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What is a program?

● A program communicates a set of instructions for performing as task
– Do you always communicate in the same way?
– Do you always have the same concerns for different ways of 

communicating?

● Programs communicate to different actors
– Team mates
– Compilers
– Government entities

● Different programs have different requirements
– Performance over all
– Security!

● We cannot reason about programs in only one way
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Program Representation

● Before we can reason about programs, we must have a vocabulary 
and a model to analyze

● Difficult models:
– Compiled binaries

● Difficult to even separate code from data
● Often used in reverse engineering or security tasks

1001101
0101011
1101011
0001110

Why might binaries be
good for security tasks?

frob.exe
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Program Representation

● Before we can reason about programs, we must have a vocabulary 
and a model to analyze

● Difficult models:
– Compiled binaries
– Source code

● Very language specific
● Relationships can be hard to extract

Foo.c
Bar.c
Baz.c



16

Program Representation

● Before we can reason about programs, we must have a vocabulary 
and a model to analyze

● Difficult models:
– Compiled binaries
– Source code

● Very language specific
● Relationships can be hard to extract
● Often used when relating to comments or specs

Foo.c
Bar.c
Baz.c
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Program Representation

● Before we can reason about programs, we must have a vocabulary 
and a model to analyze

● Difficult models:
– Compiled binaries
– Source code

● A good representation should make explicit the relationships you 
want to analyze
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Program Representation

Core graph representations for analysis:

1) Abstract Syntax Trees

2) Control Flow Graphs

3) Program Dependence Graphs

4) Call Graphs

5) Points-to Graphs

6) Emerging Representations for ML
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1) Abstract Syntax Trees

● Lifts the source into a canonical tree form
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for

range =

[] *
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1) Abstract Syntax Trees

● Lifts the source into a canonical tree form
– Internal nodes are operators, statements, etc.
– Leaves are values, variables, operands

for

i range =

5 10 [] *

a i i 5

for i in range(5,10):
    a[i] = i * 5



23

1) Abstract Syntax Trees
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1) Abstract Syntax Trees

● Lifts the source into a canonical tree form

● Used for syntax analysis & transformation:
– Simple bug patterns
– Style checking

for i in range(5,10):
    a[i] = i * 5

for

i range =

5 10 [] *

a i i 5
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for
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1) Abstract Syntax Trees

● Lifts the source into a canonical tree form

● Used for syntax analysis & transformation:
– Simple bug patterns
– Style checking
– Refactoring
– Training prediction/completion models

for i in range(5,10):
    a[i] = i * 5

for

i range =

5 10 [] *

a i i 5

But:
1) The same program may still be spelled many ways
2) Some information is implicit rather than explicit
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2) Control Flow Graphs

● Express the possible decisions and possible paths through a program

cond = input()
if cond:
  a = foo()
else:
  a = bar()
print(a)
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cond = input()
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else:
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print(a)

cond = …
if cond:

a = foo() a = bar()

print(a)
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2) Control Flow Graphs

● Express the possible decisions and possible paths through a program
– Basic Blocks (Nodes) are straight line code

cond = input()
if cond:
  a = foo()
else:
  a = bar()
print(a)

a = foo() a = bar()

print(a)

cond = …
if cond:
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2) Control Flow Graphs

● Express the possible decisions and possible paths through a program
– Basic Blocks (Nodes) are straight line code
– Edges show how decisions can lead to different basic blocks

cond = input()
if cond:
  a = foo()
else:
  a = bar()
print(a)

cond = …
if cond:

a = foo() a = bar()

print(a)
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2) Control Flow Graphs

● Express the possible decisions and possible paths through a program
– Basic Blocks (Nodes) are straight line code
– Edges show how decisions can lead to different basic blocks
– Paths through the graph are potential paths through the program

cond = input()
if cond:
  a = foo()
else:
  a = bar()
print(a)

cond = …
if cond:

a = foo() a = bar()

print(a)
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2) Control Flow Graphs (CFGs)

● Language specific features are often abstracted away
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2) Control Flow Graphs (CFGs)

● Language specific features are often abstracted away

sum = 0
i = 1
while i < N:
  i = i + 1
  sum = sum + i
print(sum)

sum = 0
i = 1

if i < N

i = i + 1
sum = sum + i

print(sum)

The 'while' is gone
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2) Control Flow Graphs (CFGs)

● Language specific features are often abstracted away

sum = 0
i = 1
while i < N:
  i = i + 1
  sum = sum + i
print(sum)

sum = 0
i = 1

print(sum)

if i < N

i = i + 1
sum = sum + i

Loop
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2) Control Flow Graphs (CFGs)

● Language specific features are often abstracted away

sum = 0
i = 1
while i < N:
  i = i + 1
  sum = sum + i
print(sum)

sum = 0
i = 1

print(sum)

if i < N

i = i + 1
sum = sum + i

Loop

Loop
Header



41

2) Control Flow Graphs (CFGs)

● Language specific features are often abstracted away

sum = 0
i = 1
while i < N:
  i = i + 1
  sum = sum + i
print(sum)

sum = 0
i = 1

print(sum)

if i < N

i = i + 1
sum = sum + i

Loop

Loop
Header

Loop
Latch
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2) Control Flow Graphs (CFGs)

● Language specific features are often abstracted away

sum = 0
i = 1
while i < N:
  i = i + 1
  sum = sum + i
print(sum)

print(sum)

i = i + 1
sum = sum + i

sum = 0
i = 1

if i < NWhy is the 'if' in a separate block?
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2) Control Flow Graphs (CFGs)

● Language specific features are often abstracted away

sum = 0
i = 1
while i < N:
  i = i + 1
  sum = sum + i
print(sum)

print(sum)

i = i + 1
sum = sum + i

sum = 0
i = 1

if i < N
What would the CFG of the
equivalent 'for' look like?
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2) Control Flow Graphs (CFGs)

● Language specific features are often abstracted away

sum = 0
i = 1
while i < N:
  i = i + 1
  sum = sum + i
print(sum)

print(sum)

i = i + 1
sum = sum + i

sum = 0
i = 1

if i < N

What information is explicit?
What information is still implicit?
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3)Program Dependence Graph (PDG)

● A Program Dependence Graph captures how instructions can 
influence each other
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3)Program Dependence Graph (PDG)

● A Program Dependence Graph captures how instructions can 
influence each other

● Instruction X depends on Y if Y can influence X
– Nodes are instructions
– An edge Y→X shows that Y influences X
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3)Program Dependence Graph (PDG)

● A Program Dependence Graph captures how instructions can 
influence each other

● Instruction X depends on Y if Y can influence X

● 2 main types of influence:
– Data dependence
– Control dependence
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Data Dependence

X data depends on Y if
– There exists a path from Y to X in the CFG

z = 5

f(z)

Y

X
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Data Dependence

X data depends on Y if
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Y
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Data Dependence

X data depends on Y if
– There exists a path from Y to X in the CFG
– A variable/value definition at Y is used at X

1)a = …
2)b = …

…

3)a = …
4)c = a

a = …
b = …

… = b + a
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Data Dependence

X data depends on Y if
– There exists a path from Y to X in the CFG
– A variable/value definition at Y is used at X

1)a = …
2)b = …

…

3)a = …
4)c = a

a = …
b = …

… = b + a

?
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Control Dependence

Preliminary: X dominates Y if
● every path from the entry node to Y passes X

– strict, normal, & immediate dominance
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Control Dependence

Preliminary: X dominates Y if
● every path from the entry node to Y passes X

– strict, normal, & immediate dominance

1)sum = 0
2)i = 1
3)while i < N:
4)  i = i + 1
5)  sum = sum + i
6)print(sum)

DOM(6)={1,2,3,6}   IDOM(6)=3

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)? ?
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Control Dependence

Preliminary: X dominates Y if
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– strict, normal, & immediate dominance
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Control Dependence

Preliminary: X dominates Y if
● every path from the entry node to Y passes X

– strict, normal, & immediate dominance

1)sum = 0
2)i = 1
3)while i < N:
4)  i = i + 1
5)  sum = sum + i
6)print(sum)
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Control Dependence

1)sum = 0
2)i = 1
3)while i < N:
4)  i = i + 1
5)  sum = sum + i
6)print(sum)

DOM(6)={1,2,3,6}   IDOM(6)=3

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

What does this mean intuitively?

Preliminary: X dominates Y if
● every path from the entry node to Y passes X

– strict, normal, & immediate dominance
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Control Dependence

Preliminary: X post dominates Y if
● every path from the Y to exit passes X

– strict, normal, & immediate dominance
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Control Dependence

Preliminary: X post dominates Y if
● every path from the Y to exit passes X

– strict, normal, & immediate dominance

PDOM(5)={3,5,6}   IPDOM(5)=3? ?

1)sum = 0
2)i = 1
3)while i < N:
4)  i = i + 1
5)  sum = sum + i
6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)



64

Control Dependence

Preliminary: X post dominates Y if
● every path from the Y to exit passes X

– strict, normal, & immediate dominance

PDOM(5)={3,5,6}   IPDOM(5)=3?

1)sum = 0
2)i = 1
3)while i < N:
4)  i = i + 1
5)  sum = sum + i
6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
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Control Dependence

Preliminary: X post dominates Y if
● every path from the Y to exit passes X

– strict, normal, & immediate dominance

PDOM(5)={3,5,6}   IPDOM(5)=3

1)sum = 0
2)i = 1
3)while i < N:
4)  i = i + 1
5)  sum = sum + i
6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
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Control Dependence

PDOM(5)={3,5,6}   IPDOM(5)=3

1)sum = 0
2)i = 1
3)while i < N:
4)  i = i + 1
5)  sum = sum + i
6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

Preliminary: X post dominates Y if
● every path from the Y to exit passes X

– strict, normal, & immediate dominance

What does this mean intuitively?
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Control Dependence (Finally)

Y is control dependent on X iff

● Definition 1:

● Definition 2:

X directly decides whether Y executes

● There exists a path from X to Y s.t. Y post 
dominates every node between X and Y.

● Y does not strictly post dominate X
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Control Dependence (Finally)

Y is control dependent on X iff

● Definition 1:

● Definition 2:

X directly decides whether Y executes

● There exists a path from X to Y s.t. Y post 
dominates every node between X and Y.

● Y does not strictly post dominate X

X

…

Y
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Control Dependence

● There exists a path from X to Y s.t. Y post 
dominates every node between X and Y.

● Y does not strictly post dominate X
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Control Dependence

● There exists a path from X to Y s.t. Y post 
dominates every node between X and Y.

● Y does not strictly post dominate X

1)sum = 0
2)i = 1
3)while i < N:
4)  i = i + 1
5)  sum = sum + i
6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)
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Control Dependence

● There exists a path from X to Y s.t. Y post 
dominates every node between X and Y.

● Y does not strictly post dominate X

1)sum = 0
2)i = 1
3)while i < N:
4)  i = i + 1
5)  sum = sum + i
6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

What is CD(5)? CD(3)
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Control Dependence

● There exists a path from X to Y s.t. Y post 
dominates every node between X and Y.

● Y does not strictly post dominate X

1)sum = 0
2)i = 1
3)while i < N:
4)  i = i + 1
5)  if 0 == i%2:
6)    continue
7)  sum = sum + i
8)print(sum)
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Control Dependence

● There exists a path from X to Y s.t. Y post 
dominates every node between X and Y.

● Y does not strictly post dominate X

1)sum = 0
2)i = 1
3)while i < N:
4)  i = i + 1
5)  if 0 == i%2:
6)    continue
7)  sum = sum + i
8)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)if 0 …

7)sum = sum + i

8)print(sum)
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Control Dependence

● There exists a path from X to Y s.t. Y post 
dominates every node between X and Y.

● Y does not strictly post dominate X

1)sum = 0
2)i = 1
3)while i < N:
4)  i = i + 1
5)  if 0 == i%2:
6)    continue
7)  sum = sum + i
8)print(sum)

What is CD(7)?

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)if 0 …

7)sum = sum + i

8)print(sum)
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Control Dependence

● There exists a path from X to Y s.t. Y post 
dominates every node between X and Y.

● Y does not strictly post dominate X

1)if X or Y:
2)  print(X)
3)print(Y)

What is CD(2)?
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Control Dependence

● There exists a path from X to Y s.t. Y post 
dominates every node between X and Y.

● Y does not strictly post dominate X

1)if X or Y:
2)  print(X)
3)print(Y)

What is CD(2)?

1A)if X:

1B)if Y: 2)print(X)

3)print(Y)
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3)Program Dependence Graph(PDG)

The PDG is the combination of
– The control dependence graph
– The data dependence graph
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3)Program Dependence Graph(PDG)

The PDG is the combination of
– The control dependence graph
– The data dependence graph

Recall: Edges identify potential influence

● Debugging: What may have caused a bug?

● Security: Can sensitive information leak?

● Testing: How can I reach a statement?

● ...
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3)Program Dependence Graph(PDG)

The PDG is the combination of
– The control dependence graph
– The data dependence graph

Recall: Edges identify potential influence

● Debugging: What may have caused a bug?

● Security: Can sensitive information leak?

● Testing: How can I reach a statement?

● ...

Can you see challenges that may arise
when using the PDG in practice?
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4) Call Graph (Multigraph)

● Captures the composition of a program
– Nodes are functions
– Edges show possible calls

foo()

bar() baz()

quux()bam()
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– Edges show possible calls
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foo calls bar & baz
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4) Call Graph (Multigraph)

● Captures the composition of a program
– Nodes are functions
– Edges show possible calls

foo()

bar() baz()

quux()bam()

foo calls bar & baz

bar calls bam
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4) Call Graph (Multigraph)

● Captures the composition of a program
– Nodes are functions
– Edges show possible calls

foo()

bar() baz()

quux()bam()

foo calls bar & baz

bar calls bam

What does this capture?
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4) Call Graph (Multigraph)

● Captures the composition of a program
– Nodes are functions
– Edges show possible calls

foo()

bar() baz()

quux()bam()

How should we handle
 function pointers?
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5) Points-to Graphs

Pointers / indirection create two  difficult problems:
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5) Points-to Graphs

Pointers / indirection create two  difficult problems:

● Aliasing
– Multiple variables may denote the same memory 

location

...
x y
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5) Points-to Graphs

Pointers / indirection create two  difficult problems:

● Aliasing
– Multiple variables may denote the same memory 

location

● Ambiguity
– One variable may potentially denote several different 

targets in memory.

............

x
?
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5) Points-to Graphs

Pointers / indirection create two  difficult problems:

● Aliasing
– Multiple variables may denote the same memory 

location

● Ambiguity
– One variable may potentially denote several different 

targets in memory.

x.lock()
…
y.unlock()
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5) Points-to Graphs

Pointers / indirection create two  difficult problems:

● Aliasing
– Multiple variables may denote the same memory 

location

● Ambiguity
– One variable may potentially denote several different 

targets in memory.

x.lock()
…
y.unlock()

x = password
…
broadcast(y)
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5) Points-to Graphs

Points-to graphs capture this points-to relation



96

5) Points-to Graphs

Points-to graphs capture this points-to relation
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5) Points-to Graphs

Points-to graphs capture this points-to relation
● The relation (p,x) where p MAY/MUST point to x

– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5)   q = p
6) r.f = t
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5) Points-to Graphs

Points-to graphs capture this points-to relation
● The relation (p,x) where p MAY/MUST point to x

– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5)   q = p
6) r.f = t

r
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5) Points-to Graphs

Points-to graphs capture this points-to relation
● The relation (p,x) where p MAY/MUST point to x
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● The relation (p,x) where p MAY/MUST point to x

– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5)   q = p
6) r.f = t

r

p f

tq
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Points-to graphs capture this points-to relation
● The relation (p,x) where p MAY/MUST point to x

– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5)   q = p
6) r.f = t

r
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Points-to graphs capture this points-to relation
● The relation (p,x) where p MAY/MUST point to x

– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5)   q = p
6) r.f = t

r

p f

tq

f

p.f.f MUST ALIAS t
    q MAY ALIAS   p
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Points-to graphs capture this points-to relation
● The relation (p,x) where p MAY/MUST point to x

– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5)   q = p
6) r.f = t

r

p f

tq

f

p.f.f MUST ALIAS t
    q MAY ALIAS   p
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● Machine learning is seen as a value driver for many tasks,
but using it effectively to reason about software is still challenging
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6) Emerging Representations for ML

● Machine learning is seen as a value driver for many tasks,
but using it effectively to reason about software is still challenging

● Trying simple models should always be considered first
e.g. simple feed forward networks can work better [Yedida 2021]

https://arxiv.org/pdf/2101.06319.pdf
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6) Emerging Representations for ML

● Machine learning is seen as a value driver for many tasks,
but using it effectively to reason about software is still challenging

● Trying simple models should always be considered first
– Bug fix & close time estimation [Yedida 2021]

– Project planning & analytics [Krishna 2020]

– Recognizing actionable compiler warnings [Yang 2020]

https://arxiv.org/pdf/2101.06319.pdf
https://arxiv.org/pdf/1708.05442.pdf
https://arxiv.org/pdf/2006.00444v1.pdf
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● Observe:
Many engineering tasks require discrete & symbolic reasoning.
– ML is classically better on non symbolic problems.
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6) Emerging Representations for ML

● Machine learning is seen as a value driver for many tasks,
but using it effectively to reason about software is still challenging

● Observe:
Many engineering tasks require discrete & symbolic reasoning.
ML is classically better on non symbolic problems.
– Bridging the gap is an area of open research
– Solutions that don’t require a priori implementation are desirable

● But different models & pipelines arise to aid in
reasoning about software

Seq2DRNN
Encoder-Decoders

[Alvarez-Melis 2017, Gu 2019]

https://openreview.net/forum?id=HkYhZDqxg
http://summit.sfu.ca/system/files/iritems1/19358/etd20354.pdf
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6) Emerging Representations for ML

● Machine learning is seen as a value driver for many tasks,
but using it effectively to reason about software is still challenging

● Observe:
Many engineering tasks require discrete & symbolic reasoning.
ML is classically better on non symbolic problems.
– Bridging the gap is an area of open research
– Solutions that don’t require a priori implementation are desirable

● But different models & pipelines arise to aid in
reasoning about software

Seq2DRNN
Encoder-Decoders

[Alvarez-Melis 2017, Gu 2019]

code2vec
[Alon 2018]

https://openreview.net/forum?id=HkYhZDqxg
http://summit.sfu.ca/system/files/iritems1/19358/etd20354.pdf
https://arxiv.org/abs/1803.09473
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6) Emerging Representations for ML

neurosymbolic models for synthesis
[Nye 2020]

https://arxiv.org/pdf/2003.05562.pdf
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6) Emerging Representations for ML

● Machine learning is seen as a value driver for many tasks,
but using it effectively to reason about software is still challenging

● Observe:
Many engineering tasks require discrete & symbolic reasoning.
ML is classically better on non symbolic problems.
– Bridging the gap is an area of open research
– Solutions that don’t require a priori implementation are desirable

● But different models & pipelines arise to aid in
reasoning about software

Seq2DRNN
Encoder-Decoders

[Alvarez-Melis 2017, Gu 2019]

code2vec
[Alon 2018]

Just as with other representations:
What do these make easy?
What remains challenging?

https://openreview.net/forum?id=HkYhZDqxg
http://summit.sfu.ca/system/files/iritems1/19358/etd20354.pdf
https://arxiv.org/abs/1803.09473
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6) Emerging Representations for ML

● Machine learning is seen as a value driver for many tasks,
but using it effectively to reason about software is still challenging

● Observe:
Many engineering tasks require discrete & symbolic reasoning.
ML is classically better on non symbolic problems.
– Bridging the gap is an area of open research
– Solutions that don’t require a priori implementation are desirable

● But different models & pipelines arise to aid in
reasoning about software

Seq2DRNN
Encoder-Decoders

[Alvarez-Melis 2017, Gu 2019]

code2vec
[Alon 2018]

Just as with other representations:
What do these make easy?
What remains challenging?

Finding ways to bridge ML and SE
remains an interesting & open challenge

https://openreview.net/forum?id=HkYhZDqxg
http://summit.sfu.ca/system/files/iritems1/19358/etd20354.pdf
https://arxiv.org/abs/1803.09473


Representing Program Executions
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Execution Representations

● Program representations are static
– All possible program behaviors at once
– Usually projected onto the CFG
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Execution Representations

● Program representations are static
– All possible program behaviors at once
– Usually projected onto the CFG

● Execution representations are dynamic
– Only the behavior of a single real execution
– Multiple instances of an instruction occur multiple times
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Control Flow Trace

11 21 31 41 51 32 42 52 33 61 
All Equivalent

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

6)print(sum)
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Control Flow Trace

11 21 31 41 51 32 42 52 33 61 

11 31 41 32 42 33 61 All Equivalent

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

6)print(sum)
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Control Flow Trace

11 21 31 41 51 32 42 52 33 61 

11 31 41 32 42 33 61 

TTF

All Equivalent

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

6)print(sum)
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Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1
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Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N
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Dynamic Dependence Graph
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Dynamic Dependence Graph
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Dynamic Dependence Graph
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Dynamic Dependence Graph
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Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

Notably a bit difficult for people
to wade through.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

6)print(sum)
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Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

Notably a bit difficult for people
to wade through.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

6)print(sum)
If only we could focus on the parts that interest us...
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Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

6)print(sum)

i

3)if i < N

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

4)i = i + 1
5)sum = sum + i

Slicing (static or dynamic) computes
a transitive closure of dependences
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Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

6)print(sum)

i

3)if i < N

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

4)i = i + 1
5)sum = sum + i

Slicing (static or dynamic) computes
a transitive closure of dependences Note: potential influences are missed!
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Dynamic Dependence Graphs

Capture a notion of observed influence
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Dynamic Dependence Graphs

Capture a notion of observed influence

● Debugging: What caused a bug?

● Security: How did sensitive information leak?

● Testing: What tests need to be run based on a change?

● ...

Prioritizing, pruning, & bundling information is often critical 
when applying slicing
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Summary

● Different tasks may benefit from representing programs in different 
ways

● Thinking of the right representation for the task you have is important
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