
An Overview of
Software Testing

CMPT 745
Software Engineering

Nick Sumner
wsumner@sfu.ca

Software Testing

● The most common way of measuring and ensuring program
correctness

Input Program

Software Testing

● The most common way of measuring and ensuring program
correctness

Input Program Observed
Behavior

Software Testing

● The most common way of measuring and ensuring program
correctness

Input Program Observed
Behavior Oracle

Software Testing

● The most common way of measuring and ensuring program
correctness

Input Program Observed
Behavior Oracle Outcome

Software Testing

Input Program Observed
Behavior Oracle Outcome

● The most common way of measuring and ensuring program
correctness

Test Suite
Test 1 Input Oracle
Test 2 Input Oracle
Test 3 Input Oracle
Test 4 Input Oracle
Test 5 Input Oracle
Test 6 Input Oracle
Test 7 Input Oracle

Software Testing

● The most common way of measuring and ensuring program
correctness

Input Program Observed
Behavior Oracle Outcome

Test Suite
Test 1 Input Oracle
Test 2 Input Oracle
Test 3 Input Oracle
Test 4 Input Oracle
Test 5 Input Oracle
Test 6 Input Oracle
Test 7 Input Oracle

Key Issues

Software Testing

Input Program Observed
Behavior Oracle Outcome

Test 1 Input Oracle
Test 2 Input Oracle
Test 3 Input Oracle
Test 4 Input Oracle
Test 5 Input Oracle
Test 6 Input Oracle
Test 7 Input Oracle

Key Issues
● Test suite adequacy Test Suite

● The most common way of measuring and ensuring program
correctness

Software Testing

Input Program Observed
Behavior Oracle Outcome

Test 1 Input Oracle
Test 2 Input Oracle
Test 3 Input Oracle
Test 4 Input Oracle
Test 5 Input Oracle
Test 6 Input Oracle
Test 7 Input Oracle

Key Issues
● Test suite adequacy Test Suite

● The most common way of measuring and ensuring program
correctness

Testing is sampling.

How do we know whether
we are sampling well?

Software Testing

● The most common way of measuring and ensuring program
correctness

Input Program Observed
Behavior Oracle Outcome

Test Suite
Test 1 Input Oracle
Test 2 Input Oracle
Test 3 Input Oracle
Test 4 Input Oracle
Test 5 Input Oracle
Test 6 Input Oracle
Test 7 Input Oracle

Key Issues
● Test suite adequacy
● Automated input generation

Software Testing

● The most common way of measuring and ensuring program
correctness

Input Program Observed
Behavior Oracle Outcome

Test Suite
Test 1 Input Oracle
Test 2 Input Oracle
Test 3 Input Oracle
Test 4 Input Oracle
Test 5 Input Oracle
Test 6 Input Oracle
Test 7 Input Oracle

Key Issues
● Test suite adequacy
● Automated input generation
● Automated oracle generation

Software Testing

● The most common way of measuring and ensuring program
correctness

Input Program Observed
Behavior Oracle Outcome

Test Suite
Test 1 Input Oracle
Test 2 Input Oracle
Test 3 Input Oracle
Test 4 Input Oracle
Test 5 Input Oracle
Test 6 Input Oracle
Test 7 Input Oracle

Key Issues
● Test suite adequacy
● Automated input generation
● Automated oracle generation
● Robustness/flakiness/maintainability

Software Testing

Input Program Observed
Behavior Oracle Outcome

Test 1 Input Oracle
Test 2 Input Oracle
Test 3 Input Oracle
Test 4 Input Oracle
Test 5 Input Oracle
Test 6 Input Oracle
Test 7 Input Oracle

● The most common way of measuring and ensuring program
correctness

Key Issues
● Test suite adequacy
● Automated input generation
● Automated oracle generation
● Robustness/flakiness/maintainability
● Regression test selection

Test Suite

Software Testing

● The most common way of measuring and ensuring program
correctness

Input Program Observed
Behavior Oracle Outcome

Test Suite
Test 1 Input Oracle
Test 2 Input Oracle
Test 3 Input Oracle
Test 4 Input Oracle
Test 5 Input Oracle
Test 6 Input Oracle
Test 7 Input Oracle

Key Issues
● Test suite adequacy
● Automated input generation
● Automated oracle generation
● Robustness/flakiness/maintainability
● Regression test selection
● Fault localization & automated debugging

Software Testing

● The most common way of measuring and ensuring program
correctness

Input Program Observed
Behavior Oracle Outcome

Test Suite
Test 1 Input Oracle
Test 2 Input Oracle
Test 3 Input Oracle
Test 4 Input Oracle
Test 5 Input Oracle
Test 6 Input Oracle
Test 7 Input Oracle

Key Issues
● Test suite adequacy
● Automated input generation
● Automated oracle generation
● Robustness/flakiness/maintainability
● Regression test selection
● Fault localization & automated debugging
● Automated program repair
● ...

Software Testing

● The most common way of measuring and ensuring program
correctness

Input Program Observed
Behavior Oracle Outcome

Test Suite
Test 1 Input Oracle
Test 2 Input Oracle
Test 3 Input Oracle
Test 4 Input Oracle
Test 5 Input Oracle
Test 6 Input Oracle
Test 7 Input Oracle

Key Issues
● Test suite adequacy
● Automated input generation
● Automated oracle generation
● Robustness/flakiness/maintainability
● Regression test selection
● Fault localization & automated debugging
● Automated program repair
● ...

We will discuss a few basics now
and revisit the problem as we learn new techniques

Test Suite Design

● Objectives
– Functional correctness
– Nonfunctional attributes (performance, ...)

Test Suite Design

● Objectives
– Functional correctness
– Nonfunctional attributes (performance, ...)

● Components – The Automated Testing Pyramid

Unit

API/
Integration/
Component/

System UI

Test Suite Design

● Objectives
– Functional correctness
– Nonfunctional attributes (performance, ...)

● Components – The Automated Testing Pyramid

Unit

API/
Integration/
Component/

System UI

Test Suite Design

● Objectives
– Functional correctness
– Nonfunctional attributes (performance, ...)

● Components – The Automated Testing Pyramid

Unit

API/
Integration/
Component/

System UI

Test Suite Design

● Objectives
– Functional correctness
– Nonfunctional attributes (performance, ...)

● Components – The Automated Testing Pyramid

Unit

API/
Integration/
Component/

System UI

Test Suite Design

● Objectives
– Functional correctness
– Nonfunctional attributes (performance, ...)

● Components – The Automated Testing Pyramid

Unit

API/
Integration/
Component/

System UI
Integrated

Isolated

Test Suite Design

● Objectives
– Functional correctness
– Nonfunctional attributes (performance, ...)

● Components – The Automated Testing Pyramid

Unit

API/
Integration/
Component/

System UI
Integrated

Isolated

Slow

Fast

Designing a Unit Test

● Common structure

Designing a Unit Test

● Common structure
TEST_CASE("empty") {
 Environment env;
 ExprTree tree;

 auto result = evaluate(tree, env);

 CHECK(!result.has_value());
}

Designing a Unit Test

● Common structure
TEST_CASE("empty") {
 Environment env;
 ExprTree tree;

 auto result = evaluate(tree, env);

 CHECK(!result.has_value());
}

Set up a scenario

Designing a Unit Test

● Common structure
TEST_CASE("empty") {
 Environment env;
 ExprTree tree;

 auto result = evaluate(tree, env);

 CHECK(!result.has_value());
}

Run the scenario

Designing a Unit Test

● Common structure
TEST_CASE("empty") {
 Environment env;
 ExprTree tree;

 auto result = evaluate(tree, env);

 CHECK(!result.has_value());
} Check the outcome

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
 Frob()
 : conn{getDB().connect()}
 { }
 DBConnection conn;
};

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
 Frob()
 : conn{getDB().connect()}
 { }
 DBConnection conn;
};

TEST_CASE("bad test 1") {
 Frob frob;
 ...
}

TEST_CASE("bad test 2") {
 Frob frob;
 ...
}

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
 Frob()
 : conn{getDB().connect()}
 { }
 DBConnection conn;
};

TEST_CASE("bad test 1") {
 Frob frob;
 ...
}

TEST_CASE("bad test 2") {
 Frob frob;
 ...
}

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
 Frob()
 : conn{getDB().connect()}
 { }
 DBConnection conn;
};

TEST_CASE("bad test 1") {
 Frob frob;
 ...
}

TEST_CASE("bad test 2") {
 Frob frob;
 ...
}

The order of the test can affect the results!

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
 Frob()
 : conn{getDB().connect()}
 { }
 DBConnection conn;
};

TEST_CASE("bad test 1") {
 Frob frob;
 ...
}

TEST_CASE("bad test 2") {
 Frob frob;
 ...
}

The order of the test can affect the results!

A flaky DB can affect results!

Designing a Unit Test

● Common structure
● Tests should run in isolation!

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
 Frob(Connection& inConn)
 : conn{inConn}
 { }
 Connection& conn;
};

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
 Frob(Connection& inConn)
 : conn{inConn}
 { }
 Connection& conn;
};

Dependency injection allows
the user of a class to
control its behavior

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
 Frob(Connection& inConn)
 : conn{inConn}
 { }
 Connection& conn;
};

Connection

Dependency injection allows
the user of a class to
control its behavior

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
 Frob(Connection& inConn)
 : conn{inConn}
 { }
 Connection& conn;
};

Connection

DBConnection

Dependency injection allows
the user of a class to
control its behavior

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
 Frob(Connection& inConn)
 : conn{inConn}
 { }
 Connection& conn;
};

Connection

DBConnection FakeConnection

Dependency injection allows
the user of a class to
control its behavior

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
 Frob(Connection& inConn)
 : conn{inConn}
 { }
 Connection& conn;
};

TEST_CASE("better test 1") {
 FakeDB db;
 FakeConnection conn = db.connect();
 Frob frob{conn};
 ...
}

Connection

DBConnection FakeConnection

Designing a Unit Test

● Common structure
● Tests should run in isolation
struct Frob {
 Frob(Connection& inConn)
 : conn{inConn}
 { }
 Connection& conn;
};

TEST_CASE("better test 1") {
 FakeDB db;
 FakeConnection conn = db.connect();
 Frob frob{conn};
 ...
}

Connection

DBConnection

Mocks & stubs isolate and examine
how a component interacts with

dependenciesFakeConnection

Designing a Unit Test

● Common structure
● Tests should run in isolation
● Key problem to resolve:

– How do you define your inputs & oracles?

Input Program Observed
Behavior Oracle Outcome

Selecting Inputs

● Two broad categories

Selecting Inputs

● Two broad categories
– Black box testing – treat the program as opaque/unknown

Input Program Observed
Behavior Oracle Outcome

Selecting Inputs

● Two broad categories
– Black box testing – treat the program as opaque/unknown

specification based (BDD?)
model driven
naive fuzzing
boundary value analysis

Input Program Observed
Behavior Oracle Outcome

Selecting Inputs

● Two broad categories
– Black box testing – treat the program as opaque/unknown
– White box testing – program structure & semantics can be used

Input Program Observed
Behavior Oracle Outcome

Selecting Inputs

● Two broad categories
– Black box testing – treat the program as opaque/unknown
– White box testing – program structure & semantics can be used

symbolic execution
call chain synthesis
grey/whitebox fuzzing

Input Program Observed
Behavior Oracle Outcome

Designing Oracles

● Sometimes it is simple
– For a known scenario, a specific output is expected

Input Program Observed
Behavior Oracle Outcome

Designing Oracles

● Sometimes it is simple
– For a known scenario, a specific output is expected

What about tasks like:
machine learning

simulation
...

Input Program Observed
Behavior Oracle Outcome

Designing Oracles

● Sometimes it is simple
– For a known scenario, a specific output is expected

● Invariants & properties are powerful

Input Program Observed
Behavior Oracle Outcome

Designing Oracles

● Sometimes it is simple
– For a known scenario, a specific output is expected

● Invariants & properties are powerful
– foo-1(foo(x)) == x (e.g. archive & unarchive a file)

Input Program Observed
Behavior Oracle Outcome

Designing Oracles

● Sometimes it is simple
– For a known scenario, a specific output is expected

● Invariants & properties are powerful
– foo-1(foo(x)) == x (e.g. archive & unarchive a file)
– turn(360, direction) == direction

Input Program Observed
Behavior Oracle Outcome

Designing Oracles

● Sometimes it is simple
– For a known scenario, a specific output is expected

● Invariants & properties are powerful
– foo-1(foo(x)) == x (e.g. archive & unarchive a file)
– turn(360, direction) == direction

Metamorphic testing

Input Program Observed
Behavior Oracle Outcome

Designing Oracles

● Sometimes it is simple
– For a known scenario, a specific output is expected

● Invariants & properties are powerful
– foo-1(foo(x)) == x (e.g. archive & unarchive a file)
– turn(360, direction) == direction
– program1(x) == program2(x)

Input Program Observed
Behavior Oracle Outcome

Designing Oracles

● Sometimes it is simple
– For a known scenario, a specific output is expected

● Invariants & properties are powerful
– foo-1(foo(x)) == x (e.g. archive & unarchive a file)
– turn(360, direction) == direction
– program1(x) == program2(x)

Differential testing

Input Program Observed
Behavior Oracle Outcome

Designing Oracles

● Sometimes it is simple
– For a known scenario, a specific output is expected

● Invariants & properties are powerful
– foo-1(foo(x)) == x (e.g. archive & unarchive a file)
– turn(360, direction) == direction
– program1(x) == program2(x)

General invariants can be exploited
in (semi)automated test generation

(e.g. property based)

Input Program Observed
Behavior Oracle Outcome

Designing Oracles

● Sometimes it is simple
– For a known scenario, a specific output is expected

● Invariants & properties are powerful
– foo-1(foo(x)) == x (e.g. archive & unarchive a file)
– turn(360, direction) == direction
– program1(x) == program2(x)

● Fully automated tests benefit from fully automated oracles
– But the problem is hard

Input Program Observed
Behavior Oracle Outcome

Test Suite Adequacy

● A test suite should provide a metric on software quality

Test Suite Adequacy

● A test suite should provide a metric on software quality
– Passing a test should increase the metric
– Failing a test should decrease the metric

Test Suite Adequacy

● A test suite should provide a metric on software quality
– Passing a test should increase the metric
– Failing a test should decrease the metric

● But a test suite samples from the input space

Test Suite Adequacy

● A test suite should provide a metric on software quality
– Passing a test should increase the metric
– Failing a test should decrease the metric

● But a test suite samples from the input space
– Is it representative/biased?

Test Suite Adequacy

● A test suite should provide a metric on software quality
– Passing a test should increase the metric
– Failing a test should decrease the metric

● But a test suite samples from the input space
– Is it representative/biased?
– Can we know?

Test Suite Adequacy

● A test suite should provide a metric on software quality
– Passing a test should increase the metric
– Failing a test should decrease the metric

● But a test suite samples from the input space
– Is it representative/biased?
– Can we know?
– Can we measure how likely a test suite is to measure what we want?

Test Suite Adequacy

● A test suite should provide a metric on software quality
– Passing a test should increase the metric
– Failing a test should decrease the metric

● But a test suite samples from the input space
– Is it representative/biased?
– Can we know?
– Can we measure how likely a test suite is to measure what we want?

● High level decision making
– Is a test suite good enough? (Will a higher score mean fewer defects?)

Test Suite Adequacy

● A test suite should provide a metric on software quality
– Passing a test should increase the metric
– Failing a test should decrease the metric

● But a test suite samples from the input space
– Is it representative/biased?
– Can we know?
– Can we measure how likely a test suite is to measure what we want?

● High level decision making
– Is a test suite good enough? (Will a higher score mean fewer defects?)
– What parts of a program should be tested better?

Test Suite Adequacy

● Metrics Remember: A higher score
should mean fewer defects

Test Suite Adequacy

● Metrics
– Statement coverage

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

Is each statement covered
by at least one test

in the test suite?

score =
covered

statements

Test Suite Adequacy

● Metrics
– Statement coverage
– Branch coverage

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

score =
covered

branches

a

b c

#T #F

p

We will discuss
control flow graphs

again soon

Test Suite Adequacy

● Metrics
– Statement coverage
– Branch coverage

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

Is each branch covered
by at least one test

in the test suite?

score =
covered

branches

a

b c

#T #F

p

Test Suite Adequacy

● Metrics
– Statement coverage
– Branch coverage

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

Is each branch covered
by at least one test

in the test suite?

score =
covered

branches

a

b c

#T #F

p

Test Suite Adequacy

● Metrics
– Statement coverage
– Branch coverage

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

score =
covered

branches

a

b c

#T #F

p

It is widely agreed that
statement/edge coverage
are not good measures.

But they are sanity checks.

Test suite adequacy is complex.
[Groce 2014]

https://blog.acolyer.org/2014/10/22/coverage-and-its-discontents/

Test Suite Adequacy

● Metrics
– Statement coverage
– Branch coverage
– MC/DC coverage*

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

Does each term determine
the outcome of at least one condition

in the test suite?

Test Suite Adequacy

● Metrics
– Statement coverage
– Branch coverage
– MC/DC coverage*

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

Does each term determine
the outcome of at least one condition

in the test suite?

Test Suite Adequacy

● Metrics
– Statement coverage
– Branch coverage
– MC/DC coverage*

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

Does each term determine
the outcome of at least one condition

in the test suite? a=#T b=#T c=#F ↦ #T
a=#F b=#T c=#F ↦ #F

Test Suite Adequacy

● Metrics
– Statement coverage
– Branch coverage
– MC/DC coverage*

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

Does each term determine
the outcome of at least one condition

in the test suite? a=#T b=#T c=#F ↦ #T
a=#F b=#T c=#F ↦ #F

a in this condition
is covered by the test suite

Test Suite Adequacy

● Metrics
– Statement coverage
– Branch coverage
– MC/DC coverage*

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

Required by regulation in (e.g.)
avionics, safety critical systems, automotive software

Does each term determine
the outcome of at least one condition

in the test suite?

Test Suite Adequacy

● Metrics
– Statement coverage
– Branch coverage
– MC/DC coverage*
– Mutation coverage*

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

How many injected bugs
can be detected by the test suite?

Test Suite Adequacy

● Metrics
– Statement coverage
– Branch coverage
– MC/DC coverage*
– Mutation coverage*

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

How many injected bugs
can be detected by the test suite?

Test Suite Adequacy

● Metrics
– Statement coverage
– Branch coverage
– MC/DC coverage*
– Mutation coverage*

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

How many injected bugs
can be detected by the test suite?

Test Suite Adequacy

● Metrics
– Statement coverage
– Branch coverage
– MC/DC coverage*
– Mutation coverage*

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

score =
non-equivalent mutants

covered/killed

How many injected bugs
can be detected by the test suite?

Test Suite Adequacy

● Metrics
– Statement coverage
– Branch coverage
– MC/DC coverage*
– Mutation coverage*
– Path coverage
– ...

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

a

b c

#T #F

p

Is each path covered
by at least one test

in the test suite?

Test Suite Adequacy

● Metrics
– Statement coverage
– Branch coverage
– MC/DC coverage*
– Mutation coverage*
– Path coverage
– ...

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

a

b c

#T #F

p

abT
abcT
abcF
acT
acF

Is each path covered
by at least one test

in the test suite?

Test Suite Adequacy

● Metrics
– Statement coverage
– Branch coverage
– MC/DC coverage*
– Mutation coverage*
– Path coverage
– ...

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

a

b c

#T #F

p

abT
abcT
abcF
acT
acF

Is each path covered
by at least one test

in the test suite?

Test Suite Adequacy

● Metrics
– Statement coverage
– Branch coverage
– MC/DC coverage*
– Mutation coverage*
– Path coverage
– ...

But shrinking test suites while maintaining
St, Br, MC/DC decreases defect detection.

There is more going on here.
[Rothermel 1998, Yoo 2012, Shi 2018]

http://www0.cs.ucl.ac.uk/staff/M.Harman/stvr-shin-survey.pdf
https://dl-acm-org.proxy.lib.sfu.ca/doi/10.1145/3213846.3213875

MC/DC Testing

MC/DC Coverage

● Logic & conditional behaviors are pervasive

MC/DC Coverage

● Logic & conditional behaviors are pervasive
● if statements are the most frequently fixed statements in bug fixes

[Pan, ESE 2008]

https://www.semanticscholar.org/paper/Toward-an-understanding-of-bug-fix-patterns-Pan-Kim/2fac216f660ddd5c8eabcaadb342ed117b32bb2b

MC/DC Coverage

● Logic & conditional behaviors are pervasive
● if statements are the most frequently fixed statements in bug fixes

[Pan, ESE 2008]

● Safety critical systems often involve many complex conditions
(avionics, medical, automotive, ...)

https://www.semanticscholar.org/paper/Toward-an-understanding-of-bug-fix-patterns-Pan-Kim/2fac216f660ddd5c8eabcaadb342ed117b32bb2b

MC/DC Coverage

● Logic & conditional behaviors are pervasive
● if statements are the most frequently fixed statements in bug fixes

[Pan, ESE 2008]

● Safety critical systems often involve many complex conditions
(avionics, medical, automotive, ...)

● We should place more effort/burden on ensuring correctness of
conditions

https://www.semanticscholar.org/paper/Toward-an-understanding-of-bug-fix-patterns-Pan-Kim/2fac216f660ddd5c8eabcaadb342ed117b32bb2b

MC/DC Coverage

● A predicate is simply a boolean expression.

MC/DC Coverage

● A predicate is simply a boolean expression.
● Predicate Coverage requires each predicate to be true in one test &

be false in one test.

MC/DC Coverage

● A predicate is simply a boolean expression.
● Predicate Coverage requires each predicate to be true in one test &

be false in one test.
if (a || b) && (c || d):
 s

if (a | b) & (c | d):
 s

How does it do in these cases?

● A predicate is simply a boolean expression.
● Predicate Coverage requires each predicate to be true in one test &

be false in one test.
if (a || b) && (c || d):
 s

if (a | b) & (c | d):
 s

MC/DC Coverage

T F T F

MC/DC Coverage

● A predicate is simply a boolean expression.
● Predicate Coverage requires each predicate to be true in one test &

be false in one test.
● Clause Coverage requires each clause to be true in one test & be

false in one test.

MC/DC Coverage

● A predicate is simply a boolean expression
● Predicate Coverage requires each predicate to be true in one test &

be false in one test.
● Clause Coverage requires each clause to be true in one test & be

false in one test.
if (a || b) && (c || d):
 s

if (a | b) & (c | d):
 s

How does it do in these cases?

MC/DC Coverage

● A predicate is simply a boolean expression
● Predicate Coverage requires each predicate to be true in one test &

be false in one test.
● Clause Coverage requires each clause to be true in one test & be

false in one test.
if (a || b) && (c || d):
 s

if (a | b) & (c | d):
 s

T F T FT F T F T F T F T F T F

MC/DC Coverage

● A predicate is simply a boolean expression
● Predicate Coverage requires each predicate to be true in one test &

be false in one test.
● Clause Coverage requires each clause to be true in one test & be

false in one test.
if (a || b) && (c || d):
 s

if (a | b) & (c | d):
 s

T F T FT F T F T F T F T F T F

How many tests?

MC/DC Coverage

● A predicate is simply a boolean expression
● Predicate Coverage requires each predicate to be true in one test &

be false in one test.
● Clause Coverage requires each clause to be true in one test & be

false in one test.
if (a || b) && (c || d):
 s

if (a | b) & (c | d):
 s

T F T FT F T F T F T F T F T F

How many tests?

Minimum of 2 tests

MC/DC Coverage

● A predicate is simply a boolean expression
● Predicate Coverage requires each predicate to be true in one test &

be false in one test.
● Clause Coverage requires each clause to be true in one test & be

false in one test.
if (a || b) && (c || d):
 s

if (a | b) & (c | d):
 s

T F T FT F T F T F T F T F T F

How many tests?

Minimum of 2 tests

a=true, b=true, c=false, d=false
a=false, b=false, c=true, d=true

MC/DC Coverage

● A predicate is simply a boolean expression
● Predicate Coverage requires each predicate to be true in one test &

be false in one test.
● Clause Coverage requires each clause to be true in one test & be

false in one test.
if (a || b) && (c || d):
 s

if (a | b) & (c | d):
 s

T F T FT F T F T F T F T F T F

How many tests?

Minimum of 2 tests

a=true, b=true, c=false, d=false
a=false, b=false, c=true, d=true

MC/DC Coverage

● Modified Condition/Decision Coverage

MC/DC Coverage

● Modified Condition/Decision Coverage
1) Each entry & exit is used

MC/DC Coverage

● Modified Condition/Decision Coverage
1) Each entry & exit is used
2) Each decision/branch takes every possible outcome

MC/DC Coverage

● Modified Condition/Decision Coverage
1) Each entry & exit is used
2) Each decision/branch takes every possible outcome
3) Each clause takes every possible outcome

MC/DC Coverage

● Modified Condition/Decision Coverage
1) Each entry & exit is used
2) Each decision/branch takes every possible outcome
3) Each clause takes every possible outcome

So far, this is clause coverage
w/o that pathological case

MC/DC Coverage

● Modified Condition/Decision Coverage
1) Each entry & exit is used
2) Each decision/branch takes every possible outcome
3) Each clause takes every possible outcome

if (a || b) && (c || d):
 s

T F T F T F T F

Minimum of 2 tests

a=true, b=true, c=true, d=true
a=false, b=false, c=false, d=false

MC/DC Coverage

● Modified Condition/Decision Coverage
1) Each entry & exit is used
2) Each decision/branch takes every possible outcome
3) Each clause takes every possible outcome

if (a || b) && (c || d):
 s

T F T F T F T F

Minimum of 2 tests

a=true, b=true, c=true, d=true
a=false, b=false, c=false, d=false

Is this good?

MC/DC Coverage

● Modified Condition/Decision Coverage
1) Each entry & exit is used
2) Each decision/branch takes every possible outcome
3) Each clause takes every possible outcome
4) Each clause independently impacts the the outcome

MC/DC Coverage

● Modified Condition/Decision Coverage
1) Each entry & exit is used
2) Each decision/branch takes every possible outcome
3) Each clause takes every possible outcome
4) Each clause independently impacts the the outcome

Intuition:
Make sure that the tests for one clause
are not hidden by other clauses

MC/DC Coverage

● Modified Condition/Decision Coverage
1) Each entry & exit is used
2) Each decision/branch takes every possible outcome
3) Each clause takes every possible outcome
4) Each clause independently impacts the the outcome

● Use in safety critical systems: avionics, spacecraft, …

MC/DC Coverage

● Modified Condition/Decision Coverage
1) Each entry & exit is used
2) Each decision/branch takes every possible outcome
3) Each clause takes every possible outcome
4) Each clause independently impacts the the outcome

● Use in safety critical systems: avionics, spacecraft, …
● Not only ensures that clauses are tested,

 but that each has an impact

MC/DC Coverage

● A clause determines the outcome of a predicate when changing only
the value of that clause changes the outcome of the predicate

MC/DC Coverage

● A clause determines the outcome of a predicate when changing only
the value of that clause changes the outcome of the predicate

def my_lovely_fun(a,b,c):
 if (a and b) or c:
 ...
 else:
 ...
print(‘awesome’)

a=#T b=#T c=#F ↦ #T
a=#F b=#T c=#F ↦ #F

MC/DC Coverage

● A clause determines the outcome of a predicate when changing only
the value of that clause changes the outcome of the predicate

φ(a,b,c) ≠ φ(a,b,¬c)

MC/DC Coverage

● A clause determines the outcome of a predicate when changing only
the value of that clause changes the outcome of the predicate

φ(a,b,c) ≠ φ(a,b,¬c)
(a || b && c)

MC/DC Coverage

● A clause determines the outcome of a predicate when changing only
the value of that clause changes the outcome of the predicate

φ(a,b,c) ≠ φ(a,b,¬c)
(a || b && c)

a=F
b=T
c=T

T

MC/DC Coverage

● A clause determines the outcome of a predicate when changing only
the value of that clause changes the outcome of the predicate

φ(a,b,c) ≠ φ(a,b,¬c)
(a || b && c)

a=F
b=T
c=T

T

a=F
b=T
c=F

F

MC/DC Coverage

● A clause determines the outcome of a predicate when changing only
the value of that clause changes the outcome of the predicate

φ(a,b,c) ≠ φ(a,b,¬c)
(a || b && c)

a=F
b=T
c=T

T

a=F
b=T
c=F

F

MC/DC Coverage

● A clause determines the outcome of a predicate when changing only
the value of that clause changes the outcome of the predicate

φ(a,b,c) ≠ φ(a,b,¬c)
(a || b && c)

a=F
b=T
c=T

T

a=F
b=T
c=F

F

This pair of tests shows the impact of c.

MC/DC Coverage

● A clause determines the outcome of a predicate when changing only
the value of that clause changes the outcome of the predicate

● The basic steps come from & and |

MC/DC Coverage

● A clause determines the outcome of a predicate when changing only
the value of that clause changes the outcome of the predicate

● The basic steps come from & and |

a & b
If a=True, b determines

the outcome.

MC/DC Coverage

● A clause determines the outcome of a predicate when changing only
the value of that clause changes the outcome of the predicate

● The basic steps come from & and |

a | b
If a=False, b determines

the outcome.

a & b
If a=True, b determines

the outcome.

MC/DC Coverage

● A clause determines the outcome of a predicate when changing only
the value of that clause changes the outcome of the predicate

● The basic steps come from & and |

● By definition, solve φc=true ⊕ φc=false

a | b
If a=False, b determines

the outcome.

a & b
If a=True, b determines

the outcome.

MC/DC Coverage

● Given a | (b & c), generate tests for a
a has impact ↔

MC/DC Coverage

● Given a | (b & c), generate tests for a
#T | (b & c)a has impact ↔ ≠ #F | (b & c)

MC/DC Coverage

● Given a | (b & c), generate tests for a
#T | (b & c)a has impact ↔ ≠ #F | (b & c)

#T↔ ≠ b & c

MC/DC Coverage

● Given a | (b & c), generate tests for a
#T | (b & c)a has impact ↔ ≠ #F | (b & c)

#T↔ ≠ b & c

#T↔ = ¬b | ¬c

MC/DC Coverage

● Given a | (b & c), generate tests for a
#T | (b & c)a has impact ↔ ≠ #F | (b & c)

#T↔ ≠ b & c

#T↔ = ¬b | ¬c

b is false or c is false↔

MC/DC Coverage

● Given a | (b & c), generate tests for a
#T | (b & c)a has impact ↔ ≠ #F | (b & c)

#T↔ ≠ b & c

#T↔ = ¬b | ¬c

b is false or c is false↔

defines two different ways to test a

MC/DC Coverage

● Given a | (b & c), generate tests for a
#T | (b & c)a has impact ↔ ≠ #F | (b & c)

#T↔ ≠ b & c

#T↔ = ¬b | ¬c

b is false or c is false↔

defines two different ways to test a

a=#T, b=#F, c=#T
a=#F, b=#F, c=#T

Have b be #F

MC/DC Coverage

● Given a | (b & c), generate tests for a
#T | (b & c)a has impact ↔ ≠ #F | (b & c)

#T↔ ≠ b & c

#T↔ = ¬b | ¬c

b is false or c is false↔

defines two different ways to test a

a=#T, b=#F, c=#T
a=#F, b=#F, c=#T

a=#T, b=#T, c=#F
a=#F, b=#T, c=#F

Have b be #F Have c be #F

MC/DC Coverage

● Given a | (b & c), generate tests for b
b has impact

MC/DC Coverage

● Given a | (b & c), generate tests for b
b has impact

|

&a

b c

MC/DC Coverage

● Given a | (b & c), generate tests for b
b has impact

|

a &

b c

c must be true for impact

MC/DC Coverage

● Given a | (b & c), generate tests for b
b has impact

&

b c

a must be false for impact
|

a

MC/DC Coverage

● Given a | (b & c), generate tests for b
b has impact ↔ a = #F & c = #T

MC/DC Coverage

● What about (a & b) | (a & ¬b)?
– Can you show the impact of a?

MC/DC Coverage

● What about (a & b) | (a & ¬b)?
– Can you show the impact of a?
– Can you show the impact of b?

MC/DC Coverage

● What about (a & b) | (a & ¬b)?
– Can you show the impact of a?
– Can you show the impact of b?

Lack of MC/DC coverage
can also identify bugs.

MC/DC Coverage

● What about (a & b) | (a & ¬b)?
– Can you show the impact of a?
– Can you show the impact of b?

● BUT NASA recommended not generating MC/DC coverage.
– Use MC/DC as a means of evaluating test suites generated by other means

MC/DC Coverage

● What about (a & b) | (a & ¬b)?
– Can you show the impact of a?
– Can you show the impact of b?

● BUT NASA recommended not generating MC/DC coverage.
– Use MC/DC as a means of evaluating test suites generated by other means

● In practice there are many pitfalls for getting value out of it

MC/DC Coverage

● What about (a & b) | (a & ¬b)?
– Can you show the impact of a?
– Can you show the impact of b?

● BUT NASA recommended not generating MC/DC coverage.
– Use MC/DC as a means of evaluating test suites generated by other means

● In practice there are many pitfalls for getting value out of it
– If you refactor the code, why does the coverage change?

MC/DC Coverage

● What about (a & b) | (a & ¬b)?
– Can you show the impact of a?
– Can you show the impact of b?

● BUT NASA recommended not generating MC/DC coverage.
– Use MC/DC as a means of evaluating test suites generated by other means

● In practice there are many pitfalls for getting value out of it
– If you refactor the code, why does the coverage change?
– How do you deal with short-circuiting operators?
– ...

Mutation Testing

Mutation Analysis

● Instead of covering program elements,
estimate defect finding on a sample of representative bugs

Mutation Analysis

● Instead of covering program elements,
estimate defect finding on a sample of representative bugs

● Mutant
– A valid program that behaves differently than the original

Mutation Analysis

● Instead of covering program elements,
estimate defect finding on a sample of representative bugs

● Mutant
– A valid program that behaves differently than the original
– Consider small, local changes to programs

Mutation Analysis

● Instead of covering program elements,
estimate defect finding on a sample of representative bugs

● Mutant
– A valid program that behaves differently than the original
– Consider small, local changes to programs

a = b + c a = b * c

Mutation Analysis

● Instead of covering program elements,
estimate defect finding on a sample of representative bugs

● Mutant
– A valid program that behaves differently than the original
– Consider small, local changes to programs
– A test t kills a mutant m if t produces a different outcome on m than

the original program

Mutation Analysis

● Instead of covering program elements,
estimate defect finding on a sample of representative bugs

● Mutant
– A valid program that behaves differently than the original
– Consider small, local changes to programs
– A test t kills a mutant m if t produces a different outcome on m than

the original program What does this mean?

Mutation Analysis

● Instead of covering program elements,
estimate defect finding on a sample of representative bugs

● Mutant
– A valid program that behaves differently than the original
– Consider small, local changes to programs
– A test t kills a mutant m if t produces a different outcome on m than

the original program

● Systematically generate mutants separately from original program

Mutation Analysis

● Instead of covering program elements,
estimate defect finding on a sample of representative bugs

● Mutant
– A valid program that behaves differently than the original
– Consider small, local changes to programs
– A test t kills a mutant m if t produces a different outcome on m than

the original program

● Systematically generate mutants separately from original program
● The goal is to:

– Mutation Analysis – Measure bug finding ability
– Mutation Testing – create a test suite that kills a representative set of mutants

Mutation Analysis

● Instead of covering program elements,
estimate defect finding on a sample of representative bugs

● Mutant
– A valid program that behaves differently than the original
– Consider small, local changes to programs
– A test t kills a mutant m if t produces a different outcome on m than

the original program

● Systematically generate mutants separately from original program
● The goal is to:

– Mutation Analysis – Measure bug finding ability
– Mutation Testing – create a test suite that kills a representative set of mutants

Depending on the source, these may swap...

154

Mutation

● What are possible mutants?
int foo(int x, int y) {
 if (x > 5) {return x + y;}
 else {return x;}
}

155

Mutation

● What are possible mutants?

● Once we have a test case that kills a mutant,
the mutant itself is no longer useful.

int foo(int x, int y) {
 if (x > 5) {return x + y;}
 else {return x;}
}

156

Mutation

● What are possible mutants?

● Once we have a test case that kills a mutant,
the mutant itself is no longer useful.

● Some are not generally useful:
– (Still Born) Not compilable

int foo(int x, int y) {
 if (x > 5) {return x + y;}
 else {return x;}
}

157

Mutation

● What are possible mutants?

● Once we have a test case that kills a mutant,
the mutant itself is no longer useful.

● Some are not generally useful:
– (Still Born) Not compilable
– (Trivial) Killed by most test cases

int foo(int x, int y) {
 if (x > 5) {return x + y;}
 else {return x;}
}

158

Mutation

● What are possible mutants?

● Once we have a test case that kills a mutant,
the mutant itself is no longer useful.

● Some are not generally useful:
– (Still Born) Not compilable
– (Trivial) Killed by most test cases
– (Equivalent) Indistinguishable from original program

int foo(int x, int y) {
 if (x > 5) {return x + y;}
 else {return x;}
}

159

Mutation

● What are possible mutants?

● Once we have a test case that kills a mutant,
the mutant itself is no longer useful.

● Some are not generally useful:
– (Still Born) Not compilable
– (Trivial) Killed by most test cases
– (Equivalent) Indistinguishable from original program
– (Redundant) Indistinguishable from other mutants

int foo(int x, int y) {
 if (x > 5) {return x + y;}
 else {return x;}
}

160

Mutation

● What are possible mutants?

● Once we have a test case that kills a mutant,
the mutant itself is no longer useful.

● Some are not generally useful:
– (Still Born) Not compilable
– (Trivial) Killed by most test cases
– (Equivalent) Indistinguishable from original program
– (Redundant) Indistinguishable from other mutants

int foo(int x, int y) {
 if (x > 5) {return x + y;}
 else {return x;}
}

Filtering these out is theoretically impossible,
yet it is an important & active area of research.

161

Mutation
int min(int a, int b) {
 int minVal;
 minVal = a;
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

– Mimic mistakes
– Encode knowledge from other techniques

162

Mutation
int min(int a, int b) {
 int minVal;
 minVal = a;
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

int min(int a, int b) {
 int minVal;
 minVal = a;

 if (b < a) {

 minVal = b;

 }
 return minVal;
}

– Mimic mistakes
– Encode knowledge from other techniques

163

Mutation
int min(int a, int b) {
 int minVal;
 minVal = a;
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

int min(int a, int b) {
 int minVal;
 minVal = a;
 minVal = b;
 if (b < a) {

 minVal = b;

 }
 return minVal;
}

Mutant 1: minVal = b;

– Mimic mistakes
– Encode knowledge from other techniques

164

Mutation
int min(int a, int b) {
 int minVal;
 minVal = a;
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

int min(int a, int b) {
 int minVal;
 minVal = a;
 minVal = b;
 if (b < a) {
 if (b > a) {

 minVal = b;

 }
 return minVal;
}

Mutant 1: minVal = b;

Mutant 2: if (b > a) {

– Mimic mistakes
– Encode knowledge from other techniques

165

Mutation
int min(int a, int b) {
 int minVal;
 minVal = a;
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

int min(int a, int b) {
 int minVal;
 minVal = a;
 minVal = b;
 if (b < a) {
 if (b > a) {
 if (b < minVal) {
 minVal = b;

 }
 return minVal;
}

Mutant 1: minVal = b;

Mutant 2: if (b > a) {
Mutant 3: if (b < minVal) {

– Mimic mistakes
– Encode knowledge from other techniques

166

Mutation
int min(int a, int b) {
 int minVal;
 minVal = a;
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

int min(int a, int b) {
 int minVal;
 minVal = a;
 minVal = b;
 if (b < a) {
 if (b > a) {
 if (b < minVal) {
 minVal = b;
 BOMB();

 }
 return minVal;
}

Mutant 1: minVal = b;

Mutant 2: if (b > a) {
Mutant 3: if (b < minVal) {

Mutant 4: BOMB();

– Mimic mistakes
– Encode knowledge from other techniques

167

Mutation
int min(int a, int b) {
 int minVal;
 minVal = a;
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

int min(int a, int b) {
 int minVal;
 minVal = a;
 minVal = b;
 if (b < a) {
 if (b > a) {
 if (b < minVal) {
 minVal = b;
 BOMB();
 minVal = a;

 }
 return minVal;
}

Mutant 1: minVal = b;

Mutant 2: if (b > a) {
Mutant 3: if (b < minVal) {

Mutant 4: BOMB();
Mutant 5: minVal = a;

– Mimic mistakes
– Encode knowledge from other techniques

168

Mutation
int min(int a, int b) {
 int minVal;
 minVal = a;
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

int min(int a, int b) {
 int minVal;
 minVal = a;
 minVal = b;
 if (b < a) {
 if (b > a) {
 if (b < minVal) {
 minVal = b;
 BOMB();
 minVal = a;
 minVal = failOnZero(b);
 }
 return minVal;
}

Mutant 1: minVal = b;

Mutant 2: if (b > a) {
Mutant 3: if (b < minVal) {

Mutant 4: BOMB();
Mutant 5: minVal = a;
Mutant 6: minVal = failOnZero(b);

– Mimic mistakes
– Encode knowledge from other techniques

169

Mutation
int min(int a, int b) {
 int minVal;
 minVal = a;
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

int min(int a, int b) {
 int minVal;
 minVal = a;
 minVal = b;
 if (b < a) {
 if (b > a) {
 if (b < minVal) {
 minVal = b;
 BOMB();
 minVal = a;
 minVal = failOnZero(b);
 }
 return minVal;
}

Mutant 1: minVal = b;

Mutant 2: if (b > a) {
Mutant 3: if (b < minVal) {

Mutant 4: BOMB();
Mutant 5: minVal = a;
Mutant 6: minVal = failOnZero(b);

What mimics
statement coverage?

– Mimic mistakes
– Encode knowledge from other techniques

170

Mutation Analysis

Mutants
Mutant 1
Mutant 2
Mutant 3
Mutant 4
Mutant 5
Mutant 6

171

Mutation Analysis

Mutants Test Suite
min(1,2) Ô 1
min(2,1) Ô 1

Mutant 1
Mutant 2
Mutant 3
Mutant 4
Mutant 5
Mutant 6

172

Mutation Analysis

Mutants Test Suite
min(1,2) Ô 1
min(2,1) Ô 1

Try every mutant on test 1.

Mutant 1
Mutant 2
Mutant 3
Mutant 4
Mutant 5
Mutant 6

173

Ki
lle

d

Mutation Analysis

Mutants Test Suite
min(1,2) Ô 1
min(2,1) Ô 1

Mutant 1
Mutant 2
Mutant 3
Mutant 4
Mutant 5
Mutant 6

174

Mutation Analysis

min(1,2) Ô 1
min(2,1) Ô 1Ki

lle
d

Try every live mutant on test 2.

Mutant 1
Mutant 2
Mutant 3
Mutant 4
Mutant 5
Mutant 6

Mutants Test Suite

175

Mutation Analysis

min(1,2) Ô 1
Ki

lle
d

min(2,1) Ô 1
Ki

lle
d

Mutant 1
Mutant 2
Mutant 3
Mutant 4
Mutant 5
Mutant 6

Mutants Test Suite

176

Mutation Analysis

min(1,2) Ô 1
Ki

lle
d

min(2,1) Ô 1
Ki

lle
d

So the mutation score is...

Mutant 1
Mutant 2
Mutant 3
Mutant 4
Mutant 5
Mutant 6

Mutants Test Suite

177

Mutation Analysis

min(1,2) Ô 1
Ki

lle
d

min(2,1) Ô 1
Ki

lle
d

So the mutation score is... 4/5. Why?

Mutant 1
Mutant 2
Mutant 3
Mutant 4
Mutant 5
Mutant 6

Mutants Test Suite

178

Mutation Analysis

min(1,2) Ô 1
Ki

lle
d

min(2,1) Ô 1
Ki

lle
d

min3(int a, int b):
 int minVal;
 minVal = a;
 if (b < minVal)
 minVal = b;
 return minVal;

min6(int a, int b):
 int minVal;
 minVal = a;
 if (b < a)
 minVal = failOnZero(b);
 return minVal;

So the mutation score is... 4/5. Why?

Mutant 1
Mutant 2
Mutant 3
Mutant 4
Mutant 5
Mutant 6

Mutants Test Suite

179

Mutation Analysis

min(1,2) Ô 1
Ki

lle
d

min(2,1) Ô 1
Ki

lle
d

min3(int a, int b):
 int minVal;
 minVal = a;
 if (b < minVal)
 minVal = b;
 return minVal;

min3(int a, int b):
 int minVal;
 minVal = a;
 if (b < a)
 minVal = failOnZero(b);
 return minVal;

Equivalent to the original!
There is no injected bug.

So the mutation score is... 4/5. Why?

Mutant 1
Mutant 2
Mutant 3
Mutant 4
Mutant 5
Mutant 6

Mutants Test Suite

180

Equivalent Mutants

● Equivalent mutants are not bugs and should not be counted

181

Equivalent Mutants

● Equivalent mutants are not bugs and should not be counted
● New Mutation Score:

182

Equivalent Mutants

● Equivalent mutants are not bugs and should not be counted
● New Mutation Score:

Killed
Mutants

Start with the simplest score
from fault seeding

183

Equivalent Mutants

● Equivalent mutants are not bugs and should not be counted
● New Mutation Score:

Killed
Mutants−# Equivalent

Traditional mutation score
from literature

184

Equivalent Mutants

● Equivalent mutants are not bugs and should not be counted
● New Mutation Score:

Killed−# KilledDuplicates
Mutants−# Equivalent−# Duplicates

Updated for handling of
duplicate & equivalent mutants

185

Equivalent Mutants

● Equivalent mutants are not bugs and should not be counted
● New Mutation Score:

● Detecting equivalent mutants is undecidable in general

Killed−# KilledDuplicates
Mutants−# Equivalent−# Duplicates

186

Equivalent Mutants

● Equivalent mutants are not bugs and should not be counted
● New Mutation Score:

● Detecting equivalent mutants is undecidable in general
● So why are they equivalent?

Reachability Infection Propagation

Killed−# KilledDuplicates
Mutants−# Equivalent−# Duplicates

187

Equivalent Mutants

● Identifying equivalent mutants is one of the most expensive /
burdensome aspects of mutation analysis.

188

Equivalent Mutants

● Identifying equivalent mutants is one of the most expensive /
burdensome aspects of mutation analysis.

min3(int a, int b):
 int minVal;
 minVal = a;
 if (b < minVal)
 minVal = b;
 return minVal;

Requires reasoning about why
the result was the same.

189

Mutation Operators

● Are the mutants representative of all bugs?
● Do we expect the mutation score to be meaningful?

Ideas? Why? Why not?

190

Mutation Operators

● Are the mutants representative of all bugs?
● Do we expect the mutation score to be meaningful?

2 Key ideas are missing....

Ideas? Why? Why not?

191

Competent Programmer Hypothesis

Programmers tend to write code that is almost correct

192

Competent Programmer Hypothesis

Programmers tend to write code that is almost correct
– So most of the time simple mutations should reflect the real bugs.

193

Coupling Effect

Tests that cover so much behavior that even simple errors are detected
should also be sensitive enough to detect more complex errors

194

Coupling Effect

Tests that cover so much behavior that even simple errors are detected
should also be sensitive enough to detect more complex errors

– By casting a fine enough net, we'll catch the big fish, too (sorry dolphins)

195

Mutation Testing

● Considered one of the strongest criteria

196

Mutation Testing

● Considered one of the strongest criteria
– Mimics some input specifications
– Mimics some traditional coverage (statement, branch, …)

197

Mutation Testing

● Considered one of the strongest criteria
– Mimics some input specifications
– Mimics some traditional coverage (statement, branch, …)

● Massive number of criteria.

Why?

198

Mutation Testing

● Considered one of the strongest criteria
– Mimics some input specifications
– Mimics some traditional coverage (statement, branch, …)

● Massive number of criteria.
– The large space of mutants means that current users sample or select
– But these approaches are known to be less effective

199

Mutation Testing

● Considered one of the strongest criteria
– Mimics some input specifications
– Mimics some traditional coverage (statement, branch, …)

● Massive number of criteria.
– The large space of mutants means that current users sample or select
– But these approaches are known to be less effective

● Scaling up mutation testing is an area of open research

200

Mutation Testing

● Considered one of the strongest criteria
– Mimics some input specifications
– Mimics some traditional coverage (statement, branch, …)

● Massive number of criteria.
– The large space of mutants means that current users sample or select
– But these approaches are known to be less effective

● Scaling up mutation testing is an area of open research
– Better pruning? (equivalent, duplicate, invalid, equivalent WRT test suite)

201

Mutation Testing

● Considered one of the strongest criteria
– Mimics some input specifications
– Mimics some traditional coverage (statement, branch, …)

● Massive number of criteria.
– The large space of mutants means that current users sample or select
– But these approaches are known to be less effective

● Scaling up mutation testing is an area of open research
– Better pruning? (equivalent, duplicate, invalid, equivalent WRT test suite)
– Identifying subsumption relations (If x is killed, y is also killed)

(semantics based, ML based, ...) [Chekam 2020, Kurtz 2014, Just 2014]

https://link-springer-com.proxy.lib.sfu.ca/article/10.1007/s10664-019-09778-7
https://cs.gmu.edu/~offutt/rsrch/papers/MutantSubsumptionGraph-Mut2014.pdf
https://cs.gmu.edu/~offutt/classes/763/papers/Just-NonRedundantOps-STVR2014.pdf

202

Mutation Testing

● Considered one of the strongest criteria
– Mimics some input specifications
– Mimics some traditional coverage (statement, branch, …)

● Massive number of criteria.
– The large space of mutants means that current users sample or select
– But these approaches are known to be less effective

● Scaling up mutation testing is an area of open research
– Better pruning? (equivalent, duplicate, invalid, equivalent WRT test suite)
– Identifying subsumption relations (If x is killed, y is also killed)

(semantics based, ML based, ...) [Chekam 2020, Kurtz 2014, Just 2014]
– Better abstractions (source level, IR level, complex faults) [Hariri 2019, Wong 2020]

https://link-springer-com.proxy.lib.sfu.ca/article/10.1007/s10664-019-09778-7
https://cs.gmu.edu/~offutt/rsrch/papers/MutantSubsumptionGraph-Mut2014.pdf
https://cs.gmu.edu/~offutt/classes/763/papers/Just-NonRedundantOps-STVR2014.pdf
http://mir.cs.illinois.edu/marinov/publications/HaririETAL19SourceVsIRMutation.pdf
https://arxiv.org/pdf/2004.02000.pdf

203

Mutation Testing

● Considered one of the strongest criteria
– Mimics some input specifications
– Mimics some traditional coverage (statement, branch, …)

● Massive number of criteria.
– The large space of mutants means that current users sample or select
– But these approaches are known to be less effective

● Scaling up mutation testing is an area of open research
– Better pruning? (equivalent, duplicate, invalid, equivalent WRT test suite)
– Identifying subsumption relations (If x is killed, y is also killed)

(semantics based, ML based, ...) [Chekam 2020, Kurtz 2014, Just 2014]
– Better abstractions (source level, IR level, complex faults) [Hariri 2019, Wong 2020]
– Better execution strategies (distributed, parallel, maximizing 1 run info)

[Tokumoto 2016, Gopinath 2016, Just 2014]

https://link-springer-com.proxy.lib.sfu.ca/article/10.1007/s10664-019-09778-7
https://cs.gmu.edu/~offutt/rsrch/papers/MutantSubsumptionGraph-Mut2014.pdf
https://cs.gmu.edu/~offutt/classes/763/papers/Just-NonRedundantOps-STVR2014.pdf
http://mir.cs.illinois.edu/marinov/publications/HaririETAL19SourceVsIRMutation.pdf
https://arxiv.org/pdf/2004.02000.pdf
https://ieeexplore-ieee-org.proxy.lib.sfu.ca/document/7515483
https://www.cefns.nau.edu/~adg326/icse16-2.pdf
https://homes.cs.washington.edu/~mernst/pubs/state-infection-issta2014.pdf

204

Mutation Testing

● How is it currently used in practice?
– Google can integrate results into the code review workflow

[Petrovic 2018]
– Facebook can use ML to guide the mutant process but not widely

[Beller 2021]
– Mutant sampling is still prevalent despite shortcomings [Petrovic 2018]
– Tools are available across languages,

but data for smaller firms is challenging

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46584.pdf
https://arxiv.org/pdf/2010.13464.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46584.pdf

205

Traditional Coverage vs Mutation

● Statement & branch based coverage are the most popular adequacy
measures in practice.

206

Traditional Coverage vs Mutation

● Statement & branch based coverage are the most popular adequacy
measures in practice.
– Covstmt(T1) > Covstmt(T2) → ?

207

Traditional Coverage vs Mutation

● Statement & branch based coverage are the most popular adequacy
measures in practice.
– Covstmt(T1) > Covstmt(T2) → ? Is T1 more likely to find

more bugs?

208

Traditional Coverage vs Mutation

● Statement & branch based coverage are the most popular adequacy
measures in practice.
– Covstmt(T1) > Covstmt(T2) → ? Is T1 more likely to find

more bugs?

What if you change |T|?

209

Traditional Coverage vs Mutation

● Statement & branch based coverage are the most popular adequacy
measures in practice.
– Covstmt(T1) > Covstmt(T2) →

● Understanding the relationships between different
levels of coverage and different
approaches to coverage

is actually challenging & fraught with error [Chen 2020]

https://www.cs.ubc.ca/~rtholmes/papers/ase_2020_chen.pdf

210

Traditional Coverage vs Mutation

● Statement & branch based coverage are the most popular adequacy
measures in practice.
– Covstmt(T1) > Covstmt(T2) →

● Understanding the relationships between different
levels of coverage and different
approaches to coverage

is actually challenging & fraught with error [Chen 2020]
– Having statement/branch coverage is better than not having it

https://www.cs.ubc.ca/~rtholmes/papers/ase_2020_chen.pdf

211

Traditional Coverage vs Mutation

● Statement & branch based coverage are the most popular adequacy
measures in practice.
– Covstmt(T1) > Covstmt(T2) →

● Understanding the relationships between different
levels of coverage and different
approaches to coverage

is actually challenging & fraught with error [Chen 2020]
– Having statement/branch coverage is better than not having it
– Beyond statements/branches, mutation coverage provides better assurance

https://www.cs.ubc.ca/~rtholmes/papers/ase_2020_chen.pdf

212

Traditional Coverage vs Mutation

● Statement & branch based coverage are the most popular adequacy
measures in practice.
– Covstmt(T1) > Covstmt(T2) →

● Understanding the relationships between different
levels of coverage and different
approaches to coverage

is actually challenging & fraught with error [Chen 2020]
– Having statement/branch coverage is better than not having it
– Beyond statements/branches, mutation coverage provides better assurance

So is that it?
Can we just do mutation

testing & be done?

https://www.cs.ubc.ca/~rtholmes/papers/ase_2020_chen.pdf

Regression Testing

214

Regression Testing

● Regression Testing

215

Regression Testing

● Regression Testing
– Retesting software as it evolves to ensure previous functionality

216

Regression Testing

● Regression Testing
– Retesting software as it evolves to ensure previous functionality

● Useful as a tool for ratcheting software quality

217

Regression Testing

● Regression Testing
– Retesting software as it evolves to ensure previous functionality

● Useful as a tool for ratcheting software quality

What is a ratchet?

218

Regression Testing

● Regression Testing
– Retesting software as it evolves to ensure previous functionality

● Useful as a tool for ratcheting software quality

What is a ratchet?

219

Regression Testing

● Regression Testing
– Retesting software as it evolves to ensure previous functionality

● Useful as a tool for ratcheting software quality
● Regression tests further enable making changes

220

Why Use Regression Testing

● As software evolves, previously working functionality can fail.

221

Why Use Regression Testing

● As software evolves, previously working functionality can fail
– Software is complex & interconnected.

222

Why Use Regression Testing

● As software evolves, previously working functionality can fail
– Software is complex & interconnected.
– Changing one component can unintentionally impact another.

223

Why Use Regression Testing

● As software evolves, previously working functionality can fail
– Software is complex & interconnected.
– Changing one component can unintentionally impact another.

Contents
parseFile(std::path& p) {
 ...
 auto header = parseHeader(...);
 ...
}

224

Why Use Regression Testing

● As software evolves, previously working functionality can fail
– Software is complex & interconnected.
– Changing one component can unintentionally impact another.

Header
parseHeader(std::ifstream& in) {
 ...
} Contents

parseFile(std::path& p) {
 ...
 auto header = parseHeader(...);
 ...
}

225

Why Use Regression Testing

● As software evolves, previously working functionality can fail
– Software is complex & interconnected.
– Changing one component can unintentionally impact another.

Header
parseHeader(std::ifstream& in) {
 ...
} Contents

parseFile(std::path& p) {
 ...
 auto header = parseHeader(...);
 ...
}

226

Why Use Regression Testing

● As software evolves, previously working functionality can fail
– Software is complex & interconnected.
– Changing one component can unintentionally impact another.
– New environments can introduce unexpected behavior in components that

originally work.

227

Why Use Regression Testing

● As software evolves, previously working functionality can fail
– Software is complex & interconnected.
– Changing one component can unintentionally impact another.
– New environments can introduce unexpected behavior in components that

originally work.

● Most testing is regression testing (testing in response to change)

228

Why Use Regression Testing

● As software evolves, previously working functionality can fail
– Software is complex & interconnected.
– Changing one component can unintentionally impact another.
– New environments can introduce unexpected behavior in components that

originally work.

● Most testing is regression testing
● Ensuring previous functionality can require large test suites.

Are they always realistic?

229

Limiting Regression Suites

● Be careful not to add redundant test to the test suite.

230

Limiting Regression Suites

● Be careful not to add redundant test to the test suite.
– Every bug may indicate a useful behavior to test
– Test adequacy criteria can limit the other tests

231

Limiting Regression Suites

● Be careful not to add redundant test to the test suite.
– Every bug may indicate a useful behavior to test
– Test adequacy criteria can limit the other tests

But this is more or less where we started...

232

Limiting Regression Suites

● Be careful not to add redundant test to the test suite.
– Every bug may indicate a useful behavior to test
– Test adequacy criteria can limit the other tests

● Sometimes not all tests need to run with each commit

233

Limiting Regression Suites

● Be careful not to add redundant test to the test suite.
– Every bug may indicate a useful behavior to test
– Test adequacy criteria can limit the other tests

● Sometimes not all tests need to run with each commit
– Run a subset of sanity or smoke tests for commits

234

Limiting Regression Suites

● Be careful not to add redundant test to the test suite.
– Every bug may indicate a useful behavior to test
– Test adequacy criteria can limit the other tests

● Sometimes not all tests need to run with each commit
– Run a subset of sanity or smoke tests for commits

These mostly validate the build process
& core behaviors.

235

Limiting Regression Suites

● Be careful not to add redundant test to the test suite.
– Every bug may indicate a useful behavior to test
– Test adequacy criteria can limit the other tests

● Sometimes not all tests need to run with each commit
– Run a subset of sanity or smoke tests for commits
– Run more thorough tests nightly

236

Limiting Regression Suites

● Be careful not to add redundant test to the test suite.
– Every bug may indicate a useful behavior to test
– Test adequacy criteria can limit the other tests

● Sometimes not all tests need to run with each commit
– Run a subset of sanity or smoke tests for commits
– Run more thorough tests nightly
– “ ” weekly
– “ ” preparing for milestones/ integration

237

Limiting Regression Suites

● Be careful not to add redundant test to the test suite.
– Every bug may indicate a useful behavior to test
– Test adequacy criteria can limit the other tests

● Sometimes not all tests need to run with each commit
– Run a subset of sanity or smoke tests for commits
– Run more thorough tests nightly
– “ ” weekly
– “ ” preparing for milestones/ integration

● We may further reduce work using information about the change....

238

Limiting Regression Testing

● Can we be smarter about which test we run & when?

What else could we do?

239

Limiting Regression Testing

● Can we be smarter about which test we run & when?
● Change Impact Analysis

– Identify how changes affect the rest of software

240

Limiting Regression Testing

● Can we be smarter about which test we run & when?
● Change Impact Analysis

– Identify how changes affect the rest of software

● Can decide which tests to run on demand

241

Limiting Regression Testing

● Can we be smarter about which test we run & when?
● Change Impact Analysis

– Identify how changes affect the rest of software

● Can decide which tests to run on demand
– Conservative: run all tests
– Cheap: run tests with test requirements related to the changed lines

242

Limiting Regression Testing

● Can we be smarter about which test we run & when?
● Change Impact Analysis

– Identify how changes affect the rest of software

● Can decide which tests to run on demand
– Conservative: run all tests
– Cheap: run tests with test requirements related to the changed lines

Is the cheap approach enough?

243

Limiting Regression Testing

● Can we be smarter about which test we run & when?
● Change Impact Analysis

– Identify how changes affect the rest of software

● Can decide which tests to run on demand
– Conservative: run all tests
– Cheap: run tests with test requirements related to the changed lines
– Middle ground: Run those tests affected by how changes propagate

through the software?

244

Limiting Regression Testing

● Can we be smarter about which test we run & when?
● Change Impact Analysis

– Identify how changes affect the rest of software

● Can decide which tests to run on demand
– Conservative: run all tests
– Cheap: run tests with test requirements related to the changed lines
– Middle ground: Run those tests affected by how changes propagate

through the software?In practice, tools can assist in finding
out which tests need to be run

245

Change Impact Analysis & Regression Test Selection

● Given a set of changes,
regression test selection determines which tests to execute

246

Change Impact Analysis & Regression Test Selection

● Given a set of changes,
regression test selection determines which tests to execute
– The analysis detects dependencies between components

Header
parseHeader(std::ifstream& in) {
 ...
} Contents

parseFile(std::path& p) {
 ...
 auto header = parseHeader(...);
 ...
}

247

Change Impact Analysis & Regression Test Selection

● Given a set of changes,
regression test selection determines which tests to execute
– The analysis detects dependencies between components
– Only tests for components (transitively) dependent on a change need to run

Header
parseHeader(std::ifstream& in) {
 ...
} Contents

parseFile(std::path& p) {
 ...
 auto header = parseHeader(...);
 ...
}

248

Change Impact Analysis & Regression Test Selection

● Given a set of changes,
regression test selection determines which tests to execute
– The analysis detects dependencies between components
– Only tests for components (transitively) dependent on a change need to run
– Different forms of dependence impact the efficiency, safety, & reduction

249

Change Impact Analysis & Regression Test Selection

● Given a set of changes,
regression test selection determines which tests to execute
– The analysis detects dependencies between components
– Only tests for components (transitively) dependent on a change need to run
– Different forms of dependence impact the efficiency, safety, & reduction

void
foo() {
 ...
 out = fopen(“channel.txt”,”w”);
 fwrite(out, ...);
}

void
bar() {
 ...
 in = fopen(“channel.txt”, “r”);
 fread(in, ...);
}

250

Change Impact Analysis & Regression Test Selection

● Given a set of changes,
regression test selection determines which tests to execute
– The analysis detects dependencies between components
– Only tests for components (transitively) dependent on a change need to run
– Different forms of dependence impact the efficiency, safety, & reduction

● The granularity of the analysis also affects all aspects of performance

Project A Class A Function A

Project B Class B Function B

251

Change Impact Analysis & Regression Test Selection

● Given a set of changes,
regression test selection determines which tests to execute
– The analysis detects dependencies between components
– Only tests for components (transitively) dependent on a change need to run
– Different forms of dependence impact the efficiency, safety, & reduction

● The granularity of the analysis also affects all aspects of performance

Project A Class A Function A

Project B Class B Function B

Why might project dependencies be too conservative?

252

Change Impact Analysis & Regression Test Selection

● Given a set of changes,
regression test selection determines which tests to execute
– The analysis detects dependencies between components
– Only tests for components (transitively) dependent on a change need to run
– Different forms of dependence impact the efficiency, safety, & reduction

● The granularity of the analysis also affects all aspects of performance

Project A Class A Function A

Project B Class B Function B

Why might class dependencies be too conservative?

253

Change Impact Analysis & Regression Test Selection

● Given a set of changes,
regression test selection determines which tests to execute
– The analysis detects dependencies between components
– Only tests for components (transitively) dependent on a change need to run
– Different forms of dependence impact the efficiency, safety, & reduction

● The granularity of the analysis also affects all aspects of performance

Project A Class A Function A

Project B Class B Function B

Why might function dependencies be too conservative?

254

Change Impact Analysis & Regression Test Selection

● Given a set of changes,
regression test selection determines which tests to execute
– The analysis detects dependencies between components
– Only tests for components (transitively) dependent on a change need to run
– Different forms of dependence impact the efficiency, safety, & reduction

● The granularity of the analysis also affects all aspects of performance
● We will discuss the techniques underneath this as

static & dynamic program analysis

255

Additional Strategies for Speeding Up Testing

● Test Case Prioritization
– Can we run the tests in an order such that the suite fails faster?

[Elbaum 2002]

https://ieeexplore-ieee-org.proxy.lib.sfu.ca/document/988497

256

Additional Strategies for Speeding Up Testing

● Test Case Prioritization
– Can we run the tests in an order such that the suite fails faster?

[Elbaum 2002]

● Test Suite Reduction
– Can we shrink our test suite but still test enough?
– Current evidence points to test suite reduction performing poorly in practice.

[Shi 2018]

https://ieeexplore-ieee-org.proxy.lib.sfu.ca/document/988497
http://mir.cs.illinois.edu/awshi2/publications/ISSTA2018.pdf

257

Additional Strategies for Speeding Up Testing

● Test Case Prioritization
– Can we run the tests in an order such that the suite fails faster?

[Elbaum 2002]

● Test Suite Reduction
– Can we shrink our test suite but still test enough?
– Current evidence points to test suite reduction performing poorly in practice.

[Shi 2018]

● Bug Prediction
– Can we mine properties of a repository to predict where bugs will likely be?
– Evidence indicated a mismatch between techniques & outcomes [Lewis 2013]
– But advances are ongoing [Nam 2017]

https://ieeexplore-ieee-org.proxy.lib.sfu.ca/document/988497
http://mir.cs.illinois.edu/awshi2/publications/ISSTA2018.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41145.pdf
https://dl-acm-org.proxy.lib.sfu.ca/doi/abs/10.1145/2786805.2786814

Using Test Suites
For Other Purposes

Leveraging Test Suites Further

● We have considered how to
– write tests well.
– measure & assess a test suite.
– efficiently & effectively add testing into a workflow.

Leveraging Test Suites Further

● We have considered how to
– write tests well.
– measure & assess a test suite.
– efficiently & effectively add testing into a workflow.

● All of these aid using tests to know when bugs occur

Leveraging Test Suites Further

● We have considered how to
– write tests well.
– measure & assess a test suite.
– efficiently & effectively add testing into a workflow.

● All of these aid using tests to know when bugs occur
● But we often care about other tasks:

– Investigating why a bug exists
– Repairing a bug
– Hardening a program against attack
– Reusing old software (even if the source code has been lost)

Leveraging Test Suites Further

● We have considered how to
– write tests well.
– measure & assess a test suite.
– efficiently & effectively add testing into a workflow.

● All of these aid using tests to know when bugs occur
● But we often care about other tasks:

– Investigating why a bug exists
– Repairing a bug
– Hardening a program against attack
– Reusing old software (even if the source code has been lost)

● All of these can be aided, guided, or automated using test suites

Leveraging Test Suites Further

● What information does a test suite give us?

Leveraging Test Suites Further

● What information does a test suite give us?
– A weak black box oracle for program correctness

foo.out

Is foo.out correct?

Leveraging Test Suites Further

● What information does a test suite give us?
– A weak black box oracle for program correctness
– Observable information about program behavior during tests

foo.outI2 O2

foo.outI5 O5

foo.outI3 O3

foo.outI6 O6

foo.outI1 O1

foo.outI4 O4

Leveraging Test Suites Further

● What information does a test suite give us?
– A weak black box oracle for program correctness
– Observable information about program behavior during tests

● We can run a test suite (even in a loop) to build tasks using these tools!

Leveraging Test Suites Further

● What information does a test suite give us?
– A weak black box oracle for program correctness
– Observable information about program behavior during tests

● We can run a test suite (even in a loop) to build tasks using these tools!
● Interesting questions:

– What occurs in tests that pass?
– What occurs in tests that fail?
– Can I search for X that is part of a correct program?
– Can I search for X that is part of a buggy program?
– ...

Fault Localization

● Suppose that a bug at a statement causes some tests to fail

Fault Localization

● Suppose that a bug at a statement causes some tests to fail
– The test suite embeds information that can aid our search for the bug
– Fault localization ranks the locations in a program to consider

Fault Localization

● Suppose that a bug at a statement causes some tests to fail
– The test suite embeds information that can aid our search for the bug
– Fault localization ranks the locations in a program to consider

● Given
– A test suite T = <{ti}, o>
– Passing tests p ⊂{ti}
– Failing tests f ⊂{ti}
– Observable criteria c(ti) = ci

Fault Localization

● Suppose that a bug at a statement causes some tests to fail
– The test suite embeds information that can aid our search for the bug
– Fault localization ranks the locations in a program to consider

● Given
– A test suite T = <{ti}, o>
– Passing tests p ⊂{ti}
– Failing tests f ⊂{ti}
– Observable criteria c(ti) = ci

● Produce
– A ranked list of locations [li] for a developer to consider

Fault Localization

● Suppose that a bug at a statement causes some tests to fail
– The test suite embeds information that can aid our search for the bug
– Fault localization ranks the locations in a program to consider

● Given
– A test suite T = <{ti}, o>
– Passing tests p ⊂{ti}
– Failing tests f ⊂{ti}
– Observable criteria c(ti) = ci

● Produce
– A ranked list of locations [li] for a developer to consider

if condition:
 x = a + b
else:
 y = c * d
return x + y

1
2

3
4

Fault Localization

● Suppose that a bug at a statement causes some tests to fail
– The test suite embeds information that can aid our search for the bug
– Fault localization ranks the locations in a program to consider

● Given
– A test suite T = <{ti}, o>
– Passing tests p ⊂{ti}
– Failing tests f ⊂{ti}
– Observable criteria c(ti) = ci

● Produce
– A ranked list of locations [li] for a developer to consider

if condition:
 x = a + b
else:
 y = c * d
return x + y

1
2

3
4

1
2

3

4

Fault Localization

● Suppose that a bug at a statement causes some tests to fail
– The test suite embeds information that can aid our search for the bug
– Fault localization ranks the locations in a program to consider

● Given
– A test suite T = <{ti}, o>
– Passing tests p ⊂{ti}
– Failing tests f ⊂{ti}
– Observable criteria c(ti) = ci

● Produce
– A ranked list of locations [li] for a developer to consider

● Measures
– Top-1 is ideal. Outside of Top-10 is not useful for manual analysis.

Fault Localization

● Suppose that a bug at a statement causes some tests to fail
– The test suite embeds information that can aid our search for the bug
– Fault localization ranks the locations in a program to consider

● Given
– A test suite T = <{ti}, o>
– Passing tests p ⊂{ti}
– Failing tests f ⊂{ti}
– Observable criteria c(ti) = ci

● Produce
– A ranked list of locations [li] for a developer to consider

● Measures
– Top-1 is ideal. Outside of Top-10 is not useful for manual analysis.

1
2

3

4

Fault Localization

● What criteria might be useful?

Fault Localization

● What criteria might be useful?
– Simple test coverage/adequacy information

Fault Localization

● What criteria might be useful?
– Simple test coverage/adequacy information
– Important values (return values, arguments, specific functions)

Fault Localization

● What criteria might be useful?
– Simple test coverage/adequacy information
– Important values (return values, arguments, specific functions)
– Invariants & likely invariants

Fault Localization

● What criteria might be useful?
– Simple test coverage/adequacy information
– Important values (return values, arguments, specific functions)
– Invariants & likely invariants
– Text comments from code executed by tests

Fault Localization

● What criteria might be useful?
– Simple test coverage/adequacy information
– Important values (return values, arguments, specific functions)
– Invariants & likely invariants
– Text comments from code executed by tests
– ...

Defining criteria well is an important part of a technique

Fault Localization

● What criteria might be useful?
– Simple test coverage/adequacy information
– Important values (return values, arguments, specific functions)
– Invariants & likely invariants
– Text comments from code executed by tests
– ...

Defining criteria well is an important part of a technique

● A lot of classic techniques focus on, e.g., statement coverage

Fault Localization

● What criteria might be useful?
– Simple test coverage/adequacy information
– Important values (return values, arguments, specific functions)
– Invariants & likely invariants
– Text comments from code executed by tests
– ...

Defining criteria well is an important part of a technique

● A lot of classic techniques focus on, e.g., statement coverage

if condition:
 x = a + b
else:
 y = c * d
return x + y

Fault Localization

● What criteria might be useful?
– Simple test coverage/adequacy information
– Important values (return values, arguments, specific functions)
– Invariants & likely invariants
– Text comments from code executed by tests
– ...

Defining criteria well is an important part of a technique

● A lot of classic techniques focus on, e.g., statement coverage

if condition:
 x = a + b
else:
 y = c * d
return x + y

T1 T2 T3 T4

Fault Localization

● What criteria might be useful?
– Simple test coverage/adequacy information
– Important values (return values, arguments, specific functions)
– Invariants & likely invariants
– Text comments from code executed by tests
– ...

Defining criteria well is an important part of a technique

● A lot of classic techniques focus on, e.g., statement coverage

if condition:
 x = a + b
else:
 y = c * d
return x + y

T1 T2 T3 T4

Fault Localization

● What criteria might be useful?
– Simple test coverage/adequacy information
– Important values (return values, arguments, specific functions)
– Invariants & likely invariants
– Text comments from code executed by tests
– ...

Defining criteria well is an important part of a technique

● A lot of classic techniques focus on, e.g., statement coverage

if condition:
 x = a + b
else:
 y = c * d
return x + y

T1 T2 T3 T4

Fault Localization

● What criteria might be useful?
– Simple test coverage/adequacy information
– Important values (return values, arguments, specific functions)
– Invariants & likely invariants
– Text comments from code executed by tests
– ...

Defining criteria well is an important part of a technique

● A lot of classic techniques focus on, e.g., statement coverage

if condition:
 x = a + b
else:
 y = c * d
return x + y

T1 T2 T3 T4

What does your intuition tell you
about likely causes for the bug?

Fault Localization

● What criteria might be useful?
– Simple test coverage/adequacy information
– Important values (return values, arguments, specific functions)
– Invariants & likely invariants
– Text comments from code executed by tests
– ...

Defining criteria well is an important part of a technique

● A lot of classic techniques focus on, e.g., statement coverage

if condition:
 x = a + b
else:
 y = c * d
return x + y

T1 T2 T3 T4

What does your intuition tell you
about likely causes for the bug?

Fault Localization

● What criteria might be useful?
– Simple test coverage/adequacy information
– Important values (return values, arguments, specific functions)
– Invariants & likely invariants
– Text comments from code executed by tests
– ...

Defining criteria well is an important part of a technique

● A lot of classic techniques focus on, e.g., statement coverage
● How should we prioritize?

if condition:
 x = a + b
else:
 y = c * d
return x + y

T1 T2 T3 T4

Fault Localization

● What criteria might be useful?
– Simple test coverage/adequacy information
– Important values (return values, arguments, specific functions)
– Invariants & likely invariants
– Text comments from code executed by tests
– ...

Defining criteria well is an important part of a technique

● A lot of classic techniques focus on, e.g., statement coverage
● How should we prioritize?

– Heuristic [Jones 2005, Jiang 2019]

if condition:
 x = a + b
else:
 y = c * d
return x + y

T1 T2 T3 T4

http://spideruci.org/papers/jones05.pdf
https://ieeexplore-ieee-org.proxy.lib.sfu.ca/abstract/document/8952344

Fault Localization

● What criteria might be useful?
– Simple test coverage/adequacy information
– Important values (return values, arguments, specific functions)
– Invariants & likely invariants
– Text comments from code executed by tests
– ...

Defining criteria well is an important part of a technique

● A lot of classic techniques focus on, e.g., statement coverage
● How should we prioritize?

– Heuristic [Jones 2005, Jiang 2019]

if condition:
 x = a + b
else:
 y = c * d
return x + y

T1 T2 T3 T4 failed (s)/ totalfailed
failed(s)/ totalfailed+ passed (s)/ totalpassed

[Tarantula]

http://spideruci.org/papers/jones05.pdf
https://ieeexplore-ieee-org.proxy.lib.sfu.ca/abstract/document/8952344

Fault Localization

● What criteria might be useful?
– Simple test coverage/adequacy information
– Important values (return values, arguments, specific functions)
– Invariants & likely invariants
– Text comments from code executed by tests
– ...

Defining criteria well is an important part of a technique

● A lot of classic techniques focus on, e.g., statement coverage
● How should we prioritize?

– Heuristic [Jones 2005, Jiang 2019]
– Statistical [Landberg 2018]

if condition:
 x = a + b
else:
 y = c * d
return x + y

T1 T2 T3 T4 failed (s)/ totalfailed
failed(s)/ totalfailed+ passed (s)/ totalpassed

[Tarantula]

P (H i∣ui)

[Doric]

Likelihood that ui caused
the failure when executed

http://spideruci.org/papers/jones05.pdf
https://ieeexplore-ieee-org.proxy.lib.sfu.ca/abstract/document/8952344
https://arxiv.org/abs/1810.00798

Fault Localization

● What criteria might be useful?
– Simple test coverage/adequacy information
– Important values (return values, arguments, specific functions)
– Invariants & likely invariants
– Text comments from code executed by tests
– ...

Defining criteria well is an important part of a technique

● A lot of classic techniques focus on, e.g., statement coverage
● How should we prioritize?

– Heuristic [Jones 2005, Jiang 2019]
– Statistical [Landberg 2018]
– ML based [Li 2019]
– Hybrid models [Zou 2019]
– ...

if condition:
 x = a + b
else:
 y = c * d
return x + y

T1 T2 T3 T4 failed (s)/ totalfailed
failed(s)/ totalfailed+ passed (s)/ totalpassed

[Tarantula]

P (H i∣ui)

[Doric]

Likelihood that ui caused
the failure when executed

http://spideruci.org/papers/jones05.pdf
https://ieeexplore-ieee-org.proxy.lib.sfu.ca/abstract/document/8952344
https://arxiv.org/abs/1810.00798
https://dl-acm-org.proxy.lib.sfu.ca/doi/abs/10.1145/3293882.3330574
https://arxiv.org/pdf/1803.09939.pdf

Fault Localization

● The state of the art is pushed further each year
– ~50% @ Top-1 in 2019 [Zou 2019]
– ~76% @ Top-10 in 2019
– (On standard benchmarks)

https://arxiv.org/pdf/1803.09939.pdf

Fault Localization

● The state of the art is pushed further each year
– ~50% @ Top-1 in 2019 [Zou 2019]
– ~76% @ Top-10 in 2019
– (On standard benchmarks)

● Still challenges remain

https://arxiv.org/pdf/1803.09939.pdf

Fault Localization

● The state of the art is pushed further each year
– ~50% @ Top-1 in 2019 [Zou 2019]
– ~76% @ Top-10 in 2019
– (On standard benchmarks)

● Still challenges remain
– Is localization the main task in debugging?

https://arxiv.org/pdf/1803.09939.pdf

Fault Localization

● The state of the art is pushed further each year
– ~50% @ Top-1 in 2019 [Zou 2019]
– ~76% @ Top-10 in 2019
– (On standard benchmarks)

● Still challenges remain
– Is localization the main task in debugging?
– Suppose you do localize, what next?

Understanding [Parnin 2011]
Fixing
Assessing

https://arxiv.org/pdf/1803.09939.pdf
https://www.cc.gatech.edu/people/home/orso/papers/parnin.orso.ISSTA11.pdf

Fault Localization

● The state of the art is pushed further each year
– ~50% @ Top-1 in 2019 [Zou 2019]
– ~76% @ Top-10 in 2019
– (On standard benchmarks)

● Still challenges remain
– Is localization the main task in debugging?
– Suppose you do localize, what next?

Understanding [Parnin 2011]
Fixing
Assessing

● Perhaps we can push this further....

https://arxiv.org/pdf/1803.09939.pdf
https://www.cc.gatech.edu/people/home/orso/papers/parnin.orso.ISSTA11.pdf

Automated Program Repair

● Given
– A program P
– A test suite T
– Results from localization: [li]

Automated Program Repair

● Given
– A program P
– A test suite T
– Results from localization: [li]

● Produce
– A ranked list of patches/diffs [δi] that make T pass

Automated Program Repair

● Given
– A program P
– A test suite T
– Results from localization: [li]

● Produce
– A ranked list of patches/diffs [δi] that make T pass

● If we can define a way to explore the space of patches,
we can use the test suite to check the patches!

Automated Program Repair

● Given
– A program P
– A test suite T
– Results from localization: [li]

● Produce
– A ranked list of patches/diffs [δi] that make T pass

● If we can define a way to explore the space of patches,
we can use the test suite to check the patches!

loop:
 patch = generatePatch()
 if apply(patch,P) passes T:
 return patch

Automated Program Repair

● Given
– A program P
– A test suite T
– Results from localization: [li]

● Produce
– A ranked list of patches/diffs [δi] that make T pass

● If we can define a way to explore the space of patches,
we can use the test suite to check the patches!

● For a given possibly buggy location
– Enumerative search
– Constraint guided search
– ML (e.g. sequence-to-sequence)

Automated Program Repair

● So why isn’t this deployed everywhere?

Automated Program Repair

● So why isn’t this deployed everywhere?
– The techniques are still evolving & bleeding edge [CACM 2019]
– Making a test suite pass is not the same as fixing a bug

[Durieux 2019, Long 2016, Long 2015]

http://software-lab.org/publications/cacm2019_program_repair.pdf
https://arxiv.org/pdf/1905.11973.pdf
https://people.csail.mit.edu/fanl/papers/space-icse16.pdf
https://people.csail.mit.edu/rinard/paper/issta15.pdf

Automated Program Repair

● So why isn’t this deployed everywhere?
– The techniques are still evolving & bleeding edge [CACM 2019]
– Making a test suite pass is not the same as fixing a bug

[Durieux 2019, Long 2016, Long 2015]

● Incorporating ML has improved advancements over the last few years,
but more advances are needed for broad usability & adoption

http://software-lab.org/publications/cacm2019_program_repair.pdf
https://arxiv.org/pdf/1905.11973.pdf
https://people.csail.mit.edu/fanl/papers/space-icse16.pdf
https://people.csail.mit.edu/rinard/paper/issta15.pdf

Automated Program Repair

● So why isn’t this deployed everywhere?
– The techniques are still evolving & bleeding edge [CACM 2019]
– Making a test suite pass is not the same as fixing a bug

[Durieux 2019, Long 2016, Long 2015]

● Incorporating ML has improved advancements over the last few years,
but more advances are needed for broad usability & adoption

● But... it is now a part of the possible workflow at big companies
– Google
– Microsoft
– Facebook
– Bloomberg
– Samsung
– ...

http://software-lab.org/publications/cacm2019_program_repair.pdf
https://arxiv.org/pdf/1905.11973.pdf
https://people.csail.mit.edu/fanl/papers/space-icse16.pdf
https://people.csail.mit.edu/rinard/paper/issta15.pdf
https://research.google/pubs/deepdelta-learning-to-repair-compilation-errors/
https://www.microsoft.com/en-us/research/blog/microsoft-at-esec-fse-2023-ai-techniques-for-a-streamlined-coding-workflow/
https://engineering.fb.com/2018/11/06/developer-tools/getafix-how-facebook-tools-learn-to-fix-bugs-automatically/
https://arxiv.org/abs/2311.10516
https://dl.acm.org/doi/abs/10.1145/3540250.3558967

Testing Challenging Software

309

Revisiting the Oracle Problem

● When oracles are challenging, testing is challenging

310

Revisiting the Oracle Problem

● When oracles are challenging, testing is challenging
– Compilers?
– Embedded Systems?
– Graphics drivers?
– Machine learning?
– Simulations & Modeling?

311

Revisiting the Oracle Problem

● When oracles are challenging, testing is challenging
– Compilers?
– Embedded Systems?
– Graphics drivers?
– Machine learning?
– Simulations & Modeling?

How would you test software
for modeling Covid-19?

312

Revisiting the Oracle Problem

● When oracles are challenging, testing is challenging
– Compilers?
– Embedded Systems?
– Graphics drivers?
– Machine learning?
– Simulations & Modeling?

● Even if we can test specific cases,
how much confidence do those cases provide?

313

Revisiting the Oracle Problem

● When oracles are challenging, testing is challenging
– Compilers?
– Embedded Systems?
– Graphics drivers?
– Machine learning?
– Simulations & Modeling?

● Even if we can test specific cases,
how much confidence do those cases provide?
– Why is writing oracles hard?

The input spaces are often vast & complex.
– A test suite is unlikely to expose specific pathological combinations.

314

Revisiting the Oracle Problem

● When oracles are challenging, testing is challenging
– Compilers?
– Embedded Systems?
– Graphics drivers?
– Machine learning?
– Simulations & Modeling?

● Even if we can test specific cases,
how much confidence do those cases provide?
– Why is writing oracles hard?

The input spaces are often vast & complex.
– A test suite is unlikely to expose specific pathological combinations.

● We again need additional leverage
– Additional implementations?
– Knowledge about the domain

315

How Would You Test a Compiler?

● Many compiler bugs come from “middle end” optimizations
– Complex interactions from multiple rules make testing challenging

316

How Would You Test a Compiler?

● Many compiler bugs come from “middle end” optimizations
– Complex interactions from multiple rules make testing challenging

● But mainstream languages tend to have multiple implementations

317

How Would You Test a Compiler?

● Many compiler bugs come from “middle end” optimizations
– Complex interactions from multiple rules make testing challenging

● But mainstream languages tend to have multiple implementations
● Big picture: use differential testing

318

How Would You Test a Compiler?

● Many compiler bugs come from “middle end” optimizations
– Complex interactions from multiple rules make testing challenging

● But mainstream languages tend to have multiple implementations
● Big picture: use differential testing

Foo.c

MSVC

GCC

ICC

319

How Would You Test a Compiler?

● Many compiler bugs come from “middle end” optimizations
– Complex interactions from multiple rules make testing challenging

● But mainstream languages tend to have multiple implementations
● Big picture: use differential testing

Foo.c

MSVC

GCC

ICC

320

How Would You Test a Compiler?

● Many compiler bugs come from “middle end” optimizations
– Complex interactions from multiple rules make testing challenging

● But mainstream languages tend to have multiple implementations
● Big picture: use differential testing

Foo.c

MSVC

GCC

ICC

foo.out

321

How Would You Test a Compiler?

● Many compiler bugs come from “middle end” optimizations
– Complex interactions from multiple rules make testing challenging

● But mainstream languages tend to have multiple implementations
● Big picture: use differential testing

Foo.c

MSVC

GCC

ICC

foo.out

322

How Would You Test a Compiler?

● Many compiler bugs come from “middle end” optimizations
– Complex interactions from multiple rules make testing challenging

● But mainstream languages tend to have multiple implementations
● Big picture: use differential testing

Foo.c

MSVC

GCC

ICC

foo.out

foo.out

foo.out

323

How Would You Test a Compiler?

● Many compiler bugs come from “middle end” optimizations
– Complex interactions from multiple rules make testing challenging

● But mainstream languages tend to have multiple implementations
● Big picture: use differential testing

Foo.c

MSVC

GCC

ICC

foo.out

foo.out

foo.out

How might we test them here?

324

How Would You Test a Compiler?

● Many compiler bugs come from “middle end” optimizations
– Complex interactions from multiple rules make testing challenging

● But mainstream languages tend to have multiple implementations
● Big picture: use differential testing

Foo.c

MSVC

GCC

ICC

foo.out

foo.out

foo.out B

A

A

325

How Would You Test a Compiler?

● Many compiler bugs come from “middle end” optimizations
– Complex interactions from multiple rules make testing challenging

● But mainstream languages tend to have multiple implementations
● Big picture: use differential testing

Foo.c

MSVC

GCC

ICC

foo.out

foo.out

foo.out B

A

A

326

How Would You Test a Compiler?

● Many compiler bugs come from “middle end” optimizations
– Complex interactions from multiple rules make testing challenging

● But mainstream languages tend to have multiple implementations
● Big picture: use differential testing

– Given compilers c1, c2, ..., ci
– Provide an input I to each and determine correctness by the majority

327

How Would You Test a Compiler?

● Many compiler bugs come from “middle end” optimizations
– Complex interactions from multiple rules make testing challenging

● But mainstream languages tend to have multiple implementations
● Big picture: use differential testing

– Given programs c1, c2, ..., ci
– Provide an input I to each and determine correctness by the majority
– Generate many inputs I and assess automatically

328

How Would You Test a Compiler?

● Many compiler bugs come from “middle end” optimizations
– Complex interactions from multiple rules make testing challenging

● But mainstream languages tend to have multiple implementations
● Big picture: use differential testing

– Given programs c1, c2, ..., ci
– Provide an input I to each and determine correctness by the majority
– Generate many inputs I and assess automatically

FooN.c

MSVC

GCC

ICC

foo.out

foo.out

foo.out B

A

A

Generator Reporter

329

How Would You Test a Compiler?

● Many compiler bugs come from “middle end” optimizations
– Complex interactions from multiple rules make testing challenging

● But mainstream languages tend to have multiple implementations
● Big picture: use differential testing

– Given programs c1, c2, ..., ci
– Provide an input I to each and determine correctness by the majority
– Generate many inputs I and assess automatically

● To do that, we need to be very careful with our input generator
– Programs should produce the same results: [Yang 2011]

deterministic
well defined

https://www.cs.utah.edu/~regehr/papers/pldi11-preprint.pdf

330

How Would You Test a Compiler?

● Many compiler bugs come from “middle end” optimizations
– Complex interactions from multiple rules make testing challenging

● But mainstream languages tend to have multiple implementations
● Big picture: use differential testing

– Given programs p1, p2, ..., pi
– Provide an input I to each and determine correctness by the majority
– Generate many inputs I and assess automatically

● To do that, we need to be very careful with our input generator
– Programs should produce the same results: [Yang 2011]

deterministic
well defined

printf(“%p”, &someVariable);

https://www.cs.utah.edu/~regehr/papers/pldi11-preprint.pdf

331

How Would You Test a Compiler?

● Many compiler bugs come from “middle end” optimizations
– Complex interactions from multiple rules make testing challenging

● But mainstream languages tend to have multiple implementations
● Big picture: use differential testing

– Given programs p1, p2, ..., pi
– Provide an input I to each and determine correctness by the majority
– Generate many inputs I and assess automatically

● To do that, we need to be very careful with our input generator
– Programs should produce the same results: [Yang 2011]

deterministic
well defined

printf(“%p”, &someVariable);

int x = INT_MAX;
x = x + 1;

https://www.cs.utah.edu/~regehr/papers/pldi11-preprint.pdf

332

How Would You Test a Compiler?

● Many compiler bugs come from “middle end” optimizations
– Complex interactions from multiple rules make testing challenging

● But mainstream languages tend to have multiple implementations
● Big picture: use differential testing

– Given programs p1, p2, ..., pi
– Provide an input I to each and determine correctness by the majority
– Generate many inputs I and assess automatically

● To do that, we need to be very careful with our input generator
– Programs should produce the same results: [Yang 2011]

deterministic
well defined

printf(“%p”, &someVariable);

int x = INT_MAX;
x = x + 1;

int x = 5;
while (x) {
 if (x%2) {
 x = x + 1;
 } else {
 x = x - 1;
 }
}
printf(“%d”, x);

https://www.cs.utah.edu/~regehr/papers/pldi11-preprint.pdf

333

Pressing Further

● Is there a way to get more value out of each generated test?

334

Pressing Further

● Is there a way to get more value out of each generated test?
● Given

– Some test T with oracle O
– Can we produce many more tests?

335

Pressing Further

● Is there a way to get more value out of each generated test?
● Given

– Some test T with oracle O
– Can we produce many more tests?

● Metamorphic Testing
– We can generate new tests using the known behavior of existing tests

336

Pressing Further

● Is there a way to get more value out of each generated test?
● Given

– Some test T with oracle O
– Can we produce many more tests?

● Metamorphic Testing
– We can generate new tests using the known behavior of existing tests

● Given
– a sequence of tests T = {(I1,O1), (I2,O2), ..., (In,On)}

337

Pressing Further

● Is there a way to get more value out of each generated test?
● Given

– Some test T with oracle O
– Can we produce many more tests?

● Metamorphic Testing
– We can generate new tests using the known behavior of existing tests

● Given
– a sequence of tests T = {(I1,O1), (I2,O2), ..., (In,On)}

● Produce
– a test Tn+1 = F({I1,I2, ...,In}, {O1,O2, ...,On})

338

Pressing Further

● Is there a way to get more value out of each generated test?
● Given

– Some test T with oracle O
– Can we produce many more tests?

● Metamorphic Testing
– We can generate new tests using the known behavior of existing tests

● Given
– a sequence of tests T = {(I1,O1), (I2,O2), ..., (In,On)}

● Produce
– a test Tn+1 = F({I1,I2, ...,In}, {O1,O2, ...,On})

● How might this fit into the compiler test cases?

339

Metamorphic Testing for Compilers

● There are a large number of ways to change a program
without changing its meaning! [emi project, Le 2014, Sun 2016]

https://web.cs.ucdavis.edu/~su/emi-project/
https://web.cs.ucdavis.edu/~su/publications/emi.pdf
https://web.cs.ucdavis.edu/~su/publications/oopsla16.pdf

340

Metamorphic Testing for Compilers

● There are a large number of ways to change a program
without changing its meaning! [emi project, Le 2014, Sun 2016]

...

 if (false) {
 ...
 }

...

https://web.cs.ucdavis.edu/~su/emi-project/
https://web.cs.ucdavis.edu/~su/publications/emi.pdf
https://web.cs.ucdavis.edu/~su/publications/oopsla16.pdf

341

Metamorphic Testing for Compilers

● There are a large number of ways to change a program
without changing its meaning! [emi project, Le 2014, Sun 2016]

...

 if (false) {
 ...
 }

...

// x is profiled as < 0
...
 if (x > 0) {
 ...
 }

...

https://web.cs.ucdavis.edu/~su/emi-project/
https://web.cs.ucdavis.edu/~su/publications/emi.pdf
https://web.cs.ucdavis.edu/~su/publications/oopsla16.pdf

342

Metamorphic Testing for Compilers

● There are a large number of ways to change a program
without changing its meaning! [emi project, Le 2014, Sun 2016]

● This may seem simple, but it provides a great deal of value today
– GCC, Clang, MSVC, ICC
– Vulcan & OpenGL shaders
– ...

...

 if (false) {
 ...
 }

...

// x is profiled as < 0
...
 if (x > 0) {
 ...
 }

...

https://web.cs.ucdavis.edu/~su/emi-project/
https://web.cs.ucdavis.edu/~su/publications/emi.pdf
https://web.cs.ucdavis.edu/~su/publications/oopsla16.pdf

343

Other Examples of Metamorphic Testing

● Android apps have complex life cycles and often experience UI glitches

344

Other Examples of Metamorphic Testing

● Android apps have complex life cycles and often experience UI glitches
– Events come in from the framework
– Apps need to respond consistently & intuitively

Simplified Activity Lifecycle
[developer.android.com]

https://developer.android.com/guide/components/activities/activity-lifecycle

345

Other Examples of Metamorphic Testing

● Android apps have complex life cycles and often experience UI glitches
– Events come in from the framework
– Apps need to respond consistently & intuitively

Simplified Activity Lifecycle
[developer.android.com]

Fragment/Activity Lifecycle
[Pomeroy 2014]

https://developer.android.com/guide/components/activities/activity-lifecycle
https://github.com/xxv/android-lifecycle

346

Other Examples of Metamorphic Testing

● Android apps have complex life cycles and often experience UI glitches
– Events come in from the framework
– Apps need to respond consistently & intuitively
– Handling events poorly leads to:

● Crashes
● Non-responsiveness
● Unexpected UI changes
● ...

347

Other Examples of Metamorphic Testing

● Android apps have complex life cycles and often experience UI glitches
– Events come in from the framework
– Apps need to respond consistently & intuitively
– Handling events poorly leads to:

● Crashes
● Non-responsiveness
● Unexpected UI changes
● ...

Again, metamorphic testing makes this simpler.
Ideas?

348

Other Examples of Metamorphic Testing

● Android apps have complex life cycles and often experience UI glitches
– Events come in from the framework
– Apps need to respond consistently & intuitively
– Handling events poorly leads to:

● Crashes
● Non-responsiveness
● Unexpected UI changes
● ...

● Adversarial event sequences can just be injected into existing tests.
– e.g. Pause-Resume, Pause-Stop-Restart, Rotate-Unrotate, ...
– Robust behavior is the same with or without these additions [Quist 2015]

https://cs.au.dk/~amoeller/papers/thor/paper.pdf

349

Other Examples of Metamorphic Testing

● Android apps have complex life cycles and often experience UI glitches
– Events come in from the framework
– Apps need to respond consistently & intuitively
– Handling events poorly leads to:

● Crashes
● Non-responsiveness
● Unexpected UI changes
● ...

● Adversarial event sequences can just be injected into existing tests.
– e.g. Pause-Resume, Pause-Stop-Restart, Rotate-Unrotate, ...
– Robust behavior is the same with or without these additions [Quist 2015]

T1

https://cs.au.dk/~amoeller/papers/thor/paper.pdf

350

Other Examples of Metamorphic Testing

● Android apps have complex life cycles and often experience UI glitches
– Events come in from the framework
– Apps need to respond consistently & intuitively
– Handling events poorly leads to:

● Crashes
● Non-responsiveness
● Unexpected UI changes
● ...

● Adversarial event sequences can just be injected into existing tests.
– e.g. Pause-Resume, Pause-Stop-Restart, Rotate-Unrotate, ...
– Robust behavior is the same with or without these additions [Quist 2015]

T1

Interrupt with Pause-Resume

https://cs.au.dk/~amoeller/papers/thor/paper.pdf

351

Other Examples of Metamorphic Testing

● Android apps have complex life cycles and often experience UI glitches
– Events come in from the framework
– Apps need to respond consistently & intuitively
– Handling events poorly leads to:

● Crashes
● Non-responsiveness
● Unexpected UI changes
● ...

● Adversarial event sequences can just be injected into existing tests.
– e.g. Pause-Resume, Pause-Stop-Restart, Rotate-Unrotate, ...
– Robust behavior is the same with or without these additions [Quist 2015]

T1

Interrupt with Pause-Resume
Interrupt with Pause-Stop-Restart
Interrupt with Rotate-Unrotate

Interrupt with Rotate-Unrotate

Interrupt with Pause-Resume
Interrupt with Rotate-Unrotate

https://cs.au.dk/~amoeller/papers/thor/paper.pdf

352

Other Examples of Metamorphic Testing

● Android apps have complex life cycles and often experience UI glitches
– Events come in from the framework
– Apps need to respond consistently & intuitively
– Handling events poorly leads to:

● Crashes
● Non-responsiveness
● Unexpected UI changes
● ...

● Adversarial event sequences can just be injected into existing tests.
– e.g. Pause-Resume, Pause-Stop-Restart, Rotate-Unrotate, ...
– Robust behavior is the same with or without these additions [Quist 2015]

T1 T2 TN

...

https://cs.au.dk/~amoeller/papers/thor/paper.pdf

353

Other Examples of Metamorphic Testing

● Machine learning can be notoriously fickle & challenging to test

354

Other Examples of Metamorphic Testing

● Machine learning can be notoriously fickle & challenging to test
● Consider NLP, simple changes to sentences violate expectations

– Sentiment analysis extracts & quantifies affective state (opinion)

355

Other Examples of Metamorphic Testing

● Machine learning can be notoriously fickle & challenging to test
● Consider NLP, simple changes to sentences violate expectations

– Sentiment analysis extracts & quantifies affective state (opinion)

“I like the movie”
expresses a mild positive opinion

356

Other Examples of Metamorphic Testing

● Machine learning can be notoriously fickle & challenging to test
● Consider NLP, simple changes to sentences violate expectations

– Sentiment analysis extracts & quantifies affective state (opinion)
– Does “I like the movie” mean the same as “I do not like the movie”

357

Other Examples of Metamorphic Testing

● Machine learning can be notoriously fickle & challenging to test
● Consider NLP, simple changes to sentences violate expectations

– Sentiment analysis extracts & quantifies affective state (opinion)
– Does “I like the movie” mean the same as “I do not like the movie”

● A single test case can be modified to create a family of other tests
exploring known relationships relative to an original test
– Negation of meaning
– Relative magnitude
– Equivalence

358

Other Examples of Metamorphic Testing

● Machine learning can be notoriously fickle & challenging to test
● Consider NLP, simple changes to sentences violate expectations

– Sentiment analysis extracts & quantifies affective state (opinion)
– Does “I like the movie” mean the same as “I do not like the movie”

● A single test case can be modified to create a family of other tests
exploring known relationships relative to an original test
– Negation of meaning
– Relative magnitude
– Equivalence

I really <liked> the flight

359

Other Examples of Metamorphic Testing

● Machine learning can be notoriously fickle & challenging to test
● Consider NLP, simple changes to sentences violate expectations

– Sentiment analysis extracts & quantifies affective state (opinion)
– Does “I like the movie” mean the same as “I do not like the movie”

● A single test case can be modified to create a family of other tests
exploring known relationships relative to an original test
– Negation of meaning
– Relative magnitude
– Equivalence

I really <liked> the flight
enjoyed

liked
loved
regret

360

Other Examples of Metamorphic Testing

● Machine learning can be notoriously fickle & challenging to test
● Consider NLP, simple changes to sentences violate expectations

– Sentiment analysis extracts & quantifies affective state (opinion)
– Does “I like the movie” mean the same as “I do not like the movie”

● A single test case can be modified to create a family of other tests
exploring known relationships relative to an original test
– Negation of meaning
– Relative magnitude
– Equivalence

I really <liked> the flight
enjoyed

liked
loved
regret

361

Other Examples of Metamorphic Testing

● Machine learning can be notoriously fickle & challenging to test
● Consider NLP, simple changes to sentences violate expectations

– Sentiment analysis extracts & quantifies affective state (opinion)
– Does “I like the movie” mean the same as “I do not like the movie”

● A single test case can be modified to create a family of other tests
exploring known relationships relative to an original test
– Negation of meaning
– Relative magnitude
– Equivalence

I really <liked> the flight
enjoyed

liked
loved
regret

362

Other Examples of Metamorphic Testing

● Machine learning can be notoriously fickle & challenging to test
● Consider NLP, simple changes to sentences violate expectations

– Sentiment analysis extracts & quantifies affective state (opinion)
– Does “I like the movie” mean the same as “I do not like the movie”

● A single test case can be modified to create a family of other tests
exploring known relationships relative to an original test
– Negation of meaning
– Relative magnitude
– Equivalence

I really <liked> the flight
enjoyed

liked
loved
regret

363

Other Examples of Metamorphic Testing

● Machine learning can be notoriously fickle & challenging to test
● Consider NLP, simple changes to sentences violate expectations

– Sentiment analysis extracts & quantifies affective state (opinion)
– Does “I like the movie” mean the same as “I do not like the movie”

● A single test case can be modified to create a family of other tests
exploring known relationships relative to an original test
– Negation of meaning
– Relative magnitude
– Equivalence

I really <liked> the flight
enjoyed

liked
loved
regretWhy isn’t Santa Claus in jail?

Why isn’t the Tooth Fairy in jail?

364

Other Examples of Metamorphic Testing

● Machine learning can be notoriously fickle & challenging to test
● Consider NLP, simple changes to sentences violate expectations

– Sentiment analysis extracts & quantifies affective state (opinion)
– Does “I like the movie” mean the same as “I do not like the movie”

● A single test case can be modified to create a family of other tests
exploring known relationships relative to an original test
– Negation of meaning
– Relative magnitude
– Equivalence

● Basic metamorphic testing tripled the bug discovery rate of ML testers.
[Ribeiro 2020]

https://arxiv.org/pdf/2005.04118.pdf

Summary

● We have seen how to perform standard testing tasks
– Constructing individual tests
– Measuring whether you are testing well
– Managing testing over software evolution

Summary

● We have seen how to perform standard testing tasks
– Constructing individual tests
– Measuring whether you are testing well
– Managing testing over software evolution

● We have seen how to address challenging to test systems
– Differential & metamorphic testing provide some guidance

Summary

● We have seen how to perform standard testing tasks
– Constructing individual tests
– Measuring whether you are testing well
– Managing testing over software evolution

● We have seen how to address challenging to test systems
– Differential & metamorphic testing provide some guidance

● We have seen how test suites can be leveraged for further value
– Localization
– Repair
– There are many more opportunities, too!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299
	Slide 300
	Slide 301
	Slide 302
	Slide 303
	Slide 304
	Slide 305
	Slide 306
	Slide 307
	Slide 308
	Slide 309
	Slide 310
	Slide 311
	Slide 312
	Slide 313
	Slide 314
	Slide 315
	Slide 316
	Slide 317
	Slide 318
	Slide 319
	Slide 320
	Slide 321
	Slide 322
	Slide 323
	Slide 324
	Slide 325
	Slide 326
	Slide 327
	Slide 328
	Slide 329
	Slide 330
	Slide 331
	Slide 332
	Slide 333
	Slide 334
	Slide 335
	Slide 336
	Slide 337
	Slide 338
	Slide 339
	Slide 340
	Slide 341
	Slide 342
	Slide 343
	Slide 344
	Slide 345
	Slide 346
	Slide 347
	Slide 348
	Slide 349
	Slide 350
	Slide 351
	Slide 352
	Slide 353
	Slide 354
	Slide 355
	Slide 356
	Slide 357
	Slide 358
	Slide 359
	Slide 360
	Slide 361
	Slide 362
	Slide 363
	Slide 364
	Slide 365
	Slide 366
	Slide 367

