
Measurement
& Performance

CMPT 745
Software Engineering

Nick Sumner
wsumner@sfu.ca

Performance & Measurement

● Real development must manage resources

Performance & Measurement

● Real development must manage resources
– Time
– Memory
– Open connections
– VM instances
– Energy consumption
– ...

Performance & Measurement

● Real development must manage resources
– Time
– Memory
– Open connections
– VM instances
– Energy consumption
– ...

● Resource usage is one form of performance
– Performance – a measure of nonfunctional behavior of a program

Performance & Measurement

● Real development must manage resources
– Time
– Memory
– Open connections
– VM instances
– Energy consumption
– ...

● Resource usage is one form of performance
– Performance – a measure of nonfunctional behavior of a program

● We often need to assess performance or a change in performance
Data Structure A Data Structure Bvs

Performance & Measurement

● Real development must manage resources
– Time
– Memory
– Open connections
– VM instances
– Energy consumption
– ...

● Resource usage is one form of performance
– Performance – a measure of nonfunctional behavior of a program

● We often need to assess performance or a change in performance
Data Structure A Data Structure Bvs

How would you approach this in a data structures course?

Performance & Measurement

● Performance assessment is deceptively hard
[Demo/Exercise]

Performance & Measurement

● Performance assessment is deceptively hard
– Modern systems involve complex actors

Performance & Measurement

● Performance assessment is deceptively hard
– Modern systems involve complex actors
– Theoretical models may be too approximate

Performance & Measurement

● Performance assessment is deceptively hard
– Modern systems involve complex actors
– Theoretical models may be too approximate
– Even with the best intentions we can deceive ourselves

Performance & Measurement

● Performance assessment is deceptively hard
– Modern systems involve complex actors
– Theoretical models may be too approximate
– Even with the best intentions we can deceive ourselves

● Good performance evaluation should be rigorous & scientific

Performance & Measurement

● Performance assessment is deceptively hard
– Modern systems involve complex actors
– Theoretical models may be too approximate
– Even with the best intentions we can deceive ourselves

● Good performance evaluation should be rigorous & scientific
– The same process applies in development as in good research

Performance & Measurement

● Performance assessment is deceptively hard
– Modern systems involve complex actors
– Theoretical models may be too approximate
– Even with the best intentions we can deceive ourselves

● Good performance evaluation should be rigorous & scientific
– The same process applies in development as in good research

Performance & Measurement

● Performance assessment is deceptively hard
– Modern systems involve complex actors
– Theoretical models may be too approximate
– Even with the best intentions we can deceive ourselves

● Good performance evaluation should be rigorous & scientific
– The same process applies in development as in good research

1) Clear claims
2) Clear evidence
3) Correct reasoning from evidence to claims

Performance & Measurement

● Performance assessment is deceptively hard
– Modern systems involve complex actors
– Theoretical models may be too approximate
– Even with the best intentions we can deceive ourselves

● Good performance evaluation should be rigorous & scientific
– The same process applies in development as in good research

1) Clear claims
2) Clear evidence
3) Correct reasoning from evidence to claims

– And yet this is challenging to get right!

Performance & Measurement [Blackburn et al.]

Performance & Measurement [Blackburn et al.]

Scope of
Evaluation

Scope of
Claim/Conclusion

Performance & Measurement [Blackburn et al.]

Scope of
Evaluation

Scope of
Claim/ConclusionValidity

Performance & Measurement [Blackburn et al.]

● Inscrutability
– Lack of clarity on actors or relationships
– Omission, Ambiguity, Distortion

Performance & Measurement [Blackburn et al.]

● Inscrutability
– Lack of clarity on actors or relationships
– Omission, Ambiguity, Distortion

● Irreproducibility
– Lack of clarity in steps taken or data
– Causes:

● Omission of steps

Performance & Measurement [Blackburn et al.]

● Inscrutability
– Lack of clarity on actors or relationships
– Omission, Ambiguity, Distortion

● Irreproducibility
– Lack of clarity in steps taken or data
– Causes:

● Omission of steps
● Incomplete understanding of factors

Performance & Measurement [Blackburn et al.]

● Inscrutability
– Lack of clarity on actors or relationships
– Omission, Ambiguity, Distortion

● Irreproducibility
– Lack of clarity in steps taken or data
– Causes:

● Omission of steps
● Incomplete understanding of factors
● Confidentiality & omission of data

Example ...

Performance & Measurement [Blackburn et al.]

static int i = 0, j = 0, k = 0;
int main() {
 int g = 0, inc = 1;
 for (; g<65536; g++) {
 i += inc;
 j += inc;
 k += inc;
 }
 return 0;
}

Compare gcc -O2 vs -O3

Performance & Measurement [Blackburn et al.]

static int i = 0, j = 0, k = 0;
int main() {
 int g = 0, inc = 1;
 for (; g<65536; g++) {
 i += inc;
 j += inc;
 k += inc;
 }
 return 0;
}

Compare gcc -O2 vs -O3
One person may see a

deterministic improvement..

Performance & Measurement [Blackburn et al.]

static int i = 0, j = 0, k = 0;
int main() {
 int g = 0, inc = 1;
 for (; g<65536; g++) {
 i += inc;
 j += inc;
 k += inc;
 }
 return 0;
}

Compare gcc -O2 vs -O3
One person may see a

deterministic improvement..

Another may see a
deterministic degradation.

Performance & Measurement [Blackburn et al.]

static int i = 0, j = 0, k = 0;
int main() {
 int g = 0, inc = 1;
 for (; g<65536; g++) {
 i += inc;
 j += inc;
 k += inc;
 }
 return 0;
}

Compare gcc -O2 vs -O3
One person may see a

deterministic improvement..

Another may see a
deterministic degradation.

Both are right.

Performance & Measurement [Blackburn et al.]

static int i = 0, j = 0, k = 0;
int main() {
 int g = 0, inc = 1;
 for (; g<65536; g++) {
 i += inc;
 j += inc;
 k += inc;
 }
 return 0;
}

Compare gcc -O2 vs -O3

Performance & Measurement [Blackburn et al.]

● Ignorance – disregarding data or evidence against a claim
– Ignoring data points

Performance & Measurement [Blackburn et al.]

● Ignorance – disregarding data or evidence against a claim
– Ignoring data points

Performance & Measurement [Blackburn et al.]

● Ignorance – disregarding data or evidence against a claim
– Ignoring data points

Performance & Measurement [Blackburn et al.]

● Ignorance – disregarding data or evidence against a claim
– Ignoring data points

Performance & Measurement [Blackburn et al.]

● Ignorance – disregarding data or evidence against a claim
– Ignoring data points

Performance & Measurement [Blackburn et al.]

● Ignorance – disregarding data or evidence against a claim
– Ignoring data points
– Ignoring distributions

Performance & Measurement [Blackburn et al.]

● Ignorance – disregarding data or evidence against a claim
– Ignoring data points
– Ignoring distributions

Gmail latency

Performance & Measurement [Blackburn et al.]

● Ignorance – disregarding data or evidence against a claim
– Ignoring data points
– Ignoring distributions

Gmail latency

If we reason about average latency,
why is it misleading?

Performance & Measurement [Blackburn et al.]

● Ignorance – disregarding data or evidence against a claim
– Ignoring data points
– Ignoring distributions

Gmail latency

If we reason about average latency,
why is it misleading?

What is better?

Performance & Measurement [Blackburn et al.]

● Inappropriateness – claim is derived from facts not present

Performance & Measurement [Blackburn et al.]

● Inappropriateness – claim is derived from facts not present
– Bad metrics (e.g. execution time vs. power)

Performance & Measurement [Blackburn et al.]

● Inappropriateness – claim is derived from facts not present
– Bad metrics
– Biased samples

Performance & Measurement [Blackburn et al.]

● Inappropriateness – claim is derived from facts not present
– Bad metrics
– Biased samples
– ...

Performance & Measurement [Blackburn et al.]

● Inappropriateness – claim is derived from facts not present
– Bad metrics
– Biased samples
– ...

● Inconsistency – comparing apples to oranges

Performance & Measurement [Blackburn et al.]

● Inappropriateness – claim is derived from facts not present
– Bad metrics
– Biased samples
– ...

● Inconsistency – comparing apples to oranges
– Workload variation (e.g. learner effects, time of day, day of week, ...)

Performance & Measurement [Blackburn et al.]

● Inappropriateness – claim is derived from facts not present
– Bad metrics
– Biased samples
– ...

● Inconsistency – comparing apples to oranges
– Workload variation (e.g. learner effects, time of day)
– Incompatible measures (e.g. performance counters across platforms)

Assessing
Performance

Benchmarking

● We must reason rigorously about performance during
assessment, investigation, & improvement

Benchmarking

● We must reason rigorously about performance during
assessment, investigation, & improvement

● Assessing performance is done through benchmarking

Benchmarking

● We must reason rigorously about performance during
assessment, investigation, & improvement

● Assessing performance is done through benchmarking
– Microbenchmarks

● Focus on cost of an operation in isolation
● Can help identify core performance details & explain causes

Benchmarking

● We must reason rigorously about performance during
assessment, investigation, & improvement

● Assessing performance is done through benchmarking
– Microbenchmarks

● Focus on cost of an operation in isolation
● Can help identify core performance details & explain causes

– Macrobenchmarks
● Real world system performance

Benchmarking

● We must reason rigorously about performance during
assessment, investigation, & improvement

● Assessing performance is done through benchmarking
– Microbenchmarks

● Focus on cost of an operation in isolation
● Can help identify core performance details & explain causes

– Macrobenchmarks
● Real world system performance

– Workloads (inputs) must be chosen carefully either way.
● representative, pathological, scenario driven, ...

Benchmarking

● We must reason rigorously about performance during
assessment, investigation, & improvement

● Assessing performance is done through benchmarking
– Microbenchmarks

● Focus on cost of an operation in isolation
● Can help identify core performance details & explain causes

– Macrobenchmarks
● Real world system performance

– Workloads (inputs) must be chosen carefully either way.
● representative, pathological, scenario driven, ...

Let’s dig into a common approach to consider issues

Benchmarking

● Suppose we want to run a microbenchmark
startTime = getCurrentTimeInSeconds();
doWorkloadOfInterest();
endTime = getCurrentTimeInSeconds();
reportResult(endTime – startTime);

Benchmarking

● Suppose we want to run a microbenchmark
startTime = getCurrentTimeInSeconds();
doWorkloadOfInterest();
endTime = getCurrentTimeInSeconds();
reportResult(endTime – startTime);

What possible issues do you observe?

Benchmarking

● Suppose we want to run a microbenchmark

– Granularity of measurement
– Warm up effects
– Nondeterminism
– Size of workload
– System interference
– Frequency scaling?
– Interference of other workloads?
– Alignment?

startTime = getCurrentTimeInSeconds();
doWorkloadOfInterest();
endTime = getCurrentTimeInSeconds();
reportResult(endTime – startTime);

Benchmarking

● Granularity & Units
– Why is granularity a problem?
– What are alternatives to getCurrentTimeInSeconds()?

Benchmarking

● Granularity & Units
– Why is granularity a problem?
– What are alternatives to getCurrentTimeInSeconds()?
– What if I want to predict performance on a different machine?

Benchmarking

● Granularity & Units
– Why is granularity a problem?
– What are alternatives to getCurrentTimeInSeconds()?
– What if I want to predict performance on a different machine?

● Using cycles instead of wall clock time can be useful,
but has its own limitations

● Remember the sins of measurement

Benchmarking

● Warm up time
– Why is warm up time necessary in general?

Benchmarking

● Warm up time
– Why is warm up time necessary in general?
– Why is it especially problematic for systems like Java?

Benchmarking

● Warm up time
– Why is warm up time necessary in general?
– Why is it especially problematic for systems like Java?
– How can we modify our example to facilitate this?

Benchmarking

● Warm up time
– Why is warm up time necessary in general?
– Why is it especially problematic for systems like Java?
– How can we modify our example to facilitate this?

for (…) doWorkloadOfInterest();
startTime = getCurrentTimeInSeconds();
doWorkloadOfInterest();
endTime = getCurrentTimeInSeconds();
reportResult(endTime – startTime);

Benchmarking

● Warm up time
– Why is warm up time necessary in general?
– Why is it especially problematic for systems like Java?
– How can we modify our example to facilitate this?

for (…) doWorkloadOfInterest();
startTime = getCurrentTimeInSeconds();
doWorkloadOfInterest();
endTime = getCurrentTimeInSeconds();
reportResult(endTime – startTime);

Quiescence? Post-JIT hooks? ...?

Benchmarking

● Warm up time
– Why is warm up time necessary in general?
– Why is it especially problematic for systems like Java?
– How can we modify our example to facilitate this?

for (…) doWorkloadOfInterest();
startTime = getCurrentTimeInSeconds();
doWorkloadOfInterest();
endTime = getCurrentTimeInSeconds();
reportResult(endTime – startTime);

Quiescence? Post-JIT hooks? ...?
It is complicated. [Tratt 2018]

https://www.youtube.com/watch?v=cmrzOkEM9fc

Benchmarking

● Nondeterministic behavior
– Will getCurrentTimeInSeconds() always return the same

number?

Why/why not?

Benchmarking

● Nondeterministic behavior
– Will getCurrentTimeInSeconds() always return the same

number?
– So what reflects a meaningful result?

● Hint: The Law of Large Numbers!

http://en.wikipedia.org/wiki/Law_of_large_numbers

Benchmarking

● Nondeterministic behavior
– Will getCurrentTimeInSeconds() always return the same

number?
– So what reflects a meaningful result?

● Hint: The Law of Large Numbers!

● By running the same test many times,
the sample arithmetic mean will converge on the real one

http://en.wikipedia.org/wiki/Law_of_large_numbers

Benchmarking

● Nondeterministic behavior
– Will getCurrentTimeInSeconds() always return the same

number?
– So what reflects a meaningful result?

● Hint: The Law of Large Numbers!

● By running the same test many times,
the sample arithmetic mean will converge on the real one

Is this always what you want?

http://en.wikipedia.org/wiki/Law_of_large_numbers

Benchmarking

● A revised (informal) approach:

for (…) doWorkloadOfInterest();
startTime = getCurrentTimeInNanos();
for (…) doWorkloadOfInterest();
endTime = getCurrentTimeInNanos();
reportResult(endTime – startTime);

Benchmarking

● A revised (informal) approach:

● This still does not solve everything
– Frequency scaling?
– Interference of other workloads?
– Alignment?

for (…) doWorkloadOfInterest();
startTime = getCurrentTimeInNanos();
for (…) doWorkloadOfInterest();
endTime = getCurrentTimeInNanos();
reportResult(endTime – startTime);

Benchmarking

● Now we have a benchmark, how do we interpret/report it?
– We must compare

Benchmarking

● Now we have a benchmark, how do we interpret/report it?
– We must compare

● Benchmark vs expectation/mental model
● Different solutions
● Over time

Benchmarking

● Now we have a benchmark, how do we interpret/report it?
– We must compare

● Benchmark vs expectation/mental model
● Different solutions
● Over time

● Results are often normalized against the baseline

Benchmarking

● Now we have a benchmark, how do we interpret/report it?
– We must compare
– We must remember results are statistical

Benchmarking

● Now we have a benchmark, how do we interpret/report it?
– We must compare
– We must remember results are statistical

● Show the distribution (e.g. violin plots)

[Seaborn Violinplot]

Benchmarking

● Now we have a benchmark, how do we interpret/report it?
– We must compare
– We must remember results are statistical

● Show the distribution (e.g. violin plots)
● Summarize the distribution (e.g. mean and confidence intervals, box & whisker)

[Seaborn Violinplot] [Seaborn Boxplot][Seaborn Barplot]

Benchmarking

● A benchmark suite comprises multiple benchmarks

Old
New

T1 T2 T3 T4 T5 T6

Benchmarking

● A benchmark suite comprises multiple benchmarks
● Now we have multiple results, how should we consider them?

Old
New

T1 T2 T3 T4 T5 T6

Benchmarking

● A benchmark suite comprises multiple benchmarks
● Now we have multiple results, how should we consider them?

– 2 major senarios
● Hypothesis testing

– Is solution A different than B?

Old
New

T1 T2 T3 T4 T5 T6

Benchmarking

● A benchmark suite comprises multiple benchmarks
● Now we have multiple results, how should we consider them?

– 2 major senarios
● Hypothesis testing

– Is solution A different than B?

Old
New

T1 T2 T3 T4 T5 T6

Benchmarking

● A benchmark suite comprises multiple benchmarks
● Now we have multiple results, how should we consider them?

– 2 major senarios
● Hypothesis testing

– Is solution A different than B?
– You can use ANOVA

Old
New

T1 T2 T3 T4 T5 T6

Benchmarking

● A benchmark suite comprises multiple benchmarks
● Now we have multiple results, how should we consider them?

– 2 major senarios
● Hypothesis testing
● Summary statistics

Old
New

T1 T2 T3 T4 T5 T6

Benchmarking

● A benchmark suite comprises multiple benchmarks
● Now we have multiple results, how should we consider them?

– 2 major senarios
● Hypothesis testing
● Summary statistics

– Condensing a suite to a single number
– Intrinsically lossy, but can still be useful

Old
New

T1 T2 T3 T4 T5 T6

Benchmarking

● A benchmark suite comprises multiple benchmarks
● Now we have multiple results, how should we consider them?

– 2 major senarios
● Hypothesis testing
● Summary statistics

– Condensing a suite to a single number
– Intrinsically lossy, but can still be useful

Old
New

T1 T2 T3 T4 T5 T6

Contractual SLIs, SLOs, & SLAs
typically use summary statistics!

Benchmarking

● A benchmark suite comprises multiple benchmarks
● Now we have multiple results, how should we consider them?

– 2 major senarios
● Hypothesis testing
● Summary statistics

– Condensing a suite to a single number
– Intrinsically lossy, but can still be useful

Old
New

T1 T2 T3 T4 T5 T6

Old: ?
New: ?

New
Old :?

Summary Statistics

Averages of r1, r2, …, rN

● Many ways to measure expectation or tendency

Summary Statistics

Averages of r1, r2, …, rN

● Many ways to measure expectation or tendency
● Arithmetic Mean 1

N ∑
i=1

N

r i

1
N∑
i=1

N

r i

Summary Statistics

Averages of r1, r2, …, rN

● Many ways to measure expectation or tendency
● Arithmetic Mean

● Harmonic Mean
N

∑
i=1

N 1
r i

Summary Statistics

Averages of r1, r2, …, rN

● Many ways to measure expectation or tendency
● Arithmetic Mean

● Harmonic Mean

● Geometric Mean

1
N∑
i=1

N

r i N

∑
i=1

N 1
r i

N√∏i=1

N

r i

Summary Statistics

Averages of r1, r2, …, rN

● Many ways to measure expectation or tendency
● Arithmetic Mean

● Harmonic Mean

● Geometric Mean

1
N∑
i=1

N

r i N

∑
i=1

N 1
r i

N√∏i=1

N

r i

Each type means something different and has valid uses

Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing

1
N∑
i=1

N

r i

Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means

1
N∑
i=1

N

r i

Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times 1

N∑
i=1

N

r i

Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

for (x in 0 to ...)
 times[x] = doWorkloadOfInterest();

Handling Nondeterminism

E(time) = arithmean(times)

1
N∑
i=1

N

r i

Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

● Harmonic Mean
– Good for reporting rates

N

∑
i=1

N 1
r i

1
N∑
i=1

N

r i

Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

● Harmonic Mean
– Good for reporting rates
– e.g. Required throughput for a set of tasks

N

∑
i=1

N 1
r i

1
N∑
i=1

N

r i

Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

● Harmonic Mean
– Good for reporting rates
– e.g. Required throughput for a set of tasks

1
N∑
i=1

N

r i

N

∑
i=1

N 1
r i

Given tasks t1, t2, & t3 serving 40 pages each:
thoughput(t1) = 10 pages/sec
thoughput(t2) = 20 pages/sec
thoughput(t3) = 20 pages/sec

What is the average throughput? What should it mean? 1
N∑
i=1

N

r i

Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

● Harmonic Mean
– Good for reporting rates
– e.g. Required throughput for a set of tasks

1
N∑
i=1

N

r i

N

∑
i=1

N 1
r i

Given tasks t1, t2, & t3 serving 40 pages each:
thoughput(t1) = 10 pages/sec
thoughput(t2) = 20 pages/sec
thoughput(t3) = 20 pages/sec

What is the average throughput? What should it mean?
 Arithmetic = 16.7 p/s

1
N∑
i=1

N

r i

Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

● Harmonic Mean
– Good for reporting rates
– e.g. Required throughput for a set of tasks

1
N∑
i=1

N

r i

N

∑
i=1

N 1
r i

Given tasks t1, t2, & t3 serving 40 pages each:
thoughput(t1) = 10 pages/sec
thoughput(t2) = 20 pages/sec
thoughput(t3) = 20 pages/sec

What is the average throughput? What should it mean?
 Arithmetic = 16.7 p/s Harmonic = 15 p/s

1
N∑
i=1

N

r i

3
1

10
+ 1

20
+ 1

20

=15 p / s

Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

● Harmonic Mean
– Good for reporting rates
– e.g. Required throughput for a set of tasks

1
N∑
i=1

N

r i

N

∑
i=1

N 1
r i

Given tasks t1, t2, & t3 serving 40 pages each:
thoughput(t1) = 10 pages/sec
thoughput(t2) = 20 pages/sec
thoughput(t3) = 20 pages/sec

What is the average throughput? What should it mean?
 Arithmetic = 16.7 p/s Harmonic = 15 p/s
 120/16.7 = 7.2 120/15 = 8

1
N∑
i=1

N

r i

Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

● Harmonic Mean
– Good for reporting rates
– e.g. Required throughput for a set of tasks

1
N∑
i=1

N

r i

N

∑
i=1

N 1
r i

Given tasks t1, t2, & t3 serving 40 pages each:
thoughput(t1) = 10 pages/sec
thoughput(t2) = 20 pages/sec
thoughput(t3) = 20 pages/sec

What is the average throughput? What should it mean?
 Arithmetic = 16.7 p/s Harmonic = 15 p/s
 120/16.7 = 7.2 120/15 = 8

Identifies the constant rate
required for the same time

1
N∑
i=1

N

r i

Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

● Harmonic Mean
– Good for reporting rates
– e.g. Required throughput for a set of tasks

1
N∑
i=1

N

r i
Given tasks t1, t2, & t3 serving 40 pages each:

thoughput(t1) = 10 pages/sec
thoughput(t2) = 20 pages/sec
thoughput(t3) = 20 pages/sec

What is the average throughput? What should it mean?
 Arithmetic = 16.7 p/s Harmonic = 15 p/s
 120/16.7 = 7.2 120/15 = 8

N

∑
i=1

N 1
r i

Identifies the constant rate
required for the same time

CAVEAT: If the size of each workload changes,
a weighted harmonic mean is required!

1
N∑
i=1

N

r i

Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

N√∏i=1

N

r i

Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Any idea why it may be useful here?
(A bit of a thought experiment)

N√∏i=1

N

r i

Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Old
T1 T2

N√∏i=1

N

r i

Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Old
T1 T2

New 1
T1 T2

What happens to the
arithmetic mean?

halved

N√∏i=1

N

r i

Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Old
T1 T2

What happens to the
arithmetic mean?

New 2
T1 T2

halved

N√∏i=1

N

r i

Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Old
T1 T2

The (non) change to T1 dominates
any behavior for T2!

N√∏i=1

N

r i

Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Old
T1 T2

Geometric:

√r1×r2

Old

N√∏i=1

N

r i

Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Old
T1 T2

Geometric:

√r1×r2

Old New 1
√r1×(1

2
r2)

N√∏i=1

N

r i

Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Old
T1 T2

Geometric:

√r1×r2

Old New 1
√(1

2
r1)×r2

New 2
√r1×(1

2
r2)

N√∏i=1

N

r i

Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Old
T1 T2

Geometric:

√r1×r2

Old New 1
√(1

2
r1)×r2

New 2
√r1×(1

2
r2) =√ 1

2
×r1×r2=

N√∏i=1

N

r i

Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks
– A 10% difference in any benchmark affects the final value the same way

N√∏i=1

N

r i

Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks
– A 10% difference in any benchmark affects the final value the same way

Note: It doesn't have an intuitive meaning!
It does provides a balanced score of performance.

See [Mashey 2004] for deeper insights.

N√∏i=1

N
ri

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.325.7027&rep=rep1&type=pdf

Summary Statistics

● What if the goal is not to measure tendency,
but instead to measure pathological cases?

Summary Statistics

● What if the goal is not to measure tendency,
but instead to measure pathological cases?
– Is my web site response too slow? (latency)
– Does my app drain the user’s batter? (energy)
– ...

Summary Statistics

● What if the goal is not to measure tendency,
but instead to measure pathological cases?
– Is my web site response too slow? (latency)
– Does my app drain the user’s batter? (energy)
– ...

Again, these are commonly tied to SLAs!

Summary Statistics

● What if the goal is not to measure tendency,
but instead to measure pathological cases?
– Is my web site response too slow? (latency)
– Does my app drain the user’s batter? (energy)
– ...

● Averages in these scenarios are simply misleading

Summary Statistics

● What if the goal is not to measure tendency,
but instead to measure pathological cases?
– Is my web site response too slow? (latency)
– Does my app drain the user’s batter? (energy)
– ...

● Averages in these scenarios are simply misleading

50ms 400ms

66%

33%

An arithmetic mean yields 167ms.

Suppose <200ms response is okay.

Summary Statistics

● What if the goal is not to measure tendency,
but instead to measure pathological cases?
– Is my web site response too slow? (latency)
– Does my app drain the user’s batter? (energy)
– ...

● Averages in these scenarios are simply misleading

50ms 400ms

66%

33%

An arithmetic mean yields 167ms.

But 1/3 of responses are bad!

Suppose <200ms response is okay.

Summary Statistics

● What if the goal is not to measure tendency,
but instead to measure pathological cases?
– Is my web site response too slow? (latency)
– Does my app drain the user’s batter? (energy)
– ...

● Averages in these scenarios are simply misleading
● Percentiles

– nth percentile - The score below which n% of a population resides

Summary Statistics

● What if the goal is not to measure tendency,
but instead to measure pathological cases?
– Is my web site response too slow? (latency)
– Does my app drain the user’s batter? (energy)
– ...

● Averages in these scenarios are simply misleading
● Percentiles

– nth percentile - The score below which n% of a population resides

50ms 400ms

99th %-ile = 401ms

Summary Statistics

● What if the goal is not to measure tendency,
but instead to measure pathological cases?
– Is my web site response too slow? (latency)
– Does my app drain the user’s batter? (energy)
– ...

● Averages in these scenarios are simply misleading
● Percentiles

– nth percentile - The score below which n% of a population resides

50ms 400ms

99th %-ile = 401ms

Percentiles better capture adherence to minimum standards.

Summary Statistics

● What if the goal is not to measure tendency,
but instead to measure pathological cases?
– Is my web site response too slow? (latency)
– Does my app drain the user’s batter? (energy)
– ...

● Averages in these scenarios are simply misleading
● Percentiles

– nth percentile - The score below which n% of a population resides

● Even percentiles can be misleading when misused

Summary Statistics

● What if the goal is not to measure tendency,
but instead to measure pathological cases?
– Is my web site response too slow? (latency)
– Does my app drain the user’s batter? (energy)
– ...

● Averages in these scenarios are simply misleading
● Percentiles

– nth percentile - The score below which n% of a population resides

● Even percentiles can be misleading when misused
How many server requests does a web page make?

Summary Statistics

● What if the goal is not to measure tendency,
but instead to measure pathological cases?
– Is my web site response too slow? (latency)
– Does my app drain the user’s batter? (energy)
– ...

● Averages in these scenarios are simply misleading
● Percentiles

– nth percentile - The score below which n% of a population resides

● Even percentiles can be misleading when misused
How many server requests does a web page make?

Median of 69-75 [Hubspot 2019] p(99th %-ile experience) = 1-0.9975 ~ 0.5

https://blog.hubspot.com/marketing/reduce-http-requests

Summary Statistics

● What if the goal is not to measure tendency,
but instead to measure pathological cases?
– Is my web site response too slow? (latency)
– Does my app drain the user’s batter? (energy)
– ...

● Averages in these scenarios are simply misleading
● Percentiles

– nth percentile - The score below which n% of a population resides

● Even percentiles can be misleading when misused
How many server requests does a web page make?

How do you measure percentiles over time?

Summary Statistics

● What if the goal is not to measure tendency,
but instead to measure pathological cases?
– Is my web site response too slow? (latency)
– Does my app drain the user’s batter? (energy)
– ...

● Averages in these scenarios are simply misleading
● Percentiles

– nth percentile - The score below which n% of a population resides

● Even percentiles can be misleading when misused
For more see:

How not to measure latency
Latency SLOs Done Right

https://www.youtube.com/watch?v=nP1aK4DLu-k
https://www.usenix.org/conference/srecon19emea/presentation/hartmann-latency

Summary Statistics

● What if the goal is not to measure tendency,
but instead to measure pathological cases?
– Is my web site response too slow? (latency)
– Does my app drain the user’s batter? (energy)
– ...

● Averages in these scenarios are simply misleading
● Percentiles

– nth percentile - The score below which n% of a population resides

● Even percentiles can be misleading when misused
● Typical SLIs, SLOs, & SLAs are driven by percentiles.

– These become your contractual obligations!

Summary Statistics

● At the end of the day,
you cannot sit down and follow a boilerplate process.

Summary Statistics

● At the end of the day,
you cannot sit down and follow a boilerplate process.

● Assess the goal. Assess the data. Determine what is meaningful.

Benchmarking

● In practice applying good benchmarking & statistics is made easier via
frameworks
– Google benchmark (C & C++)
– Google Caliper (Java)
– JMH (Java)
– Nonius
– Celero
– Easybench
– Pyperf
– ...

Investigating
Performance

Profiling

● When benchmark results do not make sense, you should
investigate why

Profiling

● When benchmark results do not make sense, you should
investigate why
– For resource X, where is X being used, acquired, and or released?

Profiling

● When benchmark results do not make sense, you should
investigate why
– For resource X, where is X being used, acquired, and or released?

● Sometimes microbenchmarks provide sufficient insight

Profiling

● When benchmark results do not make sense, you should
investigate why
– For resource X, where is X being used, acquired, and or released?

● Sometimes microbenchmarks provide sufficient insight
● In other cases you will want to profile

Profiling

● When benchmark results do not make sense, you should
investigate why
– For resource X, where is X being used, acquired, and or released?

● Sometimes microbenchmarks provide sufficient insight
● In other cases you will want to profile

– Collect additional information about resources in an execution
– The nature of the tool will depend on the resource and the objective

Profiling

● When benchmark results do not make sense, you should
investigate why
– For resource X, where is X being used, acquired, and or released?

● Sometimes microbenchmarks provide sufficient insight
● In other cases you will want to profile

– Collect additional information about resources in an execution
– The nature of the tool will depend on the resource and the objective

You should already be familiar with tools like gprof or jprofile.
We’ll examine some more advanced profilers now.

Heap profiling

● Suppose I have a task and it consumes all memory
– Note: This is not hypothetical. This often happens with grad students!

Heap profiling

● Suppose I have a task and it consumes all memory
– Note: This is not hypothetical. This often happens with grad students!
– If I can identify where & why memory is consumed, I can remediate

● Maybe better algorithm
● Maybe competent use of data structures....

Heap profiling

● Suppose I have a task and it consumes all memory
– Note: This is not hypothetical. This often happens with grad students!
– If I can identify where & why memory is consumed, I can remediate

● Maybe better algorithm
● Maybe competent use of data structures....

● Heap profilers track the allocated memory in a program
& their provenance

Heap profiling

● Suppose I have a task and it consumes all memory
– Note: This is not hypothetical. This often happens with grad students!
– If I can identify where & why memory is consumed, I can remediate

● Maybe better algorithm
● Maybe competent use of data structures....

● Heap profilers track the allocated memory in a program
& their provenance
– Can identify hotspots, bloat, leaks, short lived allocations, ...

Heap profiling

● Suppose I have a task and it consumes all memory
– Note: This is not hypothetical. This often happens with grad students!
– If I can identify where & why memory is consumed, I can remediate

● Maybe better algorithm
● Maybe competent use of data structures....

● Heap profilers track the allocated memory in a program
& their provenance
– Can identify hotspots, bloat, leaks, short lived allocations, ...

Some people mistakenly believe that using
managed languages like Java prevents these.

In practice, they look different....
leaks, ... bloat, latency spikes, OutOfMemoryError

Heap profiling

● Suppose I have a task and it consumes all memory
– Note: This is not hypothetical. This often happens with grad students!
– If I can identify where & why memory is consumed, I can remediate

● Maybe better algorithm
● Maybe competent use of data structures....

● Heap profilers track the allocated memory in a program
& their provenance
– Can identify hotspots, bloat, leaks, short lived allocations, ...

Some people mistakenly believe that using
managed languages like Java prevents these.

In practice, they look different....
leaks, ... bloat, latency spikes, OutOfMemoryError

public Integer pop() {
 if (size == 0) {
 throw new EmptyStackException();
 }
 size -= 1;
 Integer result = data[size];
 data[size] = null;
 return result
}

Effective Java Item 7
Eliminate obsolete object references.

Heap profiling

● Suppose I have a task and it consumes all memory
– Note: This is not hypothetical. This often happens with grad students!
– If I can identify where & why memory is consumed, I can remediate

● Maybe better algorithm
● Maybe competent use of data structures....

● Heap profilers track the allocated memory in a program
& their provenance
– Can identify hotspots, bloat, leaks, short lived allocations, ...

Some people mistakenly believe that using
managed languages like Java prevents these.

In practice, they look different....
leaks, ... bloat, latency spikes, OutOfMemoryError

Effective Java Item 7
Eliminate obsolete object references.

Very common defect in
callbacks & caches

(nullification & deregistration)

public Integer pop() {
 if (size == 0) {
 throw new EmptyStackException();
 }
 size -= 1;
 Integer result = data[size];
 data[size] = null;
 return result
}

Heap profiling

● Suppose I have a task and it consumes all memory
– Note: This is not hypothetical. This often happens with grad students!
– If I can identify where & why memory is consumed, I can remediate

● Maybe better algorithm
● Maybe competent use of data structures....

● Heap profilers track the allocated memory in a program
& their provenance
– Can identify hotspots, bloat, leaks, short lived allocations, ...
– Commonly sample based, but sometimes event based
– e.g. Massif, Heaptrack, ...

Heap profiling
int
main() {
 std::vector<std::unique_ptr<long[]>> data{DATA_SIZE};

 for (auto &element : data) {
 element = std::make_unique<long[]>(BLOCK_SIZE);
 // do something with element
 std::this_thread::sleep_for(std::chrono::milliseconds(100));
 }

 std::this_thread::sleep_for(std::chrono::seconds(1));
 return 0;
}

Heap profiling
int
main() {
 std::vector<std::unique_ptr<long[]>> data{DATA_SIZE};

 for (auto &element : data) {
 element = std::make_unique<long[]>(BLOCK_SIZE);
 // do something with element
 std::this_thread::sleep_for(std::chrono::milliseconds(100));
 }

 std::this_thread::sleep_for(std::chrono::seconds(1));
 return 0;
}valgrind --time-unit=ms --tool=massif <program invocation>
heaptrack <program invocation> massif-visualizer massif.out.<PID>

heaptrack_gui <path to data>

Heap Profiling

Heap Profiling

Heap Profiling

Heap profiling
int
main() {
 std::vector<std::unique_ptr<long[]>> data{DATA_SIZE};

 for (auto &element : data) {
 element = std::make_unique<long[]>(BLOCK_SIZE);
 // do something with element
 std::this_thread::sleep_for(std::chrono::milliseconds(100));
 element.reset();
 std::this_thread::sleep_for(std::chrono::milliseconds(100));
 }

 std::this_thread::sleep_for(std::chrono::seconds(1));
 return 0;
}

How do we expect this to differ?

Heap Profiling

Heap Profiling

Different sampling mechanisms have different biases.
Good tool use requires understanding them.

[Statistically Rigorous Java Performance Evaluation, Dries, 2007]

https://dri.es/files/oopsla07-georges.pdf

Heap Profiling

CPU Profiling & Flame Graphs

● When CPU is the resource, investigate where the CPU is spent
– Classic profilers – gprof, oprofile, jprof, ...

CPU Profiling & Flame Graphs

● When CPU is the resource, investigate where the CPU is spent
– Classic profilers – gprof, oprofile, jprof, ...

● Classic CPU profilers capture a lot of data and force the user to
explore & explain it manually

CPU Profiling & Flame Graphs

● When CPU is the resource, investigate where the CPU is spent
– Classic profilers – gprof, oprofile, jprof, ...

● Classic CPU profilers capture a lot of data and force the user to
explore & explain it manually

main()

foo() bar()

baz() quux()

70% 20%

70% 20%

CPU Profiling & Flame Graphs

● When CPU is the resource, investigate where the CPU is spent
– Classic profilers – gprof, oprofile, jprof, ...

● Classic CPU profilers capture a lot of data and force the user to
explore & explain it manually

● Flame graphs provide a way of structuring and visualizing substantial
profiling information

CPU Profiling & Flame Graphs

● When CPU is the resource, investigate where the CPU is spent
– Classic profilers – gprof, oprofile, jprof, ...

● Classic CPU profilers capture a lot of data and force the user to
explore & explain it manually

● Flame graphs provide a way of structuring and visualizing substantial
profiling information

main()

foo() bar()

baz() quux()

CPU Profiling & Flame Graphs

● When CPU is the resource, investigate where the CPU is spent
– Classic profilers – gprof, oprofile, jprof, ...

● Classic CPU profilers capture a lot of data and force the user to
explore & explain it manually

● Flame graphs provide a way of structuring and visualizing substantial
profiling information

main()

foo() bar()

baz() quux()

It is easier to see that
optimizing baz() could be useful.

CPU Profiling & Flame Graphs

● When CPU is the resource, investigate where the CPU is spent
– Classic profilers – gprof, oprofile, jprof, ...

● Classic CPU profilers capture a lot of data and force the user to
explore & explain it manually

● Flame graphs provide a way of structuring and visualizing substantial
profiling information
– Consumers of CPU on top

main()

foo() bar()

baz() quux()

CPU Profiling & Flame Graphs

● When CPU is the resource, investigate where the CPU is spent
– Classic profilers – gprof, oprofile, jprof, ...

● Classic CPU profilers capture a lot of data and force the user to
explore & explain it manually

● Flame graphs provide a way of structuring and visualizing substantial
profiling information
– Consumers of CPU on top
– ancestry, proportions, components can all be clearly identified

main()

foo() bar()

baz() quux()

CPU Profiling & Flame Graphs

● Can extract rich information by embedding interesting things in colors

[Differential Flame Graphs, Gregg, 2014]
[Gregg, ATC 2017]

http://www.brendangregg.com/blog/2014-11-09/differential-flame-graphs.html

CPU Profiling & Flame Graphs

● Flame graphs are not just limited to CPU time!
– Any countable resource or event can be organized & visualized

CPU Profiling & Flame Graphs

● Flame graphs are not just limited to CPU time!
– Any countable resource or event can be organized & visualized

● You can also automatically generate them with clang & chrome
– See project X-Ray in clang
– See Chrome Trace Viewer

https://llvm.org/docs/XRayExample.html#flame-graph-generation
https://aras-p.info/blog/2017/01/23/Chrome-Tracing-as-Profiler-Frontend/

Perf & event profiling

● Sometimes low-level architectural effects determine the performance
– Cache misses
– Misspeculations
– TLB misses

Perf & event profiling

● Sometimes low-level architectural effects determine the performance
– Cache misses
– Misspeculations
– TLB misses

How well does sample based profiling work for these?

Perf & event profiling

● Sometimes low-level architectural effects determine the performance
– Cache misses
– Misspeculations
– TLB misses

How well does sample based profiling work for these?

● Instead, we can leverage low level system counters via tools like perf

Perf & event profiling

● Sometimes low-level architectural effects determine the performance
– Cache misses
– Misspeculations
– TLB misses

How well does sample based profiling work for these?

● Instead, we can leverage low level system counters via tools like perf
perf stat -e <events> <command>
perf record -e <events> -g <command>
perf report
perf annotate
perf list

Perf & event profiling

● Sometimes low-level architectural effects determine the performance
– Cache misses
– Misspeculations
– TLB misses

How well does sample based profiling work for these?

● Instead, we can leverage low level system counters via tools like perf
perf stat -e <events> <command>
perf record -e <events> -g <command>
perf report
perf annotate
perf list

Perf & event profiling

● Sometimes low-level architectural effects determine the performance
– Cache misses
– Misspeculations
– TLB misses

How well does sample based profiling work for these?

● Instead, we can leverage low level system counters via tools like perf
perf stat -e <events> <command>
perf record -e <events> -g <command>
perf report
perf annotate
perf list

● Sometimes low-level architectural effects determine the performance
– Cache misses
– Misspeculations
– TLB misses

How well does sample based profiling work for these?

● Instead, we can leverage low level system counters via tools like perf

Perf & event profiling

perf stat -e <events> <command>
perf record -e <events> -g <command>
perf report
perf annotate
perf list
events like

task-clock,context-switches,cpu-migrations,page-faults,
cycles,branches,branch-misses,cache-misses,
cycle_activity.stalls_mem_any,icache_64b.iftag_stall

Perf & event profiling

Sequence s;
size_t count = // size of workload
auto value = randomInts.begin();

while (count) {
 const auto &v = *value;
 auto pos = std::find_if(s.begin(), s.end(),
 [&v] (auto elt) { return !(elt < v); });
 s.insert(pos, v);
 ++value;
 --count;
}

Perf & event profiling

Sequence s;
size_t count = // size of workload
auto value = randomInts.begin();

while (count) {
 const auto &v = *value;
 auto pos = std::find_if(s.begin(), s.end(),
 [&v] (auto elt) { return !(elt < v); });
 s.insert(pos, v);
 ++value;
 --count;
}

Perf & event profiling
perf stat -e ... bin/sequenceTest --benchmark_filter=vector

 Performance counter stats for 'bin/sequenceTest --benchmark_filter=vector':

 203 page-faults # 0.216 K/sec
 3,633,972,445 cycles # 3.871 GHz (66.82%)
 11,103,176,853 instructions # 3.06 insn per cycle (83.39%)
 3,878,166,469 branches # 4130.852 M/sec (83.38%)
 938.83 msec task-clock # 0.981 CPUs utilized
 3 context-switches # 0.003 K/sec
 0 cpu-migrations # 0.000 K/sec
 1,895,927 branch-misses # 0.05% of all branches (83.39%)
 398,844 cache-misses (83.38%)
 135,089,499 cycle_activity.stalls_total # 143.891 M/sec (83.03%)

805K insertions/sec @~1 second

Perf & event profiling
perf stat -e ... bin/sequenceTest --benchmark_filter=list

 Performance counter stats for 'bin/sequenceTest --benchmark_filter=list':

 302 page-faults # 0.015 K/sec
 78,686,515,379 cycles # 3.953 GHz (66.65%)
 11,813,349,494 instructions # 0.15 insn per cycle (83.32%)
 4,695,891,137 branches # 235.899 M/sec (83.33%)
 19,906.35 msec task-clock # 0.999 CPUs utilized
 76 context-switches # 0.004 K/sec
 0 cpu-migrations # 0.000 K/sec
 1,344,413 branch-misses # 0.03% of all branches (83.34%)
 2,949,410 cache-misses (83.34%)
 73,920,774,866 cycle_activity.stalls_total # 3713.427 M/sec (83.34%)

28.7K insertions/sec @~20 seconds

Perf & event profiling
perf record -e ... -g bin/sequenceTest --benchmark_filter=list
perf annotate

85-97% of stalls are on the linked list traversal

Similar profilers across languages

● These sorts of profiling concerns are not just for native code
– Python – scalene (https://github.com/emeryberger/scalene)
– Javascript – Chrome Dev Tools, Firebug, JitProf, ...
– Java – VisualVM, Mission Control, XRebel, ...
– ...

https://github.com/emeryberger/scalene
https://github.com/Berkeley-Correctness-Group/JITProf

Similar profilers across languages

● These sorts of profiling concerns are not just for native code
– Python – scalene (https://github.com/emeryberger/scalene)
– Javascript – Chrome Dev Tools, Firebug, JitProf, ...
– Java – VisualVM, Mission Control, XRebel, ...
– ...

What events you care about may change,
but the need for profiling is ubiquitous.

https://github.com/emeryberger/scalene
https://github.com/Berkeley-Correctness-Group/JITProf

Similar profilers across languages

● These sorts of profiling concerns are not just for native code
– Python – scalene (https://github.com/emeryberger/scalene)
– Javascript – Chrome Dev Tools, Firebug, JitProf, ...
– Java – VisualVM, Mission Control, XRebel, ...
– ...

● As new languages and use cases emerge,
figuring out what to profile &
developing new profiling tools is critical

https://github.com/emeryberger/scalene
https://github.com/Berkeley-Correctness-Group/JITProf

Similar profilers across languages

● These sorts of profiling concerns are not just for native code
– Python – scalene (https://github.com/emeryberger/scalene)
– Javascript – Chrome Dev Tools, Firebug, JitProf, ...
– Java – VisualVM, Mission Control, XRebel, ...
– ...

● As new languages and use cases emerge,
figuring out what to profile &
developing new profiling tools is critical

● Whatever event, resource, or problem you are interested in,
a custom profiler can provide a useful investigative tool

https://github.com/emeryberger/scalene
https://github.com/Berkeley-Correctness-Group/JITProf

Profiling for opportunities

● Causal profiling (e.g. Coz)

...
fo

o(
)

...

fo
o(

)

fo
o(

)

fo
o(

)

https://github.com/plasma-umass/coz

Profiling for opportunities

● Causal profiling (e.g. Coz)

What should I look at to speed things up?

...
fo

o(
)

...

fo
o(

)

fo
o(

)

fo
o(

)

https://github.com/plasma-umass/coz

Profiling for opportunities

● Causal profiling (e.g. Coz)

What should I look at to speed things up?

... ...

fo
o(

)

...
fo

o(
)

...

fo
o(

)

fo
o(

)

fo
o(

)

...

fo
o(

)

...

fo
o(

)

fo
o(

)

fo
o(

)

fo
o(

)
fo

o(
)

fo
o(

)

https://github.com/plasma-umass/coz

Profiling for opportunities

● Causal profiling (e.g. Coz)

What should I look at to speed things up?

... ...

fo
o(

)

...
fo

o(
)

...

fo
o(

)

fo
o(

)

fo
o(

)

...

fo
o(

)

...

fo
o(

)

fo
o(

)

fo
o(

)

fo
o(

)
fo

o(
)

fo
o(

)

How would you implement such a tool?

https://github.com/plasma-umass/coz

Profiling for opportunities

● Causal profiling (e.g. Coz)

B

C C C

What about parallel code?

DA

https://github.com/plasma-umass/coz

Profiling for opportunities

● Causal profiling (e.g. Coz)

B

C C C

What about parallel code?

DA

B

C C C
DA

https://github.com/plasma-umass/coz

Profiling for opportunities

● Causal profiling (e.g. Coz)

B

C C C

What about parallel code?

DA

B

C C C
DA

B

C
DA

C C

https://github.com/plasma-umass/coz

Profiling for opportunities

● Causal profiling
● Profiling for parallelism (1, 2, 3, 4, 5, ...)

...

fo
o(

)

...
fo

o(
)

fo
o(

)

fo
o(

)

https://dl.acm.org/doi/10.1145/1242531.1242554
https://link.springer.com/chapter/10.1007/978-3-642-15277-1_4
https://www.cc.gatech.edu/~hyesoon/prospector_4page.pdf
https://ieeexplore.ieee.org/abstract/document/6693080
https://apps.fz-juelich.de/jsc-pubsystem/aigaion/attachments/ipdps15.pdf-90476123f623dd414a85aa971b993493.pdf

Profiling for opportunities

● Causal profiling
● Profiling for parallelism (1, 2, 3, 4, 5, ...)

...

fo
o(

)

...
fo

o(
)

fo
o(

)

fo
o(

)

https://dl.acm.org/doi/10.1145/1242531.1242554
https://link.springer.com/chapter/10.1007/978-3-642-15277-1_4
https://www.cc.gatech.edu/~hyesoon/prospector_4page.pdf
https://ieeexplore.ieee.org/abstract/document/6693080
https://apps.fz-juelich.de/jsc-pubsystem/aigaion/attachments/ipdps15.pdf-90476123f623dd414a85aa971b993493.pdf

Profiling for opportunities

● Causal profiling
● Profiling for parallelism (1, 2, 3, 4, 5, ...)

...

fo
o(

)

...
fo

o(
)

fo
o(

)

fo
o(

)

https://dl.acm.org/doi/10.1145/1242531.1242554
https://link.springer.com/chapter/10.1007/978-3-642-15277-1_4
https://www.cc.gatech.edu/~hyesoon/prospector_4page.pdf
https://ieeexplore.ieee.org/abstract/document/6693080
https://apps.fz-juelich.de/jsc-pubsystem/aigaion/attachments/ipdps15.pdf-90476123f623dd414a85aa971b993493.pdf

Profiling for opportunities

● Causal profiling
● Profiling for parallelism (1, 2, 3, 4, 5, ...)

...

fo
o(

)

...
fo

o(
)

fo
o(

)

fo
o(

)

https://dl.acm.org/doi/10.1145/1242531.1242554
https://link.springer.com/chapter/10.1007/978-3-642-15277-1_4
https://www.cc.gatech.edu/~hyesoon/prospector_4page.pdf
https://ieeexplore.ieee.org/abstract/document/6693080
https://apps.fz-juelich.de/jsc-pubsystem/aigaion/attachments/ipdps15.pdf-90476123f623dd414a85aa971b993493.pdf

Profiling for opportunities

● Causal profiling
● Profiling for parallelism (1, 2, 3, 4, 5, ...)

...

fo
o(

)

...
fo

o(
)

fo
o(

)

fo
o(

)

fo
o(

)

...
fo

o(
)

...

fo
o(

)
fo

o(
)

https://dl.acm.org/doi/10.1145/1242531.1242554
https://link.springer.com/chapter/10.1007/978-3-642-15277-1_4
https://www.cc.gatech.edu/~hyesoon/prospector_4page.pdf
https://ieeexplore.ieee.org/abstract/document/6693080
https://apps.fz-juelich.de/jsc-pubsystem/aigaion/attachments/ipdps15.pdf-90476123f623dd414a85aa971b993493.pdf

Improving
Performance

Improving Performance

● We can attack performance at several levels

Improving Performance

● We can attack performance at several levels
– Compilers & tuning the build process

Improving Performance

● We can attack performance at several levels
– Compilers & tuning the build process
– Managing the organization of data

Improving Performance

● We can attack performance at several levels
– Compilers & tuning the build process
– Managing the organization of data
– Managing the organization of code

Improving Performance

● We can attack performance at several levels
– Compilers & tuning the build process
– Managing the organization of data
– Managing the organization of code
– Better algorithms & algorithmic modeling

Improving Performance

● We can attack performance at several levels
– Compilers & tuning the build process
– Managing the organization of data
– Managing the organization of code
– Better algorithms & algorithmic modeling

● In all cases, we only care about improving performance of hot code

Improving Performance

● We can attack performance at several levels
– Compilers & tuning the build process
– Managing the organization of data
– Managing the organization of code
– Better algorithms & algorithmic modeling

● In all cases, we only care about improving performance of hot code
● Optimizing cold code can hurt software

– You need to understand your trade offs, goals, & business value

Improving Performance

● We can attack performance at several levels
– Compilers & tuning the build process
– Managing the organization of data
– Managing the organization of code
– Better algorithms & algorithmic modeling

● In all cases, we only care about improving performance of hot code
● Optimizing cold code can hurt software

– You need to understand your trade offs, goals, & business value
– But also do not ignore basic performance awareness

Compiling for performance

● Enabling optimizations...

Compiling for performance

● Enabling optimizations...
● LTO (Link Time Optimization / Whole Program Optimization)

Compiling for performance

● Enabling optimizations...
● LTO (Link Time Optimization / Whole Program Optimization)

foo.c foo.o

bar.c bar.o

Compile &

Optimize

Compile &

Optimize

Compiling for performance

● Enabling optimizations...
● LTO (Link Time Optimization / Whole Program Optimization)

foo.c foo.o

bar.c bar.o

Compile &

Optimize

Compile &

Optimize

programLink

Compiling for performance

● Enabling optimizations...
● LTO (Link Time Optimization / Whole Program Optimization)

foo.c foo.o

bar.c bar.o

Compile &

Optimize

Compile &

Optimize

program(.o)Merge programOptimize &
Link

Compiling for performance

● Enabling optimizations...
● LTO
● PGO/FDO (Profile Guided Optimization/Feedback Directed Optimization)

– Incorporate profile information in optimization decisions

Compiling for performance

● Enabling optimizations...
● LTO
● PGO/FDO (Profile Guided Optimization/Feedback Directed Optimization)

– Incorporate profile information in optimization decisions

funPtr = ?
...

funPtr()

Compiling for performance

● Enabling optimizations...
● LTO
● PGO/FDO (Profile Guided Optimization/Feedback Directed Optimization)

– Incorporate profile information in optimization decisions

funPtr = ?
...

funPtr()

foo(){A}

bar(){B}

Compiling for performance

● Enabling optimizations...
● LTO
● PGO/FDO (Profile Guided Optimization/Feedback Directed Optimization)

– Incorporate profile information in optimization decisions

funPtr = ?
...

funPtr()

foo(){A}

bar(){B}

funPtr = ?
...

if funPtr == bar:
 B’
else:
 funPtr()

Compiling for performance

● Enabling optimizations...
● LTO
● PGO/FDO (Profile Guided Optimization/Feedback Directed Optimization)

– Incorporate profile information in optimization decisions

funPtr = ?
...

funPtr()

foo(){A}

bar(){B}

funPtr = ?
...

if funPtr == bar:
 B’
else:
 funPtr()

[Visual Studio profile guided optimizations]

https://docs.microsoft.com/en-us/cpp/build/profile-guided-optimizations?view=vs-2019

Compiling for performance

● Enabling optimizations...
● LTO
● PGO
● Layout optimization (BOLT and otherwise)

Compiling for performance

● Enabling optimizations...
● LTO
● PGO
● Layout optimization (BOLT and otherwise)

Compiling for performance

● Enabling optimizations...
● LTO
● PGO
● Layout optimization (BOLT and otherwise)

A

D
F
G
I
J

B
C
E

H

Compiling for performance

● Enabling optimizations...
● LTO
● PGO
● Layout optimization (BOLT and otherwise)

A

D
F
G
I
J

B
C
E

H

J
I
G
F
D
A

B
C
E
H

Compiling for performance

● Enabling optimizations...
● LTO
● PGO
● Layout optimization (BOLT and otherwise)

A

D
F
G
I
J

B
C
E

H

J
I
G
F
D
A

B
C
E

Google & Facebook found it useful on servers.
Apple has found it useful in embedded devices & apps.

Why? [Hot-Cold Splitting in LLVM]

H

https://lists.llvm.org/pipermail/llvm-dev/2020-August/144012.html

Compiling for performance

● Enabling optimizations...
● LTO
● PGO
● Layout optimization (BOLT and otherwise)
● Polyhedral analysis, tiling, etc.

– Transforming complex operations on, e.g., matrices to maximize locality

Compiling for performance

● Enabling optimizations...
● LTO
● PGO
● Layout optimization (BOLT and otherwise)
● Polyhedral analysis, tiling, etc.

– Transforming complex operations on, e.g., matrices to maximize locality

Even for web apps, these techniques make a difference
when applied to the hot path.
[Google Developer Updates]

https://developers.google.com/web/updates/2019/02/hotpath-with-wasm

Optimizing Your Data

● The basic directions of data optimizations

Optimizing Your Data

● The basic directions of data optimizations
– Ensure the data you want is available for the tasks you have

Optimizing Your Data

● The basic directions of data optimizations
– Ensure the data you want is available for the tasks you have
– Do not spend time processing you do not need

Optimizing Your Data

● The basic directions of data optimizations
– Ensure the data you want is available for the tasks you have
– Do not spend time processing you do not need
– Do not spend extra time managing the data at the system level

Optimizing Your Data

● The basic directions of data optimizations
– Ensure the data you want is available for the tasks you have
– Do not spend time processing you do not need
– Do not spend extra time managing the data at the system level

Several aspects of high level design may be in tension with these

Optimizing Your Data

● Basic structure packing
– Smaller aggregates consume less cache

struct S1 {
 char a;
};
sizeof(S1) == 1

struct S2 {
 uint32_t b;
};
sizeof(S2) == 4

Optimizing Your Data

● Basic structure packing
– Smaller aggregates consume less cache

struct S1 {
 char a;
};
sizeof(S1) == 1

struct S2 {
 uint32_t b;
};
sizeof(S2) == 4

struct S3 {
 char a;
 uint32_t b;
 char c;
};
sizeof(S3) == ?

Optimizing Your Data

● Basic structure packing
– Smaller aggregates consume less cache

struct S1 {
 char a;
};
sizeof(S1) == 1

struct S2 {
 uint32_t b;
};
sizeof(S2) == 4

struct S3 {
 char a;
 uint32_t b;
 char c;
};
sizeof(S3) == 12

uint32_t must be 4 byte aligned.
Padding is inserted!

Optimizing Your Data

● Basic structure packing
– Smaller aggregates consume less cache

struct S1 {
 char a;
};
sizeof(S1) == 1

struct S2 {
 uint32_t b;
};
sizeof(S2) == 4

struct S3 {
 char a;
 uint32_t b;
 char c;
};
sizeof(S3) == 12

struct S4 {
 char a;
 char c;
 uint32_t b;
};
sizeof(S3) == 8

Optimizing Your Data

● Basic structure packing
– Smaller aggregates consume less cache

struct S1 {
 char a;
};
sizeof(S1) == 1

struct S2 {
 uint32_t b;
};
sizeof(S2) == 4

struct S3 {
 char a;
 uint32_t b;
 char c;
};
sizeof(S3) == 12

struct S4 {
 char a;
 char c;
 uint32_t b;
};

Careful ordering improves
cache utilization

sizeof(S3) == 8

Optimizing Your Data

● Basic structure packing
– Smaller aggregates consume less cache
– Carefully encoding data or reusing storage can do more

Optimizing Your Data

● Basic structure packing
– Smaller aggregates consume less cache
– Carefully encoding data or reusing storage can do more

● Operate on compressed data

Optimizing Your Data

● Basic structure packing
– Smaller aggregates consume less cache
– Carefully encoding data or reusing storage can do more

● Operate on compressed data
● Steal low/high order bits of pointers

Optimizing Your Data

● Basic structure packing
– Smaller aggregates consume less cache
– Carefully encoding data or reusing storage can do more

● Operate on compressed data
● Steal low/high order bits of pointers

template <class PointedTo>
class PointerValuePair<PointedTo,int> {
 uintptr_t compact;
 PointedTo* getP() {
 return reinterpret_cast<PointedTo*>(compact & ~0xFFFFFFF8);
 }
 Value getV() { return compact & 0x00000007; }
};

Optimizing Your Data

● Basic structure packing
– Smaller aggregates consume less cache
– Carefully encoding data or reusing storage can do more

● Operate on compressed data
● Steal low/high order bits of pointers

template <class PointedTo>
class PointerValuePair<PointedTo,int> {
 uintptr_t compact;
 PointedTo* getP() {
 return reinterpret_cast<PointedTo*>(compact & ~0xFFFFFFF8);
 }
 Value getV() { return compact & 0x00000007; }
};

Optimizing Your Data

● Basic structure packing
– Smaller aggregates consume less cache
– Carefully encoding data or reusing storage can do more

● Operate on compressed data
● Steal low/high order bits of pointers

template <class PointedTo>
class PointerValuePair<PointedTo,int> {
 uintptr_t compact;
 PointedTo* getP() {
 return reinterpret_cast<PointedTo*>(compact & ~0xFFFFFFF8);
 }
 Value getV() { return compact & 0x00000007; }
};

Optimizing Your Data

● Basic structure packing
– Smaller aggregates consume less cache
– Carefully encoding data or reusing storage can do more

● Operate on compressed data
● Steal low/high order bits of pointers

template <class PointedTo>
class PointerValuePair<PointedTo,int> {
 uintptr_t compact;
 PointedTo* getP() {
 return reinterpret_cast<PointedTo*>(compact & ~0xFFFFFFF8);
 }
 Value getV() { return compact & 0x00000007; }
};

Optimizing Your Data

● Managing indirection
– Pointers and indirection can stall the CPU while waiting on memory

Optimizing Your Data

● Managing indirection
– Pointers and indirection can stall the CPU while waiting on memory

std::list numbers = ...
for (auto& i : numbers) {
 ...
} We already saw this.

Traversing a linked list is expensive!

Optimizing Your Data

● Managing indirection
– Pointers and indirection can stall the CPU while waiting on memory

std::list numbers = ...
for (auto& i : numbers) {
 ...
}

3 1 4 1

Optimizing Your Data

● Managing indirection
– Pointers and indirection can stall the CPU while waiting on memory

std::list numbers = ...
for (auto& i : numbers) {
 ...
}

3 1 4 1

These elements are unlikely to be in cache
and unlikely to be prefetched automatically.

Optimizing Your Data

● Managing indirection
– Pointers and indirection can stall the CPU while waiting on memory

std::list numbers = ...
for (auto& i : numbers) {
 ...
}

3 1 4 1

Optimizing Your Data

● Managing indirection
– Pointers and indirection can stall the CPU while waiting on memory

std::list numbers = ...
for (auto& i : numbers) {
 ...
}

3 1 4 1

Stall

Optimizing Your Data

● Managing indirection
– Pointers and indirection can stall the CPU while waiting on memory

std::list numbers = ...
for (auto& i : numbers) {
 ...
}

3 1 4 1

Stall

Optimizing Your Data

● Managing indirection
– Pointers and indirection can stall the CPU while waiting on memory

std::list numbers = ...
for (auto& i : numbers) {
 ...
}

3 1 4 1

Stall

Optimizing Your Data

● Managing indirection
– Pointers and indirection can stall the CPU while waiting on memory

std::list numbers = ...
for (auto& i : numbers) {
 ...
}

3 1 4 1

Stall

Optimizing Your Data

● Managing indirection
– Pointers and indirection can stall the CPU while waiting on memory

std::list numbers = ...
for (auto& i : numbers) {
 ...
}

3 1 4 1

Stall

Optimizing Your Data

● Managing indirection
– Pointers and indirection can stall the CPU while waiting on memory

How does this relate to
 design tools that we have seen?

Optimizing Your Data

● Managing indirection
– Pointers and indirection can stall the CPU while waiting on memory

How does this relate to
 design tools that we have seen?

How does this relate to
 language selection & performance?

Optimizing Your Data

● Grouping things that are accessed together
– Guiding spatial design by temporal locality can improve cache utilization

Optimizing Your Data

● Grouping things that are accessed together
– Guiding spatial design by temporal locality can improve cache utilization
– Cold field outlining

Optimizing Your Data

● Grouping things that are accessed together
– Guiding spatial design by temporal locality can improve cache utilization
– Cold field outlining

struct Dog {
 uint32_t friendliness;
 uint32_t age;
 uint32_t ownerID;
 std::string hobby;
 Food treats[10];
};

Optimizing Your Data

● Grouping things that are accessed together
– Guiding spatial design by temporal locality can improve cache utilization
– Cold field outlining

for (Dog& d : dogs) {
 play(d.friendliness, d.hobby);
}

struct Dog {
 uint32_t friendliness;
 uint32_t age;
 uint32_t ownerID;
 std::string hobby;
 Food treats[10];
};

Optimizing Your Data

● Grouping things that are accessed together
– Guiding spatial design by temporal locality can improve cache utilization
– Cold field outlining

for (Dog& d : dogs) {
 play(d.friendliness, d.hobby);
}

struct Dog {
 uint32_t friendliness;
 uint32_t age;
 uint32_t ownerID;
 std::string hobby;
 Food treats[10];
};

struct Dog {
 uint32_t friendliness;
 uint32_t age;
 uint32_t ownerID;
 std::string hobby;
 Food treats[10];
};

Optimizing Your Data

● Grouping things that are accessed together
– Guiding spatial design by temporal locality can improve cache utilization
– Cold field outlining

for (Dog& d : dogs) {
 play(d.friendliness, d.hobby);
}

struct Dog {
 uint32_t friendliness;
 uint32_t age;
 uint32_t ownerID;
 std::string hobby;
 Food treats[10];
};

Optimizing Your Data

● Grouping things that are accessed together
– Guiding spatial design by temporal locality can improve cache utilization
– Cold field outlining

for (Dog& d : dogs) {
 play(d.friendliness, d.hobby);
}

We can try to push the cold fields
out of the cache

struct Dog {
 uint32_t friendliness;
 uint32_t age;
 uint32_t ownerID;
 std::string hobby;
 Food treats[10];
};

Optimizing Your Data

● Grouping things that are accessed together
– Guiding spatial design by temporal locality can improve cache utilization
– Cold field outlining

struct HotDog {
 double friendliness;
 std::string hobby;
 unique_ptr<Cold> cold;
};

struct Cold {
 uint32_t age;
 uint32_t ownerID;
 Food treats[10];
};

for (Dog& d : dogs) {
 play(d.friendliness, d.hobby);
}

struct Dog {
 uint32_t friendliness;
 uint32_t age;
 uint32_t ownerID;
 std::string hobby;
 Food treats[10];
};

Optimizing Your Data

● Grouping things that are accessed together
– Guiding spatial design by temporal locality can improve cache utilization
– Cold field outlining

struct HotDog {
 double friendliness;
 std::string hobby;
 unique_ptr<Cold> cold;
};

struct Cold {
 uint32_t age;
 uint32_t ownerID;
 Food treats[10];
};

for (Dog& d : dogs) {
 play(d.friendliness, d.hobby);
}

Benefits depend on
the size of Cold & the access patterns

struct Dog {
 uint32_t friendliness;
 uint32_t age;
 uint32_t ownerID;
 std::string hobby;
 Food treats[10];
};

Optimizing Your Data

● Grouping things that are accessed together
– Guiding spatial design by temporal locality can improve cache utilization
– Cold field outlining

struct HotDog {
 double friendliness;
 std::string hobby;
 unique_ptr<Cold> cold;
};

struct Cold {
 uint32_t age;
 uint32_t ownerID;
 Food treats[10];
};

for (Dog& d : dogs) {
 play(d.friendliness, d.hobby);
}

Benefits depend on
the size of Cold & the access patterns

Again, profilers can guide the process.
[Le, 2019]

https://www.ece.ubc.ca/~sasha/papers/memsys19.pdf

Optimizing Your Data

● Grouping things that are accessed together
– Guiding spatial design by temporal locality can improve cache utilization
– Cold field outlining
– AoS vs SoA (Array of Structs vs Struct of Arrays)

struct Dog {
 uint32_t friendliness;
 uint32_t age;
 uint32_t ownerID;
 std::string hobby;
 Food treats[10];
};

Optimizing Your Data

● Grouping things that are accessed together
– Guiding spatial design by temporal locality can improve cache utilization
– Cold field outlining
– AoS vs SoA (Array of Structs vs Struct of Arrays)

struct Dog {
 uint32_t friendliness;
 uint32_t age;
 uint32_t ownerID;
 std::string hobby;
 Food treats[10];
};

struct DogManager {
 std::vector<uint32_t> friendliness;
 std::vector<uint32_t> age;
 std::vector<uint32_t> ownerID;
 std::vector<std::string> hobby;
 std::vector<std::array<Food,10>> treats;
};

Optimizing Your Data

● Grouping things that are accessed together
– Guiding spatial design by temporal locality can improve cache utilization
– Cold field outlining
– AoS vs SoA (Array of Structs vs Struct of Arrays)

struct Dog {
 uint32_t friendliness;
 uint32_t age;
 uint32_t ownerID;
 std::string hobby;
 Food treats[10];
};

struct DogManager {
 std::vector<uint32_t> friendliness;
 std::vector<uint32_t> age;
 std::vector<uint32_t> ownerID;
 std::vector<std::string> hobby;
 std::vector<std::array<Food,10>> treats;
};

for (auto i : range(dogs)) {
 play(friendliness[i], hobby[i]);
}

Optimizing Your Data

● Grouping things that are accessed together
– Guiding spatial design by temporal locality can improve cache utilization
– Cold field outlining
– AoS vs SoA (Array of Structs vs Struct of Arrays)

Dog1 Dog2

Optimizing Your Data

● Grouping things that are accessed together
– Guiding spatial design by temporal locality can improve cache utilization
– Cold field outlining
– AoS vs SoA (Array of Structs vs Struct of Arrays)

Dog1 Dog2friend hobby friend hobby

Optimizing Your Data

● Grouping things that are accessed together
– Guiding spatial design by temporal locality can improve cache utilization
– Cold field outlining
– AoS vs SoA (Array of Structs vs Struct of Arrays)

Dog1 Dog2

friendliness
Dog1

age

hobby

Dog2 Dog3 Dog4

Optimizing Your Data

● Grouping things that are accessed together
– Guiding spatial design by temporal locality can improve cache utilization
– Cold field outlining
– AoS vs SoA (Array of Structs vs Struct of Arrays)

Dog1 Dog2

friendliness
Dog1

age

hobby

Dog2 Dog3 Dog4 You can pick and choose while still
getting good locality

Optimizing Your Data

● Grouping things that are accessed together
– Guiding spatial design by temporal locality can improve cache utilization
– Cold field outlining
– AoS vs SoA (Array of Structs vs Struct of Arrays)

Dog1 Dog2

friendliness
Dog1

age

hobby

Dog2 Dog3 Dog4 You can pick and choose while still
getting good locality

Optimizing Your Data

● Grouping things that are accessed together
– Guiding spatial design by temporal locality can improve cache utilization
– Cold field outlining
– AoS vs SoA (Array of Structs vs Struct of Arrays)

Dog1 Dog2

friendliness
Dog1

age

hobby

Dog2 Dog3 Dog4 You can pick and choose while still
getting good locality

Easier for compilers to vectorize

Optimizing Your Data

● Grouping things that are accessed together
– Guiding spatial design by temporal locality can improve cache utilization
– Cold field outlining
– AoS vs SoA (Array of Structs vs Struct of Arrays)

Dog1 Dog2

friendliness
Dog1

age

hobby

Dog2 Dog3 Dog4 You can pick and choose while still
getting good locality

Easier for compilers to vectorize

Also a foundation of modern
game engine design (ECS) & data processing (columnar DB)

Optimizing Your Data

● Loop invariance
– Avoid recomputing the same values inside a loop

Optimizing Your Data

● Loop invariance
– Avoid recomputing the same values inside a loop

for (auto i : ...) {
 auto sqrt2 = sqrt(2);
 auto x = f(i, sqrt2);
 ...
}

auto sqrt2 = sqrt(2);
for (auto i : ...) {
 auto x = f(i, sqrt2);
 ...
}

Optimizing Your Data

● Loop invariance
– Avoid recomputing the same values inside a loop
– Compilers automate this but cannot always succeed (LICM)

for (auto i : ...) {
 auto sqrt2 = sqrt(2);
 auto x = f(i, sqrt2);
 ...
}

auto sqrt2 = sqrt(2);
for (auto i : ...) {
 auto x = f(i, sqrt2);
 ...
}

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[cols*row + col]);
 }
}

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[rows*col + row]);
 }
}

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[cols*row + col]);
 }
}

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[rows*col + row]);
 }
}

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[cols*row + col]);
 }
}

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[rows*col + row]);
 }
}

1

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[cols*row + col]);
 }
}

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[rows*col + row]);
 }
}

1 2

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[cols*row + col]);
 }
}

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[rows*col + row]);
 }
}

1 2 3

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[cols*row + col]);
 }
}

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[rows*col + row]);
 }
}

1 2 3 4

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[cols*row + col]);
 }
}

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[rows*col + row]);
 }
}

1 2 3 4 5

Memory accesses
are consecutive!

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[cols*row + col]);
 }
}

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[rows*col + row]);
 }
}

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[cols*row + col]);
 }
}

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[rows*col + row]);
 }
}

1

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[cols*row + col]);
 }
}

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[rows*col + row]);
 }
}

1 2

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[cols*row + col]);
 }
}

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[rows*col + row]);
 }
}

1 2 3

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[cols*row + col]);
 }
}

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[rows*col + row]);
 }
}

1 4 2 3

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[cols*row + col]);
 }
}

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[rows*col + row]);
 }
}

1 4 2 5 3

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[cols*row + col]);
 }
}

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
 for (size_t col = 0; col < cols; ++col) {
 foo(matrix[rows*col + row]);
 }
}

1 4 2 5 3

Memory accesses
jump around &

thrash the cache!

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw
– Matrix operations (e.g. multiplication) can require extra work

×

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw
– Matrix operations (e.g. multiplication) can require extra work

×

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw
– Matrix operations (e.g. multiplication) can require extra work

×

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw
– Matrix operations (e.g. multiplication) can require extra work

×

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw
– Matrix operations (e.g. multiplication) can require extra work

×

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw
– Matrix operations (e.g. multiplication) can require extra work

×... ...

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw
– Matrix operations (e.g. multiplication) can require extra work

×...
Problem:
Using the same layout creates bad locality.

...

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw
– Matrix operations (e.g. multiplication) can require extra work

×

Solution: Transpose first.
Implement over the transpose instead.

... ...

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw
– Matrix operations (e.g. multiplication) can require extra work

×... ...

Note: Better solutions further leverage
layout & parallelization.

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw
– Matrix operations (e.g. multiplication) can require extra work

×... ...

Note: Better solutions further leverage
layout & parallelization.

tiling, polyhedral analysis, ...
[polyhedral.info]

https://polyhedral.info/

Optimizing Your Data

● Memory management effects
– Data structure packing & access patterns affect deeper system behavior

Optimizing Your Data

● Memory management effects
– Data structure packing & access patterns affect deeper system behavior

● What about virtual memory, page tables, & the TLB?

Optimizing Your Data

● Memory management effects
– Data structure packing & access patterns affect deeper system behavior

● What about virtual memory, page tables, & the TLB?
● What about allocation strategies & fragmentation?

Optimizing Your Data

● Memory management effects
– Data structure packing & access patterns affect deeper system behavior

● What about virtual memory, page tables, & the TLB?
● What about allocation strategies & fragmentation?

Object/Memory pools?

Optimizing Your Data

● Memory management effects
– Data structure packing & access patterns affect deeper system behavior

● What about virtual memory, page tables, & the TLB?
● What about allocation strategies & fragmentation?

Object/Memory pools?
Per class allocation?

Optimizing Your Data

● Memory management effects
– Data structure packing & access patterns affect deeper system behavior

● What about virtual memory, page tables, & the TLB?
● What about allocation strategies & fragmentation?

Object/Memory pools?
Per class allocation?
Region based allocation?

Optimizing Your Data

● Memory management effects
– Data structure packing & access patterns affect deeper system behavior

● What about virtual memory, page tables, & the TLB?
● What about allocation strategies & fragmentation?

Object/Memory pools?
Per class allocation?
Region based allocation?
Bump pointer allocators?
Cyclic buffers?
Precomputed allocation requirements & scheduling?

Optimizing Your Data

● Memory management effects
– Data structure packing & access patterns affect deeper system behavior

● What about virtual memory, page tables, & the TLB?
● What about allocation strategies & fragmentation?

– Data structure inlining
● folly::small_vector

absl::InlinedVector
rust-smallvec
...

https://github.com/facebook/folly/blob/master/folly/docs/small_vector.md
https://github.com/abseil/abseil-cpp/blob/master/absl/container/inlined_vector.h
https://github.com/servo/rust-smallvec

Optimizing Your Data

● Memory management effects
– Data structure packing & access patterns affect deeper system behavior

● What about virtual memory, page tables, & the TLB?
● What about allocation strategies & fragmentation?

– Data structure inlining
● folly::small_vector

absl::InlinedVector
rust-smallvec
...

small_vector<int,2> vec;
vec.push_back(0); // Stored in-place on stack
vec.push_back(1); // Still on the stack
vec.push_back(2); // Switches to heap buffer

[facebook’s small_vector]

https://github.com/facebook/folly/blob/master/folly/docs/small_vector.md
https://github.com/abseil/abseil-cpp/blob/master/absl/container/inlined_vector.h
https://github.com/servo/rust-smallvec
https://github.com/facebook/folly/blob/master/folly/docs/small_vector.md

Optimizing Your Data

● Designing with clear ownership policies in mind

Optimizing Your Data

● Designing with clear ownership policies in mind
– Resource acquisition should not happen in hot code

Optimizing Your Data

● Designing with clear ownership policies in mind
– Resource acquisition should not happen in hot code
– Use APIs that express intent & prevent copying

Optimizing Your Data

● Designing with clear ownership policies in mind
– Resource acquisition should not happen in hot code
– Use APIs that express intent & prevent copying

“std::string is responsible for almost half of all allocations in the Chrome”

foo(const std::string& s) {
 bar(s.c_str());
} bar(const char* s) {

 baz(std::string{s});
} baz(const std::string& s) {
 quux(s.c_str());
} quux(const char* s) {
 quuz(std::string{s});
}

https://groups.google.com/a/chromium.org/forum/#!msg/chromium-dev/EUqoIz2iFU4/kPZ5ZK0K3gEJ

Optimizing Your Data

● Designing with clear ownership policies in mind
– Resource acquisition should not happen in hot code
– Use APIs that express intent & prevent copying

“std::string is responsible for almost half of all allocations in the Chrome”

template<class E>
struct Span {

template<class E, auto N>
Span(const std::array<E,N>& c);

template<class E>
Span(const std::vector<E>& c);

E* first;
size_t count;

};

https://groups.google.com/a/chromium.org/forum/#!msg/chromium-dev/EUqoIz2iFU4/kPZ5ZK0K3gEJ

Optimizing Your Code

● Basic ideas for code optimization (we’ll walk through examples shortly)

Optimizing Your Code

● Basic ideas for code optimization
– Avoid branching whenever possible

Optimizing Your Code

● Basic ideas for code optimization
– Avoid branching whenever possible

Mis-speculating over a branch is costly

Optimizing Your Code

● Basic ideas for code optimization
– Avoid branching whenever possible
– Make code that does the same thing occur close together temporally

Optimizing Your Code

● Basic ideas for code optimization
– Avoid branching whenever possible
– Make code that does the same thing occur close together temporally

Leverage the instruction cache if you can

Optimizing Your Code

● Branch prediction & speculation

Optimizing Your Code

● Branch prediction & speculation
– On if statements

for (...) {
 if (foo(c)) {
 bar();
 } else {
 baz();
 }
}

A
B

90%

10%

Optimizing Your Code

● Branch prediction & speculation
– On if statements

for (...) {
 if (foo(c)) {
 bar();
 } else {
 baz();
 }
}

A
B

Pipeline:
90%

10%

A A A
Actual:

Optimizing Your Code

● Branch prediction & speculation
– On if statements

for (...) {
 if (foo(c)) {
 bar();
 } else {
 baz();
 }
}

A
B

Pipeline:
90%

10%

A A A
Actual: A

Optimizing Your Code

● Branch prediction & speculation
– On if statements

for (...) {
 if (foo(c)) {
 bar();
 } else {
 baz();
 }
}

A
B

Pipeline:
90%

10%

A A A
Actual: A A

Optimizing Your Code

● Branch prediction & speculation
– On if statements

for (...) {
 if (foo(c)) {
 bar();
 } else {
 baz();
 }
}

A
B

Pipeline:
90%

10%

A A A
Actual: A A B

Optimizing Your Code

● Branch prediction & speculation
– On if statements

for (...) {
 if (foo(c)) {
 bar();
 } else {
 baz();
 }
}

A
B

Pipeline:
90%

10%

A A A
Actual: A A B

Stall, but relatively infrequently

Optimizing Your Code

● Branch prediction & speculation
– On if statements

for (...) {
 if (foo(c)) {
 bar();
 } else {
 baz();
 }
}

A
B

51%

49%

Optimizing Your Code

● Branch prediction & speculation
– On if statements

for (...) {
 if (foo(c)) {
 bar();
 } else {
 baz();
 }
}

A
B

Pipeline:
51%

49%

A A A
Actual: A B

Stall, frequently

Optimizing Your Code

● Branch prediction & speculation
– On if statements

for (...) {
 if (foo(c)) {
 bar();
 } else {
 baz();
 }
}

A
B

Pipeline:
51%

49%

A A A
Actual: A B

Stall, frequently

How would you fix it?

Optimizing Your Code

● Branch prediction & speculation
– On if statements
– On function pointers!

for (...) {
 foo();
}

A

B

bar() {}

baz() {}

51%

49%

Optimizing Your Code

● Branch prediction & speculation
– On if statements
– On function pointers!

for (...) {
 foo();
}

A

B

bar() {}

baz() {}

The same problems arise51%

49%

Optimizing Your Code

● Branch prediction & speculation
– On if statements
– On function pointers!

for (...) {
 foo();
}

A

B

bar() {}

baz() {}

The same problems arise51%

49%
Consistent call targets

perform better

Optimizing Your Code

● Designing away checks
– Repeated checks can be removed by maintaining invariants

Optimizing Your Code

● Designing away checks
– Repeated checks can be removed by maintaining invariants

i 1←
while i < length(A)
 j i←
 while j > 0 and A[j-1] > A[j]
 swap A[j] and A[j-1]
 j j - 1←
 i i + 1←

[Wikipedia’s Insertion Sort]

Optimizing Your Code

● Designing away checks
– Repeated checks can be removed by maintaining invariants

i 1←
while i < length(A)
 j i←
 while j > 0 and A[j-1] > A[j]
 swap A[j] and A[j-1]
 j j - 1←
 i i + 1←

[Wikipedia’s Insertion Sort]

Optimizing Your Code

● Designing away checks
– Repeated checks can be removed by maintaining invariants

i 1←
while i < length(A)
 j i←
 while j > 0 and A[j-1] > A[j]
 swap A[j] and A[j-1]
 j j - 1←
 i i + 1←

[Wikipedia’s Insertion Sort]

Can we turn the semantic check
into a bounds check?

Optimizing Your Code

● Designing away checks
– Repeated checks can be removed by maintaining invariants

i 1←
while i < length(A)
 j i←
 while j > 0 and A[j-1] > A[j]
 swap A[j] and A[j-1]
 j j - 1←
 i i + 1←

[Wikipedia’s Insertion Sort]

We just guarantee that A starts
with the smallest element!

Optimizing Your Code

● Designing away checks
– Repeated checks can be removed by maintaining invariants

i 1←
while i < length(A)
 j i←
 while j > 0 and A[j-1] > A[j]
 swap A[j] and A[j-1]
 j j - 1←
 i i + 1←

[Wikipedia’s Insertion Sort]

k find_smallest(A)←
swap A[0] and A[k]
i 1←
while i < length(A)
 j i←
 while A[j-1] > A[j]
 swap A[j] and A[j-1]
 j j - 1←
 i i + 1←

We just guarantee that A starts
with the smallest element!

Optimizing Your Code

● Designing away checks
– Repeated checks can be removed by maintaining invariants

i 1←
while i < length(A)
 j i←
 while j > 0 and A[j-1] > A[j]
 swap A[j] and A[j-1]
 j j - 1←
 i i + 1←

[Wikipedia’s Insertion Sort]

k find_smallest(A)←
swap A[0] and A[k]
i 1←
while i < length(A)
 j i←
 while A[j-1] > A[j]
 swap A[j] and A[j-1]
 j j - 1←
 i i + 1←

68k items/s

On an Intel i7@ 2.20GHz, uniformly random data

104k items/s104k items/s32768 elements:
269k items/s 415k items/s 8192 elements:

17k items/s 26k items/s131072 elements:

Optimizing Your Code

● Designing away checks
– Repeated checks can be removed by maintaining invariants

i 1←
while i < length(A)
 j i←
 while j > 0 and A[j-1] > A[j]
 swap A[j] and A[j-1]
 j j - 1←
 i i + 1←

[Wikipedia’s Insertion Sort]

A[-1] MIN_VALUE←
i 1←
while i < length(A)
 j i←
 while A[j-1] > A[j]
 swap A[j] and A[j-1]
 j j - 1←
 i i + 1←

Extra domain knowledge may allow
this in different ways.

Values that do not appear?
Shape & distribution?

...

Optimizing Algorithms

● Improving real world algorithmic performance comes from
recognizing the interplay between theory and hardware

Optimizing Algorithms

● Improving real world algorithmic performance comes from
recognizing the interplay between theory and hardware

● Hybrid algorithms – use multiple algorithms & choose

Optimizing Algorithms

● Improving real world algorithmic performance comes from
recognizing the interplay between theory and hardware

● Hybrid algorithms – use multiple algorithms & choose
– Constants matter. Use thresholds to select algorithms.

Optimizing Algorithms

● Improving real world algorithmic performance comes from
recognizing the interplay between theory and hardware

● Hybrid algorithms – use multiple algorithms & choose
– Constants matter. Use thresholds to select algorithms.
– Use general N logN sorting for N above 300 [Alexandrescu 2019]

https://www.youtube.com/watch?v=FJJTYQYB1JQ

Optimizing Algorithms

● Improving real world algorithmic performance comes from
recognizing the interplay between theory and hardware

● Hybrid algorithms
– Constants matter. Use thresholds to select algorithms.
– Use general N logN sorting for N above 300 [Alexandrescu 2019]

● Caching & Precomputing

https://www.youtube.com/watch?v=FJJTYQYB1JQ

Optimizing Algorithms

● Improving real world algorithmic performance comes from
recognizing the interplay between theory and hardware

● Hybrid algorithms
– Constants matter. Use thresholds to select algorithms.
– Use general N logN sorting for N above 300 [Alexandrescu 2019]

● Caching & Precomputing
– If you will reuse results, save them and avoid recomputing

https://www.youtube.com/watch?v=FJJTYQYB1JQ

Optimizing Algorithms

● Improving real world algorithmic performance comes from
recognizing the interplay between theory and hardware

● Hybrid algorithms
– Constants matter. Use thresholds to select algorithms.
– Use general N logN sorting for N above 300 [Alexandrescu 2019]

● Caching & Precomputing
– If you will reuse results, save them and avoid recomputing
– If all possible results are compact, just compute a table up front

https://www.youtube.com/watch?v=FJJTYQYB1JQ

Optimizing Algorithms

● Improving real world algorithmic performance comes from
recognizing the interplay between theory and hardware

● Hybrid algorithms
– Constants matter. Use thresholds to select algorithms.
– Use general N logN sorting for N above 300 [Alexandrescu 2019]

● Caching & Precomputing
– If you will reuse results, save them and avoid recomputing
– If all possible results are compact, just compute a table up front

● Predictability & Speculation
– Can you determine data & behaviors early?
– Can you fetch/perform them during an early lull?

https://www.youtube.com/watch?v=FJJTYQYB1JQ

Optimizing Algorithms

● Improving real world algorithmic performance comes from
recognizing the interplay between theory and hardware

● Hybrid algorithms
– Constants matter. Use thresholds to select algorithms.
– Use general N logN sorting for N above 300 [Alexandrescu 2019]

● Caching & Precomputing
– If you will reuse results, save them and avoid recomputing
– If all possible results are compact, just compute a table up front

● Predictability & Speculation
– Can you determine data & behaviors early?
– Can you fetch/perform them during an early lull?

e.g., determine resources for a web page,
& fetch them when initially loading

[Mickens 2010, Netravali 2018, Ko 2021]

https://www.youtube.com/watch?v=FJJTYQYB1JQ
https://www.microsoft.com/en-us/research/publication/crom-faster-web-browsing-using-speculative-execution/
https://www.usenix.org/conference/nsdi18/presentation/netravali-prophecy
https://mickens.seas.harvard.edu/publications/oblique-accelerating-page-loads-using-symbolic-execution

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!
– Constants and artifacts of scale can actually dominate the real world

performance

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!
– Constants and artifacts of scale can actually dominate the real world

performance

A uniform cost model
throws necessary information away

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!
– Constants and artifacts of scale can actually dominate the real world

performance
– We want modeling & algorithms that account for artifacts like:

memory, I/O, consistency & speculation, shapes of workloads

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!
– Constants and artifacts of scale can actually dominate the real world

performance
– We want modeling & algorithms that account for artifacts like:

memory, I/O, consistency & speculation, shapes of workloads

● Alternative approaches

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!
– Constants and artifacts of scale can actually dominate the real world

performance
– We want modeling & algorithms that account for artifacts like:

memory, I/O, consistency & speculation, shapes of workloads

● Alternative approaches
– I/O complexity, I/O efficiency and cache awareness

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!
– Constants and artifacts of scale can actually dominate the real world

performance
– We want modeling & algorithms that account for artifacts like:

memory, I/O, consistency & speculation, shapes of workloads

● Alternative approaches
– I/O complexity, I/O efficiency and cache awareness

CPU

Memory 1

Memory 2

Block size B

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!
– Constants and artifacts of scale can actually dominate the real world

performance
– We want modeling & algorithms that account for artifacts like:

memory, I/O, consistency & speculation, shapes of workloads

● Alternative approaches
– I/O complexity, I/O efficiency and cache awareness

CPU

Memory 1

Memory 2

Block size B

Complexity measured in block transfers

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!
– Constants and artifacts of scale can actually dominate the real world

performance
– We want modeling & algorithms that account for artifacts like:

memory, I/O, consistency & speculation, shapes of workloads

● Alternative approaches
– I/O complexity, I/O efficiency and cache awareness
– Cache oblivious algorithms & data structures

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!
– Constants and artifacts of scale can actually dominate the real world

performance
– We want modeling & algorithms that account for artifacts like:

memory, I/O, consistency & speculation, shapes of workloads

● Alternative approaches
– I/O complexity, I/O efficiency and cache awareness
– Cache oblivious algorithms & data structures

Similar to I/O, but agnostic to block size

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!
– Constants and artifacts of scale can actually dominate the real world

performance
– We want modeling & algorithms that account for artifacts like:

memory, I/O, consistency & speculation, shapes of workloads

● Alternative approaches
– I/O complexity, I/O efficiency and cache awareness
– Cache oblivious algorithms & data structures
– Parameterized complexity

Optimizing Algorithms

● Classic design mistakes [Lu 2012]

Optimizing Algorithms

● Classic design mistakes [Lu 2012]
– Uncoordinated functions (e.g. lack of batching)

for (auto& action : actions) {
 action.do()
}

Action::do() {
 acquire(mutex)
 ...
 release(mutex)
}

Optimizing Algorithms

● Classic design mistakes [Lu 2012]
– Uncoordinated functions (e.g. lack of batching)

acquire(mutex)
for (auto& action : actions) {
 action.do()
}
release(mutex)

for (auto& action : actions) {
 action.do()
}

Action::do() {
 acquire(mutex)
 ...
 release(mutex)
}

vs

Optimizing Algorithms

● Classic design mistakes [Lu 2012]
– Uncoordinated functions (e.g. lack of batching)
– Skippable functions (e.g. transparent draws)

Optimizing Algorithms

● Classic design mistakes [Lu 2012]
– Uncoordinated functions (e.g. lack of batching)
– Skippable functions (e.g. transparent draws)
– Poor/unclear synchronization

Optimizing Algorithms

● Classic design mistakes [Lu 2012]
– Uncoordinated functions (e.g. lack of batching)
– Skippable functions (e.g. transparent draws)
– Poor/unclear synchronization

foo() {
 bar()
}

bar() {
 baz()
}

baz() {
 quux()
}

quux() {
 random()
}

random() {
 acquire(mutex)
 ...
 release(mutex)
}

Optimizing Algorithms

● Classic design mistakes [Lu 2012]
– Uncoordinated functions (e.g. lack of batching)
– Skippable functions (e.g. transparent draws)
– Poor/unclear synchronization

foo() {
 bar()
}

bar() {
 baz()
}

baz() {
 quux()
}

quux() {
 random()
}

random() {
 acquire(mutex)
 ...
 release(mutex)
}

Consider
shallow, broad, & explicit designs, or
designing the resource away.

Optimizing Algorithms

● Classic design mistakes [Lu 2012]
– Uncoordinated functions (e.g. lack of batching)
– Skippable functions (e.g. transparent draws)
– Poor/unclear synchronization
– Poor data structure selection

Optimizing Algorithms

● Classic design mistakes [Lu 2012]
– Uncoordinated functions (e.g. lack of batching)
– Skippable functions (e.g. transparent draws)
– Poor/unclear synchronization
– Poor data structure selection

This sounds simple,
but it can become quite challenging.
[Loncaric 2016, Idreos 2018, Loncaric 2018]

https://homes.cs.washington.edu/~mernst/pubs/collection-synthesis-pldi2016.pdf
https://www.cc.gatech.edu/~jarulraj/courses/8803-f18/papers/data_calculator.pdf
https://par.nsf.gov/servlets/purl/10081433

Summary

● Reasoning rigorously about performance is challenging

Summary

● Reasoning rigorously about performance is challenging
● Good tooling can allow you to investigate performance well

Summary

● Reasoning rigorously about performance is challenging
● Good tooling can allow you to investigate performance well
● We can improve performance through

– compilers
– managing data
– managing code
– better algorithmic thinking

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299
	Slide 300
	Slide 301
	Slide 302
	Slide 303
	Slide 304
	Slide 305
	Slide 306
	Slide 307
	Slide 308
	Slide 309
	Slide 310
	Slide 311
	Slide 312
	Slide 313
	Slide 314
	Slide 315
	Slide 316
	Slide 317
	Slide 318
	Slide 319
	Slide 320
	Slide 321
	Slide 322
	Slide 323
	Slide 324
	Slide 325
	Slide 326
	Slide 327
	Slide 328
	Slide 329
	Slide 330
	Slide 331
	Slide 332
	Slide 333
	Slide 334
	Slide 335
	Slide 336
	Slide 337
	Slide 338
	Slide 339
	Slide 340
	Slide 341
	Slide 342
	Slide 343
	Slide 344
	Slide 345
	Slide 346
	Slide 347
	Slide 348
	Slide 349
	Slide 350
	Slide 351
	Slide 352
	Slide 353
	Slide 354
	Slide 355
	Slide 356
	Slide 357
	Slide 358
	Slide 359
	Slide 360
	Slide 361
	Slide 362
	Slide 363
	Slide 364
	Slide 365
	Slide 366
	Slide 367
	Slide 368
	Slide 369
	Slide 370

