Linear logic allows facts to be used exactly once <> or arbitrarily many times [].
- Separation logic (informally) distinguishes separate facts (counting), allowing them to be used separately
- Hoare logic is extended with a separating conjunction *

$$
\{\mathrm{x} \mapsto \mathrm{y} * \mathrm{y} \mapsto \mathrm{x}\} \mathrm{x}=\mathrm{z}\{\mathrm{x} \mapsto \mathrm{z} * \mathrm{y} \mapsto \mathrm{x}\}
$$

Facts separated by * do not "mix" (overlap)

Separation Logic

- Linear logic allows facts to be used exactly once <> or arbitrarily many times [].
- Separation logic (informally) distinguishes separate facts (counting), allowing them to be used separately
- Hoare logic is extended with a separating conjunction *

$$
\{\mathrm{x} \mapsto \mathrm{y} * \mathrm{y} \mapsto \mathrm{x}\} \mathrm{x}=\mathrm{z}\{\mathrm{x} \mapsto \mathrm{z} * \mathrm{y} \mapsto \mathrm{x}\}
$$

Suppose we used \wedge instead, what problem exists?

Separation Logic

- Linear logic allows facts to be used exactly once <> or arbitrarily many times [].
- Separation logic (informally) distinguishes separate facts (counting), allowing them to be used separately
- Hoare logic is extended with a separating conjunction *

$$
\{\mathrm{x} \mapsto \mathrm{y} * \mathrm{y} \mapsto \mathrm{x}\} \mathrm{x}=\mathrm{z}\{\mathrm{x} \mapsto \mathrm{Z} * \mathrm{y} \mapsto \mathrm{x}\}
$$

- Separation logic enables efficient compositional reasoning
- It is the backbone of Facebook's Infer engine!
- It combines Hoare logic with a substructural logic

Separation Logic

- The frame rule enables reasoning about the logical footprint of a command

$$
\frac{\{\varphi\} C\{\psi\}}{\left\{\varphi^{*} r\right\} C\left\{\Psi^{*} r\right\}}
$$

Separation Logic

- The frame rule enables reasoning about the logical footprint of a command

- Part of the power is that frames can be inferred via bi-abduction

Solving Problems Using Logic

Solving problems using logic

- We will look at a few ways logic can attack real problems

Solving problems using logic

- We will look at a few ways logic can attack real problems
- The exact techniques may have flaws, but how they attack problems with logic is interesting

Discovering \& Disproving Bugs

```
foo(a,b,c) {
    if (a != null)
        b = c;
        t = new...;
        c.f = t;
    }
    d = a;
    if (d != null) {
    b.f.g=10;
    }
}
```

[Margoor \& Komondoor, 2015]

Discovering \& Disproving Bugs

```
foo(a,b,c) {
    if (a != null) {
        b = c;
        t = new...;
        c.f = t;
    }
    d = a;
    if (d != null) {
    b.f.g=10;
    }
}
Can accessing the field \(g\)
[Margoor \& Komondoor, 2015] cause a null pointer exception?
```


Discovering \& Disproving Bugs

```
foo(a,b,c) {
    if (a != null)
        b = c;
        t = new...;
        c.f = t;
    }
    d = a;
    if (d != null) { {b.f=null}
    }
}
[Margoor \& Komondoor, 2015]
```


Discovering \& Disproving Bugs

```
foo(a,b,c) {
    if (a != null) {
        b = c;
        t = new...;
        c.f = t;
    }
    d = a;
    if (d != null) { {b.f=null}
    }
}
[Margoor \& Komondoor, 2015]
```


Discovering \& Disproving Bugs

```
foo(a,b,c) {
    if (a != null)
        b = c;
        t = new...;
        c.f = t;
    } = a;
    {b.f=null ^ a\not=null}
        {b.f=null }\wedged\not=null
        b.f.g = 10;
    }
}
[Margoor \& Komondoor, 2015]
```


Discovering \& Disproving Bugs

```
foo(a,b,c) {
    if (a != null) {
        b = c;
        t = new...;
        c.f = t;
            {b\not=c}\wedge b.f=null ^a\not=null) v (b=c^t=null ^ a a null)
    }
    d = a;
    if (d != null) {
    b.f.g = 10;
    }
}
[Margoor \& Komondoor, 2015]
```


Discovering \& Disproving Bugs

```
foo(a,b,c) {
    if (a != null) {
        b = c;
        t = new...;
        c.f = t;
    }
    d = a;
    if (d != null) {
    b.f.g = 10;
    }
}
[Margoor \& Komondoor, 2015]
```


Discovering \& Disproving Bugs

```
foo(a,b,c) {
    if (a != null) {
        b = c;
        t = new...;
        c.f = t;
    }
    d = a;
    if (d != null) {
    b.f.g = 10;
    }
}
[Margoor \& Komondoor, 2015]
```


Discovering \& Disproving Bugs

```
foo(a,b,c) { {(a\not=null }->\mathrm{ #f) v (a=null }->\mathrm{ b.f=null }\wedge a\not=null)
    if (a != null) {
        b = c;
        t = new...;
        c.f = t;
    }
    d = a;
    if (d != null) {
        b.f.g = 10;
    }
}
[Margoor \& Komondoor, 2015]
```


Discovering \& Disproving Bugs

Discovering \& Disproving Bugs

Localizing Bugs

[Jose \& Majumdar, 2011]

```
int arr[3];
    if (index != 1) {
        index = 2;
} else {
        index = index + 2;
}
i = index;
print(arr[i]);
```


Localizing Bugs

[Jose \& Majumdar, 2011]

```
int arr[3];
    if (index != 1) {
        index = 2;
} else {
        index = index + 2;
}
i = index;
print(arr[i]);
assert(0 < i < 3) should hold
```


Localizing Bugs

[Jose \& Majumdar, 2011]

```
int arr[3];
    if (index != 1) {
        index = 2;
} else {
        index = index + 2;
}
i = index;
print(arr[i]);
assert(0 < i < 3) should hold
When the starting index is 1,
    i is out of bounds
```


Localizing Bugs

[Jose \& Majumdar, 2011]

```
int arr[3];
    if (index != 1) {
        index = 2;
    } else {
        index = index + 2;
    }
i = index;
print(arr[i]);
assert \((0 \leq i<3)\) should hold
When the starting index is 1 , \(i\) is out of bounds
```


Localizing Bugs

index $_{1}=1$
$\wedge(0 \leq i<3)$
We will generate constraints in the forward direction
[Jose \& Majumdar, 2011]

```
int arr[3];
    if (index != 1) {
        index = 2;
    } else {
        index = index + 2;
}
i = index;
print(arr[i]);
```

assert $(0 \leq i<3)$ should hold
When the starting index is 1 , i is out of bounds

Localizing Bugs

```
index = 1
^ guard, = (index 
```

$\wedge(0 \leq i<3)$
We will generate constraints in the forward direction
[Jose \& Majumdar, 2011]

```
int arr[3];
    if (index != 1) {
        index = 2;
    } else {
        index = index + 2;
}
i = index;
print(arr[i]);
```

assert $(0 \leq i<3)$ should hold
When the starting index is 1 , i is out of bounds

Localizing Bugs

```
index = 1
^ guard }=(\mp@subsup{\mathrm{ index }}{1}{\prime}\not=1
^ index }=
```

$\wedge(0 \leq i<3)$
[Jose \& Majumdar, 2011]

```
int arr[3];
    if (index != 1) {
        index = 2;
} else {
    index = index + 2;
}
i = index;
print(arr[i]);
```

assert $(0 \leq i<3)$ should hold
When the starting index is 1 , i is out of bounds

Localizing Bugs

```
index = 1
^ guard }=(\mp@subsup{\mathrm{ index }}{1}{\prime}\not=1
^ index }=
^ index }=(\mathrm{ index }+2
```

$\wedge(0 \leq i<3)$
[Jose \& Majumdar, 2011]

```
int arr[3];
    if (index != 1) {
        index = 2;
} else {
    index = index + 2;
}
i = index;
print(arr[i]);
```

assert $(0 \leq i<3)$ should hold
When the starting index is 1 , i is out of bounds

Localizing Bugs

```
index = 1
^ guard }=(\mp@subsup{\mathrm{ index }}{1}{\prime}\not=1
^ index }=
^ index }=(\mathrm{ index }+2
^(guard
^(\negguard }->\mathrm{ ) i=index }\mp@subsup{}{3}{}
\wedge(0\leqi<3)
```

[Jose \& Majumdar, 2011]

```
int arr[3];
    if (index != 1) {
        index = 2;
} else {
    index = index + 2;
}
i = index;
print(arr[i]);
```

assert $(0 \leq i<3)$ should hold
When the starting index is 1 , i is out of bounds

Localizing Bugs

```
index = 1
^ guard
\wedge index }=
^ index }=(\mathrm{ index }+2
^(guard }->\mathrm{ (i=index )
\wedge ( ᄀguard }\mp@subsup{|}{1}{\prime
\wedge(0\leqi<3)
```

[Jose \& Majumdar, 2011]

int arr[3];

if (index != 1) \{ index = 2;
\} else \{ index = index + 2;
\}
i = index; print(arr[i]);
assert $(0 \leq i<3)$ should hold
When the starting index is 1 , i is out of bounds

Localizing Bugs

[Jose \& Majumdar, 2011]

assert $(0 \leq i<3)$ should hold
When the starting index is 1 , i is out of bounds

Localizing Bugs

```
index \(_{1}=1\)
\(\wedge\) guard \(_{1}=\left(\right.\) index \(\left._{1} \neq 1\right)\)
\(\wedge\) index \(_{2}=2\)
\(\wedge\) index \(_{3}=\left(\right.\) index \(\left._{1}+2\right)\)
\(\wedge\left(\right.\) guard \(_{1} \rightarrow\) i=index \({ }_{2}\) )
\(\wedge\left(\neg\right.\) guard \(_{1} \rightarrow\) i=index \(\left.{ }_{3}\right)\)
\(\wedge(0 \leq i<3)\)
```

This is always false, but we can use that!

assert(0 $\leq i<3$) should hold

Localizing Bugs

Localizing Bugs

assert $(0 \leq i<3)$ should hold
When the starting index is 1 ,
i is out of bounds

Localizing Bugs

$\operatorname{assert}(0 \leq i<3)$ should hold
When the starting index is 1 ,
i is out of bounds

Localizing Bugs

Localizing Bugs

index $=1$	
\wedge guard $_{1}=\left(\right.$ index $\left._{1} \neq 1\right)$	
\wedge	These constraints define our goal,
index	

\square
Must SAT
assert $(0 \leq i<3)$ should hold
When the starting index is 1 ,
i is out of bounds

Localizing Bugs

Must SAT Max \# satisfiable

Localizing Bugs

These constraints define our goal, so they are essential

Some of these constraints conflict with our goal

Minimum unsat cores \& partial MAX-SAT can discover the conflicts

Could not SAT;
Blame for inconsistency
$\mathrm{t}(0 \leq \mathrm{i}<3)$ should hold
Must SAT Max \# satisfiable
When the starting index is 1 ,
i is out of bounds

Further notes

- We will explore this further within Symbolic Execution

Further notes

- We will explore this further within Symbolic Execution
- Recognizing invariants \& likely invariants can tackle many problems

Further notes

- We will explore this further within Symbolic Execution
- Recognizing invariants \& likely invariants can tackle many problems
- Interpolants can help synthesize information as if "out of thin air"

Recap

- Formalism is a tool that can simplify reasoning about tasks

Recap

- Formalism is a tool that can simplify reasoning about tasks
- Many solutions involve a careful combination of
- order theory (for comparison)
- formal grammars (for structure)
- formal logic (for inference)

