
Basic Formalisms for
Software Engineering

CMPT 745
Software Engineering

Nick Sumner
wsumner@sfu.ca

Formalism is just a tool

● Formal systems are common

Formalism is just a tool

● Formal systems are common
– High school algebra
– Classic formal logic
– Euclidean geometry

Formalism is just a tool

● Formal systems are common
– High school algebra
– Classic formal logic
– Euclidean geometry

● They serve multiple useful purposes

Formalism is just a tool

● Formal systems are common
– High school algebra
– Classic formal logic
– Euclidean geometry

● They serve multiple useful purposes
– Limit the possibilities that you may consider
– Check whether reasoning is correct
– Enable automated techniques for finding solutions

Formalism is just a tool

● Formal systems are common
– High school algebra
– Classic formal logic
– Euclidean geometry

● They serve multiple useful purposes
– Limit the possibilities that you may consider
– Check whether reasoning is correct
– Enable automated techniques for finding solutions

● Choosing the right tool for the job can be hard

Formalism is just a tool

● Several specific systems are common
(in CS and program analysis)

Formalism is just a tool

● Several specific systems are common
(in CS and program analysis)
– Order Theory

How to compare elements of a set

Formalism is just a tool

● Several specific systems are common
(in CS and program analysis)
– Order Theory
– Formal Grammars & Automata

Use structure to constrain
the elements of a set

Formalism is just a tool

● Several specific systems are common
(in CS and program analysis)
– Order Theory
– Formal Grammars & Automata
– Formal Logic (Classical & otherwise)

How and when to infer facts

Formalism is just a tool

● Several specific systems are common
(in CS and program analysis)
– Order Theory
– Formal Grammars & Automata
– Formal Logic (Classical & otherwise)

● We are going to revisit these (quickly) with some insights on how they
can useful in practice.

Formalism is just a tool

● Several specific systems are common
(in CS and program analysis)
– Order Theory
– Formal Grammars & Automata
– Formal Logic (Classical & otherwise)

● We are going to revisit these (quickly) with some insights on how they
can useful in practice.
– Most students don’t seem to remember them

Formalism is just a tool

● Several specific systems are common
(in CS and program analysis)
– Order Theory
– Formal Grammars & Automata
– Formal Logic (Classical & otherwise)

● We are going to revisit these (quickly) with some insights on how they
can useful in practice.
– Most students don’t seem to remember them
– Even fewer learn that formalism can be useful!

Formalism is just a tool

● Several specific systems are common
(in CS and program analysis)
– Order Theory
– Formal Grammars & Automata
– Formal Logic (Classical & otherwise)

● We are going to revisit these (quickly) with some insights on how they
can useful in practice.
– Most students don’t seem to remember them
– Even fewer learn that formalism can be useful!
– These techniques are critical for static program analysis

Order Theory

Order Theory

● Order theory is a field examining how we compare elements of a set.

Order Theory

● Order theory is a field examining how we compare elements of a set.
● Simplest example is numbers on a number line: ∀∈

0 1 2 3 4-4 -3 -2 -1
Set: ℤ Relation: ≤

Order Theory

● Order theory is a field examining how we compare elements of a set.
● Simplest example is numbers on a number line:

0 1 2 3 4-4 -3 -2 -1
Set: ℤ Relation: ≤

Order Theory

● Order theory is a field examining how we compare elements of a set.
● Simplest example is numbers on a number line:

● ≤ is a total order on ℤ.
– Intuitively, a, b , either a ≤ b or b ≤∀ ∈ ℤ a

0 1 2 3 4-4 -3 -2 -1
Set: ℤ Relation: ≤

Order Theory

● We often want to compare complex data

Order Theory

● We often want to compare complex data
– Ordinal, multidimensional, ...

Order Theory

● We often want to compare complex data
– Ordinal, multidimensional, ...

0 1 2 3 40
1
2

Order Theory

● We often want to compare complex data
– Ordinal, multidimensional, ...

0 1 2 3 40
1
2

(1,1)
(2,2)

Order Theory

● We often want to compare complex data
– Ordinal, multidimensional, ...

0 1 2 3 40
1
2

(1,1)
(2,2) What is the result of

(1,1) ≤ (2,2)?

Order Theory

● We often want to compare complex data
– Ordinal, multidimensional, ...

0 1 2 3 40
1
2

(1,1)
(2,2) What is the result of

(1,1) ≤ (2,2)?

We can take ≤ to be
componentwise comparison.

Order Theory

● We often want to compare complex data
– Ordinal, multidimensional, ...

0 1 2 3 40
1
2 (1,2)

(2,1)
What is the result of

(1,2) ≤ (2,1)?

Order Theory

● We often want to compare complex data
– Ordinal, multidimensional, ...

● Componentwise comparison with tuples yields a partial order
0 1 2 3 40

1
2 (1,2)

(1,1) (2,1)
(2,2)

Order Theory

● We often want to compare complex data
– Ordinal, multidimensional, ...

● Componentwise comparison with tuples yields a partial order
– Intuitively, not all elements are comparable

0 1 2 3 40
1
2 (1,2)

(1,1) (2,1)
(2,2)

Order Theory

● We often want to compare complex data
– Ordinal, multidimensional, ...

● Componentwise comparison with tuples yields a partial order
– Intuitively, not all elements are comparable

0 1 2 3 40
1
2 (1,2)

(1,1) (2,1)
(2,2) Which of these 4

elements are comparable?

Partial Orders

● A relation ≤ is a partial order on a set S if a,b,c S∀ ∈
– Reflexive: a ≤ a
– Antisymmetric: a ≤ b & b ≤ a a = b⇒
– Transitive: a ≤ b & b ≤ c a ≤ c⇒

Partial Orders

● A relation ≤ is a partial order on a set S if a,b,c S∀ ∈
– Reflexive: a ≤ a
– Antisymmetric: a ≤ b & b ≤ a a = b⇒
– Transitive: a ≤ b & b ≤ c a ≤ c⇒

Partial Orders

● A relation ≤ is a partial order on a set S if a,b,c S∀ ∈
– Reflexive: a ≤ a
– Antisymmetric: a ≤ b & b ≤ a a = b⇒
– Transitive: a ≤ b & b ≤ c a ≤ c⇒

Partial Orders

● A relation ≤ is a partial order on a set S if a,b,c S∀ ∈
– Reflexive: a ≤ a
– Antisymmetric: a ≤ b & b ≤ a a = b⇒
– Transitive: a ≤ b & b ≤ c a ≤ c⇒

How does a
total order compare?

Partial Orders

● A relation ≤ is a partial order on a set S if a,b,c S ∀ ∈
– Reflexive: a ≤ a
– Antisymmetric: a ≤ b & b ≤ a a = b⇒
– Transitive: a ≤ b & b ≤ c a ≤ c⇒

● When reasoning about partial orders, we prefer ⊑

Partial Orders

● A relation ≤ is a partial order on a set S if a,b,c S ∀ ∈
– Reflexive: a ≤ a
– Antisymmetric: a ≤ b & b ≤ a a = b⇒
– Transitive: a ≤ b & b ≤ c a ≤ c⇒

● When reasoning about partial orders, we prefer ⊑
● Common partial orders include

– substring, subsequence, subset relationships

Partial Orders

● A relation ≤ is a partial order on a set S if a,b,c S ∀ ∈
– Reflexive: a ≤ a
– Antisymmetric: a ≤ b & b ≤ a a = b⇒
– Transitive: a ≤ b & b ≤ c a ≤ c⇒

● When reasoning about partial orders, we prefer ⊑
● Common partial orders include

– substring, subsequence, subset relationships

ab ⪯str xabyz
ab ⪯seq xaybz

{a,b} {⊆ a,b,x,y,z}

Partial Orders

● A relation ≤ is a partial order on a set S if a,b,c S ∀ ∈
– Reflexive: a ≤ a
– Antisymmetric: a ≤ b & b ≤ a a = b⇒
– Transitive: a ≤ b & b ≤ c a ≤ c⇒

● When reasoning about partial orders, we prefer ⊑
● Common partial orders include

– substring, subsequence, subset relationships
– componentwise orderings

Partial Orders

● A relation ≤ is a partial order on a set S if a,b,c S ∀ ∈
– Reflexive: a ≤ a
– Antisymmetric: a ≤ b & b ≤ a a = b⇒
– Transitive: a ≤ b & b ≤ c a ≤ c⇒

● When reasoning about partial orders, we prefer ⊑
● Common partial orders include

– substring, subsequence, subset relationships
– componentwise orderings

(1,1) (1,2)⊑
(1,1) (2,2)⊑

Partial Orders

● A relation ≤ is a partial order on a set S if a,b,c S ∀ ∈
– Reflexive: a ≤ a
– Antisymmetric: a ≤ b & b ≤ a a = b⇒
– Transitive: a ≤ b & b ≤ c a ≤ c⇒

● When reasoning about partial orders, we prefer ⊑
● Common partial orders include

– substring, subsequence, subset relationships
– componentwise orderings
– functions (considering all input/output mappings)

Partial Orders

● A relation ≤ is a partial order on a set S if a,b,c S ∀ ∈
– Reflexive: a ≤ a
– Antisymmetric: a ≤ b & b ≤ a a = b⇒
– Transitive: a ≤ b & b ≤ c a ≤ c⇒

● When reasoning about partial orders, we prefer ⊑
● Common partial orders include

– substring, subsequence, subset relationships
– componentwise orderings
– functions (considering all input/output mappings)

f(x) = x +1 ⊑ g(x) = x + 2

Partial Orders

● A relation ≤ is a partial order on a set S if a,b,c S ∀ ∈
– Reflexive: a ≤ a
– Antisymmetric: a ≤ b & b ≤ a a = b⇒
– Transitive: a ≤ b & b ≤ c a ≤ c⇒

● When reasoning about partial orders, we prefer ⊑
● Common partial orders include

– substring, subsequence, subset relationships
– componentwise orderings
– functions (considering all input/output mappings)

f(x) = x +1 ⊑ g(x) = x + 2

Partial Orders

● A relation ≤ is a partial order on a set S if a,b,c S ∀ ∈
– Reflexive: a ≤ a
– Antisymmetric: a ≤ b & b ≤ a a = b⇒
– Transitive: a ≤ b & b ≤ c a ≤ c⇒

● When reasoning about partial orders, we prefer ⊑
● Common partial orders include

– substring, subsequence, subset relationships
– componentwise orderings
– functions (considering all input/output mappings)

f(x) = x +1 ⊑ g(x) = x + 2
h(x) = x ⋤ i(x) = -x

Partial Orders

● A relation ≤ is a partial order on a set S if a,b,c S ∀ ∈
– Reflexive: a ≤ a
– Antisymmetric: a ≤ b & b ≤ a a = b⇒
– Transitive: a ≤ b & b ≤ c a ≤ c⇒

● When reasoning about partial orders, we prefer ⊑
● Common partial orders include

– substring, subsequence, subset relationships
– componentwise orderings
– functions (considering all input/output mappings)

f(x) = x +1 ⊑ g(x) = x + 2
h(x) = x ⋤ i(x) = -x

Partial Orders

● We can express the structure of partial orders using (semi-)lattices.

0 1 20
1
2 (1,2)

(1,1) (2,1)
(2,2)

Partial Orders

● We can express the structure of partial orders using (semi-)lattices.

0 1 20
1
2 (1,2)

(1,1) (2,1)
(2,2)

(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)
(2,2)

Partial Orders

● We can express the structure of partial orders using (semi-)lattices.

0 1 20
1
2 (1,2)

(1,1) (2,1)
(2,2)

(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)
(2,2)

Partial Orders

● We can express the structure of partial orders using (semi-)lattices.

0 1 20
1
2 (1,2)

(1,1) (2,1)
(2,2)

(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)
(2,2)

Partial Orders

● We can express the structure of partial orders using (semi-)lattices.

0 1 20
1
2 (1,2)

(1,1) (2,1)
(2,2)

(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)
(2,2)

Partial Orders

● We can express the structure of partial orders using (semi-)lattices.

● If unique least/greatest elements exist, we call them
(bottom)/ (top⊥ ⊤)

0 1 20
1
2 (1,2)

(1,1) (2,1)
(2,2)

(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)
(2,2)

⊥

Partial Orders

● We are often interested in upper and lower bounds.

(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)
(2,2)

Partial Orders

● We are often interested in upper and lower bounds.
– A join a b is the least upper bound of a and b⊔

(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)
(2,2)

What is
(0,1) (1,0)?⊔

Partial Orders

● We are often interested in upper and lower bounds.
– A join a b is the least upper bound of a and b⊔

(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)
(2,2)

⊔What is
(0,1) (1,0)?⊔

Partial Orders

● We are often interested in upper and lower bounds.
– A join a b is the least upper bound of a and b⊔

a (a b) ⊑ ⊔ & b (a b)⊑ ⊔ & (a c & b c ⊑ ⊑ → (a b) c)⊔ ⊑

(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)
(2,2)

⊔What is
(0,1) (1,0)?⊔

Partial Orders

● We are often interested in upper and lower bounds.
– A join a b is the least upper bound of a and b⊔
– A meet a b is the greatest lower bound of and and b⊓

(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)
(2,2)

What is
(0,1)⊓(1,0)?

Partial Orders

● We are often interested in upper and lower bounds.
– A join a b is the least upper bound of a and b⊔
– A meet a b is the greatest lower bound of and and b⊓

(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)
(2,2)

⊓
What is

(0,1)⊓(1,0)?

Partial Orders

● We are often interested in upper and lower bounds.
– A join a b is the least upper bound of a and b⊔
– A meet a b is the greatest lower bound of and and b⊓
– Bounds must be unique and may not exist.

(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)
(2,2)

Partial Orders

● We are often interested in upper and lower bounds.
– A join a b is the least upper bound of a and b⊔
– A meet a b is the greatest lower bound of and and b⊓
– Bounds must be unique and may not exist.

(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)
(2,2)

A

B

D

C

E

F

Partial Orders

● We are often interested in upper and lower bounds.
– A join a b is the least upper bound of a and b⊔
– A meet a b is the greatest lower bound of and and b⊓
– Bounds must be unique and may not exist.

(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)
(2,2)

A

B

D

C

E

F

What is A B?⊔

Partial Orders

● We are often interested in upper and lower bounds.
– A join a b is the least upper bound of a and b⊔
– A meet a b is the greatest lower bound of and and b⊓
– Bounds must be unique and may not exist.

(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)
(2,2)

A

B

D

C

E

F

What is A B?⊔
What is B C?⊔

Partial Orders

● We are often interested in upper and lower bounds.
– A join a b is the least upper bound of a and b⊔
– A meet a b is the greatest lower bound of and and b⊓
– Bounds must be unique and may not exist.

(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)
(2,2)

A

B

D

C

E

F

What is A B?⊔
What is B C?⊔
What is D E?⊔

Partial Orders

● We are often interested in upper and lower bounds.
– A join a b is the least upper bound of a and b⊔
– A meet a b is the greatest lower bound of and and b⊓
– Bounds must be unique and may not exist.
– ∀S’ S,⊆

(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)
(2,2)

Partial Orders

● We are often interested in upper and lower bounds.
– A join a b is the least upper bound of a and b⊔
– A meet a b is the greatest lower bound of and and b⊓
– Bounds must be unique and may not exist.
– ∀S’ S, ⊆ S’ ∃⊔ & ⊓S’⇒ lattice

(0,2) (2,0)

(2,1)(1,2)
(2,2)

(0,0)
(0,1) (1,0)

(1,1)

Partial Orders

● We are often interested in upper and lower bounds.
– A join a b is the least upper bound of a and b⊔
– A meet a b is the greatest lower bound of and and b⊓
– Bounds must be unique and may not exist.
– ∀S’ S, ⊆ S’ ∃⊔ & S’ lattice⊓ ⇒ , S’ ∃⊔ or S’ semilattice∃⊓ ⇒

(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)
(2,2)

Partial Orders

● We are often interested in upper and lower bounds.
– A join a b is the least upper bound of a and b⊔
– A meet a b is the greatest lower bound of and and b⊓
– Bounds must be unique and may not exist.
– ∀S’ S, ⊆ S’ ∃⊔ & S’ lattice⊓ ⇒ , S’ ∃⊔ or S’ semilattice∃⊓ ⇒

(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(2,1)(1,2)
(2,2)

What is the
structure shown?

Partial Orders

● A product of lattices (partial orders) yields a lattice (partial order)

L1 × L2

Partial Orders

● A product of lattices (partial orders) yields a lattice (partial order)
– We already saw componentwise orderings for tuples.

This is the same.

L1 × L2

Z × ZZ Z

Partial Orders

● A product of lattices (partial orders) yields a lattice (partial order)
– We already saw componentwise orderings for tuples.

This is the same.

L1 × L2

Z × ZZ Z

A total order is a partial order.
Products of total orders are partial orders

Partial Orders

● A product of lattices (partial orders) yields a lattice (partial order)
– We already saw componentwise orderings for tuples.

This is the same.

● Several expected principles naturally apply

Partial Orders

● A product of lattices (partial orders) yields a lattice (partial order)
– We already saw componentwise orderings for tuples.

This is the same.

● Several expected principles naturally apply
– Monotonicity

(X, ⊑x), (Y, ⊑y), f: X → Y

Partial Orders

● A product of lattices (partial orders) yields a lattice (partial order)
– We already saw componentwise orderings for tuples.

This is the same.

● Several expected principles naturally apply
– Monotonicity

(X, ⊑x), (Y, ⊑y), f: X → Y
x1 ⊑x x2 → f(x1) ⊑y f(x2) (f is monotonic)

Partial Orders

● A product of lattices (partial orders) yields a lattice (partial order)
– We already saw componentwise orderings for tuples.

This is the same.

● Several expected principles naturally apply
– Monotonicity
– Continuity
– Fixed Points
– ...

Partial Orders

● A product of lattices (partial orders) yields a lattice (partial order)
– We already saw componentwise orderings for tuples.

This is the same.

● Several expected principles naturally apply
– Monotonicity
– Continuity
– Fixed Points
– ...

● We can even consider different orders for the same sets!

Partial Orders

● A product of lattices (partial orders) yields a lattice (partial order)
– We already saw componentwise orderings for tuples.

This is the same.

● Several expected principles naturally apply
– Monotonicity
– Continuity
– Fixed Points
– ...

● We can even consider different orders for the same sets!

0

1

-1

...

...

Partial Orders

● A product of lattices (partial orders) yields a lattice (partial order)
– We already saw componentwise orderings for tuples.

This is the same.

● Several expected principles naturally apply
– Monotonicity
– Continuity
– Fixed Points
– ...

● We can even consider different orders for the same sets!

⊤

⊥

0

1

-1

...

...

Partial Orders

● A product of lattices (partial orders) yields a lattice (partial order)
– We already saw componentwise orderings for tuples.

This is the same.

● Several expected principles naturally apply
– Monotonicity
– Continuity
– Fixed Points
– ...

● We can even consider different orders for the same sets!

⊤

⊥

0

1

-1

...

...

⊤

⊥

0-1 1

Partial Orders

● A product of lattices (partial orders) yields a lattice (partial order)
– We already saw componentwise orderings for tuples.

This is the same.

● Several expected principles naturally apply
– Monotonicity
– Continuity
– Fixed Points
– ...

● We can even consider different orders for the same sets!

⊤

⊥

0

1

-1

...

...

⊤

⊥

0-1 1... ...

Partial Orders

● A product of lattices (partial orders) yields a lattice (partial order)
– We already saw componentwise orderings for tuples.

This is the same.

● Several expected principles naturally apply
– Monotonicity
– Continuity
– Fixed Points
– ...

● We can even consider different orders for the same sets!

⊤

⊥

0

1

-1

...

...

⊤

⊥

0-1 1... ...

Combining a set with
 & ⊤ like this yields a⊥

flat lattice.

Partial Orders

● A product of lattices (partial orders) yields a lattice (partial order)
– We already saw componentwise orderings for tuples.

This is the same.

● Several expected principles naturally apply
– Monotonicity
– Continuity
– Fixed Points
– ...

● We can even consider different orders for the same sets!
– Careful structuring of our orderings can express different things.

What do these two lattices express?

⊤

⊥

0

1

-1

...

...

⊤

⊥

0-1 1... ...

Partial Orders

● A product of lattices (partial orders) yields a lattice (partial order)
– We already saw componentwise orderings for tuples.

This is the same.

● Several expected principles naturally apply
– Monotonicity
– Continuity
– Fixed Points
– ...

● We can even consider different orders for the same sets!
– Careful structuring of our orderings can express different things.

What do these two lattices express?
– Many use cases can also be affected by the height of a lattice.

⊤

⊥

0

1

-1

...

...

⊤

⊥

0-1 1... ... height

Partial Orders

● Partial orders & lattices can be very useful

Partial Orders

● Partial orders & lattices can be very useful
– A formal structure for reasoning about relative value

Partial Orders

● Partial orders & lattices can be very useful
– A formal structure for reasoning about relative value
– modern cryptography (including post-quantum)

Partial Orders

● Partial orders & lattices can be very useful
– A formal structure for reasoning about relative value
– modern cryptography
– concurrency & distributed systems

Partial Orders

● Partial orders & lattices can be very useful
– A formal structure for reasoning about relative value
– modern cryptography
– concurrency & distributed systems

T1 T2

Partial Orders

● Partial orders & lattices can be very useful
– A formal structure for reasoning about relative value
– modern cryptography
– concurrency & distributed systems
– dataflow analysis & proving program properties

Partial Orders

● Partial orders & lattices can be very useful
– A formal structure for reasoning about relative value
– modern cryptography
– concurrency & distributed systems
– dataflow analysis & proving program properties

if x > 0

y = 2 y = 3

print(y)

Partial Orders

● Partial orders & lattices can be very useful
– A formal structure for reasoning about relative value
– modern cryptography
– concurrency & distributed systems
– dataflow analysis & proving program properties

if x > 0

y = 2 y = 3

print(y)

What can the last line print?

Partial Orders

● Partial orders & lattices can be very useful
– A formal structure for reasoning about relative value
– modern cryptography
– concurrency & distributed systems
– dataflow analysis & proving program properties

if x > 0

y = 2 y = 3

print(y)

What can the last line print?
2 or 3? (set lattice)

Partial Orders

● Partial orders & lattices can be very useful
– A formal structure for reasoning about relative value
– modern cryptography
– concurrency & distributed systems
– dataflow analysis & proving program properties

if x > 0

y = 2 y = 3

print(y)

What can the last line print?
2 or 3? (set lattice)
unknown? (flat lattice)

Formal Grammars
& Automata

Formal Grammars & Automata

● Grammars define the structure of elements in a set
– Alternatively, they generate the set via structure

Formal Grammars & Automata

● Grammars define the structure of elements in a set
– Alternatively, they generate the set via structure

● They commonly define formal languages
– Sets of strings over a defined alphabet

Formal Grammars & Automata

● Grammars define the structure of elements in a set
– Alternatively, they generate the set via structure

● They commonly define formal languages
– Sets of strings over a defined alphabet

● They are effective at constraining sets & search spaces

Regular Languages & Finite Automata

● A regular language can be expressed via a regular expression

Regular Languages & Finite Automata

● A regular language can be expressed via a regular expression

regex → symbol
| `(` regex `)`
| regex `*`
| regex `|` regex
| regex regex

Regular Languages & Finite Automata

● A regular language can be expressed via a regular expression

regex → symbol
| `(` regex `)`
| regex `*`
| regex `|` regex
| regex regex

e.g. a(bc | cd)*e defines L containing abccdbce

Regular Languages & Finite Automata

● A regular language can be expressed via a regular expression
● Finite automata can be used to recognize or generate elements of a

regular language

Regular Languages & Finite Automata

● A regular language can be expressed via a regular expression
● Finite automata can be used to recognize or generate elements of a

regular language

1 2a

3

4

44
b

c
d
c e

Regular Languages & Finite Automata

● A regular language can be expressed via a regular expression
● Finite automata can be used to recognize or generate elements of a

regular language

e.g. a(bc | cd)*e recognizes L containing abccdbce

1 2a

3

4

44
b

c
d
c e

Regular Languages & Finite Automata

● A regular language can be expressed via a regular expression
● Finite automata can be used to recognize or generate elements of a

regular language

e.g. a(bc | cd)*e recognizes L containing abccdbce

1 2a

3

4

44
b

c
d
c e

Regular Languages & Finite Automata

● A regular language can be expressed via a regular expression
● Finite automata can be used to recognize or generate elements of a

regular language

e.g. a(bc | cd)*e recognizes L containing abccdbce

1 2a

3

4

44
b

c
d
c e

Regular Languages & Finite Automata

● A regular language can be expressed via a regular expression
● Finite automata can be used to recognize or generate elements of a

regular language

e.g. a(bc | cd)*e recognizes L containing abccdbce

1 2a

3

4

44
b

c
d
c e

Regular Languages & Finite Automata

● A regular language can be expressed via a regular expression
● Finite automata can be used to recognize or generate elements of a

regular language

e.g. a(bc | cd)*e recognizes L containing abccdbce

1 2a

3

4

44
b

c
d
c e

Regular Languages & Finite Automata

● A regular language can be expressed via a regular expression
● Finite automata can be used to recognize or generate elements of a

regular language
● Recall, regular languages cannot express matched parentheses (Dyck

languages)

anbn

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition

Start = A
A → cBd
B → eBf

| g

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition

Start = A
A → cBd
B → eBf

| g

cengfnd

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition

Start = A
A → cBd
B → eBf

| g

cengfnd

This requires some kind of memory

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition

Start = A
A → cBd
B → eBf

| g

cengfnd

A

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition

Start = A
A → cBd
B → eBf

| g

cengfnd

A

c B d

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition

Start = A
A → cBd
B → eBf

| g

cengfnd

A

c B d

e B f

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition

Start = A
A → cBd
B → eBf

| g

cengfnd

A

c B d

e B f

Generating symbols out of order
acts as a form of memory.

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition

Start = A
A → cBd
B → eBf

| g

cengfnd

A

c B d

e B f
...

B

g

regex → symbol
| `(` regex `)`
| regex `*`
| regex `|` regex
| regex regex

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition
– The grammar for regular expressions was a CFG!

regex → symbol
| `(` regex `)`
| regex `*`
| regex `|` regex
| regex regex

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition
– The grammar for regular expressions was a CFG!

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition
● Augmenting a finite automaton with a stack enables recognition and

generation (via pushdown automata)

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition
● Augmenting a finite automaton with a stack enables recognition and

generation (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition
● Augmenting a finite automaton with a stack enables recognition and

generation (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

x y

z B

A

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition
● Augmenting a finite automaton with a stack enables recognition and

generation (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

x y

z B

A

t

a
A

u

b
B

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition
● Augmenting a finite automaton with a stack enables recognition and

generation (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x y

z B

A

t

a
A

u

b
B

S

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition
● Augmenting a finite automaton with a stack enables recognition and

generation (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x y

z B

A

t

a
A

u

b
B

xS

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition
● Augmenting a finite automaton with a stack enables recognition and

generation (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x y

z B

A

t

a
A

u

b
B

xAS

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition
● Augmenting a finite automaton with a stack enables recognition and

generation (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x y

z B

A

t

a
A

u

b
B

xAS
A

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition
● Augmenting a finite automaton with a stack enables recognition and

generation (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x y

z B

A

t

a
A

u

b
B

xA
a

S
A

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition
● Augmenting a finite automaton with a stack enables recognition and

generation (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x y

z B

A

t

a
A

u

b
B

xA
aA

S
A

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition
● Augmenting a finite automaton with a stack enables recognition and

generation (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x y

z B

A

t

a
A

u

b
B

xA
aA
aA
t

S
A
A
A

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition
● Augmenting a finite automaton with a stack enables recognition and

generation (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x y

z B

A

t

a
A

u

b
B

xA
aA
aA

S
A
A

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition
● Augmenting a finite automaton with a stack enables recognition and

generation (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x y

z B

A

t

a
A

u

b
B

xA
aA

S
A

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition
● Augmenting a finite automaton with a stack enables recognition and

generation (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x y

z B

A

t

a
A

u

b
B

xAS

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition
● Augmenting a finite automaton with a stack enables recognition and

generation (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x y

z B

A

t

a
A

u

b
B

xAyS

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition
● Augmenting a finite automaton with a stack enables recognition and

generation (via pushdown automata)

S → xAy | zB
A → aA | t
B → bB | u

xaaty

x y

z B

A

t

a
A

u

b
B

xAyS

Is this behavior similar to something more familiar?

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition
● Augmenting a finite automaton with a stack enables recognition and

generation (via pushdown automata)
● Adding additional rules can extend the expressiveness

– context sensitive languages
– tree adjoining grammars
– ...

Context Free Grammars & Pushdown Automata
● Context free grammars add recursion and enable Dyck language

recognition
● Augmenting a finite automaton with a stack enables recognition and

generation (via pushdown automata)
● Adding additional rules can extend the expressiveness
● Grammars can constrain far more than strings.

– graphs
– semantic objects (furniture layout? sequences of actions? ...)

Context Free Grammars & Pushdown Automata
● Context free grammars play a key role in

Context Free Grammars & Pushdown Automata
● Context free grammars play a key role in

– Precise static program analysis

Context Free Grammars & Pushdown Automata
● Context free grammars play a key role in

– Precise static program analysis
– Program synthesis

Context Free Grammars & Pushdown Automata
● Context free grammars play a key role in

– Precise static program analysis
– Program synthesis

if (e) {
...

}

Context Free Grammars & Pushdown Automata
● Context free grammars play a key role in

– Precise static program analysis
– Program synthesis

if (e) {
...

}

Automated Repair

true
false

Context Free Grammars & Pushdown Automata
● Context free grammars play a key role in

– Precise static program analysis
– Program synthesis

if (e) {
...

}

Automated Repair

true
false
{?} == {?}
{?} < {?}
{?} <= {?}

Context Free Grammars & Pushdown Automata
● Context free grammars play a key role in

– Precise static program analysis
– Program synthesis

if (e) {
...

}

Automated Repair

true
false
{?} == {?}
{?} < {?}
{?} <= {?}
{?} || {?}
{?} && {?}

Context Free Grammars & Pushdown Automata
● Context free grammars play a key role in

– Precise static program analysis
– Program synthesis

if (e) {
...

}

Automated Repair

true
false
{?} == {?}
{?} < {?}
{?} <= {?}
{?} || {?}
{?} && {?}
{?} == {?} || {?}
...

Context Free Grammars & Pushdown Automata
● Context free grammars play a key role in

– Precise static program analysis
– Program synthesis
– Prediction and machine learning on programs

Context Free Grammars & Pushdown Automata
● Context free grammars play a key role in

– Precise static program analysis
– Program synthesis
– Prediction and machine learning on programs

[Gu 2019]

http://summit.sfu.ca/system/files/iritems1/19358/etd20354.pdf

Context Free Grammars & Pushdown Automata

[Gu 2019]

● Context free grammars play a key role in
– Precise static program analysis
– Program synthesis
– Prediction and machine learning on programs

[Just 2017]

http://summit.sfu.ca/system/files/iritems1/19358/etd20354.pdf
https://homes.cs.washington.edu/~rjust/publ/customized_mutants_issta_2017.pdf

Context Free Grammars & Pushdown Automata
● Context free grammars play a key role in

– Precise static program analysis
– Program synthesis
– Prediction and machine learning on programs
– Compact encodings of complex sets

Formal Logic

Formal Logic

● Formal logic is a systematic approach to reasoning
– Separate the messy content of an argument from its structure

Formal Logic

● Formal logic is a systematic approach to reasoning
– Separate the messy content of an argument from its structure

● Sometimes the process can be automated
– e.g. satisfiability problems, type inference, ...

Formal Logic

● Formal logic is a systematic approach to reasoning
– Separate the messy content of an argument from its structure

● Sometimes the process can be automated
– e.g. satisfiability problems, type inference, ...

● Program analysis has actually been one of the driving forces behind
satisfiability in recent years.

Classical Logic

● You likely already know either propositional or first order logic
– Systems for reasoning about the truth of sentences

Classical Logic

● You likely already know either propositional or first order logic
– Systems for reasoning about the truth of sentences

● Atoms abstract away the actors of the sentences
– Constants: #t, #f
– Variables: x, y, z, ...

Classical Logic

● You likely already know either propositional or first order logic
– Systems for reasoning about the truth of sentences

● Atoms abstract away the actors of the sentences
– Constants: #t, #f
– Variables: x, y, z, ...

● Connectives relate the atoms & other propositions to each other
– ¬ (Not), ∧ (And), ∨ (or)
– → (Implies), ↔(Iff)

Classical Logic

● You likely already know either propositional or first order logic
– Systems for reasoning about the truth of sentences

● Atoms abstract away the actors of the sentences
– Constants: #t, #f
– Variables: x, y, z, ...

● Connectives relate the atoms & other propositions to each other
– ¬ (Not), ∧ (And), ∨ (or)
– → (Implies), ↔(Iff)x ∧ ¬y ∧ z

Classical Logic

● First order logic augments with

Classical Logic

● First order logic augments with
– Quantifiers- ∃ (there exists), ∀ (for all)
– Functions & Relations- e.g. father(x), Elephant(y)

Classical Logic

● First order logic augments with
– Quantifiers- ∃ (there exists), ∀ (for all)
– Functions & Relations- e.g. father(x), Elephant(y)

● Sentences can be true or false

Classical Logic

● First order logic augments with
– Quantifiers- ∃ (there exists), ∀ (for all)
– Functions & Relations- e.g. father(x), Elephant(y)

● Sentences can be true or false

∀x(Elephant(x) → Grey(x))

Classical Logic

● First order logic augments with
– Quantifiers- ∃ (there exists), ∀ (for all)
– Functions & Relations- e.g. father(x), Elephant(y)

● Sentences can be true or false

∀x(Elephant(x) → Grey(x))∀x(Elephant(x) → Elephant(father(x)))

Classical Logic

● First order logic augments with
– Quantifiers- ∃ (there exists), ∀ (for all)
– Functions & Relations- e.g. father(x), Elephant(y)

● Sentences can be true or false

● An interpretation I of the world along with the rules of logic
determine truth via judgment (⊢)

Classical Logic

● First order logic augments with
– Quantifiers- ∃ (there exists), ∀ (for all)
– Functions & Relations- e.g. father(x), Elephant(y)

● Sentences can be true or false

● An interpretation I of the world along with the rules of logic
determine truth via judgment (⊢)

I ⊢ x and I ⊢ y iff I ⊢ x ∧ y

Classical Logic

● Satisfiability
– A sentence s is satisfiable ↔ ∃I (I⊢s)

Classical Logic

● Satisfiability
– A sentence s is satisfiable ↔ ∃I (I⊢s)

● Validity
– A sentence s is valid ↔ ∀I (I⊢s)

Classical Logic

● Satisfiability
– A sentence s is satisfiable ↔ ∃I (I⊢s)

● Validity
– A sentence s is valid ↔ ∀I (I⊢s)

● We will see later how these can be used for a wide variety of tasks

Classical Logic

● Satisfiability
– A sentence s is satisfiable ↔ ∃I (I⊢s)

● Validity
– A sentence s is valid ↔ ∀I (I⊢s)

● We will see later how these can be used for a wide variety of tasks
– Bug finding
– Model checking (proving correctness)
– Explaining defects
– ...

Inference using classical logic

● Rules express how some judgments enable othersΓ ⊢ x ∆ ⊢ yΓ, ∆ ⊢ x ∧ y

Inference using classical logic

● Rules express how some judgments enable othersΓ ⊢ x ∆ ⊢ yΓ, ∆ ⊢ x ∧ y

Inference using classical logic

● Rules express how some judgments enable othersΓ ⊢ x ∆ ⊢ yΓ, ∆ ⊢ x ∧ y

Inference using classical logic

● Rules express how some judgments enable others

● Proofs can be written by stacking rules

Γ ⊢ x ∆ ⊢ yΓ, ∆ ⊢ x ∧ y

Inference using classical logic

● Rules express how some judgments enable others

● Proofs can be written by stacking rules

Γ ⊢ x ∆ ⊢ yΓ, ∆ ⊢ x ∧ y

Wadler, “A Taste of Linear Logic”. 2014.

Intuitionistic & Constructive Logic

● It can be useful to modify or limit rules of inference

Intuitionistic & Constructive Logic

● It can be useful to modify or limit rules of inference
– Suppose a compiler cannot prove variable x is an int.

Is it reasonable for the compile to assume x is a string?

Intuitionistic & Constructive Logic

● It can be useful to modify or limit rules of inference
– Suppose a compiler cannot prove variable x is an int.

Is it reasonable for the compile to assume x is a string?

● Constructivism argues that truth comes from direct evidence.
– We cannot merely assume p or not p, we must have evidence

Intuitionistic & Constructive Logic

● It can be useful to modify or limit rules of inference
– Suppose a compiler cannot prove variable x is an int.

Is it reasonable for the compile to assume x is a string?

● Constructivism argues that truth comes from direct evidence.
– We cannot merely assume p or not p, we must have evidence

● Intuitionistic logic restricts the rules of inference to require direct
evidence

Intuitionistic & Constructive Logic

● Classic logic includes several rules including

Intuitionistic & Constructive Logic

● Classic logic includes several rules including

 ⊢ p ∨ ¬p
Law of excluded middle

Intuitionistic & Constructive Logic

● Classic logic includes several rules including

 ⊢ p ∨ ¬p Γ ⊢ ¬¬pΓ ⊢ p
Double negation

elimination

Intuitionistic & Constructive Logic

● Classic logic includes several rules including

● Intuitionistic logic excludes these to require direct evidence

 ⊢ p ∨ ¬p Γ ⊢ ¬¬pΓ ⊢ p

Intuitionistic & Constructive Logic

● Classic logic includes several rules including

● Intuitionistic logic excludes these to require direct evidence

● Note, this is commonly used in type systems

 ⊢ p ∨ ¬p Γ ⊢ ¬¬pΓ ⊢ p

Linear & Substructural Logic

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)

Linear & Substructural Logic

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)∧ buyBurrito(me,store)

Linear & Substructural Logic

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)∧ buyBurrito(me,store)∧ buyBurrito(me,store)

Linear & Substructural Logic

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)∧ buyBurrito(me,store)∧ buyBurrito(me,store)∧ buyBurrito(me,store)

Linear & Substructural Logic

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)∧ buyBurrito(me,store)∧ buyBurrito(me,store)∧ buyBurrito(me,store)
Classical & intuitionistic logic

have trouble expressing consumable facts

Linear & Substructural Logic

● Linear logic denotes separates facts into two kinds
– [Intuitionistic] as before
– <Linear> cannot be used with contraction or weakening

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)

Linear & Substructural Logic

● Linear logic denotes separates facts into two kinds
– [Intuitionistic] as before
– <Linear> cannot be used with contraction or weakening

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)

Γ,A,A,∆ ⊢ pΓ,A,∆ ⊢ p Γ,∆⊢ pΓ,A,∆ ⊢ p

Linear & Substructural Logic

● Linear logic denotes separates facts into two kinds
– [Intuitionistic] as before
– <Linear> cannot be used with contraction or weakening
– In essence, linear facts must be consumed exactly once in a proof.

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)

Γ,A,A,∆ ⊢ pΓ,A,∆ ⊢ p Γ,∆⊢ pΓ,A,∆ ⊢ p

Linear & Substructural Logic

● Linear logic denotes separates facts into two kinds
– [Intuitionistic] as before
– <Linear> cannot be used with contraction or weakening
– In essence, linear facts must be consumed exactly once in a proof.

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)

Γ,A,A,∆ ⊢ pΓ,A,∆ ⊢ p Γ,∆⊢ pΓ,A,∆ ⊢ p
Idea: Some facts (resources)
require careful accounting

Linear & Substructural Logic

● Linear logic denotes separates facts into two kinds
– [Intuitionistic] as before
– <Linear> cannot be used with contraction or weakening
– In essence, linear facts must be consumed exactly once in a proof.

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)

Logics that remove additional rules
from intuitionistic logic are substructural

Linear & Substructural Logic

● Linear logic denotes separates facts into two kinds
– [Intuitionistic] as before
– <Linear> cannot be used with contraction or weakening
– In essence, linear facts must be consumed exactly once in a proof.

● This forms the backbone of ownership types in languages like Rust!

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)

Linear & Substructural Logic

● Linear logic denotes separates facts into two kinds
– [Intuitionistic] as before
– <Linear> cannot be used with contraction or weakening
– In essence, linear facts must be consumed exactly once in a proof.

● This forms the backbone of ownership types in languages like Rust!

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)

struct Thing(u32);
let a = Thing(5);
let b = a;
let c = a;

Linear & Substructural Logic

● Linear logic denotes separates facts into two kinds
– [Intuitionistic] as before
– <Linear> cannot be used with contraction or weakening
– In essence, linear facts must be consumed exactly once in a proof.

● This forms the backbone of ownership types in languages like Rust!

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)

struct Thing(u32);
let a = Thing(5);
let b = a;
let c = a;

⊢ a:Thing

Linear & Substructural Logic

● Linear logic denotes separates facts into two kinds
– [Intuitionistic] as before
– <Linear> cannot be used with contraction or weakening
– In essence, linear facts must be consumed exactly once in a proof.

● This forms the backbone of ownership types in languages like Rust!

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)

struct Thing(u32);
let a = Thing(5);
let b = a;
let c = a;

⊢ a:Thing
a:Thing ⊢ b:Thing

Linear & Substructural Logic

● Linear logic denotes separates facts into two kinds
– [Intuitionistic] as before
– <Linear> cannot be used with contraction or weakening
– In essence, linear facts must be consumed exactly once in a proof.

● This forms the backbone of ownership types in languages like Rust!

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)

struct Thing(u32);
let a = Thing(5);
let b = a;
let c = a;

⊢ a:Thing
a:Thing ⊢ b:Thing

Linear & Substructural Logic

● Linear logic denotes separates facts into two kinds
– [Intuitionistic] as before
– <Linear> cannot be used with contraction or weakening
– In essence, linear facts must be consumed exactly once in a proof.

● This forms the backbone of ownership types in languages like Rust!

sellsBurritos(store)has10Dollars(me) ⊢ buyBurrito(me,store)

struct Thing(u32);
let a = Thing(5);
let b = a;
let c = a;

⊢ a:Thing
a:Thing ⊢ b:Thing
Error (⊢ c:?)

Hoare Logic

● Given facts, the logics we have seen consider what is true/false

Hoare Logic

● Given facts, the logics we have seen consider what is true/falsex ∧ ¬y ∧ z

Hoare Logic

● Given facts, the logics we have seen consider what is true/false

● Programs reason about facts that change over time
x ∧ ¬y ∧ z

Hoare Logic

● Given facts, the logics we have seen consider what is true/false

● Programs reason about facts that change over time
– How do facts at one state

affect facts at another?

x ∧ ¬y ∧ z

Hoare Logic

● Given facts, the logics we have seen consider what is true/false

● Programs reason about facts that change over time
– How do facts at one state

affect facts at another?

x ∧ ¬y ∧ z
double sqrt(double n,
 double threshold) {
 double x = 1;
 while (true) {
 double newX = (x + n/x) / 2;
 if (abs(x – nx) < threshold)
 break;
 x = nx
 }
 return x;
}

Hoare Logic

● Given facts, the logics we have seen consider what is true/false

● Programs reason about facts that change over time
– How do facts at one state

affect facts at another?
– Does this do what is

expected?

x ∧ ¬y ∧ z
double sqrt(double n,
 double threshold) {
 double x = 1;
 while (true) {
 double newX = (x + n/x) / 2;
 if (abs(x – nx) < threshold)
 break;
 x = nx
 }
 return x;
}

Hoare Logic

● Given facts, the logics we have seen consider what is true/false

● Programs reason about facts that change over time
– How do facts at one state

affect facts at another?
– Does this do what is

expected?
– Will I dereference a

null pointer?

x ∧ ¬y ∧ z
double sqrt(double n,
 double threshold) {
 double x = 1;
 while (true) {
 double newX = (x + n/x) / 2;
 if (abs(x – nx) < threshold)
 break;
 x = nx
 }
 return x;
}

y = w[20]
x = *y + 5

Hoare Logic

● Given facts, the logics we have seen consider what is true/false

● Programs reason about facts that change over time
– How do facts at one state

affect facts at another?
– Does this do what is

expected?
– Will I dereference a

null pointer?

x ∧ ¬y ∧ z
double sqrt(double n,
 double threshold) {
 double x = 1;
 while (true) {
 double newX = (x + n/x) / 2;
 if (abs(x – nx) < threshold)
 break;
 x = nx
 }
 return x;
}

y = w[20]
x = *y + 5

We want a logic that reasons
about changes in state.

Hoare Logic

● Hoare logic reasons about the behavior of programs and program
fragments

Hoare Logic

● Hoare logic reasons about the behavior of programs and program
fragments {φ}C{ψ}
Precondition

Hoare Logic

● Hoare logic reasons about the behavior of programs and program
fragments {φ}C{ψ}
Precondition Command

Hoare Logic

● Hoare logic reasons about the behavior of programs and program
fragments {φ}C{ψ}
Precondition Command

Postcondition

Hoare Logic

● Hoare logic reasons about the behavior of programs and program
fragments

● If φ holds before C, ψ will hold after

{φ}C{ψ}
{x=3 ∧ y=2}x ← 5{x=5}

Hoare Logic

● Hoare logic reasons about the behavior of programs and program
fragments

● If φ holds before C, ψ will hold after

● A weakest precondition wp(C,ψ) captures all states leading to ψ
after C.

{φ}C{ψ}
{x=3 ∧ y=2}x ← 5{x=5}

Hoare Logic

● Hoare logic reasons about the behavior of programs and program
fragments

● If φ holds before C, ψ will hold after

● A weakest precondition wp(C,ψ) captures all states leading to ψ
after C.

{φ}C{ψ}

{#t}x←5{x=5}
{x=3 ∧ y=2}x ← 5{x=5}

Hoare Logic

● Hoare logic reasons about the behavior of programs and program
fragments

● If φ holds before C, ψ will hold after

● A weakest precondition wp(C,ψ) captures all states leading to ψ
after C.

{φ}C{ψ}
{x=3 ∧ y=2}x ← 5{x=5}

{#t}x←5{x=5}{???}if c then x←5{x=5}

Hoare Logic

● Hoare logic reasons about the behavior of programs and program
fragments

● If φ holds before C, ψ will hold after

● A weakest precondition wp(C,ψ) captures all states leading to ψ
after C.

{φ}C{ψ}
{x=3 ∧ y=2}x ← 5{x=5}

{#t}x←5{x=5}{???}if c then x←5{x=5}

You already have an intuition
for weakest preconditions

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● A store/state σ is a partial function mapping variables to values

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● A store/state σ is a partial function mapping variables to values
– Commands in a program can modify the store

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● A store/state σ is a partial function mapping variables to values
– Commands in a program can modify the store

x ← 5

Command

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● A store/state σ is a partial function mapping variables to values
– Commands in a program can modify the store

x ← 5
σ={x↦3, y↦1}Store Command

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● A store/state σ is a partial function mapping variables to values
– Commands in a program can modify the store

x ← 5
σ={x↦3, y↦1}σ={x↦5, y↦1}

Store Command

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● A store/state σ is a partial function mapping variables to values
– Commands in a program can modify the store

{x=5}x ← 5
σ={x↦3, y↦1}σ={x↦5, y↦1}

Store Command Conditions

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● A store/state σ is a partial function mapping variables to values
– Commands in a program can modify the store

{x=3 ∧ y=2}
{x=5}x ← 5

σ={x↦3, y↦1}σ={x↦5, y↦1}
Store Command Conditions

?

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● A store/state σ is a partial function mapping variables to values
– Commands in a program can modify the store

{x=3 ∧ y=2}
{x=5}x ← 5

σ={x↦3, y↦1}σ={x↦5, y↦1}
Store Command

This was technically true,
but not so useful

(...or even compatible with our states)
Conditions

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● A store/state σ is a partial function mapping variables to values
– Commands in a program can modify the store

– σ∈Σ(all possible states), and we can reason about subsets of Σ

{x=3 ∧ y=2}
{x=5}x ← 5

σ={x↦3, y↦1}σ={x↦5, y↦1}
Store Command Conditions

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

x ← 5

σ={x↦3, y↦1}

σ={x↦5, y↦1}

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

x ← 5

σ={x↦3, y↦1}

σ={x↦5, y↦1}

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

x ← 5

σ={x↦3, y↦1}

σ={x↦5, y↦1}{x=5}

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

x ← 5

σ={x↦3, y↦1}

σ={x↦5, y↦1}{x=5} Each set of states corresponds
to a condition defining the set

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

x ← 5

σ={x↦3, y↦1}

σ={x↦5, y↦1}{x=5}

{x=3}

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

x ← 5

σ={x↦3, y↦1}

σ={x↦5, y↦1}{x=5}

{x=3}
Commands map sets to sets

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

x ← 5

σ={x↦3, y↦1}

σ={x↦5, y↦1}{x=5}

{x=3}{x=7}

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

x ← 5

σ={x↦3, y↦1}

σ={x↦5, y↦1}{x=5}

{#t} All states lead
to the postcondition!

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

x ← 5

σ={x↦3, y↦1}

σ={x↦5, y↦1}{x=5}

{#t}

Have we already seen a way
do describe this structure?

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● wp(C,ψ) = ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● wp(C,ψ) = ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● wp(C,ψ) = ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

x ← 5

{x=5} ψ= {x=5}

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● wp(C,ψ) = ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

x ← 5

{x=5}

{x=3}

ψ= {x=5}

{x=3}

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● wp(C,ψ) = ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

x ← 5

{x=5}
{x=4}

ψ= {x=5}

{x=3} ⨆ {x=4} = ?

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● wp(C,ψ) = ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

x ← 5

{x=5}
{x=4}

ψ= {x=5}

{x=3} ⨆ {x=4} = ?{x=3} → {x=3 ∨ x=4}{x=4} → {x=3 ∨ x=4}

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● wp(C,ψ) = ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

x ← 5

{x=5}
{x=4}

ψ= {x=5}

{x=3} ⨆ {x=4} = {x=3 ∨ x=4}{x=3} → {x=3 ∨ x=4}{x=4} → {x=3 ∨ x=4}

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● wp(C,ψ) = ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

x ← 5

{x=5} ψ= {x=5}

{x=3} ⨆ {x=4} ⨆ {x=5} = {3 ≤ x ∧ x ≤ 5}{x=5} {x=3} → {3 ≤ x ∧ x ≤ 5}{x=4} → {3 ≤ x ∧ x ≤ 5}{x=5} → {3 ≤ x ∧ x ≤ 5}

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● wp(C,ψ) = ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

x ← 5

{x=5} ψ= {x=5}

{x=3} ⨆ {x=4} ⨆ {x=5} ⨆ ... = {#T}{x=3} → {#T}{x=4} → {#T}...

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● wp(C,ψ) = ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

Intuitively, B is at least as general as A
(it holds in at least as many states)

Hoare Logic – weakest preconditions

● What do we really mean by captures all states?

● wp(C,ψ) = ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

● Technically, these are Weakest Sufficient Preconditions

Hoare Logic

● What do we really mean by captures all states?

● wp(C,ψ) = ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

● Technically, these are Weakest Sufficient Preconditions
● We may also consider/compute other relationships

Hoare Logic

● What do we really mean by captures all states?

● wp(C,ψ) = ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

● Technically, these are Weakest Sufficient Preconditions
● We may also consider/compute other relationships

C
Pre

Post ψ

φ

Hoare Logic

● What do we really mean by captures all states?

● wp(C,ψ) = ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

● Technically, these are Weakest Sufficient Preconditions
● We may also consider/compute other relationships

– Weakest Sufficient Preconditions (wsp)

C
Pre

Post ψ

φ

What states φ lead to ψ?

?

“Given ψ, what must be true for it to hold?”

Hoare Logic

● What do we really mean by captures all states?

● wp(C,ψ) = ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

● Technically, these are Weakest Sufficient Preconditions
● We may also consider/compute other relationships

– Weakest Sufficient Preconditions
– Strongest Necessary Postconditions (snp)

C
Pre

Post ψ

φ

What states ψ must φ lead to?

?“Given φ, what is guaranteed when it holds?”

Hoare Logic

● What do we really mean by captures all states?

● wp(C,ψ) = ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

● Technically, these are Weakest Sufficient Preconditions
● We may also consider/compute other relationships

– Weakest Sufficient Preconditions
– Strongest Necessary Postconditions
– Strongest Necessary Preconditions (snpre) C

Pre

Post ψ

φ?

What states φ lead to ψ?

“Given ψ, what if false at φ would exclude it?”

Hoare Logic

● What do we really mean by captures all states?

● wp(C,ψ) = ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

● Technically, these are Weakest Sufficient Preconditions
● We may also consider/compute other relationships

– Weakest Sufficient Preconditions
– Strongest Necessary Postconditions
– Strongest Necessary Preconditions (snpre) C

Pre

Post ψ

?

Then how does this differ from wsp?

What states φ lead to ψ?

φ

Hoare Logic

● What do we really mean by captures all states?

● wp(C,ψ) = ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

● Technically, these are Weakest Sufficient Preconditions
● We may also consider/compute other relationships

– Weakest Sufficient Preconditions
– Strongest Necessary Postconditions
– Strongest Necessary Preconditions C

Pre

Post ψ

?

WSP
φ@pre → ψ@post

SNPre
φ@pre ← ψ@post

φ

Hoare Logic

● What do we really mean by captures all states?

● wp(C,ψ) = ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

● Technically, these are Weakest Sufficient Preconditions
● We may also consider/compute other relationships

– Weakest Sufficient Preconditions
– Strongest Necessary Postconditions
– Strongest Necessary Preconditions C

Pre

Post ψ

?

WSP
φ@pre → ψ@post

SNPre
φ@pre ← ψ@postSince solving them is technically impossible,

these differ in practice!

φ

Hoare Logic

● What do we really mean by captures all states?

● wp(C,ψ) = ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

● Technically, these are Weakest Sufficient Preconditions
● We may also consider/compute other relationships

– Weakest Sufficient Preconditions
– Strongest Necessary Postconditions
– Strongest Necessary Preconditions C

Pre

Post ψ

?

WSP
φ@pre → ψ@post

SNPre
φ@pre ← ψ@postSince solving them is technically impossible,

these differ in practice!

SNPre
WSP

Hoare Logic

● What do we really mean by captures all states?

● wp(C,ψ) = ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

● Technically, these are Weakest Sufficient Preconditions
● We may also consider/compute other relationships

– Weakest Sufficient Preconditions
– Strongest Necessary Postconditions
– Strongest Necessary Preconditions

In practice, SNPre captures precondition assertions well
[Cousot 2013]

C
Pre

Post ψ

? SNPre
WSP

https://www.microsoft.com/en-us/research/wp-content/uploads/2013/01/paper-1.pdf

Hoare Logic

● What do we really mean by captures all states?

● wp(C,ψ) = ⨆ {x | {x} C {ψ}}
– Where (A→B) ⊢ (A<B)

● Technically, these are Weakest Sufficient Preconditions
● We may also consider/compute other relationships

– Weakest Sufficient Preconditions
– Strongest Necessary Postconditions
– Strongest Necessary Preconditions
– Weakest Liberal Preconditions

C
Pre

Post ψ

?

What states φ lead to ψ
or do not terminate?

φ

Hoare Logic – weakest preconditions

● Inference rules for weakest preconditions

Hoare Logic – weakest preconditions

● Inference rules for weakest preconditionswp(x ← E,ψ) = [E/x]ψ

Hoare Logic – weakest preconditions

● Inference rules for weakest preconditionswp(x ← E,ψ) = [E/x]ψ
x ← a + b

{a + b < 5}
{x<5}

???

Hoare Logic – weakest preconditions

● Inference rules for weakest preconditionswp(x ← E,ψ) = [E/x]ψ
x ← a + b

{a + b < 5}
{x<5}

Hoare Logic – weakest preconditions

● Inference rules for weakest preconditionswp(x ← E,ψ) = [E/x]ψwp(S; T,ψ) = wp(S, wp(T,ψ))

Hoare Logic – weakest preconditions

● Inference rules for weakest preconditionswp(x ← E,ψ) = [E/x]ψwp(S; T,ψ) = wp(S, wp(T,ψ))
b ← 7;

{a + 7 < 5}
{x<5}x ← a + b

???

Hoare Logic – weakest preconditions

● Inference rules for weakest preconditionswp(x ← E,ψ) = [E/x]ψwp(S; T,ψ) = wp(S, wp(T,ψ))
b ← 7;

{a + 7 < 5}
{x<5}x ← a + b

???
{a + b < 5}

Hoare Logic – weakest preconditions

● Inference rules for weakest preconditionswp(x ← E,ψ) = [E/x]ψwp(S; T,ψ) = wp(S, wp(T,ψ))
b ← 7;

{a + 7 < 5}
{x<5}x ← a + b
{a + b < 5}

Hoare Logic – weakest preconditions

● Inference rules for weakest preconditionswp(x ← E,ψ) = [E/x]ψwp(S; T,ψ) = wp(S, wp(T,ψ))wp(if B then S else T,ψ)= B → wp(S,ψ) ∧ ¬B → wp(T,ψ)

Hoare Logic – weakest preconditions

● Inference rules for weakest preconditionswp(x ← E,ψ) = [E/x]ψwp(S; T,ψ) = wp(S, wp(T,ψ))wp(if B then S else T,ψ)= B → wp(S,ψ) ∧ ¬B → wp(T,ψ)

Hoare Logic – weakest preconditions

● Inference rules for weakest preconditionswp(x ← E,ψ) = [E/x]ψwp(S; T,ψ) = wp(S, wp(T,ψ))wp(if B then S else T,ψ)= B → wp(S,ψ) ∧ ¬B → wp(T,ψ)
if c then
 d = y + 2
else
 d = y + 5
x/d

Hoare Logic – weakest preconditions

● Inference rules for weakest preconditionswp(x ← E,ψ) = [E/x]ψwp(S; T,ψ) = wp(S, wp(T,ψ))wp(if B then S else T,ψ)= B → wp(S,ψ) ∧ ¬B → wp(T,ψ)

{d ≠ 0}

if c then
 d = y + 2
else
 d = y + 5
x/d

{ ??? }

Hoare Logic – weakest preconditions

● Inference rules for weakest preconditionswp(x ← E,ψ) = [E/x]ψwp(S; T,ψ) = wp(S, wp(T,ψ))wp(if B then S else T,ψ)= B → wp(S,ψ) ∧ ¬B → wp(T,ψ)

{d ≠ 0}
{y+5 ≠ 0}

{y+2 ≠ 0}if c then
 d = y + 2
else
 d = y + 5
x/d

{ ??? }

Hoare Logic – weakest preconditions

● Inference rules for weakest preconditionswp(x ← E,ψ) = [E/x]ψwp(S; T,ψ) = wp(S, wp(T,ψ))wp(if B then S else T,ψ)= B → wp(S,ψ) ∧ ¬B → wp(T,ψ)

{d ≠ 0}
{y+5 ≠ 0}

{y+2 ≠ 0}
{c → y+2 ≠ 0 ∧¬c → y+5 ≠ 0}

if c then
 d = y + 2
else
 d = y + 5
x/d

Hoare Logic

● Careful points
– Redefinition of variables

b = a + 2
a = 3*c

Pre: {a < 5, c < 2}

Post: {??}

Hoare Logic

● Careful points
– Redefinition of variables

b = a + 2
a = 3*c

Pre: {a < 5, c < 2}

Post: {??}

It can be necessary to
rename variables that

are redefined.

Hoare Logic

● Careful points
– Redefinition of variables

b = a + 2
a = 3*c

Pre: {a < 5, c < 2}

Post: {??}

It can be necessary to
rename variables that

are redefined.

Hoare Logic

● Careful points
– Redefinition of variables
– Pointers

*a = *a + 5
Pre: {??}

Post: {*a + *b < 10}

Hoare Logic

● Careful points
– Redefinition of variables
– Pointers

*a = *a + 5
Pre: {??}

Post: {*a + *b < 10}

Efficiently modeling memory is challenging!
Newer logics target this directly.

(points-to analysis allows for weak and strong updates)

Hoare Logic

● Careful points
– Redefinition of variables
– Pointers
– Loops

Hoare Logic

● Careful points
– Redefinition of variables
– Pointers
– Loops

Loops run head first into undecidability!
They require deriving an inductive invariant.

Hoare Logic

● Careful points
– Redefinition of variables
– Pointers
– Loops

{φ}C{ψ} while B do S done

Hoare Logic

● Careful points
– Redefinition of variables
– Pointers
– Loops

{φ}C{ψ} while B do S done

Inv ∧ ¬B → ψ exit

Hoare Logic

● Careful points
– Redefinition of variables
– Pointers
– Loops

{φ}C{ψ} while B do S done

{Inv ∧ ¬B → ψ}{Inv ∧ B} S {Inv} exit
continue

Hoare Logic

● Careful points
– Redefinition of variables
– Pointers
– Loops

{φ}C{ψ} while B do S done

{Inv ∧ B} S {Inv} exit
continue{φ → Inv} enter

{Inv ∧ ¬B → ψ}

Hoare Logic

● Careful points
– Redefinition of variables
– Pointers
– Loops

{φ}C{ψ} while B do S done

{Inv ∧ B} S {Inv} exit
continue
enter

Automatically inferring such invariants
is used for verifying safe:

avionics
machine learning
...

{φ → Inv}
{Inv ∧ ¬B → ψ}

Separation Logic

● Linear logic allows facts to be used exactly once <>
or arbitrarily many times [].

Separation Logic

● Linear logic allows facts to be used exactly once <>
or arbitrarily many times [].

● Separation logic (informally) distinguishes separate facts (counting),
allowing them to be used separately

Separation Logic

● Linear logic allows facts to be used exactly once <>
or arbitrarily many times [].

● Separation logic (informally) distinguishes separate facts (counting),
allowing them to be used separately
– This helps to solve reasoning about pointers as we saw earlier

Separation Logic

● Linear logic allows facts to be used exactly once <>
or arbitrarily many times [].

● Separation logic (informally) distinguishes separate facts (counting),
allowing them to be used separately

● Hoare logic is extended with a separating conjunction *

Separation Logic

● Linear logic allows facts to be used exactly once <>
or arbitrarily many times [].

● Separation logic (informally) distinguishes separate facts (counting),
allowing them to be used separately

● Hoare logic is extended with a separating conjunction *
{x↦y * y↦x}x = z{x↦z * y↦x}

Facts separated by * do not “mix” (overlap)

Separation Logic

● Linear logic allows facts to be used exactly once <>
or arbitrarily many times [].

● Separation logic (informally) distinguishes separate facts (counting),
allowing them to be used separately

● Hoare logic is extended with a separating conjunction

{x↦y * y↦x}x = z{x↦z * y↦x}
Suppose we used ∧ instead, what problem exists?

*

Separation Logic

● Linear logic allows facts to be used exactly once <>
or arbitrarily many times [].

● Separation logic (informally) distinguishes separate facts (counting),
allowing them to be used separately

● Hoare logic is extended with a separating conjunction

● Separation logic enables efficient compositional reasoning
– It is the backbone of Facebook’s Infer engine!
– It combines Hoare logic with a substructural logic

{x↦y * y↦x}x = z{x↦z * y↦x}
*

Separation Logic

● The frame rule enables reasoning about the logical footprint of a
command {φ}C{ψ}{φ * r}C{ψ * r}

Separation Logic

● The frame rule enables reasoning about the logical footprint of a
command

● Part of the power is that frames can be inferred via bi-abduction

{φ}C{ψ}{φ * r}C{ψ * r}

Solving Problems
Using Logic

Solving problems using logic

● We will look at a few ways logic can attack real problems

Solving problems using logic

● We will look at a few ways logic can attack real problems
● The exact techniques may have flaws,

but how they attack problems with logic is interesting

Discovering & Disproving Bugs

foo(a,b,c) {
 if (a != null) {
 b = c;
 t = new...;
 c.f = t;
 }
 d = a;
 if (d != null) {
 b.f.g = 10;
 }
}

[Margoor & Komondoor, 2015]

Discovering & Disproving Bugs

foo(a,b,c) {
 if (a != null) {
 b = c;
 t = new...;
 c.f = t;
 }
 d = a;
 if (d != null) {
 b.f.g = 10;
 }
}

[Margoor & Komondoor, 2015]

Can accessing the field g
cause a null pointer exception?

Discovering & Disproving Bugs

foo(a,b,c) {
 if (a != null) {
 b = c;
 t = new...;
 c.f = t;
 }
 d = a;
 if (d != null) {
 b.f.g = 10;
 }
}

{b.f=null}

[Margoor & Komondoor, 2015]

Discovering & Disproving Bugs

foo(a,b,c) {
 if (a != null) {
 b = c;
 t = new...;
 c.f = t;
 }
 d = a;
 if (d != null) {
 b.f.g = 10;
 }
}

{b.f=null}
{b.f=null ∧ d≠null}

[Margoor & Komondoor, 2015]

Discovering & Disproving Bugs

foo(a,b,c) {
 if (a != null) {
 b = c;
 t = new...;
 c.f = t;
 }
 d = a;
 if (d != null) {
 b.f.g = 10;
 }
}

{b.f=null}
{b.f=null ∧ d≠null}
{b.f=null ∧ a≠null}

[Margoor & Komondoor, 2015]

Discovering & Disproving Bugs

foo(a,b,c) {
 if (a != null) {
 b = c;
 t = new...;
 c.f = t;
 }
 d = a;
 if (d != null) {
 b.f.g = 10;
 }
}

{b.f=null}
{b.f=null ∧ d≠null}
{b.f=null ∧ a≠null}

{(b≠c ∧ b.f=null ∧ a≠null) v (b=c t∧ =null ∧ a≠null)}

[Margoor & Komondoor, 2015]

Discovering & Disproving Bugs

foo(a,b,c) {
 if (a != null) {
 b = c;
 t = new...;
 c.f = t;
 }
 d = a;
 if (d != null) {
 b.f.g = 10;
 }
}

{b.f=null}
{b.f=null ∧ d≠null}
{b.f=null ∧ a≠null}

{(b≠c ∧ b.f=null ∧ a≠null) v (b=c t∧ =null ∧ a≠null)}
{b≠c ∧ b.f=null ∧ a≠null}

[Margoor & Komondoor, 2015]

Discovering & Disproving Bugs

foo(a,b,c) {
 if (a != null) {
 b = c;
 t = new...;
 c.f = t;
 }
 d = a;
 if (d != null) {
 b.f.g = 10;
 }
}

{b.f=null}
{b.f=null ∧ d≠null}
{b.f=null ∧ a≠null}

{(b≠c ∧ b.f=null ∧ a≠null) v (b=c t∧ =null ∧ a≠null)}
{b≠c ∧ b.f=null ∧ a≠null}
{#f}

[Margoor & Komondoor, 2015]

Discovering & Disproving Bugs

foo(a,b,c) {
 if (a != null) {
 b = c;
 t = new...;
 c.f = t;
 }
 d = a;
 if (d != null) {
 b.f.g = 10;
 }
}

{b.f=null}
{b.f=null ∧ d≠null}
{b.f=null ∧ a≠null}

{(b≠c ∧ b.f=null ∧ a≠null) v (b=c t∧ =null ∧ a≠null)}
{b≠c ∧ b.f=null ∧ a≠null}
{#f}

{(a≠null → #f) v (a=null → b.f=null a≠null)}∧ = #f

[Margoor & Komondoor, 2015]

Discovering & Disproving Bugs

foo(a,b,c) {
 if (a != null) {
 b = c;
 t = new...;
 c.f = t;
 }
 d = a;
 if (d != null) {
 b.f.g = 10;
 }
}

{b.f=null}
{b.f=null ∧ d≠null}
{b.f=null ∧ a≠null}

{(b≠c ∧ b.f=null ∧ a≠null) v (b=c t∧ =null ∧ a≠null)}
{b≠c ∧ b.f=null ∧ a≠null}
{#f}

[Margoor & Komondoor, 2015]

Safe!
{(a≠null → #f) v (a=null → b.f=null a≠null)}∧ = #f

Discovering & Disproving Bugs

foo(a,b,c) {
 if (a != null) {
 b = c;
 t = new...;
 c.f = t;
 }
 d = a;
 if (d != null) {
 b.f.g = 10;
 }
}

{b.f=null}
{b.f=null ∧ d≠null}
{b.f=null ∧ a≠null}

{(b≠c ∧ b.f=null ∧ a≠null) v (b=c t∧ =null ∧ a≠null)}
{b≠c ∧ b.f=null ∧ a≠null}
{#f}

[Margoor & Komondoor, 2015]

Note: this can be
automated within a tool!

Safe!
{(a≠null → #f) v (a=null → b.f=null a≠null)}∧ = #f

Localizing Bugs

int arr[3];
...
if (index != 1) {
 index = 2;
} else {
 index = index + 2;
}
i = index;
print(arr[i]);

[Jose & Majumdar, 2011]

Localizing Bugs

assert(0 ≤ i < 3) should hold

int arr[3];
...
if (index != 1) {
 index = 2;
} else {
 index = index + 2;
}
i = index;
print(arr[i]);

[Jose & Majumdar, 2011]

Localizing Bugs

assert(0 ≤ i < 3) should hold

When the starting index is 1,
i is out of bounds

int arr[3];
...
if (index != 1) {
 index = 2;
} else {
 index = index + 2;
}
i = index;
print(arr[i]);

[Jose & Majumdar, 2011]

Localizing Bugs

assert(0 ≤ i < 3) should hold

When the starting index is 1,
i is out of bounds

int arr[3];
...
if (index != 1) {
 index = 2;
} else {
 index = index + 2;
}
i = index;
print(arr[i]);

[Jose & Majumdar, 2011]

We will generate constraints
in the forward direction

Localizing Bugs

assert(0 ≤ i < 3) should hold

When the starting index is 1,
i is out of bounds

int arr[3];
...
if (index != 1) {
 index = 2;
} else {
 index = index + 2;
}
i = index;
print(arr[i]);

[Jose & Majumdar, 2011]
index1 = 1

We will generate constraints
in the forward direction

 ∧ (0 ≤ i < 3)

Localizing Bugs

assert(0 ≤ i < 3) should hold

When the starting index is 1,
i is out of bounds

int arr[3];
...
if (index != 1) {
 index = 2;
} else {
 index = index + 2;
}
i = index;
print(arr[i]);

[Jose & Majumdar, 2011]
index1 = 1
 ∧ guard1 = (index1 ≠ 1)

We will generate constraints
in the forward direction

 ∧ (0 ≤ i < 3)

Localizing Bugs

assert(0 ≤ i < 3) should hold

When the starting index is 1,
i is out of bounds

int arr[3];
...
if (index != 1) {
 index = 2;
} else {
 index = index + 2;
}
i = index;
print(arr[i]);

[Jose & Majumdar, 2011]
index1 = 1
 ∧ guard1 = (index1 ≠ 1)
 ∧ index2 = 2

 ∧ (0 ≤ i < 3)

Localizing Bugs

assert(0 ≤ i < 3) should hold

When the starting index is 1,
i is out of bounds

int arr[3];
...
if (index != 1) {
 index = 2;
} else {
 index = index + 2;
}
i = index;
print(arr[i]);

[Jose & Majumdar, 2011]
index1 = 1
 ∧ guard1 = (index1 ≠ 1)
 ∧ index2 = 2
 ∧ index3 = (index1 + 2)

 ∧ (0 ≤ i < 3)

Localizing Bugs

assert(0 ≤ i < 3) should hold

When the starting index is 1,
i is out of bounds

int arr[3];
...
if (index != 1) {
 index = 2;
} else {
 index = index + 2;
}
i = index;
print(arr[i]);

[Jose & Majumdar, 2011]
index1 = 1
 ∧ guard1 = (index1 ≠ 1)
 ∧ index2 = 2
 ∧ index3 = (index1 + 2)
 ∧ (guard1 i=→ index2)
 ∧ (¬guard1 i=→ index3)
 ∧ (0 ≤ i < 3)

Localizing Bugs

assert(0 ≤ i < 3) should hold

When the starting index is 1,
i is out of bounds

int arr[3];
...
if (index != 1) {
 index = 2;
} else {
 index = index + 2;
}
i = index;
print(arr[i]);

[Jose & Majumdar, 2011]
index1 = 1
 ∧ guard1 = (index1 ≠ 1)
 ∧ index2 = 2
 ∧ index3 = (index1 + 2)
 ∧ (guard1 i=→ index2)
 ∧ (¬guard1 i=→ index3)
 ∧ (0 ≤ i < 3)

P

Localizing Bugs

assert(0 ≤ i < 3) should hold

When the starting index is 1,
i is out of bounds

int arr[3];
...
if (index != 1) {
 index = 2;
} else {
 index = index + 2;
}
i = index;
print(arr[i]);

[Jose & Majumdar, 2011]
index1 = 1
 ∧ guard1 = (index1 ≠ 1)
 ∧ index2 = 2
 ∧ index3 = (index1 + 2)
 ∧ (guard1 i=→ index2)
 ∧ (¬guard1 i=→ index3)
 ∧ (0 ≤ i < 3)

P

snp(P,#t)

Localizing Bugs

assert(0 ≤ i < 3) should hold

When the starting index is 1,
i is out of bounds

int arr[3];
...
if (index != 1) {
 index = 2;
} else {
 index = index + 2;
}
i = index;
print(arr[i]);

[Jose & Majumdar, 2011]
index1 = 1
 ∧ guard1 = (index1 ≠ 1)
 ∧ index2 = 2
 ∧ index3 = (index1 + 2)
 ∧ (guard1 i=→ index2)
 ∧ (¬guard1 i=→ index3)
 ∧ (0 ≤ i < 3) This is always false,

but we can use that!

Localizing Bugs

assert(0 ≤ i < 3) should hold

When the starting index is 1,
i is out of bounds

int arr[3];
...
if (index != 1) {
 index = 2;
} else {
 index = index + 2;
}
i = index;
print(arr[i]);

[Jose & Majumdar, 2011]
index1 = 1
 ∧ guard1 = (index1 ≠ 1)
 ∧ index2 = 2
 ∧ index3 = (index1 + 2)
 ∧ (guard1 i=→ index2)
 ∧ (¬guard1 i=→ index3)
 ∧ (0 ≤ i < 3)

These constraints define our goal,
so they are essential

Localizing Bugs

assert(0 ≤ i < 3) should hold

When the starting index is 1,
i is out of bounds

int arr[3];
...
if (index != 1) {
 index = 2;
} else {
 index = index + 2;
}
i = index;
print(arr[i]);

[Jose & Majumdar, 2011]
index1 = 1
 ∧ guard1 = (index1 ≠ 1)
 ∧ index2 = 2
 ∧ index3 = (index1 + 2)
 ∧ (guard1 i=→ index2)
 ∧ (¬guard1 i=→ index3)
 ∧ (0 ≤ i < 3)

Some of these constraints
conflict with our goal

These constraints define our goal,
so they are essential

Localizing Bugs

assert(0 ≤ i < 3) should hold

When the starting index is 1,
i is out of bounds

int arr[3];
...
if (index != 1) {
 index = 2;
} else {
 index = index + 2;
}
i = index;
print(arr[i]);

[Jose & Majumdar, 2011]
index1 = 1
 ∧ guard1 = (index1 ≠ 1)
 ∧ index2 = 2
 ∧ index3 = (index1 + 2)
 ∧ (guard1 i=→ index2)
 ∧ (¬guard1 i=→ index3)
 ∧ (0 ≤ i < 3) Minimum unsat cores & partial MAX-SAT

can discover the conflicts

Some of these constraints
conflict with our goal

These constraints define our goal,
so they are essential

Localizing Bugs

assert(0 ≤ i < 3) should hold

When the starting index is 1,
i is out of bounds

int arr[3];
...
if (index != 1) {
 index = 2;
} else {
 index = index + 2;
}
i = index;
print(arr[i]);

[Jose & Majumdar, 2011]
index1 = 1
 ∧ guard1 = (index1 ≠ 1)
 ∧ index2 = 2
 ∧ index3 = (index1 + 2)
 ∧ (guard1 i=→ index2)
 ∧ (¬guard1 i=→ index3)
 ∧ (0 ≤ i < 3) Minimum unsat cores & partial MAX-SAT

can discover the conflicts

Some of these constraints
conflict with our goal

These constraints define our goal,
so they are essential

Localizing Bugs

assert(0 ≤ i < 3) should hold

When the starting index is 1,
i is out of bounds

int arr[3];
...
if (index != 1) {
 index = 2;
} else {
 index = index + 2;
}
i = index;
print(arr[i]);

[Jose & Majumdar, 2011]
index1 = 1
 ∧ guard1 = (index1 ≠ 1)
 ∧ index2 = 2
 ∧ index3 = (index1 + 2)
 ∧ (guard1 i=→ index2)
 ∧ (¬guard1 i=→ index3)
 ∧ (0 ≤ i < 3) Minimum unsat cores & partial MAX-SAT

can discover the conflicts

Must SAT

Some of these constraints
conflict with our goal

These constraints define our goal,
so they are essential

Localizing Bugs

assert(0 ≤ i < 3) should hold

When the starting index is 1,
i is out of bounds

int arr[3];
...
if (index != 1) {
 index = 2;
} else {
 index = index + 2;
}
i = index;
print(arr[i]);

[Jose & Majumdar, 2011]
index1 = 1
 ∧ guard1 = (index1 ≠ 1)
 ∧ index2 = 2
 ∧ index3 = (index1 + 2)
 ∧ (guard1 i=→ index2)
 ∧ (¬guard1 i=→ index3)
 ∧ (0 ≤ i < 3) Minimum unsat cores & partial MAX-SAT

can discover the conflicts

Must SAT Max # satisfiable

Some of these constraints
conflict with our goal

These constraints define our goal,
so they are essential

Localizing Bugs

assert(0 ≤ i < 3) should hold

When the starting index is 1,
i is out of bounds

int arr[3];
...
if (index != 1) {
 index = 2;
} else {
 index = index + 2;
}
i = index;
print(arr[i]);

[Jose & Majumdar, 2011]
index1 = 1
 ∧ guard1 = (index1 ≠ 1)
 ∧ index2 = 2
 ∧ index3 = (index1 + 2)
 ∧ (guard1 i=→ index2)
 ∧ (¬guard1 i=→ index3)
 ∧ (0 ≤ i < 3) Minimum unsat cores & partial MAX-SAT

can discover the conflicts

Must SAT Max # satisfiable

Could not SAT;
Blame for inconsistency

These constraints define our goal,
so they are essential

Some of these constraints
conflict with our goal

Further notes

● We will explore this further within Symbolic Execution

Further notes

● We will explore this further within Symbolic Execution
● Recognizing invariants & likely invariants can tackle many problems

Further notes

● We will explore this further within Symbolic Execution
● Recognizing invariants & likely invariants can tackle many problems
● Interpolants can help synthesize information as if “out of thin air”

Recap

● Formalism is a tool that can simplify reasoning about tasks

Recap

● Formalism is a tool that can simplify reasoning about tasks
● Many solutions involve a careful combination of

– order theory (for comparison)
– formal grammars (for structure)
– formal logic (for inference)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299
	Slide 300
	Slide 301
	Slide 302
	Slide 303
	Slide 304
	Slide 305
	Slide 306
	Slide 307
	Slide 308
	Slide 309
	Slide 310
	Slide 311
	Slide 312
	Slide 313
	Slide 314
	Slide 315
	Slide 316
	Slide 317
	Slide 318
	Slide 319
	Slide 320
	Slide 321
	Slide 322
	Slide 323
	Slide 324
	Slide 325
	Slide 326

