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Performance & Measurement

● Real development must manage resources
– Time
– Memory
– Open connections
– VM instances
– Energy consumption
– ...

● Resource usage is one form of performance
– Performance – a measure of nonfunctional behavior of a program

● We often need to assess performance or a change in performance
Data Structure A Data Structure Bvs

How would you approach this in a data structures course?
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Performance & Measurement

● Performance assessment is deceptively hard
– Modern systems involve complex actors
– Theoretical models may be too approximate
– Even with the best intentions we can deceive ourselves

● Good performance evaluation should be rigorous & scientific
– The same process applies in development as in good research

1) Clear claims
2) Clear evidence
3) Correct reasoning from evidence to claims

– And yet this is challenging to get right!



  

Performance & Measurement [Blackburn et al.]



  

Performance & Measurement [Blackburn et al.]

Scope of
Evaluation

Scope of
Claim/Conclusion



  

Performance & Measurement [Blackburn et al.]

Scope of
Evaluation

Scope of
Claim/ConclusionValidity



  

Performance & Measurement [Blackburn et al.]

● Inscrutability
– Lack of clarity on actors or relationships
– Omission, Ambiguity, Distortion



  

Performance & Measurement [Blackburn et al.]

● Inscrutability
– Lack of clarity on actors or relationships
– Omission, Ambiguity, Distortion

● Irreproducibility
– Lack of clarity in steps taken or data
– Causes:

● Omission of steps



  

Performance & Measurement [Blackburn et al.]

● Inscrutability
– Lack of clarity on actors or relationships
– Omission, Ambiguity, Distortion

● Irreproducibility
– Lack of clarity in steps taken or data
– Causes:

● Omission of steps
● Incomplete understanding of factors



  

Performance & Measurement [Blackburn et al.]

● Inscrutability
– Lack of clarity on actors or relationships
– Omission, Ambiguity, Distortion

● Irreproducibility
– Lack of clarity in steps taken or data
– Causes:

● Omission of steps
● Incomplete understanding of factors
● Confidentiality & omission of data

Example ...
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static int i = 0, j = 0, k = 0;
int main() {
  int g = 0, inc = 1;
  for (; g<65536; g++) {
    i += inc;
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  return 0;
}

Compare gcc -O2 vs -O3
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Performance & Measurement [Blackburn et al.]

static int i = 0, j = 0, k = 0;
int main() {
  int g = 0, inc = 1;
  for (; g<65536; g++) {
    i += inc;
    j += inc;
    k += inc;
  }
  return 0;
}

Compare gcc -O2 vs -O3
One person may see a

deterministic improvement..

Another may see a
deterministic degradation.

Both are right.
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static int i = 0, j = 0, k = 0;
int main() {
  int g = 0, inc = 1;
  for (; g<65536; g++) {
    i += inc;
    j += inc;
    k += inc;
  }
  return 0;
}

Compare gcc -O2 vs -O3
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Performance & Measurement [Blackburn et al.]

● Ignorance – disregarding data or evidence against a claim
– Ignoring data points
– Ignoring distributions

Gmail latency

If we reason about average latency,
why is it misleading?

What is better?
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Performance & Measurement [Blackburn et al.]

● Inappropriateness – claim is derived from facts not present
– Bad metrics
– Biased samples
– ...

● Inconsistency – comparing apples to oranges
– Workload variation (e.g. learner effects, time of day)
– Incompatible measures (e.g. performance counters across platforms)



Assessing
Performance
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Benchmarking

● We must reason rigorously about performance during
assessment, investigation, & improvement

● Assessing performance is done through benchmarking
– Microbenchmarks 

● Focus on cost of an operation in isolation
● Can help identify core performance details & explain causes

– Macrobenchmarks
● Real world system performance

– Workloads (inputs) must be chosen carefully either way.
● representative, pathological, scenario driven, ...

Let’s dig into a common approach to consider issues
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Benchmarking

● Suppose we want to run a microbenchmark
startTime = getCurrentTimeInSeconds();
doWorkloadOfInterest();
endTime = getCurrentTimeInSeconds();
reportResult(endTime – startTime);

What possible issues do you observe?



  

Benchmarking

● Suppose we want to run a microbenchmark

– Granularity of measurement
– Warm up effects
– Nondeterminism
– Size of workload
– System interference
– Frequency scaling?
– Interference of other workloads?
– Alignment?

startTime = getCurrentTimeInSeconds();
doWorkloadOfInterest();
endTime = getCurrentTimeInSeconds();
reportResult(endTime – startTime);
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Benchmarking

● Granularity & Units
– Why is granularity a problem?
– What are alternatives to getCurrentTimeInSeconds()?
– What if I want to predict performance on a different machine?

● Using cycles instead of wall clock time can be useful,
but has its own limitations

● Remember the sins of measurement
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Benchmarking

● Warm up time
– Why is warm up time necessary in general?
– Why is it especially problematic for systems like Java?
– How can we modify our example to facilitate this?

for (…) doWorkloadOfInterest();
startTime = getCurrentTimeInSeconds();
doWorkloadOfInterest();
endTime = getCurrentTimeInSeconds();
reportResult(endTime – startTime);

Quiescence? Post-JIT hooks? ...?
It is complicated. [Tratt 2018]

https://www.youtube.com/watch?v=cmrzOkEM9fc
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Benchmarking

● Nondeterministic behavior
– Will getCurrentTimeInSeconds() always return the same 

number?
– So what reflects a meaningful result?

● Hint: The Law of Large Numbers!

● By running the same test many times,
the sample arithmetic mean will converge on the real one

Is this always what you want?

http://en.wikipedia.org/wiki/Law_of_large_numbers
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Benchmarking

● A revised (informal) approach:

● This still does not solve everything
– Frequency scaling?
– Interference of other workloads?
– Alignment?

for (…) doWorkloadOfInterest();
startTime = getCurrentTimeInNanos();
for (…) doWorkloadOfInterest();
endTime = getCurrentTimeInNanos();
reportResult(endTime – startTime);
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● Now we have a benchmark, how do we interpret/report it?
– We must compare

● Benchmark vs expectation/mental model
● Different solutions
● Over time

● Results are often normalized against the baseline
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Benchmarking

● Now we have a benchmark, how do we interpret/report it?
– We must compare
– We must remember results are statistical

● Show the distribution (e.g. violin plots)
● Summarize the distribution (e.g. mean and confidence intervals, box & whisker)

[Seaborn Violinplot] [Seaborn Boxplot][Seaborn Barplot]
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Benchmarking

● A benchmark suite comprises multiple benchmarks
● Now we have multiple results, how should we consider them?

– 2 major senarios
● Hypothesis testing

– Is solution A different than B?
– You can use ANOVA

Old
New

T1 T2 T3 T4 T5 T6
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Benchmarking

● A benchmark suite comprises multiple benchmarks
● Now we have multiple results, how should we consider them?

– 2 major senarios
● Hypothesis testing
● Summary statistics

– Condensing a suite to a single number
– Intrinsically lossy, but can still be useful

Old
New

T1 T2 T3 T4 T5 T6

Contractual SLIs, SLOs, & SLAs
typically use summary statistics!



  

Benchmarking

● A benchmark suite comprises multiple benchmarks
● Now we have multiple results, how should we consider them?

– 2 major senarios
● Hypothesis testing
● Summary statistics

– Condensing a suite to a single number
– Intrinsically lossy, but can still be useful

Old
New

T1 T2 T3 T4 T5 T6

Old: ?
New: ?

New
Old :?
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Summary Statistics

Averages of r1, r2, …, rN

● Many ways to measure expectation or tendency
● Arithmetic Mean

● Harmonic Mean

● Geometric Mean

1
N∑
i=1

N

r i N

∑
i=1

N 1
r i

N√∏i=1

N

r i

Each type means something different and has valid uses
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Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

for (x in 0 to ...)
  times[x] = doWorkloadOfInterest();

Handling Nondeterminism

E(time) = arithmean(times)

1
N∑
i=1

N

r i
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– Good for reporting averages of numbers that mean the same thing
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– Good for reporting rates
– e.g. Required throughput for a set of tasks
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Given tasks t1, t2, & t3 serving 40 pages each:
thoughput(t1) = 10 pages/sec
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Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

● Harmonic Mean
– Good for reporting rates
– e.g. Required throughput for a set of tasks

1
N∑
i=1

N

r i

N

∑
i=1

N 1
r i

Given tasks t1, t2, & t3 serving 40 pages each:
thoughput(t1) = 10 pages/sec
thoughput(t2) = 20 pages/sec
thoughput(t3) = 20 pages/sec

What is the average throughput? What should it mean?
  Arithmetic = 16.7 p/s         Harmonic = 15 p/s

1
N∑
i=1

N

r i

3
1

10
+ 1

20
+ 1

20

=15 p / s
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● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

● Harmonic Mean
– Good for reporting rates
– e.g. Required throughput for a set of tasks
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Given tasks t1, t2, & t3 serving 40 pages each:
thoughput(t1) = 10 pages/sec
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● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

● Harmonic Mean
– Good for reporting rates
– e.g. Required throughput for a set of tasks

1
N∑
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Given tasks t1, t2, & t3 serving 40 pages each:
thoughput(t1) = 10 pages/sec
thoughput(t2) = 20 pages/sec
thoughput(t3) = 20 pages/sec

What is the average throughput? What should it mean?
  Arithmetic = 16.7 p/s         Harmonic = 15 p/s
      120/16.7 = 7.2                   120/15 = 8

Identifies the constant rate
required for the same time

1
N∑
i=1

N

r i



Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

● Harmonic Mean
– Good for reporting rates
– e.g. Required throughput for a set of tasks

1
N∑
i=1

N

r i
Given tasks t1, t2, & t3 serving 40 pages each:

thoughput(t1) = 10 pages/sec
thoughput(t2) = 20 pages/sec
thoughput(t3) = 20 pages/sec

What is the average throughput? What should it mean?
  Arithmetic = 16.7 p/s         Harmonic = 15 p/s
      120/16.7 = 7.2                   120/15 = 8

N

∑
i=1

N 1
r i

Identifies the constant rate
required for the same time

CAVEAT: If the size of each workload changes,
a weighted harmonic mean is required!

1
N∑
i=1

N

r i
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Summary Statistics

● Geometric Mean 
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Any idea why it may be useful here?
(A bit of a thought experiment)

N√∏i=1

N

r i
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Summary Statistics

● Geometric Mean 
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Old
T1 T2

What happens to the
arithmetic mean?

New 2
T1 T2

halved

N√∏i=1

N
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Summary Statistics

● Geometric Mean 
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Old
T1 T2

The (non) change to T1 dominates
any behavior for T2!

N√∏i=1

N

r i
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● Geometric Mean 
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks
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Summary Statistics

● Geometric Mean 
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Old
T1 T2
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Old New 1
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– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks
– A 10% difference in any benchmark affects the final value the same way
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Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks
– A 10% difference in any benchmark affects the final value the same way

Note: It doesn't have an intuitive meaning!
It does provides a balanced score of performance.

See [Mashey 2004] for deeper insights.

N√∏i=1

N
ri

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.325.7027&rep=rep1&type=pdf
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● What if the goal is not to measure tendency,
but instead to measure pathological cases?
– Is my web site response too slow? (latency)
– Does my app drain the user’s batter? (energy)
– ...

● Averages in these scenarios are simply misleading

50ms 400ms

66%

33%

An arithmetic mean yields 167ms.

But 1/3 of responses are bad!

Suppose <200ms response is okay.



Summary Statistics

● What if the goal is not to measure tendency,
but instead to measure pathological cases?
– Is my web site response too slow? (latency)
– Does my app drain the user’s batter? (energy)
– ...

● Averages in these scenarios are simply misleading
● Percentiles

– nth percentile - The score below which n% of a population resides



Summary Statistics

● What if the goal is not to measure tendency,
but instead to measure pathological cases?
– Is my web site response too slow? (latency)
– Does my app drain the user’s batter? (energy)
– ...

● Averages in these scenarios are simply misleading
● Percentiles

– nth percentile - The score below which n% of a population resides

50ms 400ms

99th %-ile = 401ms



Summary Statistics
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but instead to measure pathological cases?
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● Averages in these scenarios are simply misleading
● Percentiles

– nth percentile - The score below which n% of a population resides

50ms 400ms

99th %-ile = 401ms

Percentiles better capture adherence to minimum standards.
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Summary Statistics

● What if the goal is not to measure tendency,
but instead to measure pathological cases?
– Is my web site response too slow? (latency)
– Does my app drain the user’s batter? (energy)
– ...

● Averages in these scenarios are simply misleading
● Percentiles

– nth percentile - The score below which n% of a population resides

● Even percentiles can be misleading when misused
How many server requests does a web page make?

Median of 69-75 [Hubspot 2019] p(99th %-ile experience) = 1-0.9975 ~ 0.5

https://blog.hubspot.com/marketing/reduce-http-requests
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● What if the goal is not to measure tendency,
but instead to measure pathological cases?
– Is my web site response too slow? (latency)
– Does my app drain the user’s batter? (energy)
– ...

● Averages in these scenarios are simply misleading
● Percentiles

– nth percentile - The score below which n% of a population resides

● Even percentiles can be misleading when misused
How many server requests does a web page make?

How do you measure percentiles over time?



Summary Statistics

● What if the goal is not to measure tendency,
but instead to measure pathological cases?
– Is my web site response too slow? (latency)
– Does my app drain the user’s batter? (energy)
– ...

● Averages in these scenarios are simply misleading
● Percentiles

– nth percentile - The score below which n% of a population resides

● Even percentiles can be misleading when misused
For more see:

How not to measure latency
Latency SLOs Done Right

https://www.youtube.com/watch?v=nP1aK4DLu-k
https://www.usenix.org/conference/srecon19emea/presentation/hartmann-latency


Summary Statistics

● What if the goal is not to measure tendency,
but instead to measure pathological cases?
– Is my web site response too slow? (latency)
– Does my app drain the user’s batter? (energy)
– ...

● Averages in these scenarios are simply misleading
● Percentiles

– nth percentile - The score below which n% of a population resides

● Even percentiles can be misleading when misused
● Typical SLIs, SLOs, & SLAs are driven by percentiles.

– These become your contractual obligations!
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Summary Statistics

● At the end of the day,
you cannot sit down and follow a boilerplate process.

● Assess the goal. Assess the data. Determine what is meaningful.



Benchmarking

● In practice applying good benchmarking & statistics is made easier via 
frameworks
– Google benchmark (C & C++)
– Google Caliper (Java)
– JMH (Java)
– Nonius
– Celero
– Easybench
– Pyperf
– ...



Investigating
Performance
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Profiling

● When benchmark results do not make sense, you should
investigate why
– For resource X, where is X being used, acquired, and or released?

● Sometimes microbenchmarks provide sufficient insight
● In other cases you will want to profile

– Collect additional information about resources in an execution
– The nature of the tool will depend on the resource and the objective

You should already be familiar with tools like gprof or jprofile.
We’ll examine some more advanced profilers now.
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● Suppose I have a task and it consumes all memory
– Note: This is not hypothetical. This often happens with grad students!
– If I can identify where & why memory is consumed, I can remediate

● Maybe better algorithm
● Maybe competent use of data structures....

● Heap profilers track the allocated memory in a program
& their provenance
– Can identify hotspots, bloat, leaks, short lived allocations, ...

Some people mistakenly believe that using
managed languages like Java prevents these.

In practice, they look different....
leaks,  ... bloat, latency spikes, OutOfMemoryError

public Integer pop() {
  if (size == 0) {
    throw new EmptyStackException();
  }
  size -= 1;
  Integer result = data[size];
  data[size] = null;
  return result
}

Effective Java Item 7
Eliminate obsolete object references.



  

Heap profiling 

● Suppose I have a task and it consumes all memory
– Note: This is not hypothetical. This often happens with grad students!
– If I can identify where & why memory is consumed, I can remediate

● Maybe better algorithm
● Maybe competent use of data structures....

● Heap profilers track the allocated memory in a program
& their provenance
– Can identify hotspots, bloat, leaks, short lived allocations, ...

Some people mistakenly believe that using
managed languages like Java prevents these.

In practice, they look different....
leaks,  ... bloat, latency spikes, OutOfMemoryError

Effective Java Item 7
Eliminate obsolete object references.

Very common defect in
callbacks & caches

(nullification & deregistration)

public Integer pop() {
  if (size == 0) {
    throw new EmptyStackException();
  }
  size -= 1;
  Integer result = data[size];
  data[size] = null;
  return result
}



  

Heap profiling 

● Suppose I have a task and it consumes all memory
– Note: This is not hypothetical. This often happens with grad students!
– If I can identify where & why memory is consumed, I can remediate

● Maybe better algorithm
● Maybe competent use of data structures....

● Heap profilers track the allocated memory in a program
& their provenance
– Can identify hotspots, bloat, leaks, short lived allocations, ...
– Commonly sample based, but sometimes event based
– e.g. Massif, Heaptrack, ...



  

Heap profiling
int
main() {
  std::vector<std::unique_ptr<long[]>> data{DATA_SIZE};

  for (auto &element : data) {
    element = std::make_unique<long[]>(BLOCK_SIZE);
    // do something with element
    std::this_thread::sleep_for(std::chrono::milliseconds(100));
  }

  std::this_thread::sleep_for(std::chrono::seconds(1));
  return 0;
}



  

Heap profiling
int
main() {
  std::vector<std::unique_ptr<long[]>> data{DATA_SIZE};

  for (auto &element : data) {
    element = std::make_unique<long[]>(BLOCK_SIZE);
    // do something with element
    std::this_thread::sleep_for(std::chrono::milliseconds(100));
  }

  std::this_thread::sleep_for(std::chrono::seconds(1));
  return 0;
}valgrind --time-unit=ms --tool=massif <program invocation>
heaptrack <program invocation> massif-visualizer massif.out.<PID>

heaptrack_gui <path to data>
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Heap profiling
int
main() {
  std::vector<std::unique_ptr<long[]>> data{DATA_SIZE};

  for (auto &element : data) {
    element = std::make_unique<long[]>(BLOCK_SIZE);
    // do something with element
    std::this_thread::sleep_for(std::chrono::milliseconds(100));
    element.reset();
    std::this_thread::sleep_for(std::chrono::milliseconds(100));
  }

  std::this_thread::sleep_for(std::chrono::seconds(1));
  return 0;
}

How do we expect this to differ?
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Heap Profiling

Different sampling mechanisms have different biases.
Good tool use requires understanding them.

[Statistically Rigorous Java Performance Evaluation, Dries, 2007]

https://dri.es/files/oopsla07-georges.pdf


  

Heap Profiling
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● Classic CPU profilers capture a lot of data and force the user to 
explore & explain it manually

● Flame graphs provide a way of structuring and visualizing substantial 
profiling information

main()

foo() bar()

baz() quux()

It is easier to see that
optimizing baz() could be useful.
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CPU Profiling & Flame Graphs

● When CPU is the resource, investigate where the CPU is spent
– Classic profilers – gprof, oprofile, jprof, ...

● Classic CPU profilers capture a lot of data and force the user to 
explore & explain it manually

● Flame graphs provide a way of structuring and visualizing substantial 
profiling information
– Consumers of CPU on top
– ancestry, proportions, components can all be clearly identified

main()

foo() bar()

baz() quux()



  

CPU Profiling & Flame Graphs

● Can extract rich information by embedding interesting things in colors

[Differential Flame Graphs, Gregg, 2014]
[Gregg, ATC 2017]

http://www.brendangregg.com/blog/2014-11-09/differential-flame-graphs.html
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CPU Profiling & Flame Graphs

● Flame graphs are not just limited to CPU time!
– Any countable resource or event can be organized & visualized

● You can also automatically generate them with clang & chrome
– See project X-Ray in clang
– See Chrome Trace Viewer

https://llvm.org/docs/XRayExample.html#flame-graph-generation
https://aras-p.info/blog/2017/01/23/Chrome-Tracing-as-Profiler-Frontend/
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● Sometimes low-level architectural effects determine the performance
– Cache misses
– Misspeculations
– TLB misses

How well does sample based profiling work for these?

● Instead, we can leverage low level system counters via tools like perf

Perf & event profiling

perf stat -e <events> <command>
perf record -e <events> -g <command>
perf report
perf annotate
perf list
events like

task-clock,context-switches,cpu-migrations,page-faults,
cycles,branches,branch-misses,cache-misses,
cycle_activity.stalls_mem_any,icache_64b.iftag_stall



  

Perf & event profiling

Sequence s;
size_t count = // size of workload
auto value = randomInts.begin();

while (count) {
  const auto &v = *value;
  auto pos = std::find_if(s.begin(), s.end(),
    [&v] (auto elt) { return !(elt < v); });
  s.insert(pos, v);
  ++value;
  --count;
}



  

Perf & event profiling

Sequence s;
size_t count = // size of workload
auto value = randomInts.begin();

while (count) {
  const auto &v = *value;
  auto pos = std::find_if(s.begin(), s.end(),
    [&v] (auto elt) { return !(elt < v); });
  s.insert(pos, v);
  ++value;
  --count;
}



  

Perf & event profiling
perf stat -e ... bin/sequenceTest  --benchmark_filter=vector

 Performance counter stats for 'bin/sequenceTest --benchmark_filter=vector':

               203      page-faults               #    0.216 K/sec                  
     3,633,972,445      cycles                    #    3.871 GHz                      (66.82%)
    11,103,176,853      instructions              #    3.06  insn per cycle           (83.39%)
     3,878,166,469      branches                  # 4130.852 M/sec                    (83.38%)
            938.83 msec task-clock                #    0.981 CPUs utilized          
                 3      context-switches          #    0.003 K/sec                  
                 0      cpu-migrations            #    0.000 K/sec                  
         1,895,927      branch-misses             #    0.05% of all branches          (83.39%)
           398,844      cache-misses                                                  (83.38%)
       135,089,499      cycle_activity.stalls_total #  143.891 M/sec                    (83.03%)

805K insertions/sec @~1 second



  

Perf & event profiling
perf stat -e ... bin/sequenceTest  --benchmark_filter=list

 Performance counter stats for 'bin/sequenceTest --benchmark_filter=list':

               302      page-faults               #    0.015 K/sec                  
    78,686,515,379      cycles                    #    3.953 GHz                      (66.65%)
    11,813,349,494      instructions              #    0.15  insn per cycle           (83.32%)
     4,695,891,137      branches                  #  235.899 M/sec                    (83.33%)
         19,906.35 msec task-clock                #    0.999 CPUs utilized          
                76      context-switches          #    0.004 K/sec                  
                 0      cpu-migrations            #    0.000 K/sec                  
         1,344,413      branch-misses             #    0.03% of all branches          (83.34%)
         2,949,410      cache-misses                                                  (83.34%)
    73,920,774,866      cycle_activity.stalls_total # 3713.427 M/sec                    (83.34%)

28.7K insertions/sec @~20 seconds



  

Perf & event profiling
perf record -e ... -g bin/sequenceTest  --benchmark_filter=list
perf annotate

85-97% of stalls are on the linked list traversal



  

Similar profilers across languages

● These sorts of profiling concerns are not just for native code
– Python – scalene (https://github.com/emeryberger/scalene)
– Javascript – Chrome Dev Tools, Firebug, JitProf, ...
– Java – VisualVM, Mission Control, XRebel, ...
– ...

https://github.com/emeryberger/scalene
https://github.com/Berkeley-Correctness-Group/JITProf
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– Java – VisualVM, Mission Control, XRebel, ...
– ...

What events you care about may change,
but the need for profiling is ubiquitous.

https://github.com/emeryberger/scalene
https://github.com/Berkeley-Correctness-Group/JITProf
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Similar profilers across languages

● These sorts of profiling concerns are not just for native code
– Python – scalene (https://github.com/emeryberger/scalene)
– Javascript – Chrome Dev Tools, Firebug, JitProf, ...
– Java – VisualVM, Mission Control, XRebel, ...
– ...

● As new languages and use cases emerge,
figuring out what to profile &
developing new profiling tools is critical

● Whatever event, resource, or problem you are interested in,
a custom profiler can provide a useful investigative tool

https://github.com/emeryberger/scalene
https://github.com/Berkeley-Correctness-Group/JITProf


  

Profiling for opportunities

● Causal profiling (e.g. Coz)
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https://github.com/plasma-umass/coz


  

Profiling for opportunities

● Causal profiling (e.g. Coz)

What should I look at to speed things up?

...
fo

o(
)

...

fo
o(

)

fo
o(

)

fo
o(

)

https://github.com/plasma-umass/coz


  

Profiling for opportunities

● Causal profiling (e.g. Coz)

What should I look at to speed things up?

... ...

fo
o(

)

...
fo

o(
)

...

fo
o(

)

fo
o(

)

fo
o(

)

...

fo
o(

)

...

fo
o(

)

fo
o(

)

fo
o(

)

fo
o(

)
fo

o(
)

fo
o(

)

https://github.com/plasma-umass/coz


  

Profiling for opportunities

● Causal profiling (e.g. Coz)

What should I look at to speed things up?

... ...
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How would you implement such a tool?

https://github.com/plasma-umass/coz


  

Profiling for opportunities

● Causal profiling (e.g. Coz)
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What about parallel code?

DA

https://github.com/plasma-umass/coz
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Profiling for opportunities

● Causal profiling (e.g. Coz)

B

C C C

What about parallel code?

DA

B

C C C
DA

B

C
DA

C C

https://github.com/plasma-umass/coz


  

Profiling for opportunities

● Causal profiling
● Profiling for parallelism (1, 2, 3, 4, 5, ...)

...

fo
o(

)

...
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o(
)
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o(

)
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)

https://dl.acm.org/doi/10.1145/1242531.1242554
https://link.springer.com/chapter/10.1007/978-3-642-15277-1_4
https://www.cc.gatech.edu/~hyesoon/prospector_4page.pdf
https://ieeexplore.ieee.org/abstract/document/6693080
https://apps.fz-juelich.de/jsc-pubsystem/aigaion/attachments/ipdps15.pdf-90476123f623dd414a85aa971b993493.pdf
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Improving Performance

● We can attack performance at several levels
– Compilers & tuning the build process
– Managing the organization of data
– Managing the organization of code
– Better algorithms & algorithmic modeling

● In all cases, we only care about improving performance of hot code
● Optimizing cold code can hurt software

– You need to understand your trade offs, goals, & business value
– But also do not ignore basic performance awareness
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Compiling for performance

● Enabling optimizations...
● LTO (Link Time Optimization / Whole Program Optimization)

foo.c foo.o

bar.c bar.o

Compile &

Optimize

Compile &

Optimize

program(.o)Merge programOptimize &
Link
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Compiling for performance

● Enabling optimizations...
● LTO
● PGO/FDO (Profile Guided Optimization/Feedback Directed Optimization)

– Incorporate profile information in optimization decisions

funPtr = ?
...

funPtr()

foo(){A}

bar(){B}

funPtr = ?
...

if funPtr == bar:
    B’
else:
    funPtr()

[Visual Studio profile guided optimizations]

https://docs.microsoft.com/en-us/cpp/build/profile-guided-optimizations?view=vs-2019
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Compiling for performance

● Enabling optimizations...
● LTO
● PGO
● Layout optimization (BOLT and otherwise)

A

D
F
G
I
J

B
C
E

H

J
I
G
F
D
A

B
C
E

Google & Facebook found it useful on servers.
Apple has found it useful in embedded devices & apps.

Why? [Hot-Cold Splitting in LLVM]

H

https://lists.llvm.org/pipermail/llvm-dev/2020-August/144012.html
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Compiling for performance

● Enabling optimizations...
● LTO
● PGO
● Layout optimization (BOLT and otherwise)
● Polyhedral analysis, tiling, etc.

– Transforming complex operations on, e.g., matrices to maximize locality

Even for web apps, these techniques make a difference
when applied to the hot path.
[Google Developer Updates]

https://developers.google.com/web/updates/2019/02/hotpath-with-wasm
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Optimizing Your Data

● The basic directions of data optimizations
– Ensure the data you want is available for the tasks you have
– Do not spend time processing you do not need
– Do not spend extra time managing the data at the system level

Several aspects of high level design may be in tension with these
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uint32_t must be 4 byte aligned.
Padding is inserted!
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Optimizing Your Data

● Basic structure packing
– Smaller aggregates consume less cache

struct S1 {
  char a;
};
sizeof(S1) == 1

struct S2 {
  uint32_t b;
};
sizeof(S2) == 4

struct S3 {
  char a;
  uint32_t b;
  char c;
};
sizeof(S3) == 12

struct S4 {
  char a;
  char c;
  uint32_t b;
};

Careful ordering improves
cache utilization

sizeof(S3) == 8
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Optimizing Your Data

● Managing indirection
– Pointers and indirection can stall the CPU while waiting on memory

std::list numbers = ...
for (auto& i : numbers) {
  ...
} We already saw this.

Traversing a linked list is expensive!
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Optimizing Your Data

● Managing indirection
– Pointers and indirection can stall the CPU while waiting on memory

std::list numbers = ...
for (auto& i : numbers) {
  ...
}

3 1 4 1

These elements are unlikely to be in cache
and unlikely to be prefetched automatically.
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Optimizing Your Data

● Managing indirection
– Pointers and indirection can stall the CPU while waiting on memory

How does this relate to
 design tools that we have seen?

How does this relate to
 language selection & performance?
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struct Dog {
  uint32_t friendliness;
  uint32_t age;
  uint32_t ownerID;
  std::string hobby;
  Food treats[10];
};

Optimizing Your Data

● Grouping things that are accessed together
– Guiding spatial design by temporal locality can improve cache utilization
– Cold field outlining

for (Dog& d : dogs) {
  play(d.friendliness, d.hobby);
}

We can try to push the cold fields
out of the cache
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struct Dog {
  uint32_t friendliness;
  uint32_t age;
  uint32_t ownerID;
  std::string hobby;
  Food treats[10];
};

Optimizing Your Data

● Grouping things that are accessed together
– Guiding spatial design by temporal locality can improve cache utilization
– Cold field outlining

struct HotDog {
  double friendliness;
  std::string hobby;
  unique_ptr<Cold> cold;
};

struct Cold {
  uint32_t age;
  uint32_t ownerID;
  Food treats[10];
};

for (Dog& d : dogs) {
  play(d.friendliness, d.hobby);
}

Benefits depend on
the size of Cold & the access patterns

Again, profilers can guide the process.
[Le, 2019]

https://www.ece.ubc.ca/~sasha/papers/memsys19.pdf
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Optimizing Your Data

● Grouping things that are accessed together
– Guiding spatial design by temporal locality can improve cache utilization
– Cold field outlining
– AoS vs SoA (Array of Structs vs Struct of Arrays)

struct Dog {
  uint32_t friendliness;
  uint32_t age;
  uint32_t ownerID;
  std::string hobby;
  Food treats[10];
};

struct DogManager {
  std::vector<uint32_t> friendliness;
  std::vector<uint32_t> age;
  std::vector<uint32_t> ownerID;
  std::vector<std::string> hobby;
  std::vector<std::array<Food,10>> treats;
};

for (auto i : range(dogs)) {
  play(friendliness[i], hobby[i]);
}
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Optimizing Your Data

● Grouping things that are accessed together
– Guiding spatial design by temporal locality can improve cache utilization
– Cold field outlining
– AoS vs SoA (Array of Structs vs Struct of Arrays)

Dog1 Dog2

friendliness
Dog1

age

hobby

Dog2 Dog3 Dog4 You can pick and choose while still
getting good locality

Easier for compilers to vectorize

Also a foundation of modern
game engine design (ECS) & data processing (columnar DB)
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Optimizing Your Data

● Loop invariance
– Avoid recomputing the same values inside a loop
– Compilers automate this but cannot always succeed (LICM)

for (auto i : ...) {
  auto sqrt2 = sqrt(2);
  auto x = f(i, sqrt2);
  ...
}

auto sqrt2 = sqrt(2);
for (auto i : ...) {
  auto x = f(i, sqrt2);
  ...
}
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● Inner loop locality
– The simplest scenarios are like the matrix example we first saw

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
  for (size_t col = 0; col < cols; ++col) {
    foo(matrix[cols*row + col]);
  }
}

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
  for (size_t col = 0; col < cols; ++col) {
    foo(matrix[rows*col + row]);
  }
}

1
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– The simplest scenarios are like the matrix example we first saw
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for (size_t row = 0; row < rows; ++row) {
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}

1 2 3 4 5

Memory accesses
are consecutive!
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– The simplest scenarios are like the matrix example we first saw

uint32_t marix[rows*cols];
for (size_t row = 0; row < rows; ++row) {
  for (size_t col = 0; col < cols; ++col) {
    foo(matrix[cols*row + col]);
  }
}

uint32_t marix[rows*cols];
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  for (size_t col = 0; col < cols; ++col) {
    foo(matrix[rows*col + row]);
  }
}

1 4 2 5 3

Memory accesses
jump around &

thrash the cache!
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– Matrix operations (e.g. multiplication) can require extra work

×...
Problem:
Using the same layout creates bad locality.

...



  

Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw
– Matrix operations (e.g. multiplication) can require extra work

×

Solution: Transpose first.
Implement over the transpose instead.

... ...
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Optimizing Your Data

● Inner loop locality
– The simplest scenarios are like the matrix example we first saw
– Matrix operations (e.g. multiplication) can require extra work

×... ...

Note: Better solutions further leverage
layout & parallelization.

tiling, polyhedral analysis, ...
[polyhedral.info]

https://polyhedral.info/
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Optimizing Your Data

● Memory management effects
– Data structure packing & access patterns affect deeper system behavior

● What about virtual memory, page tables, & the TLB?
● What about allocation strategies & fragmentation?

Object/Memory pools?
Per class allocation?
Region based allocation?
Bump pointer allocators?
Cyclic buffers?
Precomputed allocation requirements & scheduling?



  

Optimizing Your Data

● Memory management effects
– Data structure packing & access patterns affect deeper system behavior

● What about virtual memory, page tables, & the TLB?
● What about allocation strategies & fragmentation?

– Data structure inlining
● folly::small_vector

absl::InlinedVector
rust-smallvec
...

https://github.com/facebook/folly/blob/master/folly/docs/small_vector.md
https://github.com/abseil/abseil-cpp/blob/master/absl/container/inlined_vector.h
https://github.com/servo/rust-smallvec


  

Optimizing Your Data

● Memory management effects
– Data structure packing & access patterns affect deeper system behavior

● What about virtual memory, page tables, & the TLB?
● What about allocation strategies & fragmentation?

– Data structure inlining
● folly::small_vector

absl::InlinedVector
rust-smallvec
...

small_vector<int,2> vec;
vec.push_back(0); // Stored in-place on stack
vec.push_back(1); // Still on the stack
vec.push_back(2); // Switches to heap buffer

[facebook’s small_vector]

https://github.com/facebook/folly/blob/master/folly/docs/small_vector.md
https://github.com/abseil/abseil-cpp/blob/master/absl/container/inlined_vector.h
https://github.com/servo/rust-smallvec
https://github.com/facebook/folly/blob/master/folly/docs/small_vector.md
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Optimizing Your Data

● Designing with clear ownership policies in mind
– Resource acquisition should not happen in hot code
– Use APIs that express intent & prevent copying

“std::string is responsible for almost half of all allocations in the Chrome”

foo(const std::string& s) {
  bar(s.c_str());
} bar(const char* s) {

  baz(std::string{s});
} baz(const std::string& s) {
  quux(s.c_str());
} quux(const char* s) {
  quuz(std::string{s});
}

https://groups.google.com/a/chromium.org/forum/#!msg/chromium-dev/EUqoIz2iFU4/kPZ5ZK0K3gEJ


  

Optimizing Your Data

● Designing with clear ownership policies in mind
– Resource acquisition should not happen in hot code
– Use APIs that express intent & prevent copying

“std::string is responsible for almost half of all allocations in the Chrome”

template<class E>
struct Span {  

template<class E, auto N>
Span(const std::array<E,N>& c);

template<class E>
Span(const std::vector<E>& c);

E* first;
size_t count;

};

https://groups.google.com/a/chromium.org/forum/#!msg/chromium-dev/EUqoIz2iFU4/kPZ5ZK0K3gEJ
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Optimizing Your Code

● Basic ideas for code optimization
– Avoid branching whenever possible
– Make code that does the same thing occur close together temporally

Leverage the instruction cache if you can
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Optimizing Your Code

● Branch prediction & speculation
– On if statements

for (...) {
  if (foo(c)) {
    bar();
  } else {
    baz();
  }
}

A
B

Pipeline:
51%

49%

A A A
Actual: A B

Stall, frequently

How would you fix it?
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Optimizing Your Code

● Branch prediction & speculation
– On if statements
– On function pointers!

for (...) {
  foo();
}

A

B

bar() {}

baz() {}

The same problems arise51%

49%
Consistent call targets

perform better
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● Designing away checks
– Repeated checks can be removed by maintaining invariants

i  1←
while i < length(A)
    j  i←
    while j > 0 and A[j-1] > A[j]
        swap A[j] and A[j-1]
        j  j - 1←
    i  i + 1←

[Wikipedia’s Insertion Sort]

Can we turn the semantic check
into a bounds check?
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Optimizing Your Code

● Designing away checks
– Repeated checks can be removed by maintaining invariants

i  1←
while i < length(A)
    j  i←
    while j > 0 and A[j-1] > A[j]
        swap A[j] and A[j-1]
        j  j - 1←
    i  i + 1←

[Wikipedia’s Insertion Sort]

k  find_smallest(A)←
swap A[0] and A[k]
i  1←
while i < length(A)
    j  i←
    while A[j-1] > A[j]
        swap A[j] and A[j-1]
        j  j - 1←
    i  i + 1←

68k items/s

On an Intel i7@ 2.20GHz, uniformly random data

104k items/s104k items/s32768 elements:
269k items/s 415k items/s   8192 elements:

17k items/s 26k items/s131072 elements:



  

Optimizing Your Code

● Designing away checks
– Repeated checks can be removed by maintaining invariants

i  1←
while i < length(A)
    j  i←
    while j > 0 and A[j-1] > A[j]
        swap A[j] and A[j-1]
        j  j - 1←
    i  i + 1←

[Wikipedia’s Insertion Sort]

A[-1]  MIN_VALUE←
i  1←
while i < length(A)
    j  i←
    while A[j-1] > A[j]
        swap A[j] and A[j-1]
        j  j - 1←
    i  i + 1←

Extra domain knowledge may allow
this in different ways.

Values that do not appear?
Shape & distribution?

...
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Optimizing Algorithms

● Improving real world algorithmic performance comes from 
recognizing the interplay between theory and hardware

● Hybrid algorithms
– Constants matter. Use thresholds to select algorithms.
– Use general N logN sorting for N above 300 [Alexandrescu 2019]

● Caching & Precomputing
– If you will reuse results, save them and avoid recomputing
– If all possible results are compact, just compute a table up front

● Predictability & Speculation
– Can you determine data & behaviors early?
– Can you fetch/perform them during an early lull?

e.g., determine resources for a web page,
& fetch them when initially loading

[Mickens 2010, Netravali 2018, Ko 2021]

https://www.youtube.com/watch?v=FJJTYQYB1JQ
https://www.microsoft.com/en-us/research/publication/crom-faster-web-browsing-using-speculative-execution/
https://www.usenix.org/conference/nsdi18/presentation/netravali-prophecy
https://mickens.seas.harvard.edu/publications/oblique-accelerating-page-loads-using-symbolic-execution
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● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!
– Constants and artifacts of scale can actually dominate the real world 

performance

A uniform cost model
throws necessary information away
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● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!
– Constants and artifacts of scale can actually dominate the real world 

performance
– We want modeling & algorithms that account for artifacts like:

memory, I/O, consistency & speculation, shapes of workloads

● Alternative approaches
– I/O complexity, I/O efficiency and cache awareness

CPU

Memory 1

Memory 2

Block size B

Complexity measured in block transfers



  

Optimizing Algorithms

● Better performance modeling & algorithms
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Similar to I/O, but agnostic to block size 



  

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!
– Constants and artifacts of scale can actually dominate the real world 

performance
– We want modeling & algorithms that account for artifacts like:

memory, I/O, consistency & speculation, shapes of workloads

● Alternative approaches
– I/O complexity, I/O efficiency and cache awareness
– Cache oblivious algorithms & data structures
– Parameterized complexity
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Optimizing Algorithms

● Classic design mistakes [Lu 2012]
– Uncoordinated functions (e.g. lack of batching)

acquire(mutex)
for (auto& action : actions) {
  action.do()
}
release(mutex)

for (auto& action : actions) {
  action.do()
}

Action::do() {
  acquire(mutex)
  ...
  release(mutex)
}

vs
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– Skippable functions (e.g. transparent draws)
– Poor/unclear synchronization

foo() {
  bar()
}

bar() {
  baz()
}

baz() {
  quux()
}

quux() {
  random()
}

random() {
  acquire(mutex)
  ...
  release(mutex)
}



  

Optimizing Algorithms

● Classic design mistakes [Lu 2012]
– Uncoordinated functions (e.g. lack of batching)
– Skippable functions (e.g. transparent draws)
– Poor/unclear synchronization

foo() {
  bar()
}

bar() {
  baz()
}

baz() {
  quux()
}

quux() {
  random()
}

random() {
  acquire(mutex)
  ...
  release(mutex)
}

Consider
shallow, broad, & explicit designs, or
designing the resource away.
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Optimizing Algorithms

● Classic design mistakes [Lu 2012]
– Uncoordinated functions (e.g. lack of batching)
– Skippable functions (e.g. transparent draws)
– Poor/unclear synchronization
– Poor data structure selection

This sounds simple,
but it can become quite challenging.
[Loncaric 2016, Idreos 2018, Loncaric 2018]

https://homes.cs.washington.edu/~mernst/pubs/collection-synthesis-pldi2016.pdf
https://www.cc.gatech.edu/~jarulraj/courses/8803-f18/papers/data_calculator.pdf
https://par.nsf.gov/servlets/purl/10081433
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Summary

● Reasoning rigorously about performance is challenging
● Good tooling can allow you to investigate performance well
● We can improve performance through

– compilers
– managing data
– managing code
– better algorithmic thinking
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