CMPT 745 Software Engineering

Basic Formalisms for Software Engineering

Nick Sumner wsumner@sfu.ca

• Formal systems are common

- Formal systems are common
 - High school algebra
 - Classic formal logic
 - Euclidean geometry

- Formal systems are common
 - High school algebra
 - Classic formal logic
 - Euclidean geometry
- They serve multiple useful purposes

- Formal systems are common
 - High school algebra
 - Classic formal logic
 - Euclidean geometry
- They serve multiple useful purposes
 - Limit the possibilities that you may consider
 - Check whether reasoning is correct
 - Enable automated techniques for finding solutions

- Formal systems are common
 - High school algebra
 - Classic formal logic
 - Euclidean geometry
- They serve multiple useful purposes
 - Limit the possibilities that you may consider
 - Check whether reasoning is correct
 - Enable automated techniques for finding solutions
- Choosing the right tool for the job can be hard

• Several specific systems are common (in CS and program analysis)

- Several specific systems are common (in CS and program analysis)
 - Order Theory

How to compare elements of a set

- Several specific systems are common (in CS and program analysis)
 - Order Theory
 - Formal Grammars & Automata

Use structure to constrain the elements of a set

- Several specific systems are common (in CS and program analysis)
 - Order Theory
 - Formal Grammars & Automata
 - Formal Logic (Classical & otherwise)

How and when to infer facts

- Several specific systems are common (in CS and program analysis)
 - Order Theory
 - Formal Grammars & Automata
 - Formal Logic (Classical & otherwise)
- We are going to revisit these (quickly) with some insights on how they can useful in practice.

- Several specific systems are common (in CS and program analysis)
 - Order Theory
 - Formal Grammars & Automata
 - Formal Logic (Classical & otherwise)
- We are going to revisit these (quickly) with some insights on how they can useful in practice.
 - Most students don't seem to remember them

- Several specific systems are common (in CS and program analysis)
 - Order Theory
 - Formal Grammars & Automata
 - Formal Logic (Classical & otherwise)
- We are going to revisit these (quickly) with some insights on how they can useful in practice.
 - Most students don't seem to remember them
 - Even fewer learn that formalism can be useful!

- Several specific systems are common (in CS and program analysis)
 - Order Theory
 - Formal Grammars & Automata
 - Formal Logic (Classical & otherwise)
- We are going to revisit these (quickly) with some insights on how they can useful in practice.
 - Most students don't seem to remember them
 - Even fewer learn that formalism can be useful!
 - These techniques are critical for static program analysis

• Order theory is a field examining how we compare elements of a set.

- Order theory is a field examining how we compare elements of a set.
- Simplest example is numbers on a number line:

- Order theory is a field examining how we compare elements of a set.
- Simplest example is numbers on a number line:

- Order theory is a field examining how we compare elements of a set.
- Simplest example is numbers on a number line:

- ≤ is a total order on **Z**.
 - Intuitively, \forall a, b $\in \mathbb{Z}$, either a \leq b or b \leq a

• We often want to compare complex data

- We often want to compare complex data
 - Ordinal, multidimensional, ...

- We often want to compare complex data
 - Ordinal, multidimensional, ...

- We often want to compare complex data
 - Ordinal, multidimensional, ...

- We often want to compare complex data
 - Ordinal, multidimensional, ...

What is the result of $(1,1) \le (2,2)$?

- We often want to compare complex data
 - Ordinal, multidimensional, ...

What is the result of $(1,1) \le (2,2)$?

We can take ≤ to be componentwise comparison.

- We often want to compare complex data
 - Ordinal, multidimensional, ...

What is the result of $(1,2) \le (2,1)$?

- We often want to compare complex data
 - Ordinal, multidimensional, ...

• Componentwise comparison with tuples yields a partial order

- We often want to compare complex data
 - Ordinal, multidimensional, ...

- Componentwise comparison with tuples yields a partial order
 - Intuitively, not all elements are comparable

- We often want to compare complex data
 - Ordinal, multidimensional, ...

- Componentwise comparison with tuples yields a partial order
 - Intuitively, not all elements are comparable

• A relation \leq is a partial order on a set S if \forall a,b,c \subseteq S

Reflexive: a ≤ a

- Antisymmetric: $a \le b \& b \le a \Rightarrow a = b$

- Transitive: $a \le b \& b \le c \Rightarrow a \le c$

• A relation \leq is a partial order on a set S if \forall a,b,c \subseteq S

- Reflexive: a ≤ a

- Antisymmetric: $a \le b \& b \le a \Rightarrow a = b$

- Transitive: $a \le b \& b \le c \Rightarrow a \le c$

• A relation \leq is a partial order on a set S if \forall a,b,c \subseteq S

- Reflexive: a ≤ a

- Antisymmetric: $a \le b \& b \le a \Rightarrow a = b$

- Transitive: $a \le b \& b \le c \Rightarrow a \le c$

• A relation \leq is a partial order on a set S if \forall a,b,c \subseteq S

Reflexive: a ≤ a

- Antisymmetric: $a \le b \& b \le a \Rightarrow a = b$ - Transitive: $a \le b \& b \le c \Rightarrow a \le c$

How does a total order compare?

- A relation \leq is a partial order on a set S if \forall a,b,c \subseteq S
 - Reflexive: a ≤ a
 - Antisymmetric: $a \le b \& b \le a \Rightarrow a = b$
 - Transitive: $a \le b \& b \le c \Rightarrow a \le c$
- When reasoning about partial orders, we prefer ⊑

- A relation \leq is a partial order on a set S if \forall a,b,c \subseteq S
 - Reflexive: a ≤ a
 - Antisymmetric: $a \le b \& b \le a \Rightarrow a = b$
 - Transitive: $a \le b \& b \le c \Rightarrow a \le c$
- When reasoning about partial orders, we prefer ⊑
- Common partial orders include
 - substring, subsequence, subset relationships

• A relation \leq is a partial order on a set S if \forall a,b,c \subseteq S

ab
$$\leq_{\text{str}}$$
 xabyz
ab \leq_{seq} xaybz
{a,b} ⊆ {a,b,x,y,z}

- Common partial orders include
 - substring, subsequence, subset relationships

- A relation \leq is a partial order on a set S if \forall a,b,c \subseteq S
 - Reflexive: a ≤ a
 - Antisymmetric: $a \le b \& b \le a \Rightarrow a = b$
 - Transitive: $a \le b \& b \le c \Rightarrow a \le c$
- When reasoning about partial orders, we prefer ⊑
- Common partial orders include
 - substring, subsequence, subset relationships
 - componentwise orderings

$$(1,1) \sqsubseteq (1,2)$$

 $(1,1) \sqsubseteq (2,2)$

- Common partial orders include
 - substring, subsequence, subset relationships
 - componentwise orderings

- A relation \leq is a partial order on a set S if \forall a,b,c \subseteq S
 - Reflexive: a ≤ a
 - Antisymmetric: $a \le b \& b \le a \Rightarrow a = b$
 - Transitive: $a \le b \& b \le c \Rightarrow a \le c$
- When reasoning about partial orders, we prefer ⊑
- Common partial orders include
 - substring, subsequence, subset relationships
 - componentwise orderings
 - functions (considering all input/output mappings)

- Common partial orders include
 - substring, subsequence, subset relationships
 - componentwise orderings
 - functions (considering all input/output mappings)

- Common partial orders include
 - substring, subsequence, subset relationships
 - componentwise orderings
 - functions (considering all input/output mappings)

$$f(x) = x + 1 \sqsubseteq g(x) = x + 2$$

 $h(x) = x \sqsubseteq i(x) = -x$

- Common partial orders include
 - substring, subsequence, subset relationships
 - componentwise orderings
 - functions (considering all input/output mappings)

$$f(x) = x + 1 \sqsubseteq g(x) = x + 2$$

 $h(x) = x \sqsubseteq i(x) = -x$

- Common partial orders include
 - substring, subsequence, subset relationships
 - componentwise orderings
 - functions (considering all input/output mappings)

• We can express the structure of partial orders using (semi-)lattices.

 If unique least/greatest elements exist, we call them ⊥(bottom)/⊤(top)

We are often interested in upper and lower bounds.

- We are often interested in upper and lower bounds.
 - A join a □ b is the least upper bound of a and b

- We are often interested in upper and lower bounds.
 - A join a □ b is the least upper bound of a and b

- We are often interested in upper and lower bounds.
 - A *join* a \sqcup b is the least upper bound of a and b a \sqsubseteq (a \sqcup b) & b \sqsubseteq (a \sqcup b) & (a \sqsubseteq c & b \sqsubseteq c → (a \sqcup b) \sqsubseteq c)

- We are often interested in upper and lower bounds.
 - A join a ⊔ b is the least upper bound of a and b
 - A *meet* a □ b is the greatest lower bound of and and b

- We are often interested in upper and lower bounds.
 - A join a ⊔ b is the least upper bound of a and b
 - A *meet* a □ b is the greatest lower bound of and and b

- We are often interested in upper and lower bounds.
 - A join a □ b is the least upper bound of a and b
 - A *meet* a □ b is the greatest lower bound of and and b
 - Bounds must be unique and may not exist.

- We are often interested in upper and lower bounds.
 - A **join** a ⊔ b is the least upper bound of a and b
 - A *meet* a □ b is the greatest lower bound of and and b
 - Bounds must be unique and may not exist.

- We are often interested in upper and lower bounds.
 - A **join** a ⊔ b is the least upper bound of a and b
 - A *meet* a □ b is the greatest lower bound of and and b
 - Bounds must be unique and may not exist.

What is A ⊔ B?

- We are often interested in upper and lower bounds.
 - A *join* a ⊔ b is the least upper bound of a and b
 - A *meet* a □ b is the greatest lower bound of and and b
 - Bounds must be unique and may not exist.

What is $A \sqcup B$? What is $B \sqcup C$?

- We are often interested in upper and lower bounds.
 - A *join* a ⊔ b is the least upper bound of a and b
 - A *meet* a □ b is the greatest lower bound of and and b
 - Bounds must be unique and may not exist.

What is A ⊔ B? What is B ⊔ C? What is D ⊔ E?

- We are often interested in upper and lower bounds.
 - A join a □ b is the least upper bound of a and b
 - A *meet* a □ b is the greatest lower bound of and and b
 - Bounds must be unique and may not exist.
 - ∀S'⊆S,

- We are often interested in upper and lower bounds.
 - A join a □ b is the least upper bound of a and b
 - A *meet* a □ b is the greatest lower bound of and and b
 - Bounds must be unique and may not exist.
 - \forall S'⊆S, \exists ⊔S' & \sqcap S' \Rightarrow lattice

- We are often interested in upper and lower bounds.
 - A join a □ b is the least upper bound of a and b
 - A *meet* a □ b is the greatest lower bound of and and b
 - Bounds must be unique and may not exist.
 - \forall S'⊆S, \exists US' & \sqcap S'⇒ lattice, \exists US' or \exists \sqcap S'⇒ semilattice

- We are often interested in upper and lower bounds.
 - A join a ⊔ b is the least upper bound of a and b
 - A *meet* a □ b is the greatest lower bound of and and b
 - Bounds must be unique and may not exist.
 - $\forall S' \subseteq S$, $\exists \sqcup S' \& \sqcap S' \Rightarrow lattice$, $\exists \sqcup S' or \exists \sqcap S' \Rightarrow semilattice$

• A product of lattices (partial orders) yields a lattice (partial order)

$$L_1 \times L_2$$

- A product of lattices (partial orders) yields a lattice (partial order)
 - We already saw componentwise orderings for tuples.
 This is the same.

$$L_1 \times L_2$$

$$\mathbb{Z} \times \mathbb{Z}$$

- A product of lattices (partial orders) yields a lattice (partial order)
 - We already saw componentwise orderings for tuples.
 This is the same.

$$L_1 \times L_2$$
 $\mathbb{Z} \times \mathbb{Z}$

A total order is a partial order.
Products of total orders are partial orders

- A product of lattices (partial orders) yields a lattice (partial order)
 - We already saw componentwise orderings for tuples.
 This is the same.
- Several expected principles naturally apply

- A product of lattices (partial orders) yields a lattice (partial order)
 - We already saw componentwise orderings for tuples.
 This is the same.
- Several expected principles naturally apply
 - Monotonicity $(X, \sqsubseteq_{\mathbf{X}}), (Y, \sqsubseteq_{\mathbf{V}}), f: X \to Y$

- A product of lattices (partial orders) yields a lattice (partial order)
 - We already saw componentwise orderings for tuples.
 This is the same.
- Several expected principles naturally apply
 - Monotonicity $(X, \sqsubseteq_{\mathbf{X}}), (Y, \sqsubseteq_{\mathbf{Y}}), f: X \to Y$ $x_1 \sqsubseteq_{\mathbf{X}} x_2 \to f(x_1) \sqsubseteq_{\mathbf{Y}} f(x_2)$ (f is monotonic)

- A product of lattices (partial orders) yields a lattice (partial order)
 - We already saw componentwise orderings for tuples.
 This is the same.
- Several expected principles naturally apply
 - Monotonicity
 - Continuity
 - Fixed Points
 - ...

- A product of lattices (partial orders) yields a lattice (partial order)
 - We already saw componentwise orderings for tuples.
 This is the same.
- Several expected principles naturally apply
 - Monotonicity
 - Continuity
 - Fixed Points
 - ..
- We can even consider different orders for the same sets!

- We can even consider different orders for the same sets!
 - Careful structuring of our orderings can express different things.
 What do these two lattices express?

- We can even consider different orders for the same sets!
 - Careful structuring of our orderings can express different things.
 What do these two lattices express?
 - Many use cases can also be affected by the height of a lattice.

Partial orders & lattices can be very useful

- Partial orders & lattices can be very useful
 - A formal structure for reasoning about relative value

- Partial orders & lattices can be very useful
 - A formal structure for reasoning about relative value
 - modern cryptography (including post-quantum)

- Partial orders & lattices can be very useful
 - A formal structure for reasoning about relative value
 - modern cryptography
 - concurrency & distributed systems

- Partial orders & lattices can be very useful
 - A formal structure for reasoning about relative value
 - modern cryptography
 - concurrency & distributed systems

- Partial orders & lattices can be very useful
 - A formal structure for reasoning about relative value
 - modern cryptography
 - concurrency & distributed systems
 - dataflow analysis & proving program properties

- Partial orders & lattices can be very useful
 - A formal structure for reasoning about relative value
 - modern cryptography
 - concurrency & distributed systems
 - dataflow analysis & proving program properties

- Partial orders & lattices can be very useful
 - A formal structure for reasoning about relative value
 - modern cryptography
 - concurrency & distributed systems
 - dataflow analysis & proving program properties

- Partial orders & lattices can be very useful
 - A formal structure for reasoning about relative value
 - modern cryptography
 - concurrency & distributed systems
 - dataflow analysis & proving program properties

- Partial orders & lattices can be very useful
 - A formal structure for reasoning about relative value
 - modern cryptography
 - concurrency & distributed systems
 - dataflow analysis & proving program properties

- Grammars define the structure of elements in a set
 - Alternatively, they generate the set via structure

- Grammars define the structure of elements in a set
 - Alternatively, they generate the set via structure
- They commonly define formal languages
 - Sets of strings over a defined alphabet

- Grammars define the structure of elements in a set
 - Alternatively, they generate the set via structure
- They commonly define *formal languages*
 - Sets of strings over a defined alphabet
- They are effective at constraining sets & search spaces

• A regular language can be expressed via a regular expression

A regular language can be expressed via a regular expression

```
regex → symbol

| `(` regex `)`
| regex `*`
| regex `|` regex
| regex regex
```

A regular language can be expressed via a regular expression

```
regex → symbol
| `(`regex `)`
| regex `*`
| regex `|`regex
| regex regex
```

- A regular language can be expressed via a regular expression
- Finite automata can be used to recognize or generate elements of a regular language

- A regular language can be expressed via a regular expression
- Finite automata can be used to recognize or generate elements of a regular language

- A regular language can be expressed via a regular expression
- Finite automata can be used to recognize or generate elements of a regular language

- A regular language can be expressed via a regular expression
- Finite automata can be used to recognize or generate elements of a regular language

- A regular language can be expressed via a regular expression
- Finite automata can be used to recognize or generate elements of a regular language

- A regular language can be expressed via a regular expression
- Finite automata can be used to recognize or generate elements of a regular language

- A regular language can be expressed via a regular expression
- Finite automata can be used to recognize or generate elements of a regular language

- A regular language can be expressed via a regular expression
- Finite automata can be used to recognize or generate elements of a regular language
- Recall, regular languages cannot express matched parentheses (Dyck languages)

```
Start = A
A → cBd
B → eBf
| g
```

```
Start = A

A \rightarrow cBd

B \rightarrow eBf

| g

ce^{n}gf^{n}d
```

```
Start = A
A → cBd
B → eBf
| g
```


Context free grammars add recursion and enable Dyck language recognition

```
Start = A
A → cBd
B → eBf
| g
```

• Context free grammars add recursion and enable Dyck language

recognition

Start = A A → cBd B → eBf | g

ceⁿgfⁿd

Context free grammars add recursion and enable Dyck language

recognition

Context free grammars add recursion and enable Dyck language

recognition

Generating symbols out of order acts as a form of memory.

Context free grammars add recursion and enable Dyck language

recognition

$$ce^ngf^nd$$

- Context free grammars add recursion and enable Dyck language recognition
 - The grammar for regular expressions was a CFG!

```
regex → symbol
| `(`regex `)`
| regex `*`
| regex `|`regex
| regex regex
```

- Context free grammars add recursion and enable Dyck language recognition
 - The grammar for regular expressions was a CFG!

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)

S
$$\rightarrow$$
 xAy | zB
A \rightarrow aA | t
B \rightarrow bB | u

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)
- Adding additional rules can extend the expressiveness
 - context sensitive languages
 - tree adjoining grammars
 - ...

- Context free grammars add recursion and enable Dyck language recognition
- Augmenting a finite automaton with a stack enables recognition and generation (via pushdown automata)
- Adding additional rules can extend the expressiveness
- Grammars can constrain far more than strings.
 - graphs
 - semantic objects (furniture layout? sequences of actions? ...)

Context free grammars play a key role in

- Context free grammars play a key role in
 - Precise static program analysis

- Context free grammars play a key role in
 - Precise static program analysis
 - Program synthesis

- Context free grammars play a key role in
 - Precise static program analysis
 - Program synthesis

```
if (e) {
    ...
}
```

- Context free grammars play a key role in
 - Precise static program analysis
 - Program synthesis

Automated Repair

true false

- Context free grammars play a key role in
 - Precise static program analysis
 - Program synthesis

Automated Repair

```
true
false
{?} == {?}
{?} < {?}
{?} <= {?}
```

- Context free grammars play a key role in
 - Precise static program analysis
 - Program synthesis

Automated Repair

```
true
false
{?} == {?}
{?} < {?}
{?} <= {?}
{?} || {?}
{?} && {?}
```

- Context free grammars play a key role in
 - Precise static program analysis
 - Program synthesis

Automated Repair

```
true
false
{?} == {?}
{?} < {?}
{?} <= {?}
{?} !! {?}
{?} && {?}
{?} == {?} || {?}
```

- Context free grammars play a key role in
 - Precise static program analysis
 - Program synthesis
 - Prediction and machine learning on programs

- Context free grammars play a key role in
 - Precise static program analysis
 - Program synthesis
 - Prediction and machine learning on programs

Gu 2019]

Context free grammars play a key role in

Precise static program analysis

Program synthesis

Prediction and machine learning on programs

Gu 2019]

Context Free Grammars & Pushdown Automata

- Context free grammars play a key role in
 - Precise static program analysis
 - Program synthesis
 - Prediction and machine learning on programs
 - Compact encodings of complex sets

- Formal logic is a systematic approach to reasoning
 - Separate the messy content of an argument from its structure

- Formal logic is a systematic approach to reasoning
 - Separate the messy content of an argument from its structure
- Sometimes the process can be automated
 - e.g. satisfiability problems, type inference, ...

- Formal logic is a systematic approach to reasoning
 - Separate the messy content of an argument from its structure
- Sometimes the process can be automated
 - e.g. satisfiability problems, type inference, ...
- Program analysis has actually been one of the driving forces behind satisfiability in recent years.

- You likely already know either propositional or first order logic
 - Systems for reasoning about the truth of sentences

- You likely already know either propositional or first order logic
 - Systems for reasoning about the truth of sentences
- Atoms abstract away the actors of the sentences
 - Constants: #t, #f
 - Variables: x, y, z, ...

- You likely already know either propositional or first order logic
 - Systems for reasoning about the truth of sentences
- Atoms abstract away the actors of the sentences
 - Constants: #t, #f
 - Variables: x, y, z, ...
- Connectives relate the atoms & other propositions to each other
 - ¬ (Not), ∧ (And), ∨ (or)
 - $\rightarrow (Implies), \leftrightarrow (Iff)$

- You likely already know either propositional or first order logic
 - Systems for reasoning about the truth of sentences
- Atoms abstract away the actors of the sentences
 - Constants: #t, #f
 - Variables: x, y, z, ...
- Connectives relate the atoms & other propositions to each other
 - ¬ (Not), ∧ (And), ∨ (or)
 - $\rightarrow (Implies), \leftrightarrow (Iff)$

$$x \land \neg y \land z$$

• First order logic augments with

- First order logic augments with
 - Quantifiers- ∃ (there exists), ∀ (for all)
 - Functions & Relations- e.g. father(x), Elephant(y)

- First order logic augments with
 - Quantifiers-∃ (there exists), ∀ (for all)
 - Functions & Relations- e.g. father(x), Elephant(y)
- Sentences can be true or false

- First order logic augments with
 - Quantifiers-∃ (there exists), ∀ (for all)
 - Functions & Relations- e.g. father(x), Elephant(y)
- Sentences can be true or false

$$\forall x (Elephant(x) \rightarrow Grey(x))$$

- First order logic augments with
 - Quantifiers-∃ (there exists), ∀ (for all)
 - Functions & Relations- e.g. father(x), Elephant(y)
- Sentences can be true or false

```
\forall x (Elephant(x) \rightarrow Grey(x))
\forall x (Elephant(x) \rightarrow Elephant(father(x)))
```

- First order logic augments with
 - Quantifiers-∃ (there exists), ∀ (for all)
 - Functions & Relations- e.g. father(x), Elephant(y)
- Sentences can be true or false
- An interpretation I of the world along with the rules of logic determine truth via judgment (⊢)

- First order logic augments with
 - Quantifiers-∃ (there exists), ∀ (for all)
 - Functions & Relations- e.g. father(x), Elephant(y)
- Sentences can be true or false
- An interpretation I of the world along with the rules of logic determine truth via judgment (⊢)

$$I \vdash x \text{ and } I \vdash y \text{ iff } I \vdash x \land y$$

- Satisfiability
 - A sentence s is satisfiable $\leftrightarrow \exists I (I \vdash s)$

- Satisfiability
 - A sentence s is satisfiable $\leftrightarrow \exists I (I \vdash s)$
- Validity
 - A sentence s is valid $\leftrightarrow \forall I (I \vdash s)$

- Satisfiability
 - A sentence s is satisfiable $\leftrightarrow \exists I (I \vdash s)$
- Validity
 - A sentence s is valid $\leftrightarrow \forall I (I \vdash s)$
- We will see later how these can be used for a wide variety of tasks

- Satisfiability
 - A sentence s is satisfiable $\leftrightarrow \exists I (I \vdash s)$
- Validity
 - A sentence s is valid $\leftrightarrow \forall I (I \vdash s)$
- We will see later how these can be used for a wide variety of tasks
 - Bug finding
 - Model checking (proving correctness)
 - Explaining defects
 - **–** ...

Rules express how some judgments enable others

$$\frac{\Gamma \vdash x \qquad \Delta \vdash y}{\Gamma, \ \Delta \vdash x \land y}$$

Rules express how some judgments enable others

$$\begin{array}{ccc}
\Gamma \vdash x & \Delta \vdash y \\
\Gamma, \Delta \vdash x \wedge y
\end{array}$$

Rules express how some judgments enable others

$$\Gamma \vdash x \qquad \Delta \vdash y$$

$$\Gamma, \Delta \vdash x \wedge y$$

• Rules express how some judgments enable others

$$\begin{array}{ccc}
\Gamma \vdash x & \Delta \vdash y \\
\hline
\Gamma, \Delta \vdash x \wedge y
\end{array}$$

Proofs can be written by stacking rules

Rules express how some judgments enable others

$$\begin{array}{ccc}
\Gamma \vdash x & \Delta \vdash y \\
\hline
\Gamma, \Delta \vdash x \wedge y
\end{array}$$

Proofs can be written by stacking rules

$$\frac{\overline{A \vdash A} \text{ Id}}{\overline{A \vdash A}} \xrightarrow{\overline{A} \vdash \overline{A}} \xrightarrow{A \vdash \overline{A}} \xrightarrow{A \vdash \overline{A}} \xrightarrow{A \vdash \overline{A} \vdash \overline{A} \vdash \overline{A} \vdash \overline{A}} \xrightarrow{A \vdash \overline{A} \vdash \overline{A} \vdash \overline{A} \vdash \overline{A}} \xrightarrow{A \vdash \overline{A} \vdash \overline{A} \vdash \overline{A} \vdash \overline{A}} \xrightarrow{A \vdash \overline{A} \vdash \overline{A} \vdash \overline{A} \vdash \overline{A}} \xrightarrow{A \vdash \overline{A} \vdash \overline{A} \vdash \overline{A} \vdash \overline{A}} \xrightarrow{A \vdash \overline{A} \vdash \overline{A} \vdash \overline{A} \vdash \overline{A}} \xrightarrow{A \vdash \overline{A} \vdash \overline{A} \vdash \overline{A} \vdash \overline{A} \vdash \overline{A}} \xrightarrow{A \vdash \overline{A} \vdash \overline{A} \vdash \overline{A}} \xrightarrow{A \vdash \overline{A} \vdash \overline{A} \vdash \overline{A} \vdash \overline{A}} \xrightarrow{A \vdash \overline{A} \vdash \overline{A} \vdash \overline{A} \vdash \overline{A} \vdash \overline{A}} \xrightarrow{A \vdash \overline{A} \vdash$$

Wadler, "A Taste of Linear Logic". 2014.

• It can be useful to modify or limit rules of inference

- It can be useful to modify or limit rules of inference
 - Suppose a compiler cannot prove variable x is an int.
 Is it reasonable for the compile to assume x is a string?

- It can be useful to modify or limit rules of inference
 - Suppose a compiler cannot prove variable x is an int. Is it reasonable for the compile to assume x is a string?
- Constructivism argues that truth comes from direct evidence.
 - We cannot merely assume p or not p, we must have evidence

- It can be useful to modify or limit rules of inference
 - Suppose a compiler cannot prove variable x is an int. Is it reasonable for the compile to assume x is a string?
- Constructivism argues that truth comes from direct evidence.
 - We cannot merely assume p or not p, we must have evidence
- Intuitionistic logic restricts the rules of inference to require direct evidence

• Classic logic includes several rules including

Classic logic includes several rules including

 $\vdash p \lor \neg p$ Law of excluded middle

Classic logic includes several rules including

$$\begin{array}{c} \Gamma \vdash \neg \neg p \\ \hline \Gamma \vdash p \lor \neg p \\ \hline \end{array}$$

$$\begin{array}{c} \Gamma \vdash p \\ \hline \end{array}$$
Double negation elimination

Classic logic includes several rules including

$$\begin{array}{ccc}
 & \Gamma \vdash \neg \neg p \\
\hline
 & \Gamma \vdash \neg \neg p
\end{array}$$

• Intuitionistic logic excludes these to require direct evidence

Classic logic includes several rules including

$$\begin{array}{c|c} & & & & & & \\ \hline \vdash p \lor \neg p & & & & \\ \hline & & & & \\ \hline \end{array}$$

- Intuitionistic logic excludes these to require direct evidence
- Note, this is commonly used in type systems

Linear & Substructural Logic

Linear & Substructural Logic

```
sellsBurritos(store)
has10Dollars(me) buyBurrito(me,store)
\(\Lambda\) buyBurrito(me,store)
```

```
sellsBurritos(store)
has10Dollars(me) buyBurrito(me,store)
\(\lambda\) buyBurrito(me,store)
\(\lambda\) buyBurrito(me,store)
```

Classical & intuitionistic logic have trouble expressing consumable facts

- Linear logic denotes separates facts into two kinds
 - Intuitionistic as before
 - <Linear> cannot be used with contraction or weakening

- Linear logic denotes separates facts into two kinds
 - Intuitionistic as before
 - <Linear> cannot be used with contraction or weakening

$$\Gamma, A, A, \Delta \vdash p$$
 $\Gamma, A \vdash p$ $\Gamma, A, \Delta \vdash p$ $\Gamma, A, \Delta \vdash p$

- Linear logic denotes separates facts into two kinds
 - [Intuitionistic] as before
 - <Linear > cannot be used with contraction or weakening
 - In essence, linear facts must be consumed exactly once in a proof.

$$\Gamma,A,A,\Delta \vdash p$$
 $\Gamma,A,\Delta \vdash p$ $\Gamma,A,\Delta \vdash p$

- Linear logic denotes separates facts into two kinds
 - [Intuitionistic] as before
 - <Linear > cannot be used with contraction or weakening
 - In essence, linear facts must be consumed exactly once in a proof.

$$\Gamma,A,A,\Delta \vdash p$$
 $\Gamma,A,\Delta \vdash p$ $\Gamma,A,\Delta \vdash p$

Idea: Some facts (resources) require careful accounting

sellsBurritos(store) buyBurrito(me,store)

- Linear logic denotes separates facts into two kinds
 - [Intuitionistic] as before
 - <Linear> cannot be used with contraction or weakening
 - In essence, linear facts must be consumed exactly once in a proof.

Logics that remove additional rules from intuitionistic logic are *substructural*

- Linear logic denotes separates facts into two kinds
 - [Intuitionistic] as before
 - <Linear> cannot be used with contraction or weakening
 - In essence, linear facts must be consumed exactly once in a proof.
- This forms the backbone of ownership types in languages like Rust!

- Linear logic denotes separates facts into two kinds
 - [Intuitionistic] as before
 - <Linear> cannot be used with contraction or weakening
 - In essence, linear facts must be consumed exactly once in a proof.
- This forms the backbone of ownership types in languages like Rust!

```
struct Thing(u32);
let a = Thing(5);
let b = a;
let c = a;
```

- Linear logic denotes separates facts into two kinds
 - [Intuitionistic] as before
 - <Linear> cannot be used with contraction or weakening
 - In essence, linear facts must be consumed exactly once in a proof.
- This forms the backbone of ownership types in languages like Rust!

```
struct Thing(u32);
let a = Thing(5);
let b = a;
let c = a;
Het a: Thing
```

- Linear logic denotes separates facts into two kinds
 - [Intuitionistic] as before
 - <Linear> cannot be used with contraction or weakening
 - In essence, linear facts must be consumed exactly once in a proof.
- This forms the backbone of ownership types in languages like Rust!

```
struct Thing(u32);
let a = Thing(5);
let b = a;
let c = a;
Let b = a;
a:Thing F b:Thing
```

- Linear logic denotes separates facts into two kinds
 - [Intuitionistic] as before
 - <Linear> cannot be used with contraction or weakening
 - In essence, linear facts must be consumed exactly once in a proof.
- This forms the backbone of ownership types in languages like Rust!

```
struct Thing(u32);
let a = Thing(5);
let b = a;
let c = a;
Let b = a;
a:Thing F b:Thing
```

- Linear logic denotes separates facts into two kinds
 - [Intuitionistic] as before
 - <Linear> cannot be used with contraction or weakening
 - In essence, linear facts must be consumed exactly once in a proof.
- This forms the backbone of ownership types in languages like Rust!

$$x \land \neg y \land z$$

• Given facts, the logics we have seen consider what is true/false

$$X \land \neg y \land Z$$

Programs reason about facts that change over time

$$X \land \neg y \land Z$$

- Programs reason about facts that change over time
 - How do facts at one state affect facts at another?

$$X \land \neg y \land Z$$

- Programs reason about facts that change over time
 - How do facts at one state affect facts at another?

```
double sqrt(double n,
            double threshold) {
  double x = 1;
  while (true) {
    double newX = (x + y)
                        n/x) / 2;
    if (abs(x - nx) <
                       threshold)
      break;
    x = nx
  return x
```

$$X \land \neg y \land Z$$

- Programs reason about facts that change over time
 - How do facts at one state affect facts at another?
 - Does this do what is expected?

```
double sqrt(double n,
            double threshold) {
  double x = 1;
  while (true) {
    double newX = (x + n/x) / 2;
    if (abs(x - nx) < threshold)
      break;
    x = nx
  return x;
```

$$X \land \neg y \land Z$$

- Programs reason about facts that change over time
 - How do facts at one state affect facts at another?
 - Does this do what is expected?
 - Will I dereference a null pointer?

```
double sqrt(double n,
            double threshold) {
  double x = 1;
 while (true) {
    double newX = (x + n/x) / 2;
    if (abs(x - nx) < threshold)
      break;
    x = nx
  return x;
```

• Given facts, the logics we have seen consider what is true/false

$$X \land \neg y \land Z$$

return x;

- Programs reason about facts that change over time
 - How do facts at one state affect facts at another?
 - Does this do what is expected?
 - Will I dereference a null pointer?

We want a logic that reasons about changes in state.

```
y = w[20]
x = *y + 5
```


Hoare logic reasons about the behavior of programs and program fragments

$$\{\phi\}C\{\psi\}$$

If φ holds before C, ψ will hold after

$$\{x=3 \land y=2\} \times \leftarrow 5\{x=5\}$$

Hoare logic reasons about the behavior of programs and program fragments

$$\{\phi\}C\{\psi\}$$

• If ϕ holds before C, ψ will hold after

$$\{x=3 \land y=2\}x \leftarrow 5\{x=5\}$$

Hoare logic reasons about the behavior of programs and program fragments

$$\{\phi\}C\{\psi\}$$

• If ϕ holds before C, ψ will hold after

$$\{x=3 \land y=2\}x \leftarrow 5\{x=5\}$$

$$\{\#t\} \times -5\{x=5\}$$

Hoare logic reasons about the behavior of programs and program fragments

$$\{\phi\}C\{\psi\}$$

• If ϕ holds before C, ψ will hold after

$$\{x=3 \land y=2\}x \leftarrow 5\{x=5\}$$

$$\{\#t\}x\leftarrow 5\{x=5\}$$

{???}if c then $x\leftarrow 5\{x=5\}$

Hoare logic reasons about the behavior of programs and program fragments

$$\{\phi\}C\{\psi\}$$

• If ϕ holds before C, ψ will hold after

$$\{\#t\}x\leftarrow 5\{x=5\}$$

{???}if c then $x\leftarrow 5\{x=5\}$

What do we really mean by captures all states?

- What do we really mean by captures all states?
- A store/state σ is a partial function mapping variables to values

- What do we really mean by captures all states?
- A store/state σ is a partial function mapping variables to values
 - Commands in a program can modify the store

- What do we really mean by captures all states?
- A store/state σ is a partial function mapping variables to values
 - Commands in a program can modify the store

Command

- What do we really mean by captures all states?
- A store/state σ is a partial function mapping variables to values
 - Commands in a program can modify the store

Store Command
$$\sigma = \{x \mapsto 3, y \mapsto 1\}$$
 $x \leftarrow 5$

- What do we really mean by captures all states?
- A store/state σ is a partial function mapping variables to values
 - Commands in a program can modify the store

Store Command
$$\sigma = \{x \mapsto 3, y \mapsto 1\}$$

$$x \leftarrow 5$$

$$\sigma = \{x \mapsto 5, y \mapsto 1\}$$

- What do we really mean by captures all states?
- A store/state σ is a partial function mapping variables to values
 - Commands in a program can modify the store

- What do we really mean by captures all states?
- A store/state σ is a partial function mapping variables to values
 - Commands in a program can modify the store

- What do we really mean by captures all states?
- A store/state σ is a partial function mapping. This was technically true,
 - Commands in a program can modify the sto

but not so useful

(...or even compatible with our states)

- What do we really mean by captures all states?
- A store/state σ is a partial function mapping variables to values
 - Commands in a program can modify the store

$$\begin{array}{cccc} \text{Store} & \text{Command} & \text{Conditions} \\ \sigma = & \{x \mapsto 3, \ y \mapsto 1\} & \{x = 3 \ \land \ y = 2\} \\ \sigma = & \{x \mapsto 5, \ y \mapsto 1\} & \{x = 5\} \end{array}$$

- $\sigma \in \Sigma$ (all possible states), and we can reason about subsets of Σ

$$\sigma = \{x \mapsto 3, y \mapsto 1\}$$

$$x \leftarrow 5$$

$$\sigma = \{x \mapsto 5, y \mapsto 1\}$$

What do we really mean by captures all states?

Have we already seen a way do describe this structure?

- What do we really mean by captures all states?
- $wp(C, \psi) = \coprod \{x \mid \{x\} C \{\psi\}\}\$
 - Where $(A \rightarrow B) \vdash (A < B)$

```
• \operatorname{wp}(C, \psi) = \coprod \{x \mid \{x\} \subset \{\psi\}\}\

- Where (A \rightarrow B) \vdash (A < B)
```

•
$$\operatorname{wp}(C, \psi) = \coprod \{x \mid \{x\} \in \{\psi\}\}\$$
- Where $(A \rightarrow B) \vdash (A < B)$

•
$$\text{wp}(C, \psi) = \coprod \{x \mid \{x\} \in \{\psi\}\}\$$
- Where $(A \rightarrow B) \vdash (A < B)$

•
$$\text{wp}(C, \psi) = \coprod \{x \mid \{x\} \in \{\psi\}\}\$$
- Where $(A \rightarrow B) \vdash (A < B)$

•
$$\operatorname{wp}(C, \psi) = \coprod \{x \mid \{x\} \subset \{\psi\}\}\}$$

- Where $(A \rightarrow B) \vdash (A < B)$

•
$$\operatorname{wp}(C, \psi) = \coprod \{x \mid \{x\} \subset \{\psi\}\}\$$
- Where $(A \rightarrow B) \vdash (A < B)$

•
$$\operatorname{wp}(C, \psi) = \coprod \{x \mid \{x\} \subset \{\psi\}\}\$$
- Where $(A \rightarrow B) \vdash (A < B)$

•
$$\operatorname{wp}(C, \psi) = \coprod \{x \mid \{x\} \in \{\psi\}\}\$$
- Where $(A \rightarrow B) \vdash (A < B)$

What do we really mean by captures all states?

```
• wp(C,\psi) = \coprod \{x \mid \{x\} \in \{\psi\}\}\

- Where (A \rightarrow B) \vdash (A<B)
```

Intuitively, B is at least as general as A (it holds in at least as many states)

- What do we really mean by captures all states?
- wp(C, ψ) = \coprod {x | {x} C { ψ }} - Where (A \rightarrow B) \vdash (A<B)
- Technically, these are Weakest Sufficient Preconditions

- What do we really mean by captures all states?
- $wp(C, \psi) = \coprod \{x \mid \{x\} C \{\psi\}\}$
 - Where $(A \rightarrow B) \vdash (A < B)$
- Technically, these are Weakest Sufficient Preconditions
- We may also consider/compute other relationships

- What do we really mean by captures all states?
- $wp(C, \psi) = \coprod \{x \mid \{x\} C \{\psi\}\}\$
 - Where $(A \rightarrow B) \vdash (A < B)$
- Technically, these are Weakest Sufficient Preconditions
- We may also consider/compute other relationships

- What do we really mean by captures all states?
- $wp(C, \psi) = \coprod \{x \mid \{x\} C \{\psi\}\}$
 - Where $(A \rightarrow B) \vdash (A < B)$
- Technically, these are Weakest Sufficient Preconditions
- We may also consider/compute other relationships
 - Weakest Sufficient Preconditions (wsp)

What states φ lead to ψ ?

"Given ψ, what must be true for it to hold?"

- What do we really mean by captures all states?
- $wp(C, \psi) = \coprod \{x \mid \{x\} C \{\psi\}\}\$
 - Where $(A \rightarrow B) \vdash (A < B)$
- Technically, these are Weakest Sufficient Preconditions
- We may also consider/compute other relationships
 - Weakest Sufficient Preconditions
 - Strongest Necessary Postconditions (snp)

What states ψ must φ lead to?

"Given φ, what is guaranteed when it holds?"

- What do we really mean by captures all states?
- $wp(C, \psi) = \coprod \{x \mid \{x\} C \{\psi\}\}\$
 - Where $(A \rightarrow B) \vdash (A < B)$
- Technically, these are Weakest Sufficient Preconditions
- We may also consider/compute other relationships
 - Weakest Sufficient Preconditions
 - Strongest Necessary Postconditions
 - Strongest Necessary Preconditions (snpre)

What states φ lead to ψ ?

"Given ψ , what if false at ϕ would exclude it?"

- What do we really mean by captures all states?
- $wp(C, \psi) = \coprod \{x \mid \{x\} C \{\psi\}\}$
 - Where $(A \rightarrow B) \vdash (A < B)$
- Technically, these are Weakest Sufficient Preconditions
- We may also consider/compute other relationships
 - Weakest Sufficient Preconditions
 - Strongest Necessary Postconditions
 - Strongest Necessary Preconditions (snpre)

What states φ lead to ψ ?

Then how does this differ from wsp?

- What do we really mean by captures all states?
- $wp(C, \psi) = \coprod \{x \mid \{x\} C \{\psi\}\}\$
 - Where $(A \rightarrow B) \vdash (A < B)$
- Technically, these are Weakest Sufficient Preconditions
- We may also consider/compute other relationships
 - Weakest Sufficient Preconditions
 - Strongest Necessary Postconditions
 - Strongest Necessary Preconditions

WSP ϕ @pre \rightarrow ψ @post ϕ @

SNPre ϕ @pre \leftarrow ψ @post

- What do we really mean by captures all states?
- $wp(C, \psi) = \coprod \{x \mid \{x\} C \{\psi\}\}$
 - Where $(A \rightarrow B) \vdash (A < B)$
- Technically, these are Weakest Sufficient Preconditions
- We may also consider/compute other relationships
 - Weakest Sufficient Preconditions
 - Strongest Necessary Postconditions
 - Strongest Necessary Preconditions

WSP SNPre

Since solving them is technically impossible, these differ in practice!

- What do we really mean by captures all states?
- $wp(C, \psi) = \coprod \{x \mid \{x\} C \{\psi\}\}$
 - Where $(A \rightarrow B) \vdash (A < B)$
- Technically, these are **Weakest Sufficient Preconditions**
- We may also consider/compute other relationships
 - Weakest Sufficient Preconditions
 - Strongest Necessary Postconditions
 - Strongest Necessary Preconditions

WSP SNPre

Since solving them is technically impossible, these differ in practice!

- What do we really mean by captures all states?
- $wp(C, \psi) = \coprod \{x \mid \{x\} C \{\psi\}\}\$
 - Where $(A \rightarrow B) \vdash (A < B)$
- Technically, these are Weakest Sufficient Preconditions
- We may also consider/compute other relationships
 - Weakest Sufficient Preconditions
 - Strongest Necessary Postconditions
 - Strongest Necessary Preconditions

In practice, SNPre captures *precondition assertions* well [Cousot 2013]

- What do we really mean by captures all states?
- $wp(C, \psi) = \coprod \{x \mid \{x\} C \{\psi\}\}\$
 - Where $(A \rightarrow B) \vdash (A < B)$
- Technically, these are **Weakest Sufficient Preconditions**
- We may also consider/compute other relationships
 - Weakest Sufficient Preconditions
 - Strongest Necessary Postconditions
 - Strongest Necessary Preconditions
 - Weakest Liberal Preconditions

What states φ lead to ψ or do not terminate?

$$wp(x \leftarrow E, \psi) = [E/x]\psi$$

```
\mathbf{wp}(\mathbf{x} \leftarrow \mathbf{E}, \mathbf{\psi}) = [\mathbf{E}/\mathbf{x}]\mathbf{\psi} \qquad \{ ???? \}
\mathbf{x} \leftarrow \mathbf{a} + \mathbf{b}
\{\mathbf{x} < \mathbf{5}\}
```

$$wp(x \leftarrow E, \psi) = [E/x]\psi \qquad \{a + b < 5\}$$

$$x \leftarrow a + b$$

$$\{x < 5\}$$

```
wp(x \leftarrow E, \psi) = [E/x]\psi
wp(S; T, \psi) = wp(S, wp(T, \psi))
```

```
wp(x \leftarrow E, \psi) = [E/x]\psi
wp(S; T, \psi) = wp(S, wp(T, \psi))
               { ??? } b ← 7;
                x \leftarrow a + b
               \{x<5\}
```

```
wp(x \leftarrow E, \psi) = [E/x]\psi
wp(S; T, \psi) = wp(S, wp(T, \psi))
              { ??? } b ← 7;
              {a + b < 5}
               x \leftarrow a + b
              \{x<5\}
```

```
wp(x \leftarrow E, \psi) = [E/x]\psi
wp(S; T, \psi) = wp(S, wp(T, \psi))
              \{a + 7 < 5\}
               b ← 7;
              {a + b < 5}
               x \leftarrow a + b
              \{x<5\}
```

```
\begin{split} wp(x \leftarrow E, \psi) &= [E/x] \psi \\ wp(S; T, \psi) &= wp(S, wp(T, \psi)) \\ wp(\textbf{if } B \textbf{ then } S \textbf{ else } T, \psi) \\ &= B \rightarrow wp(S, \psi) \ \land \neg B \rightarrow wp(T, \psi) \end{split}
```

```
\begin{split} wp(x \leftarrow E, \psi) &= [E/x] \psi \\ wp(S; T, \psi) &= wp(S, wp(T, \psi)) \\ wp(if B then S else T, \psi) \\ &= B \rightarrow wp(S, \psi) \land \neg B \rightarrow wp(T, \psi) \end{split}
```

```
\begin{split} wp(x \leftarrow E, \psi) &= [E/x] \psi \\ wp(S; T, \psi) &= wp(S, wp(T, \psi)) \\ wp(\textbf{if } B \textbf{ then } S \textbf{ else } T, \psi) \\ &= B \rightarrow wp(S, \psi) \ \land \ \neg B \rightarrow wp(T, \psi) \end{split}
```

```
if c then
   d = y + 2
else
   d = y + 5
x/d
```

```
wp(x \leftarrow E, \psi) = [E/x]\psi
wp(S; T, \psi) = wp(S, wp(T, \psi))
wp(if B then S else T, \psi)
          = B \rightarrow wp(S, \psi) \wedge \neg B \rightarrow wp(T, \psi)
      if c then
d = y + 2
else
d = y + 5
x/d
\{???\}
```

```
wp(x \leftarrow E, \psi) = [E/x]\psi
wp(S; T, \psi) = wp(S, wp(T, \psi))
wp(if B then S else T, \psi)
           = B \rightarrow wp(S, \psi) \wedge \neg B \rightarrow wp(T, \psi)
       if c then

d = y + 2

else

d = y + 5

(x/d) \{y+2 \neq 0\}

\{y+5 \neq 0\}

\{d \neq 0\}
```

```
wp(x \leftarrow E, \psi) = [E/x]\psi
wp(S; T, \psi) = wp(S, wp(T, \psi))
wp(if B then S else T, \psi)
                       = B \rightarrow wp(S, \psi) \wedge \neg B \rightarrow wp(T, \psi)
           if c then

d = y + 2

else

d = y + 5

x/d
 \begin{cases} c \rightarrow y+2 \neq 0 \land \neg c \rightarrow y+5 \neq 0 \\ y+2 \neq 0 \end{cases}
 \begin{cases} y+2 \neq 0 \end{cases}
```

- Careful points
 - Redefinition of variables

```
Pre: {a < 5, c < 2}
b = a + 2
a = 3*c
```

Post: {??}

- Careful points
 - Redefinition of variables

Post: {??}

It can be necessary to rename variables that are redefined.

- Careful points
 - Redefinition of variables

Post: {??}

It can be necessary to rename variables that are redefined.

- Careful points
 - Redefinition of variables
 - Pointers

```
Pre: {??}

*a = *a + 5

Post: {*a + *b < 10}
```

- Careful points
 - Redefinition of variables
 - Pointers

```
Pre: {??}

*a = *a + 5

Post: {*a + *b < 10}
```

Efficiently modeling memory is challenging!

Newer logics target this directly.

(points-to analysis allows for weak and strong updates)

- Careful points
 - Redefinition of variables
 - Pointers
 - Loops

- Careful points
 - Redefinition of variables
 - Pointers
 - Loops

Loops run head first into undecidability! They require deriving an *inductive invariant*.

- Careful points
 - Redefinition of variables
 - Pointers
 - Loops

```
\{\phi\} \subset \{\psi\} while B do S done
```

- Careful points
 - Redefinition of variables
 - Pointers
 - Loops

$$\{\phi\} \subset \{\psi\}$$
 while B do S done

Inv
$$\wedge \neg B \rightarrow \psi$$
 exit

- Careful points
 - Redefinition of variables
 - Pointers
 - Loops

```
\{\phi\} \subset \{\psi\} while B do S done
```

```
\{Inv \land \neg B \rightarrow \psi\} exit \{Inv \land B\} S \{Inv\} continue
```

- Careful points
 - Redefinition of variables
 - Pointers
 - Loops

```
\{\phi\} \subset \{\psi\} while B do S done
```

```
  \{ \begin{array}{cccc} \{ Inv \land \neg B \rightarrow \psi \} & \text{exit} \\ \{ Inv \land B \} & S & \{ Inv \} & \text{continue} \\ \{ \phi \rightarrow Inv \} & \text{enter} \\  \end{array}
```

- Careful points
 - Redefinition of va
 - Pointers
 - Loops

Automatically inferring such invariants is used for verifying safe:

avionics machine learning

• • •

$$\{\phi\}C\{\psi\}$$

while B do S done

```
  \{ Inv \land \neg B \rightarrow \psi \} \quad \text{exit}    \{ Inv \land B \} \quad \mathsf{S} \quad \{ Inv \} \quad \text{continue}    \{ \phi \rightarrow Inv \} \quad \text{enter}
```

• Linear logic allows facts to be used exactly once <> or arbitrarily many times [].

- Linear logic allows facts to be used exactly once <> or arbitrarily many times [].
- Separation logic (informally) distinguishes separate facts (counting), allowing them to be used separately

- Linear logic allows facts to be used exactly once <> or arbitrarily many times [].
- Separation logic (informally) distinguishes separate facts (counting), allowing them to be used separately
 - This helps to solve reasoning about pointers as we saw earlier

- Linear logic allows facts to be used exactly once <> or arbitrarily many times [].
- Separation logic (informally) distinguishes separate facts (counting), allowing them to be used separately
- Hoare logic is extended with a separating conjunction *

- Linear logic allows facts to be used exactly once <> or arbitrarily many times [].
- Separation logic (informally) distinguishes separate facts (counting), allowing them to be used separately
- Hoare logic is extended with a separating conjunction *

$$\{x \mapsto y * y \mapsto x\} x = z \{x \mapsto z * y \mapsto x\}$$

Facts separated by * do not "mix" (overlap)

- Linear logic allows facts to be used exactly once <> or arbitrarily many times [].
- Separation logic (informally) distinguishes separate facts (counting), allowing them to be used separately
- Hoare logic is extended with a separating conjunction *

$$\{x \mapsto y * y \mapsto x\} x = z \{x \mapsto z * y \mapsto x\}$$

Suppose we used \wedge instead, what problem exists?

- Linear logic allows facts to be used exactly once <> or arbitrarily many times [].
- Separation logic (informally) distinguishes separate facts (counting), allowing them to be used separately
- Hoare logic is extended with a separating conjunction *

$$\{x \mapsto y * y \mapsto x\} x = z\{x \mapsto z * y \mapsto x\}$$

- Separation logic enables efficient compositional reasoning
 - It is the backbone of Facebook's Infer engine!
 - It combines Hoare logic with a substructural logic

• The *frame rule* enables reasoning about the logical footprint of a command

 The frame rule enables reasoning about the logical footprint of a command

Part of the power is that frames can be inferred via bi-abduction

Solving Problems Using Logic

Solving problems using logic

• We will look at a few ways logic can attack real problems

Solving problems using logic

- We will look at a few ways logic can attack real problems
- The exact techniques may have flaws,
 but how they attack problems with logic is interesting

```
foo(a,b,c) {
  if (a != null) {
    b = c;
    t = new...;
    c.f = t;
  d = a;
  if (d != null) {
    b.f.g = 10;
```

```
foo(a,b,c) {
  if (a != null) {
    b = c;
    t = new...;
    c.f = t;
  d = a;
  if (d != null) {
    b.f.g = 10;
```

Can accessing the field g cause a null pointer exception?

```
foo(a,b,c) {
  if (a != null) {
    b = c;
    t = new...;
    c.f = t;
  if (d != null) { {b.f=null}
    b.f.g = 10;
```

```
foo(a,b,c) {
  if (a != null) {
    b = c;
    t = new...;
    c.f = t;
                     {b.f=null ∧ d≠null}
  if (d != null) { {b.f=null}
    b.f.g = 10;
```

```
foo(a,b,c) {
  if (a != null) {
    b = c;
    t = new...;
    c.f = t;
                      {b.f=null ∧ a≠null}
                      {b.f=null ∧ d≠null}
  if (d != null) {
                      {b.f=null}
    b.f.g = 10;
```

```
foo(a,b,c) {
   if (a != null) {
      b = c;
      t = new...;
                            \{(b\neq c) \land b.f=null \land a\neq null\} \lor (b=c) \land t=null \land a\neq null\}
      c.f = t;
                            {b.f=null ∧ a≠null}
                           {b.f=null ∧ d≠null}
   if (d != null) {
                            {b.f=null}
     b.f.g = 10;
```

```
foo(a,b,c) {
   if (a != null) {
                           {b≠c ∧ b.f=null ∧ a≠null}
     t = new...;
                            \{(b\neq c \land b.f=null \land a\neq null) \lor (b=c \land t=null \land a\neq null)\}
      c.f = t:
                           {b.f=null ∧ a≠null}
                           {b.f=null ∧ d≠null}
   if (d != null) {
                            {b.f=null}
     b.f.g = 10;
```

```
foo(a,b,c) {
   if (a != null) {
                            {b≠c ∧ b.f=null ∧ a≠null}
      t = new...;
                            \{(b\neq c \land b.f=null \land a\neq null) \lor (b=c \land t=null \land a\neq null)\}
      c.f = t;
                            {b.f=null ∧ a≠null}
                           {b.f=null ∧ d≠null}
   if (d != null) {
                            {b.f=null}
     b.f.g = 10;
```

```
foo(a,b,c) {
                                \{(a\neq null \rightarrow \#f) \lor (a=null \rightarrow b.f=null \land a\neq null)\}
   if (a != null)
                                 {#f}
                                \{b\neq c \land b.f=null \land a\neq null\}
       t = new...;
                                {(b\neqc \land b.f=null \land a\neqnull) v (b=c\landt=null \land a\neqnull)}
       c.f = t:
                                {b.f=null ∧ a≠null}
                                {b.f=null ∧ d≠null}
   if (d != null) {
                                 {b.f=null}
       b.f.g = 10;
```

```
Safe!
foo(a,b,c) {
                               \{(a\neq pull \rightarrow \#f) \lor (a=null \rightarrow b.f-null \land a\neq null)\} = \#f
   if (a != null) {
      b = c;
                                \{b\neq c \land b.f=null \land a\neq null\}
       t = new...;
                                {(b\neqc \land b.f=null \land a\neqnull) v (b=c\landt=null \land a\neqnull)}
       c.f = t:
                                {b.f=null ∧ a≠null}
                               {b.f=null ∧ d≠null}
   if (d != null) {
                                {b.f=null}
      b.f.g = 10;
```

```
Safe!
foo(a,b,c) {
                               \{(a\neq pull \rightarrow \#f) \lor (a=null \rightarrow b.f-null \land a\neq null)\} = \#f
   if (a != null) {
       b = c;
                                \{b\neq c \land b.f=null \land a\neq null\}
       t = new...;
                                {(b\neqc \land b.f=null \land a\neqnull) v (b=c\landt=null \land a\neqnull)}
       c.f = t;
                                {b.f=null ∧ a≠null}
                                {b.f=null ∧ d≠null}
   if (d != null) {
                                {b.f=null}
      b.f.g = 10;
```

[Margoor & Komondoor, 2015]

Note: this can be automated within a tool!

[Jose & Majumdar, 2011]

```
int arr[3];
if (index != 1) {
  index = 2;
} else {
  index = index + 2;
i = index;
print(arr[i]);
```

[Jose & Majumdar, 2011]

```
int arr[3];
if (index != 1) {
  index = 2;
} else {
  index = index + 2;
i = index;
print(arr[i]);
```

 $assert(0 \le i < 3)$ should hold

[Jose & Majumdar, 2011]

```
int arr[3];
if (index != 1) {
  index = 2;
} else {
  index = index + 2;
i = index;
print(arr[i]);
```

assert(0 ≤ i < 3) should hold

We will generate constraints in the forward direction

[Jose & Majumdar, 2011]

```
int arr[3];
if (index != 1) {
  index = 2;
} else {
  index = index + 2;
i = index;
print(arr[i]);
```

assert(0 ≤ i < 3) should hold

```
index_1 = 1
```

```
\land (0 \le i < 3)
```

We will generate constraints in the forward direction

[Jose & Majumdar, 2011]

```
int arr[3];
if (index != 1) {
  index = 2;
} else {
  index = index + 2;
i = index;
print(arr[i]);
```

assert(0 ≤ i < 3) should hold

```
index_1 = 1
\land guard_1 = (index_1 \neq 1)
\land (0 \leq i < 3)
```

We will generate constraints in the forward direction

[Jose & Majumdar, 2011]

```
int arr[3];
if (index != 1) {
  index = 2;
} else {
  index = index + 2;
i = index;
print(arr[i]);
```

assert(0 ≤ i < 3) should hold

```
index_1 = 1
\land guard<sub>1</sub> = (index<sub>1</sub> \ne 1)
\land index, = 2
\land (0 \le i < 3)
```

[Jose & Majumdar, 2011]

```
int arr[3];
if (index != 1) {
  index = 2;
} else {
  index = index + 2;
i = index;
print(arr[i]);
```

assert(0 ≤ i < 3) should hold

```
index_1 = 1
\land guard<sub>1</sub> = (index<sub>1</sub> \neq 1)
\land index<sub>2</sub> = 2
\land index<sub>3</sub> = (index<sub>1</sub> + 2)
\land (0 \le i < 3)
```

[Jose & Majumdar, 2011]

```
int arr[3];
if (index != 1) {
  index = 2;
} else {
 index = index + 2
i = index;
print(arr[i]);
```

assert($0 \le i < 3$) should hold

```
index<sub>1</sub> = 1

\land guard<sub>1</sub> = (index<sub>1</sub> \neq 1)

\land index<sub>2</sub> = 2

\land index<sub>3</sub> = (index<sub>1</sub> + 2)

\land (guard<sub>1</sub> \rightarrow i=index<sub>2</sub>)

\land (\negguard<sub>1</sub> \rightarrow i=index<sub>3</sub>)

\land (0 \leq i \leq 3)
```

[Jose & Majumdar, 2011]

```
int arr[3];
if (index != 1) {
  index = 2;
} else {
  index = index + 2;
i = index;
print(arr[i]);
```

assert($0 \le i < 3$) should hold

```
index<sub>1</sub> = 1

\land guard<sub>1</sub> = (index<sub>1</sub> \neq 1)

\land index<sub>2</sub> = 2

\land index<sub>3</sub> = (index<sub>1</sub> + 2)

\land (guard<sub>1</sub> \rightarrow i=index<sub>2</sub>)

\land (\negguard<sub>1</sub> \rightarrow i=index<sub>3</sub>)

\land (0 \leq i \leq 3)
```

```
[Jose & Majumdar, 2011]
int arr[3];
if (index != 1) {
  index = 2;
} else {
index = index + 2;
print(arr[i]);
```

assert(0 ≤ i < 3) *should* hold

```
index_1 = 1
\land guard<sub>1</sub> = (index<sub>1</sub> \neq 1)
\land index, = 2
\land index<sub>3</sub> = (index<sub>1</sub> + 2)
\land (guard<sub>1</sub> \rightarrow i=index<sub>2</sub>)
\land (¬guard<sub>1</sub> \rightarrow i=index<sub>3</sub>)
\land (0 \le i < 3)
```

```
[Jose & Majumdar, 2011]
int arr[3];
if (index != 1) {
  index = 2;
} else {
  index = index + 2;
  = index;
print(arr[i]);
```

assert(0 ≤ i < 3) should hold

```
index_1 = 1
\land guard, = (index, \ne 1)
\land index<sub>2</sub> = 2
\land index<sub>3</sub> = (index<sub>1</sub> + 2)
\land (guard<sub>1</sub> \rightarrow i=index<sub>2</sub>)
\land (¬guard<sub>1</sub> \rightarrow i=index<sub>3</sub>)
\land (0 \le i < 3)
                                      This is always false,
                                      but we can use that!
```

[Jose & Majumdar, 2011]

```
int arr[3];
if (index != 1) {
 index = 2;
  index = index + 2;
i = index;
print(arr[i]);
```

assert(0 ≤ i < 3) should hold

```
index_1 = 1

\land guard_1 = (index_1 \neq 1)

\land index_2 = 2

\land index_3 = (index_1 + 2)

\land (guard_1 \rightarrow i=index_2)

\land (\neg guard_1 \rightarrow i=index_3)

\land (0 \leq i < 3)
```

[Jose & Majumdar, 2011]

These constraints define our goal, so they are essential

```
if (index != 1) {
  index = 2;
} else {
  index = index + 2;
}
i = index;
print(arr[i]);
```

assert(0 ≤ i < 3) should hold

```
index_1 = 1
                                        These constraints define our goal,
^ guard₁ = (index₁ ≠
                                        so they are essential
\land index, = 2
                                                     if (index != 1) {
\land index<sub>3</sub> = (index<sub>1</sub> + 2
                                        Some of these constraints
\land (guard<sub>1</sub> \rightarrow i=index<sub>2</sub>)
                                        conflict with our goal
                                                        index = index + 2;
^ (¬guard₁ → i=index⁄₃
\land (0 \le i < 3)
                                                     i = index;
                                                     print(arr[i]);
```

assert(0 ≤ i < 3) should hold

```
index<sub>1</sub> = 1

∧ guard<sub>1</sub> = (index<sub>1</sub> ≠ 1)

∧ index<sub>2</sub> = 2

∧ index<sub>3</sub> = (index<sub>1</sub> + 2)

∧ (guard<sub>1</sub> → i=index<sub>2</sub>)

∧ (¬guard<sub>1</sub> → i=index<sub>3</sub>)

∧ (0 ≤ i < 3)
```

[Jose & Majumdar, 2011]

if (index != 1) {

These constraints define our goal, so they are essential

Some of these constraints conflict with our goal

Minimum unsat cores & partial MAX-SAT can discover the conflicts

assert(0 ≤ i < 3) should hold

```
index<sub>1</sub> = 1

∧ guard<sub>1</sub> = (index<sub>1</sub> ≠ 1)

∧ index<sub>2</sub> = 2

∧ index<sub>3</sub> = (index<sub>1</sub> + 2)

∧ (guard<sub>1</sub> → i=index<sub>2</sub>)

∧ (¬guard<sub>1</sub> → i=index<sub>3</sub>)

∧ (0 ≤ i < 3)
```

[Jose & Majumdar, 2011]

if (index != 1) {

These constraints define our goal, so they are essential

Some of these constraints conflict with our goal

Minimum unsat cores & partial MAX-SAT can discover the conflicts

assert(0 ≤ i < 3) should hold

```
index<sub>1</sub> = 1

∧ guard<sub>1</sub> = (index<sub>1</sub> ≠ 1)

∧ index<sub>2</sub> = 2

∧ index<sub>3</sub> = (index<sub>1</sub> + 2)

∧ (guard<sub>1</sub> → i=index<sub>2</sub>)

∧ (¬guard<sub>1</sub> → i=index<sub>3</sub>)

∧ (0 ≤ i < 3)
```

[Jose & Majumdar, 2011]

if (index != 1) {

These constraints define our goal, so they are essential

Some of these constraints conflict with our goal

Minimum unsat cores & partial MAX-SAT can discover the conflicts

assert(0 ≤ i < 3) should hold

When the starting index is 1, i is out of bounds

Must SAT

```
index<sub>1</sub> = 1

∧ guard<sub>1</sub> = (index<sub>1</sub> ≠ 1)

∧ index<sub>2</sub> = 2

∧ index<sub>3</sub> = (index<sub>1</sub> + 2)

∧ (guard<sub>1</sub> → i=index<sub>2</sub>)

∧ (¬guard<sub>1</sub> → i=index<sub>3</sub>)

∧ (0 ≤ i < 3)
```

[Jose & Majumdar, 2011]

if (index != 1) {

These constraints define our goal, so they are essential

Some of these constraints conflict with our goal

Minimum unsat cores & partial MAX-SAT can discover the conflicts

assert(0 ≤ i < 3) should hold

Must SAT Max # satisfiable

```
index₁ = 1
                                    These constraints define our goal,
^ guard₁ = (index₁ ≠
                                    so they are essential
  index_{3} = 2
                                                if (index != 1) {
\land index<sub>3</sub> = (index<sub>4</sub> + 2)
                                    Some of these constraints
 (guard₁ → i=index₃)
                                    conflict with our goal
                                                   index = index + 2;
∧ (¬guard₁ -
                                 Minimum unsat cores & partial MAX-SAT
 (0 \le i < 3)
                                         can discover the conflicts
                            Could not SAT;
                            Blame for inconsistency t(0 \le i < 3) should hold
                                                When the starting index is 1,
```

i is out of bounds

Further notes

• We will explore this further within Symbolic Execution

Further notes

- We will explore this further within Symbolic Execution
- Recognizing invariants & likely invariants can tackle many problems

Further notes

- We will explore this further within Symbolic Execution
- Recognizing invariants & likely invariants can tackle many problems
- Interpolants can help synthesize information as if "out of thin air"

Recap

• Formalism is a tool that can simplify reasoning about tasks

Recap

- Formalism is a tool that can simplify reasoning about tasks
- Many solutions involve a careful combination of
 - order theory (for comparison)
 - formal grammars (for structure)
 - formal logic (for inference)