
What are programs?

CMPT 745
Software Engineering

Nick Sumner
wsumner@sfu.ca

What is a program?

● A program communicates a set of instructions for performing as task

What is a program?

● A program communicates a set of instructions for performing as task
– Do you always communicate in the same way?

What is a program?

● A program communicates a set of instructions for performing as task
– Do you always communicate in the same way?
– Do you always have the same concerns for different ways of

communicating?

What is a program?

● A program communicates a set of instructions for performing as task
– Do you always communicate in the same way?
– Do you always have the same concerns for different ways of

communicating?

● Programs communicate to different actors
– Team mates
– Compilers
– Government entities

What is a program?

● A program communicates a set of instructions for performing as task
– Do you always communicate in the same way?
– Do you always have the same concerns for different ways of

communicating?

● Programs communicate to different actors
– Team mates
– Compilers
– Government entities

● Different programs have different requirements
– Performance over all
– Security!

What is a program?

● A program communicates a set of instructions for performing as task
– Do you always communicate in the same way?
– Do you always have the same concerns for different ways of

communicating?

● Programs communicate to different actors
– Team mates
– Compilers
– Government entities

● Different programs have different requirements
– Performance over all
– Security!

● We cannot reason about programs in only one way

8

Program Representation

● Before we can reason about programs, we must have a vocabulary
and a model to analyze

9

Program Representation

● Before we can reason about programs, we must have a vocabulary
and a model to analyze

● Difficult models:
– Compiled binaries

1001101
0101011
1101011
0001110
frob.exe

10

Program Representation

● Before we can reason about programs, we must have a vocabulary
and a model to analyze

● Difficult models:
– Compiled binaries

● Difficult to even separate code from data

1001101
0101011
1101011
0001110
frob.exe

11

Program Representation

● Before we can reason about programs, we must have a vocabulary
and a model to analyze

● Difficult models:
– Compiled binaries

● Difficult to even separate code from data
● Often used in reverse engineering or security tasks

1001101
0101011
1101011
0001110
frob.exe

12

Program Representation

● Before we can reason about programs, we must have a vocabulary
and a model to analyze

● Difficult models:
– Compiled binaries

● Difficult to even separate code from data
● Often used in reverse engineering or security tasks

1001101
0101011
1101011
0001110

Why might binaries be
good for security tasks?

frob.exe

13

Program Representation

● Before we can reason about programs, we must have a vocabulary
and a model to analyze

● Difficult models:
– Compiled binaries
– Source code

Foo.c
Bar.c
Baz.c

14

Program Representation

● Before we can reason about programs, we must have a vocabulary
and a model to analyze

● Difficult models:
– Compiled binaries
– Source code

● Very language specific

Foo.c
Bar.c
Baz.c

15

Program Representation

● Before we can reason about programs, we must have a vocabulary
and a model to analyze

● Difficult models:
– Compiled binaries
– Source code

● Very language specific
● Relationships can be hard to extract

Foo.c
Bar.c
Baz.c

16

Program Representation

● Before we can reason about programs, we must have a vocabulary
and a model to analyze

● Difficult models:
– Compiled binaries
– Source code

● Very language specific
● Relationships can be hard to extract
● Often used when relating to comments or specs

Foo.c
Bar.c
Baz.c

17

Program Representation

● Before we can reason about programs, we must have a vocabulary
and a model to analyze

● Difficult models:
– Compiled binaries
– Source code

● A good representation should make explicit the relationships you
want to analyze

18

Program Representation

Core graph representations for analysis:

1) Abstract Syntax Trees

2) Control Flow Graphs

3) Program Dependence Graphs

4) Call Graphs

5) Points-to Graphs

6) Emerging Representations for ML

19

1) Abstract Syntax Trees

● Lifts the source into a canonical tree form

20

1) Abstract Syntax Trees

● Lifts the source into a canonical tree form

for i in range(5,10):
 a[i] = i * 5

21

1) Abstract Syntax Trees

● Lifts the source into a canonical tree form
– Internal nodes are operators, statements, etc.

for i in range(5,10):
 a[i] = i * 5

for

range =

[] *

22

1) Abstract Syntax Trees

● Lifts the source into a canonical tree form
– Internal nodes are operators, statements, etc.
– Leaves are values, variables, operands

for

i range =

5 10 [] *

a i i 5

for i in range(5,10):
 a[i] = i * 5

23

1) Abstract Syntax Trees

● Lifts the source into a canonical tree form

● Used for syntax analysis & transformation:

for i in range(5,10):
 a[i] = i * 5

for

i range =

5 10 [] *

a i i 5

24

1) Abstract Syntax Trees

● Lifts the source into a canonical tree form

● Used for syntax analysis & transformation:
– Simple bug patterns

for i in range(5,10):
 a[i] = i * 5

for

i range =

5 10 [] *

a i i 5

25

1) Abstract Syntax Trees

● Lifts the source into a canonical tree form

● Used for syntax analysis & transformation:
– Simple bug patterns
– Style checking

for i in range(5,10):
 a[i] = i * 5

for

i range =

5 10 [] *

a i i 5

26

1) Abstract Syntax Trees

● Lifts the source into a canonical tree form

● Used for syntax analysis & transformation:
– Simple bug patterns
– Style checking
– Refactoring

for i in range(5,10):
 a[i] = i * 5

for

i range =

5 10 [] *

a i i 5

27

1) Abstract Syntax Trees

● Lifts the source into a canonical tree form

● Used for syntax analysis & transformation:
– Simple bug patterns
– Style checking
– Refactoring
– Training prediction/completion models

for i in range(5,10):
 a[i] = i * 5

for

i range =

5 10 [] *

a i i 5

28

1) Abstract Syntax Trees

● Lifts the source into a canonical tree form

● Used for syntax analysis & transformation:
– Simple bug patterns
– Style checking
– Refactoring
– Training prediction/completion models

for i in range(5,10):
 a[i] = i * 5

for

i range =

5 10 [] *

a i i 5

But:
1) The same program may still be spelled many ways

29

1) Abstract Syntax Trees

● Lifts the source into a canonical tree form

● Used for syntax analysis & transformation:
– Simple bug patterns
– Style checking
– Refactoring
– Training prediction/completion models

for i in range(5,10):
 a[i] = i * 5

for

i range =

5 10 [] *

a i i 5

But:
1) The same program may still be spelled many ways
2) Some information is implicit rather than explicit

30

2) Control Flow Graphs

● Express the possible decisions and possible paths through a program

cond = input()
if cond:
 a = foo()
else:
 a = bar()
print(a)

31

2) Control Flow Graphs

● Express the possible decisions and possible paths through a program

cond = input()
if cond:
 a = foo()
else:
 a = bar()
print(a)

cond = …
if cond:

a = foo() a = bar()

print(a)

32

2) Control Flow Graphs

● Express the possible decisions and possible paths through a program
– Basic Blocks (Nodes) are straight line code

cond = input()
if cond:
 a = foo()
else:
 a = bar()
print(a)

a = foo() a = bar()

print(a)

cond = …
if cond:

33

2) Control Flow Graphs

● Express the possible decisions and possible paths through a program
– Basic Blocks (Nodes) are straight line code
– Edges show how decisions can lead to different basic blocks

cond = input()
if cond:
 a = foo()
else:
 a = bar()
print(a)

cond = …
if cond:

a = foo() a = bar()

print(a)

34

2) Control Flow Graphs

● Express the possible decisions and possible paths through a program
– Basic Blocks (Nodes) are straight line code
– Edges show how decisions can lead to different basic blocks
– Paths through the graph are potential paths through the program

cond = input()
if cond:
 a = foo()
else:
 a = bar()
print(a)

cond = …
if cond:

a = foo() a = bar()

print(a)

35

2) Control Flow Graphs (CFGs)

● Language specific features are often abstracted away

36

2) Control Flow Graphs (CFGs)

● Language specific features are often abstracted away

sum = 0
i = 1
while i < N:
 i = i + 1
 sum = sum + i
print(sum)

37

2) Control Flow Graphs (CFGs)

● Language specific features are often abstracted away

sum = 0
i = 1
while i < N:
 i = i + 1
 sum = sum + i
print(sum)

sum = 0
i = 1

if i < N

i = i + 1
sum = sum + i

print(sum)

38

2) Control Flow Graphs (CFGs)

● Language specific features are often abstracted away

sum = 0
i = 1
while i < N:
 i = i + 1
 sum = sum + i
print(sum)

sum = 0
i = 1

if i < N

i = i + 1
sum = sum + i

print(sum)

The 'while' is gone

39

2) Control Flow Graphs (CFGs)

● Language specific features are often abstracted away

sum = 0
i = 1
while i < N:
 i = i + 1
 sum = sum + i
print(sum)

sum = 0
i = 1

print(sum)

if i < N

i = i + 1
sum = sum + i

Loop

40

2) Control Flow Graphs (CFGs)

● Language specific features are often abstracted away

sum = 0
i = 1
while i < N:
 i = i + 1
 sum = sum + i
print(sum)

sum = 0
i = 1

print(sum)

if i < N

i = i + 1
sum = sum + i

Loop

Loop
Header

41

2) Control Flow Graphs (CFGs)

● Language specific features are often abstracted away

sum = 0
i = 1
while i < N:
 i = i + 1
 sum = sum + i
print(sum)

sum = 0
i = 1

print(sum)

if i < N

i = i + 1
sum = sum + i

Loop

Loop
Header

Loop
Latch

42

2) Control Flow Graphs (CFGs)

● Language specific features are often abstracted away

sum = 0
i = 1
while i < N:
 i = i + 1
 sum = sum + i
print(sum)

print(sum)

i = i + 1
sum = sum + i

sum = 0
i = 1

if i < NWhy is the 'if' in a separate block?

43

2) Control Flow Graphs (CFGs)

● Language specific features are often abstracted away

sum = 0
i = 1
while i < N:
 i = i + 1
 sum = sum + i
print(sum)

print(sum)

i = i + 1
sum = sum + i

sum = 0
i = 1

if i < N
What would the CFG of the
equivalent 'for' look like?

44

2) Control Flow Graphs (CFGs)

● Language specific features are often abstracted away

sum = 0
i = 1
while i < N:
 i = i + 1
 sum = sum + i
print(sum)

print(sum)

i = i + 1
sum = sum + i

sum = 0
i = 1

if i < N

What information is explicit?
What information is still implicit?

45

3)Program Dependence Graph (PDG)

● A Program Dependence Graph captures how instructions can
influence each other

46

3)Program Dependence Graph (PDG)

● A Program Dependence Graph captures how instructions can
influence each other

● Instruction X depends on Y if Y can influence X

47

3)Program Dependence Graph (PDG)

● A Program Dependence Graph captures how instructions can
influence each other

● Instruction X depends on Y if Y can influence X
– Nodes are instructions
– An edge Y→X shows that Y influences X

48

3)Program Dependence Graph (PDG)

● A Program Dependence Graph captures how instructions can
influence each other

● Instruction X depends on Y if Y can influence X

● 2 main types of influence:
– Data dependence
– Control dependence

49

Data Dependence

X data depends on Y if
– There exists a path from Y to X in the CFG

z = 5

f(z)

Y

X

50

Data Dependence

X data depends on Y if
– There exists a path from Y to X in the CFG
– A variable/value definition at Y is used at X

z = 5

f(z)

Y

X

51

Data Dependence

X data depends on Y if
– There exists a path from Y to X in the CFG
– A variable/value definition at Y is used at X

1)a = …
2)b = …

…

3)a = …
4)c = a

a = …
b = …

… = b + a

52

Data Dependence

X data depends on Y if
– There exists a path from Y to X in the CFG
– A variable/value definition at Y is used at X

1)a = …
2)b = …

…

3)a = …
4)c = a

a = …
b = …

… = b + a

?

53

Data Dependence

X data depends on Y if
– There exists a path from Y to X in the CFG
– A variable/value definition at Y is used at X

1)a = …
2)b = …

…

3)a = …
4)c = a

a = …
b = …

… = b + a

?

54

Data Dependence

X data depends on Y if
– There exists a path from Y to X in the CFG
– A variable/value definition at Y is used at X

1)a = …
2)b = …

…

3)a = …
4)c = a

a = …
b = …

… = b + a

?

55

Control Dependence

Preliminary: X dominates Y if
● every path from the entry node to Y passes X

– strict, normal, & immediate dominance

56

Control Dependence

Preliminary: X dominates Y if
● every path from the entry node to Y passes X

– strict, normal, & immediate dominance

 Y

X

Entry

...

57

Control Dependence

Preliminary: X dominates Y if
● every path from the entry node to Y passes X

– strict, normal, & immediate dominance

 Y

X

Entry

...

58

Control Dependence

Preliminary: X dominates Y if
● every path from the entry node to Y passes X

– strict, normal, & immediate dominance

1)sum = 0
2)i = 1
3)while i < N:
4) i = i + 1
5) sum = sum + i
6)print(sum)

DOM(6)={1,2,3,6} IDOM(6)=3

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)? ?

59

Control Dependence

Preliminary: X dominates Y if
● every path from the entry node to Y passes X

– strict, normal, & immediate dominance

1)sum = 0
2)i = 1
3)while i < N:
4) i = i + 1
5) sum = sum + i
6)print(sum)

DOM(6)={1,2,3,6} IDOM(6)=3

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)?

60

Control Dependence

Preliminary: X dominates Y if
● every path from the entry node to Y passes X

– strict, normal, & immediate dominance

1)sum = 0
2)i = 1
3)while i < N:
4) i = i + 1
5) sum = sum + i
6)print(sum)

DOM(6)={1,2,3,6} IDOM(6)=3

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

61

Control Dependence

1)sum = 0
2)i = 1
3)while i < N:
4) i = i + 1
5) sum = sum + i
6)print(sum)

DOM(6)={1,2,3,6} IDOM(6)=3

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

What does this mean intuitively?

Preliminary: X dominates Y if
● every path from the entry node to Y passes X

– strict, normal, & immediate dominance

62

Control Dependence

Preliminary: X post dominates Y if
● every path from the Y to exit passes X

– strict, normal, & immediate dominance

63

Control Dependence

Preliminary: X post dominates Y if
● every path from the Y to exit passes X

– strict, normal, & immediate dominance

PDOM(5)={3,5,6} IPDOM(5)=3? ?

1)sum = 0
2)i = 1
3)while i < N:
4) i = i + 1
5) sum = sum + i
6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

64

Control Dependence

Preliminary: X post dominates Y if
● every path from the Y to exit passes X

– strict, normal, & immediate dominance

PDOM(5)={3,5,6} IPDOM(5)=3?

1)sum = 0
2)i = 1
3)while i < N:
4) i = i + 1
5) sum = sum + i
6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

65

Control Dependence

Preliminary: X post dominates Y if
● every path from the Y to exit passes X

– strict, normal, & immediate dominance

PDOM(5)={3,5,6} IPDOM(5)=3

1)sum = 0
2)i = 1
3)while i < N:
4) i = i + 1
5) sum = sum + i
6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

66

Control Dependence

PDOM(5)={3,5,6} IPDOM(5)=3

1)sum = 0
2)i = 1
3)while i < N:
4) i = i + 1
5) sum = sum + i
6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

Preliminary: X post dominates Y if
● every path from the Y to exit passes X

– strict, normal, & immediate dominance

What does this mean intuitively?

67

Control Dependence (Finally)

Y is control dependent on X iff

68

Control Dependence (Finally)

Y is control dependent on X iff

● Definition 1:

X directly decides whether Y executes

69

Control Dependence (Finally)

Y is control dependent on X iff

● Definition 1:

● Definition 2:

X directly decides whether Y executes

● There exists a path from X to Y s.t. Y post
dominates every node between X and Y.

● Y does not strictly post dominate X

70

Control Dependence (Finally)

Y is control dependent on X iff

● Definition 1:

● Definition 2:

X directly decides whether Y executes

● There exists a path from X to Y s.t. Y post
dominates every node between X and Y.

● Y does not strictly post dominate X

X

…

Y

71

Control Dependence

● There exists a path from X to Y s.t. Y post
dominates every node between X and Y.

● Y does not strictly post dominate X

72

Control Dependence

● There exists a path from X to Y s.t. Y post
dominates every node between X and Y.

● Y does not strictly post dominate X

1)sum = 0
2)i = 1
3)while i < N:
4) i = i + 1
5) sum = sum + i
6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

73

Control Dependence

● There exists a path from X to Y s.t. Y post
dominates every node between X and Y.

● Y does not strictly post dominate X

1)sum = 0
2)i = 1
3)while i < N:
4) i = i + 1
5) sum = sum + i
6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

What is CD(5)? CD(3)

74

Control Dependence

● There exists a path from X to Y s.t. Y post
dominates every node between X and Y.

● Y does not strictly post dominate X

1)sum = 0
2)i = 1
3)while i < N:
4) i = i + 1
5) if 0 == i%2:
6) continue
7) sum = sum + i
8)print(sum)

75

Control Dependence

● There exists a path from X to Y s.t. Y post
dominates every node between X and Y.

● Y does not strictly post dominate X

1)sum = 0
2)i = 1
3)while i < N:
4) i = i + 1
5) if 0 == i%2:
6) continue
7) sum = sum + i
8)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)if 0 …

7)sum = sum + i

8)print(sum)

76

Control Dependence

● There exists a path from X to Y s.t. Y post
dominates every node between X and Y.

● Y does not strictly post dominate X

1)sum = 0
2)i = 1
3)while i < N:
4) i = i + 1
5) if 0 == i%2:
6) continue
7) sum = sum + i
8)print(sum)

What is CD(7)?

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)if 0 …

7)sum = sum + i

8)print(sum)

77

Control Dependence

● There exists a path from X to Y s.t. Y post
dominates every node between X and Y.

● Y does not strictly post dominate X

1)if X or Y:
2) print(X)
3)print(Y)

What is CD(2)?

78

Control Dependence

● There exists a path from X to Y s.t. Y post
dominates every node between X and Y.

● Y does not strictly post dominate X

1)if X or Y:
2) print(X)
3)print(Y)

What is CD(2)?

1A)if X:

1B)if Y: 2)print(X)

3)print(Y)

79

3)Program Dependence Graph(PDG)

The PDG is the combination of
– The control dependence graph
– The data dependence graph

80

3)Program Dependence Graph(PDG)

The PDG is the combination of
– The control dependence graph
– The data dependence graph

Recall: Edges identify potential influence

81

3)Program Dependence Graph(PDG)

The PDG is the combination of
– The control dependence graph
– The data dependence graph

Recall: Edges identify potential influence

● Debugging: What may have caused a bug?

82

3)Program Dependence Graph(PDG)

The PDG is the combination of
– The control dependence graph
– The data dependence graph

Recall: Edges identify potential influence

● Debugging: What may have caused a bug?

● Security: Can sensitive information leak?

83

3)Program Dependence Graph(PDG)

The PDG is the combination of
– The control dependence graph
– The data dependence graph

Recall: Edges identify potential influence

● Debugging: What may have caused a bug?

● Security: Can sensitive information leak?

● Testing: How can I reach a statement?

● ...

84

3)Program Dependence Graph(PDG)

The PDG is the combination of
– The control dependence graph
– The data dependence graph

Recall: Edges identify potential influence

● Debugging: What may have caused a bug?

● Security: Can sensitive information leak?

● Testing: How can I reach a statement?

● ...

Can you see challenges that may arise
when using the PDG in practice?

85

4) Call Graph (Multigraph)

● Captures the composition of a program
– Nodes are functions
– Edges show possible calls

foo()

bar() baz()

quux()bam()

86

4) Call Graph (Multigraph)

● Captures the composition of a program
– Nodes are functions
– Edges show possible calls

foo()

bar() baz()

quux()bam()

foo calls bar & baz

87

4) Call Graph (Multigraph)

● Captures the composition of a program
– Nodes are functions
– Edges show possible calls

foo()

bar() baz()

quux()bam()

foo calls bar & baz

bar calls bam

88

4) Call Graph (Multigraph)

● Captures the composition of a program
– Nodes are functions
– Edges show possible calls

foo()

bar() baz()

quux()bam()

foo calls bar & baz

bar calls bam

What does this capture?

89

4) Call Graph (Multigraph)

● Captures the composition of a program
– Nodes are functions
– Edges show possible calls

foo()

bar() baz()

quux()bam()

How should we handle
 function pointers?

90

5) Points-to Graphs

Pointers / indirection create two difficult problems:

91

5) Points-to Graphs

Pointers / indirection create two difficult problems:

● Aliasing
– Multiple variables may denote the same memory

location

...
x y

92

5) Points-to Graphs

Pointers / indirection create two difficult problems:

● Aliasing
– Multiple variables may denote the same memory

location

● Ambiguity
– One variable may potentially denote several different

targets in memory.

............

x
?

93

5) Points-to Graphs

Pointers / indirection create two difficult problems:

● Aliasing
– Multiple variables may denote the same memory

location

● Ambiguity
– One variable may potentially denote several different

targets in memory.

x.lock()
…
y.unlock()

94

5) Points-to Graphs

Pointers / indirection create two difficult problems:

● Aliasing
– Multiple variables may denote the same memory

location

● Ambiguity
– One variable may potentially denote several different

targets in memory.

x.lock()
…
y.unlock()

x = password
…
broadcast(y)

95

5) Points-to Graphs

Points-to graphs capture this points-to relation

96

5) Points-to Graphs

Points-to graphs capture this points-to relation
● The relation (p,x) where p MAY/MUST point to x

97

5) Points-to Graphs

Points-to graphs capture this points-to relation
● The relation (p,x) where p MAY/MUST point to x

– Both MAY and MUST information can be useful

98

5) Points-to Graphs

Points-to graphs capture this points-to relation
● The relation (p,x) where p MAY/MUST point to x

– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5) q = p
6) r.f = t

99

5) Points-to Graphs

Points-to graphs capture this points-to relation
● The relation (p,x) where p MAY/MUST point to x

– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5) q = p
6) r.f = t

r

100

5) Points-to Graphs

Points-to graphs capture this points-to relation
● The relation (p,x) where p MAY/MUST point to x

– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5) q = p
6) r.f = t

r

p f

101

5) Points-to Graphs

Points-to graphs capture this points-to relation
● The relation (p,x) where p MAY/MUST point to x

– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5) q = p
6) r.f = t

r

p f

t

102

5) Points-to Graphs

Points-to graphs capture this points-to relation
● The relation (p,x) where p MAY/MUST point to x

– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5) q = p
6) r.f = t

r

p f

tq

103

5) Points-to Graphs

Points-to graphs capture this points-to relation
● The relation (p,x) where p MAY/MUST point to x

– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5) q = p
6) r.f = t

r

p f

tq

f

104

5) Points-to Graphs

Points-to graphs capture this points-to relation
● The relation (p,x) where p MAY/MUST point to x

– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5) q = p
6) r.f = t

r

p f

tq

f

p.f.f MUST ALIAS t
 q MAY ALIAS p

105

5) Points-to Graphs

Points-to graphs capture this points-to relation
● The relation (p,x) where p MAY/MUST point to x

– Both MAY and MUST information can be useful

1) r = C()
2) p.f = r
3) t = C()
4) if …:
5) q = p
6) r.f = t

r

p f

tq

f

p.f.f MUST ALIAS t
 q MAY ALIAS p

106

6) Emerging Representations for ML

● Machine learning is seen as a value driver for many tasks,
but using it effectively to reason about software is still challenging

107

6) Emerging Representations for ML

● Machine learning is seen as a value driver for many tasks,
but using it effectively to reason about software is still challenging

● Trying simple models should always be considered first
e.g. simple feed forward networks can work better [Yedida 2021]

https://arxiv.org/pdf/2101.06319.pdf

108

6) Emerging Representations for ML

● Machine learning is seen as a value driver for many tasks,
but using it effectively to reason about software is still challenging

● Trying simple models should always be considered first
– Bug fix & close time estimation [Yedida 2021]

– Project planning & analytics [Krishna 2020]

– Recognizing actionable compiler warnings [Yang 2020]

https://arxiv.org/pdf/2101.06319.pdf
https://arxiv.org/pdf/1708.05442.pdf
https://arxiv.org/pdf/2006.00444v1.pdf

109

6) Emerging Representations for ML

● Machine learning is seen as a value driver for many tasks,
but using it effectively to reason about software is still challenging

● Trying simple models should always be considered first

● Observe:
Many engineering tasks require discrete & symbolic reasoning.
– ML is classically better on non symbolic problems.

110

6) Emerging Representations for ML

● Machine learning is seen as a value driver for many tasks,
but using it effectively to reason about software is still challenging

● Trying simple models should always be considered first

● Observe:
Many engineering tasks require discrete & symbolic reasoning.
– ML is classically better on non symbolic problems.
– Bridging the gap is an area of open research (neurosymbolic, ...)

111

6) Emerging Representations for ML

● Machine learning is seen as a value driver for many tasks,
but using it effectively to reason about software is still challenging

● Trying simple models should always be considered first

● Observe:
Many engineering tasks require discrete & symbolic reasoning.
– ML is classically better on non symbolic problems.
– Bridging the gap is an area of open research (neurosymbolic, ...)
– Solutions that do not require a priori implementation are desirable

112

6) Emerging Representations for ML

● Machine learning is seen as a value driver for many tasks,
but using it effectively to reason about software is still challenging

● Trying simple models should always be considered first

● Observe:
Many engineering tasks require discrete & symbolic reasoning.
– ML is classically better on non symbolic problems.
– Bridging the gap is an area of open research (neurosymbolic, ...)
– Solutions that do not require a priori implementation are desirable

● But different models & pipelines arise to aid in
reasoning about software

113

6) Emerging Representations for ML

● Machine learning is seen as a value driver for many tasks,
but using it effectively to reason about software is still challenging

● Observe:
Many engineering tasks require discrete & symbolic reasoning.
ML is classically better on non symbolic problems.
– Bridging the gap is an area of open research
– Solutions that don’t require a priori implementation are desirable

● But different models & pipelines arise to aid in
reasoning about software

Seq2DRNN
Encoder-Decoders

[Alvarez-Melis 2017, Gu 2019]

https://openreview.net/forum?id=HkYhZDqxg
http://summit.sfu.ca/system/files/iritems1/19358/etd20354.pdf

114

6) Emerging Representations for ML

● Machine learning is seen as a value driver for many tasks,
but using it effectively to reason about software is still challenging

● Observe:
Many engineering tasks require discrete & symbolic reasoning.
ML is classically better on non symbolic problems.
– Bridging the gap is an area of open research
– Solutions that don’t require a priori implementation are desirable

● But different models & pipelines arise to aid in
reasoning about software

Seq2DRNN
Encoder-Decoders

[Alvarez-Melis 2017, Gu 2019]

code2vec
[Alon 2018]

https://openreview.net/forum?id=HkYhZDqxg
http://summit.sfu.ca/system/files/iritems1/19358/etd20354.pdf
https://arxiv.org/abs/1803.09473

115

6) Emerging Representations for ML

neurosymbolic models for synthesis
[Nye 2020]

https://arxiv.org/pdf/2003.05562.pdf

116

6) Emerging Representations for ML

● Machine learning is seen as a value driver for many tasks,
but using it effectively to reason about software is still challenging

● Observe:
Many engineering tasks require discrete & symbolic reasoning.
ML is classically better on non symbolic problems.
– Bridging the gap is an area of open research
– Solutions that don’t require a priori implementation are desirable

● But different models & pipelines arise to aid in
reasoning about software

Seq2DRNN
Encoder-Decoders

[Alvarez-Melis 2017, Gu 2019]

code2vec
[Alon 2018]

Just as with other representations:
What do these make easy?
What remains challenging?

https://openreview.net/forum?id=HkYhZDqxg
http://summit.sfu.ca/system/files/iritems1/19358/etd20354.pdf
https://arxiv.org/abs/1803.09473

117

6) Emerging Representations for ML

● Machine learning is seen as a value driver for many tasks,
but using it effectively to reason about software is still challenging

● Observe:
Many engineering tasks require discrete & symbolic reasoning.
ML is classically better on non symbolic problems.
– Bridging the gap is an area of open research
– Solutions that don’t require a priori implementation are desirable

● But different models & pipelines arise to aid in
reasoning about software

Seq2DRNN
Encoder-Decoders

[Alvarez-Melis 2017, Gu 2019]

code2vec
[Alon 2018]

Just as with other representations:
What do these make easy?
What remains challenging?

Finding ways to bridge ML and SE
remains an interesting & open challenge

https://openreview.net/forum?id=HkYhZDqxg
http://summit.sfu.ca/system/files/iritems1/19358/etd20354.pdf
https://arxiv.org/abs/1803.09473

Representing Program Executions

119

Execution Representations

● Program representations are static
– All possible program behaviors at once
– Usually projected onto the CFG

120

Execution Representations

● Program representations are static
– All possible program behaviors at once
– Usually projected onto the CFG

● Execution representations are dynamic
– Only the behavior of a single real execution

121

Execution Representations

● Program representations are static
– All possible program behaviors at once
– Usually projected onto the CFG

● Execution representations are dynamic
– Only the behavior of a single real execution
– Multiple instances of an instruction occur multiple times

122

Control Flow Trace

11 21 31 41 51 32 42 52 33 61
All Equivalent

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

6)print(sum)

123

Control Flow Trace

11 21 31 41 51 32 42 52 33 61

11 31 41 32 42 33 61 All Equivalent

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

6)print(sum)

124

Control Flow Trace

11 21 31 41 51 32 42 52 33 61

11 31 41 32 42 33 61

TTF

All Equivalent

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

6)print(sum)

125

Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

126

Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

127

Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

128

Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

129

Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

4)i = i + 1
5)sum = sum + i

130

Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

131

Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

6)print(sum)

132

Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

6)print(sum)

133

Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

Notably a bit difficult for people
to wade through.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

6)print(sum)

134

Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

Notably a bit difficult for people
to wade through.

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

6)print(sum)
If only we could focus on the parts that interest us...

135

Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

6)print(sum)

i

3)if i < N

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

4)i = i + 1
5)sum = sum + i

Slicing (static or dynamic) computes
a transitive closure of dependences

136

Dynamic Dependence Graph

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

6)print(sum)

6)print(sum)

i

3)if i < N

1)sum = 0
2)i = 1

3)if i < N

4)i = i + 1
5)sum = sum + i

3)if i < N

4)i = i + 1
5)sum = sum + i

Slicing (static or dynamic) computes
a transitive closure of dependences Note: potential influences are missed!

137

Dynamic Dependence Graphs

Capture a notion of observed influence

138

Dynamic Dependence Graphs

Capture a notion of observed influence

● Debugging: What caused a bug?

139

Dynamic Dependence Graphs

Capture a notion of observed influence

● Debugging: What caused a bug?

● Security: How did sensitive information leak?

140

Dynamic Dependence Graphs

Capture a notion of observed influence

● Debugging: What caused a bug?

● Security: How did sensitive information leak?

● Testing: What tests need to be run based on a change?

● ...

141

Dynamic Dependence Graphs

Capture a notion of observed influence

● Debugging: What caused a bug?

● Security: How did sensitive information leak?

● Testing: What tests need to be run based on a change?

● ...

Prioritizing, pruning, & bundling information is often critical
when applying slicing

142

Summary

● Different tasks may benefit from representing programs in different
ways

● Thinking of the right representation for the task you have is important

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142

