
Software Design Foundations

CMPT 745
Software Engineering

Nick Sumner
wsumner@sfu.ca

Why care about software design?

● Software Design

Why care about software design?

● Software Design
– The components into which a problem is broken down

Audio

Input

Network Persistence

Graphics

Client
Logic

Server
Logic

Why care about software design?

● Software Design
– The components into which a problem is broken down
– The ways those components interact

Audio

Input

Network Persistence

Graphics

Client
Logic

Server
Logic

Why care about software design?

● Software Design
– The components into which a problem is broken down
– The ways those components interact
– The interfaces and abstractions they expose or hide

Why care about software design?

● Software Design
– The components into which a problem is broken down
– The ways those components interact
– The interfaces and abstractions they expose or hide

● Design affects the value of software
– Understandability
– Performance
– Reliability
– Ease of change

Why care about software design?

● Software Design
– The components into which a problem is broken down
– The ways those components interact
– The interfaces and abstractions they expose or hide

● Design affects the value of software
– Understandability
– Performance
– Reliability
– Ease of change Most programming is

“brown field” programming

Why care about software design?

● Software Design
– The components into which a problem is broken down
– The ways those components interact
– The interfaces and abstractions they expose or hide

● Design affects the value of software
– Understandability
– Performance
– Reliability
– Ease of change

– Poor value on these metrics is a significant risk
– Good design can mitigate these risks

Why care about software design?

● Software Design
– The components into which a problem is broken down
– The ways those components interact
– The interfaces and abstractions they expose or hide

● Design affects the value of software
– Understandability
– Performance
– Reliability
– Ease of change

– Poor value on these metrics is a significant risk
– Good design can mitigate these risks

My goal is to have you able read and understand
design decisions at FAANG....

What is bad design?

● Several red flags [Ousterhout 2018, ...]

What is bad design?

● Several red flags [Ousterhout 2018, ...]

– Seemingly simple changes require modifying many locations

What is bad design?

● Several red flags [Ousterhout 2018, ...]

– Seemingly simple changes require modifying many locations
– A developer needs to know a great deal to complete a task

What is bad design?

● Several red flags [Ousterhout 2018, ...]

– Seemingly simple changes require modifying many locations
– A developer needs to know a great deal to complete a task
– What code must be modified is unclear

What is bad design?

● Several red flags [Ousterhout 2018, ...]

– Seemingly simple changes require modifying many locations
– A developer needs to know a great deal to complete a task
– What code must be modified is unclear
– The impact of a change is unclear

What is bad design?

● Several red flags [Ousterhout 2018, ...]

– Seemingly simple changes require modifying many locations
– A developer needs to know a great deal to complete a task
– What code must be modified is unclear
– The impact of a change is unclear

● Possible causes [Ousterhout 2018]

– Dependencies – Code cannot be understood in isolation
– Obscurity – Important information is not obvious

What is bad design?

● Several red flags [Ousterhout 2018, ...]

– Seemingly simple changes require modifying many locations
– A developer needs to know a great deal to complete a task
– What code must be modified is unclear
– The impact of a change is unclear

● Possible causes [Ousterhout 2018]

– Dependencies – Code cannot be understood in isolation
– Obscurity – Important information is not obvious

● Design complexity arises from many portions of code interacting
– Think of a basket or a braid. [Hickey 2011]

Changing one strand is hard....

What is common in good designs?

● Loose Coupling (connectivity)

What is common in good designs?

● Loose Coupling (connectivity)
worse

better vs

What is common in good designs?

● Loose Coupling (connectivity)
– Contentworse

better

What is common in good designs?

● Loose Coupling (connectivity)
– Contentworse

better
...
goto yourcode
... ...

yourcode:
...

What is common in good designs?

● Loose Coupling (connectivity)
– Content
– Common global data

worse

better

What is common in good designs?

● Loose Coupling (connectivity)
– Content
– Common global data

worse

better int global = ...

global = ...

int global = ...

global = ...

... = global

... = global

What is common in good designs?

● Loose Coupling (connectivity)
– Content
– Common global data

worse

better int global = ...

global = ...

int global = ...

global = ...

... = global

... = global

What is common in good designs?

● Loose Coupling (connectivity)
– Content
– Common global data

worse

better int global = ...

global = ...

int global = ...

global = ...

... = global

... = global
Note: “Solutions” like singletons have these constraints and worse.

What is common in good designs?

● Loose Coupling (connectivity)
– Content
– Common global data
– Subclassing

worse

better

What is common in good designs?

● Loose Coupling (connectivity)
– Content
– Common global data
– Subclassing

worse

better

class Parent {
public:
 virtual void foo() { bar(); }
 virtual void bar() {}
};

[Bloch, “Effective Java”]

What is common in good designs?

● Loose Coupling (connectivity)
– Content
– Common global data
– Subclassing

worse

better

[Bloch, “Effective Java”]

class Parent {
public:
 virtual void foo() { bar(); }
 virtual void bar() {}
};class Child : public Parent {
public:
 virtual void bar() { foo(); }
};

What is common in good designs?

● Loose Coupling (connectivity)
– Content
– Common global data
– Subclassing

worse

better

class Parent {
public:
 void foo() { barImpl(); }
 void bar() { barImpl(); }
private:
 virtual void barImpl() = 0;
};

[Bloch, “Effective Java”]

class Parent {
public:
 virtual void foo() { bar(); }
 virtual void bar() {}
};class Child : public Parent {
public:
 virtual void bar() { foo(); }
};

Non Virtual Interfaces (NVI) help
clarify & are common in C++.

What is common in good designs?

● Loose Coupling (connectivity)
– Content
– Common global data
– Subclassing
– Temporal

worse

better

What is common in good designs?

● Loose Coupling (connectivity)
– Content
– Common global data
– Subclassing
– Temporal

worse

better

Cat cat = new Cat;
...
delete cat;

What is common in good designs?

● Loose Coupling (connectivity)
– Content
– Common global data
– Subclassing
– Temporal

worse

better

Cat cat = new Cat;
...
delete cat;

Process p;
p.doStep1();
p.doStep2();
p.doStep3();

What is common in good designs?

● Loose Coupling (connectivity)
– Content
– Common global data
– Subclassing
– Temporal

worse

better

Cat cat = new Cat;
...
delete cat;

Process p;
p.doStep1();
p.doStep2();
p.doStep3();

This is more insidious!

Process p;
p.foo();
p.bar();
p.baz();

What is common in good designs?

● Loose Coupling (connectivity)
– Content
– Common global data
– Subclassing
– Temporal
– Passing data to/from each other

worse

better

x = foo(1,2)
def foo(a, b):
 ...

What is common in good designs?

● Loose Coupling (connectivity)
– Content
– Common global data
– Subclassing
– Temporal
– Passing data to/from each other
– Independence

worse

better

What is common in good designs?

● Loose Coupling
● High fan in / low fan out

foo()

bar() baz()

vs
foo()

bar()

What is common in good designs?

● Loose Coupling
● High fan in / low fan out
● Layers / Stratification

New / Greenfield
Code

Wrapper API

Legacy / Sketchy Code

What is common in good designs?

● Loose Coupling
● High fan in / low fan out
● Layers / Stratification

New / Greenfield
Code

Wrapper API

External Library

What is common in good designs?

● Loose Coupling
● High fan in / low fan out
● Layers / Stratification

New / Greenfield
Code

Wrapper API

External Library
Layers are just a form of decoupling.

What is common in good designs?

● Loose Coupling
● High fan in / low fan out
● Layers / Stratification
● Cohesion

vs

What is common in good designs?

● Loose Coupling
● High fan in / low fan out
● Layers / Stratification
● Cohesion

These attributes promote ease of change

What are our tools in creating designs?

● The same tools arise across languages
– Polymorphism
– Composition

What are our tools in creating designs?

● The same tools arise across languages
– Polymorphism
– Composition

– Understanding and leveraging these can enable
safe, efficient, modifiable, and clear designs

What are our tools in creating designs?

● The same tools arise across languages
– Polymorphism
– Composition

– Understanding and leveraging these can enable
safe, efficient, modifiable, and clear designs

– So we need to understand them....

Polymorphism

● What is polymorphism?

Polymorphism

● What is polymorphism?
– A component is polymorphic if it may operate on multiple types

Polymorphism

● What is polymorphism?
– A component is polymorphic if it may operate on multiple types

● What kinds of polymorphism are there?
– At least 4(ish) broad classes that people should be familiar with
– Even more (and further subdivision) in richer languages

Polymorphism

● What is polymorphism?
– A component is polymorphic if it may operate on multiple types

● What kinds of polymorphism are there?
– At least 4(ish) broad classes that people should be familiar with
– Even more (and further subdivision) in richer languages

1) Runtime polymorphism (e.g. via inheritance in OOP)

Polymorphism

● What is polymorphism?
– A component is polymorphic if it may operate on multiple types

● What kinds of polymorphism are there?
– At least 4(ish) broad classes that people should be familiar with
– Even more (and further subdivision) in richer languages

1) Runtime polymorphism (e.g. via inheritance in OOP)
2) Parametric polymorphism (e.g. via generics / templates)

Polymorphism

● What is polymorphism?
– A component is polymorphic if it may operate on multiple types

● What kinds of polymorphism are there?
– At least 4(ish) broad classes that people should be familiar with
– Even more (and further subdivision) in richer languages

1) Runtime polymorphism (e.g. via inheritance in OOP)
2) Parametric polymorphism (e.g. via generics / templates)
3) Overloading (e.g. via classic overloading / type classes / traits)

Polymorphism

● What is polymorphism?
– A component is polymorphic if it may operate on multiple types

● What kinds of polymorphism are there?
– At least 4(ish) broad classes that people should be familiar with
– Even more (and further subdivision) in richer languages

1) Runtime polymorphism (e.g. via inheritance in OOP)
2) Parametric polymorphism (e.g. via generics / templates)
3) Overloading (e.g. via classic overloading / type classes / traits)
4) Coercion* (e.g. via implicit conversion)
5) ...

Polymorphism

● What is polymorphism?
– A component is polymorphic if it may operate on multiple types

● What kinds of polymorphism are there?
– At least 4(ish) broad classes that people should be familiar with
– Even more (and further subdivision) in richer languages

1) Runtime polymorphism (e.g. via inheritance in OOP)
2) Parametric polymorphism (e.g. via generics / templates)
3) Overloading (e.g. via classic overloading / type classes / traits)
4) Coercion* (e.g. via implicit conversion)
5) ... Different forms of polymorphism have

different design trade offs

Polymorphism via Inheritance
(a quick review)

Polymorphism via Inheritance

● Inheritance
– An approach of constructing a new entity in terms of an existing one

Polymorphism via Inheritance

● Inheritance
– An approach of constructing a new entity in terms of an existing one
– Can apply to classes, objects, ...

Polymorphism via Inheritance

● Inheritance
– An approach of constructing a new entity in terms of an existing one
– Can apply to classes, objects, ...
– Most familiar nowadays through Object Oriented Programming (OOP)

Polymorphism via Inheritance

● Inheritance
– An approach of constructing a new entity in terms of an existing one
– Can apply to classes, objects, ...
– Most familiar nowadays through Object Oriented Programming (OOP)

● Class Inheritance
– Creates a new class in terms of an existing class

List

ArrayList

Polymorphism via Inheritance

● Inheritance
– An approach of constructing a new entity in terms of an existing one
– Can apply to classes, objects, ...
– Most familiar nowadays through Object Oriented Programming (OOP)

● Class Inheritance
– Creates a new class in terms of an existing class
– Shares properties and behaviors with the new class

List
+ add()

ArrayList
+ add()

Polymorphism via Inheritance

● Inheritance
– An approach of constructing a new entity in terms of an existing one
– Can apply to classes, objects, ...
– Most familiar nowadays through Object Oriented Programming (OOP)

● Class Inheritance
– Creates a new class in terms of an existing class
– Shares properties and behaviors with the new class
– Can establish a subtyping relationship

List
+ add()

ArrayList
+ add()

is-a

Polymorphism via Inheritance

● Inheritance
– An approach of constructing a new entity in terms of an existing one
– Can apply to classes, objects, ...
– Most familiar nowadays through Object Oriented Programming (OOP)

● Class Inheritance
– Creates a new class in terms of an existing class
– Shares properties and behaviors with the new class
– Can establish a subtyping relationship

List
+ add()

ArrayList
+ add()

is-a

List list = new ArrayList();

void foo(List& someList);
...
ArrayList list;
foo(list);Java

C++

What does good inheritance look like?

● Initial guidelines:

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance
– Liskov Substitution Principle

● If φ is true for the base, then φ is true the derived

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance
– Liskov Substitution Principle

● If φ is true for the base, then φ is true the derived

Base
A foo(B b)

Derived
C foo(D d)

Derived is substitutable for Base

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance
– Liskov Substitution Principle

● If φ is true for the base, then φ is true the derived
● Arguments in the subtype may be more general

Base
A foo(B b)

Derived
C foo(D d)

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance
– Liskov Substitution Principle

● If φ is true for the base, then φ is true the derived
● Arguments in the subtype may be more general

Base
A foo(B b)

Derived
C foo(D d)

B <: D

Arguments are contravariant

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance
– Liskov Substitution Principle

● If φ is true for the base, then φ is true the derived
● Arguments in the subtype may be more general

Base
A foo(B b)

Derived
C foo(D d)

B <: D

Arguments are contravariant

LinuxDrawer

Drawer

Rectangle

Shape

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance
– Liskov Substitution Principle

● If φ is true for the base, then φ is true the derived
● Arguments in the subtype may be more general

Base
A foo(B b)

Derived
C foo(D d)

B <: D

Arguments are contravariant

Drawer
+ void draw(Rectangle)

LinuxDrawer
+ void draw(Shape)

LinuxDrawer

Drawer

Rectangle

Shape

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance
– Liskov Substitution Principle

● If φ is true for the base, then φ is true the derived
● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained

Base
A foo(B b)

Derived
C foo(D d)

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance
– Liskov Substitution Principle

● If φ is true for the base, then φ is true the derived
● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained

Base
A foo(B b)

Derived
C foo(D d)

C <: A

Return types are covariant

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance
– Liskov Substitution Principle

● If φ is true for the base, then φ is true the derived
● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained

Base
A foo(B b)

Derived
C foo(D d)

C <: A

Return types are covariant

LinuxDrawer

Drawer

Rectangle

Shape

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance
– Liskov Substitution Principle

● If φ is true for the base, then φ is true the derived
● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained

Base
A foo(B b)

Derived
C foo(D d)

C <: A

Return types are covariant

LinuxDrawer

Drawer

Rectangle

Shape

Drawer
+ Shape getBounds()

LinuxDrawer
+ Rectangle getBounds()

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance
– Liskov Substitution Principle

● If φ is true for the base, then φ is true the derived
● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained
● Preconditions are not stronger

Base
A foo(B b)

Derived
C foo(D d)

assert(x > 0) assert(x != 0)

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance
– Liskov Substitution Principle

● If φ is true for the base, then φ is true the derived
● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained
● Preconditions are not stronger

Base
A foo(B b)

Derived
C foo(D d)

assert(x > 0) assert(x != 0)

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance
– Liskov Substitution Principle

● If φ is true for the base, then φ is true the derived
● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained
● Preconditions are not stronger
● Postconditions are not weaker

Base
A foo(B b)

Derived
C foo(D d)

assert(result != 0) assert(result > 0)

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance
– Liskov Substitution Principle

● If φ is true for the base, then φ is true the derived
● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained
● Preconditions are not stronger
● Postconditions are not weaker

Base
A foo(B b)

Derived
C foo(D d)

assert(result != 0) assert(result > 0)

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance
– Liskov Substitution Principle

● If φ is true for the base, then φ is true the derived
● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained
● Preconditions are not stronger
● Postconditions are not weaker
● Invariants must still hold

Base
A foo(B b)

Derived
C foo(D d)

So why is inheritance hard?

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Professor

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher
is-a

Professor

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher
is-a

Teacher

Professor
is-a

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher
is-a

Teacher Napper
is-a is-a

Professor

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher
Professor

has-a

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher
Professor

has-a
Teacherhas-a

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher
Professor

has-a
Teacherhas-a
Napperhas-a

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Note, these are now roles,
not people.

Researcher
Professor

has-a
Teacherhas-a
Napperhas-a

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

● Whenever is-a applies, you must still make a decision

Note, these are now roles,
not people.

Researcher
Professor

has-a
Teacherhas-a
Napperhas-a

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Inheritance often precludes it

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Inheritance often precludes it
– Composition often simplifies it

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Inheritance often precludes it
– Composition often simplifies it
– Use composition if the relationship is dynamic

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Inheritance often precludes it
– Composition often simplifies it
– Use composition if the relationship is dynamic

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Inheritance often precludes it
– Composition often simplifies it
– Use composition if the relationship is dynamic

● Guide 2: Might the type be used polymorphically?
– Composition does not intrinsically aid it

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Inheritance often precludes it
– Composition often simplifies it
– Use composition if the relationship is dynamic

● Guide 2: Might the type be used polymorphically?
– Composition does not intrinsically aid it
– Inheritance can enable it

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Inheritance often precludes it
– Composition often simplifies it
– Use composition if the relationship is dynamic

● Guide 2: Might the type be used polymorphically?
– Composition does not intrinsically aid it
– Inheritance can enable it
– Consider inheritance when a reference to a general type may point to a

more specific one.

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Inheritance often precludes it
– Composition often simplifies it
– Use composition if the relationship is dynamic

● Guide 2: Might the type be used polymorphically?
– Composition does not intrinsically aid it
– Inheritance can enable it
– Consider inheritance when a reference to a general type may point to a

more specific one.

0) Student
1) Student
2) Lecturer
3) Professor
4) Student

std::vector<People*> folks;

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Inheritance often precludes it
– Composition often simplifies it
– Use composition if the relationship is dynamic

● Guide 2: Might the type be used polymorphically?
– Composition does not intrinsically aid it
– Inheritance can enable it
– Consider inheritance when a reference to a general type may point to a

more specific one.

0) Student
1) Student
2) Lecturer
3) Professor
4) Student

std::vector<People*> folks;

We will revisit this in the context of
algebraic data types.

So let’s try it out...

● I need
– Many different types of animals. This should sound

familiar...

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

What does my design look like
based on the rules?

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Animal

ProfessorCat CorgiParrot

Maine Coon Bengal

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Animal

ProfessorCat CorgiParrot

Maine Coon Bengal

Is this good?

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Animal

ProfessorCat CorgiParrot

Maine Coon Bengal

Is this good?

Does Cat serve a purpose?

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Animal

ProfessorCat CorgiParrot

Maine Coon Bengal

Is this good?

Does it achieve reuse?

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Animal

ProfessorCat CorgiParrot

Maine Coon Bengal

Is this good?

Does it achieve reuse?

What if I want a new
Animal at run time?

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better?

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

If someone on my team did this multiple times,
I would consider firing them.

Can we do better?

Hierarchies in data need not be
hierarchies in the type system!

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movementhas-a

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movementhas-a

Movement selects from the
ways any Animal can move.

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a
Crawl

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a
Crawl Fly

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a
Crawl Fly Saunter

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a

Tweet

Crawl Fly Saunter

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a

MeowTweet

Crawl Fly Saunter

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a

MeowTweet Ramble

Crawl Fly Saunter

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a

MeowTweet Ramble Bark

Crawl Fly Saunter

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a

MeowTweet Ramble Bark

Crawl Fly Saunter

class Animal {
 Movement& m;
 void move() {
 m.move();
 }
};

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

● Inheritance contracts for fine grained policies

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

● Inheritance contracts for fine grained policies
● Enables dynamic selection & configuration of which policies are

desired

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

● Inheritance contracts for fine grained policies
● Enables dynamic selection & configuration of which policies are

desired
– e.g. A Cat may start out Stationary, then Run, then be Stationary

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

● Inheritance contracts for fine grained policies
● Enables dynamic selection & configuration of which policies are

desired
– e.g. A Cat may start out Stationary, then Run, then be Stationary

Previously static requirements will often become dynamic.

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

● Inheritance contracts for fine grained policies
● Enables dynamic selection & configuration of which policies are

desired
– e.g. A Cat may start out Stationary, then Run, then be Stationary

● Directly identifies & addresses risks of change in class design

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

● Inheritance contracts for fine grained policies
● Enables dynamic selection & configuration of which policies are

desired
– e.g. A Cat may start out Stationary, then Run, then be Stationary

● Directly identifies & addresses risks of change in class design
● Does not focus on reusing from the base class.

Instead makes the derived class reusable.

Violating Examples

● There a few bad examples that students & text books have brought to me

JPanel

CustomJPanel

JComponent

Violating Examples

● There a few bad examples that students & text books have brought to me

JPanel

CustomJPanel

JComponent

Stack

Vector

Violating Examples

● There a few bad examples that students & text books have brought to me

Rectangle

Square TextFrame
JPanel

CustomJPanel

JComponent

Stack

Vector

Violating Examples

● There a few bad examples that students & text books have brought to me

Rectangle

Square TextFrame
JPanel

CustomJPanel

JComponent

Stack

Vector

Parametric Polymorphism
(a quick review?)

Parametric Polymorphism

● Parametric polymorphism enables
defining generic components
over a family of types
using type parameters

Parametric Polymorphism

● Parametric polymorphism enables
defining generic components
over a family of types
using type parameters

Commonly referred to as generics or templates

Parametric Polymorphism

● Parametric polymorphism enables
defining generic components
over a family of types
using type parameters

public class ArrayList<E> {...}
Java

template <class E>
class vector;

C++
class ArrayList<E> {...}

Typescript
T = TypeVar('T')
class SpecialList(Generic[T]):
 def __init__(self, value: T) -> None:
 ...

Python

Commonly referred to as generics or templates

Parametric Polymorphism

● Parametric polymorphism enables
defining generic components
over a family of types
using type parameters

std::vector<int> v1 = {1, 2, 3, 4, 5};
C++

public class ArrayList<E> {...}
Java

template <class E>
class vector;

C++
class ArrayList<E> {...}

Typescript
T = TypeVar('T')
class SpecialList(Generic[T]):
 def __init__(self, value: T) -> None:
 ...

Python

Parametric Polymorphism

● Parametric polymorphism enables
defining generic components
over a family of types
using type parameters

std::vector<int> v1 = {1, 2, 3, 4, 5};
C++

std::vector v1 = {1, 2, 3, 4, 5};

public class ArrayList<E> {...}
Java

template <class E>
class vector;

C++
class ArrayList<E> {...}

Typescript
T = TypeVar('T')
class SpecialList(Generic[T]):
 def __init__(self, value: T) -> None:
 ...

Python

Parameters can sometimes be inferred.

Parametric Polymorphism

● Parametric polymorphism enables
defining generic components
over a family of types
using type parameters

● Enables careful abstraction of design components
– A class/function/data structure/algorithm can be written & validated once
– Intentions can be clearer within code

● Suppose an algorithm needs to find an element in a collection &
increment it.

Parametric Polymorphism

● Suppose an algorithm needs to find an element in a collection &
increment it.

void bigAlgorithm(...) {
std::vector<int> c;
...
for (auto i = begin(c), e = end(c); i != e; ++i) {

if (*i == v) {
++*i;
break;

}
}
...

}

Parametric Polymorphism

● Suppose an algorithm needs to find an element in a collection &
increment it.

void bigAlgorithm(...) {
std::vector<int> c;
...
for (auto i = begin(c), e = end(c); i != e; ++i) {

if (*i == v) {
++*i;
break;

}
}
...

}

Parametric Polymorphism

This is awful.
Intentions are unclear.

Modifiability is low.
Reusability is low.

● Suppose an algorithm needs to find an element in a collection &
increment it.

void bigAlgorithm(...) {
std::vector<int> c;
...
for (auto i = begin(c), e = end(c); i != e; ++i) {

if (*i == v) {
++*i;
break;

}
}
...

}

Parametric Polymorphism

template<typename C, typename V>
size_t find(const C& c, const V& v) {

for (auto& [index, element] : enumerate(c)) {
if (element == v) {

return index;
}

}
return (size_t)-1;

}

● Suppose an algorithm needs to find an element in a collection &
increment it.

void bigAlgorithm(...) {
std::vector<int> c;
...
for (auto i = begin(c), e = end(c); i != e; ++i) {

if (*i == v) {
++*i;
break;

}
}
...

}

template<typename C, typename V>
size_t find(const C& c, const V& v) {

for (auto& [index, element] : enumerate(c)) {
if (element == v) {

return index;
}

}
return (size_t)-1;

}

Parametric Polymorphism

void bigAlgorithm(...) {
std::vector<int> c;
...
auto index = find(c, v);
++c[index];
...

}

● Suppose an algorithm needs to find an element in a collection &
increment it.

void bigAlgorithm(...) {
std::vector<int> c;
...
for (auto i = begin(c), e = end(c); i != e; ++i) {

if (*i == v) {
++*i;
break;

}
}
...

}

Parametric Polymorphism

template<typename C, typename V>
size_t find(const C& c, const V& v) {

for (auto& [index, element] : enumerate(c)) {
if (element == v) {

return index;
}

}
return (size_t)-1;

}

void bigAlgorithm(...) {
std::vector<int> c;
...
auto index = find(c, v);
++c[index];
...

}
void otherAlgorithm(...) {

std::vector<string> d = ...;
auto index = find(d, w);
...

}

Parametric Polymorphism

● Type variables can also be bounded / restricted
– Consider find(C,V), it should require that ElementType(C) = V
– Restricting to subtypes / supertypes is common

Java
class D <T extends A & B & C> { }
class F <? extends E> { }

Parametric Polymorphism

● Type variables can also be bounded / restricted
– Consider find(C,V), it should require that ElementType(C) = V
– Restricting to subtypes / supertypes is common

Java
class D <T extends A & B & C> { }
class F <? extends E> { }

public interface Map<K,V> {
 void putAll(Map<? extends K,? extends V> m)
}

Parametric Polymorphism

● Type variables can also be bounded / restricted
– Consider find(C,V), it should require that ElementType(C) = V
– Restricting to subtypes / supertypes is common

Java
class D <T extends A & B & C> { }
class F <? extends E> { }

C++
template <typename T, typename=std::enable_if_t<std::is_class_v<T>>>
void foo(const T& t) {
 std::cout << "T is a class type\n";
}

Such constraints can be
cleaner in C++20.

public interface Map<K,V> {
 void putAll(Map<? extends K,? extends V> m)
}

Parametric Polymorphism

● Type variables can also be bounded / restricted
– Consider find(C,V), it should require that ElementType(C) = V
– Restricting to subtypes / supertypes is common

Java
class D <T extends A & B & C> { }
class F <? extends E> { }

C++
template <typename T, typename=std::enable_if_t<std::is_class_v<T>>>
void foo(const T& t) {
 std::cout << "T is a class type\n";
} template <typename C>

C::iterator_type find(const C& c, C::element_type v) {
 ...
}

Some scenarios are bounded
by convention.

public interface Map<K,V> {
 void putAll(Map<? extends K,? extends V> m)
}

Parametric Polymorphism

● Specialized instances can sometimes be created
– Sometimes domain knowledge allows more efficient implementations

Parametric Polymorphism

● Specialized instances can sometimes be created

template <class PointedTo, class Value>
class PointerValuePair {
 PointedTo* p;
 Value v;
 PointedTo* getP();
 Value getV();
};

Parametric Polymorphism

● Specialized instances can sometimes be created

template <class PointedTo, class Value>
class PointerValuePair {
 PointedTo* p;
 Value v;
 PointedTo* getP();
 Value getV();
}; template <class PointedTo>

class PointerValuePair<PointedTo,int> {
 uintptr_t compact;
 PointedTo* getP() {
 return reinterpret_cast<PointedTo*>(compact & ~0xFFFFFFF8);
 }
 int getV() { return compact & 0x00000007; }
};

Parametric Polymorphism

● Specialized instances can sometimes be created

template <class PointedTo, class Value>
class PointerValuePair {
 PointedTo* p;
 Value v;
 PointedTo* getP();
 Value getV();
}; template <class PointedTo>

class PointerValuePair<PointedTo,int> {
 uintptr_t compact;
 PointedTo* getP() {
 return reinterpret_cast<PointedTo*>(compact & ~0xFFFFFFF8);
 }
 int getV() { return compact & 0x00000007; }
};

Note, this example is still
too simple to be safe.

Selecting forms of polymorphism

● Sometimes information needs to flow from a derived class to a base
class.

Selecting forms of polymorphism

● Sometimes information needs to flow from a derived class to a base
class.

template<class T>
class Base {
public:
 void print() { getDerived().printImpl(); }
private:
 T& getDerived() { return *static_cast<T*>(this); }
};

Selecting forms of polymorphism

● Sometimes information needs to flow from a derived class to a base
class.

template<class T>
class Base {
public:
 void print() { getDerived().printImpl(); }
private:
 T& getDerived() { return *static_cast<T*>(this); }
};

class Specific : public Base<Specific> {
public:
 void printImpl() { printf("Yo\n"); }
};

Selecting forms of polymorphism

● Sometimes information needs to flow from a derived class to a base
class.

template<class T>
class Base {
public:
 void print() { getDerived().printImpl(); }
private:
 T& getDerived() { return *static_cast<T*>(this); }
};

class Specific : public Base<Specific> {
public:
 void printImpl() { printf("Yo\n"); }
};

Selecting forms of polymorphism

● Sometimes information needs to flow from a derived class to a base
class.

template<class T>
class Base {
public:
 void print() { getDerived().printImpl(); }
private:
 T& getDerived() { return *static_cast<T*>(this); }
};

class Specific : public Base<Specific> {
public:
 void printImpl() { printf("Yo\n"); }
};

Selecting forms of polymorphism

● Sometimes information needs to flow from a derived class to a base
class.

template<class T>
class Base {
public:
 void print() { getDerived().printImpl(); }
private:
 T& getDerived() { return *static_cast<T*>(this); }
};

class Specific : public Base<Specific> {
public:
 void printImpl() { printf("Yo\n"); }
}; What other approaches could we have used?

What are the trade offs?

Selecting forms of polymorphism

● Sometimes information needs to flow from a derived class to a base
class.

template<class T>
class Base {
public:
 void print() { getDerived().printImpl(); }
private:
 T& getDerived() { return *static_cast<T*>(this); }
};

class Specific : public Base<Specific> {
public:
 void printImpl() { printf("Yo\n"); }
}; What other approaches could we have used?

What are the trade offs?

Flexibility vs Efficiency

Selecting forms of polymorphism

● Sometimes information needs to flow from a derived class to a base
class.

Have those of you familiar
with Java seen this before?

Selecting forms of polymorphism

● Sometimes information needs to flow from a derived class to a base
class.

Have those of you familiar
with Java seen this before?

public class LocalTime
 implements Comparable<LocalTime> {
 ...
}

Selecting forms of polymorphism

● Sometimes information needs to flow from a derived class to a base
class.

Have those of you familiar
with Java seen this before?

public class LocalTime
 implements Comparable<LocalTime> {
 ...
} public interface Comparable<T> {

 int compareTo(T o);
}

Selecting forms of polymorphism

● Sometimes information needs to flow from a derived class to a base
class.

Have those of you familiar
with Java seen this before?

public class LocalTime
 implements Comparable<LocalTime> {
 ...
} public interface Comparable<T> {

 int compareTo(T o);
}

This Curiosly Recurring Template Pattern (CRTP)
Can help in building more robust APIs.

Selecting forms of polymorphism

● There are richer interactions between polymorphisms that enable
clean & simple API design.

Selecting forms of polymorphism

● There are richer interactions between polymorphisms that enable
clean & simple API design.
– These issues are not the focus of this class
– They are discussed more in CMPT 373
– Feel free to ask questions about them on our discussion fora

Ad-hoc Polymorphism

Ad-hoc Polymorphism

● Ad-hoc polymorphism can occur on a case by case basis
– Overloading
– Type conversions / coercion
– Type traits & type classes for flexible & structured overloading

Coercion

● Defining allowed conversions can lead to safe & intuitive APIs
● Example:

Suppose we want APIs that can operate on contiguous collections.

Coercion

● Defining allowed conversions can lead to safe & intuitive APIs
● Example:

Suppose we want APIs that can operate on contiguous collections.
template<class E, auto N>
void foo(const E(&c)[N]);

Coercion

● Defining allowed conversions can lead to safe & intuitive APIs
● Example:

Suppose we want APIs that can operate on contiguous collections.
template<class E, auto N>
void foo(const E(&c)[N]);

template<class E, auto N>
void foo(const std::array<E,N>& c);

Coercion

● Defining allowed conversions can lead to safe & intuitive APIs
● Example:

Suppose we want APIs that can operate on contiguous collections.
template<class E, auto N>
void foo(const E(&c)[N]);

template<class E, auto N>
void foo(const std::array<E,N>& c);

template<class E>
void foo(const std::vector<E>& c);

Coercion

● Defining allowed conversions can lead to safe & intuitive APIs
● Example:

Suppose we want APIs that can operate on contiguous collections.
template<class E, auto N>
void foo(const E(&c)[N]);

template<class E, auto N>
void foo(const std::array<E,N>& c);

template<class E>
void foo(const std::vector<E>& c);

void foo(const std::string& c);

Coercion

● Defining allowed conversions can lead to safe & intuitive APIs
● Example:

Suppose we want APIs that can operate on contiguous collections.
template<class E, auto N>
void foo(const E(&c)[N]);

template<class E, auto N>
void foo(const std::array<E,N>& c);

template<class E>
void foo(const std::vector<E>& c);

void foo(const std::string& c);

template<class E, auto N>
void bar(const E(&c)[N]);

template<class E, auto N>
void bar(const std::array<E,N>& c);

template<class E>
void bar(const std::vector<E>& c);

void bar(const std::string& c);

Coercion

● Defining allowed conversions can lead to safe & intuitive APIs
● Example:

Suppose we want APIs that can operate on contiguous collections.
template<class E, auto N>
void foo(const E(&c)[N]);

template<class E, auto N>
void foo(const std::array<E,N>& c);

template<class E>
void foo(const std::vector<E>& c);

void foo(const std::string& c);

template<class E, auto N>
void bar(const E(&c)[N]);

template<class E, auto N>
void bar(const std::array<E,N>& c);

template<class E>
void bar(const std::vector<E>& c);

void bar(const std::string& c);
Yuck.

Coercion

● Perhaps we can construct a new type that is conversion compatible
with all desired types...

We can start by thinking what is common.

Coercion

● Perhaps we can construct a new type that is conversion compatible
with all desired types...

template<class E>
struct Span {

E* first;
size_t count;

};

Coercion

● Perhaps we can construct a new type that is conversion compatible
with all desired types...

template<class E>
struct Span {

template<class E, auto N>
Span(const std::array<E,N>& c);

E* first;
size_t count;

};

In C++, a non explicit 1 arg constructor
defines a compatible conversion

Coercion

● Perhaps we can construct a new type that is conversion compatible
with all desired types...

template<class E>
struct Span {

template<class E, auto N>
Span(const std::array<E,N>& c);

template<class E>
Span(const std::vector<E>& c);

E* first;
size_t count;

};

template<class E>
struct Span {

template<class E, auto N>
Span(const std::array<E,N>& c);

template<class E>
Span(const std::vector<E>& c);

E* first;
size_t count;

};

Coercion

● Perhaps we can construct a new type that is conversion compatible
with all desired types... void foo(Span<E> c);

void bar(Span<E> c);

...

std::vector v = {1, 2, 3, 4, 5};
foo(v);

int v[] = {1, 2, 3, 4, 5};
bar(v);

foo(“This works for free”);

This enables convenient & efficient generic APIs.

template<class E>
struct Span {

template<class E, auto N>
Span(const std::array<E,N>& c);

template<class E>
Span(const std::vector<E>& c);

E* first;
size_t count;

};

void foo(Span<E> c);
void bar(Span<E> c);

...

std::vector v = {1, 2, 3, 4, 5};
foo(v);

int v[] = {1, 2, 3, 4, 5};
bar(v);

foo(“This works for free”);

Coercion

This enables convenient & efficient generic APIs.

● Perhaps we can construct a new type that is conversion compatible
with all desired types...

std::array<E,N>

std::vector<E>

E[N]

foo()

bar()

template<class E>
struct Span {

template<class E, auto N>
Span(const std::array<E,N>& c);

template<class E>
Span(const std::vector<E>& c);

E* first;
size_t count;

};

void foo(Span<E> c);
void bar(Span<E> c);

...

std::vector v = {1, 2, 3, 4, 5};
foo(v);

int v[] = {1, 2, 3, 4, 5};
bar(v);

foo(“This works for free”);

Coercion

This enables convenient & efficient generic APIs.

● Perhaps we can construct a new type that is conversion compatible
with all desired types...

std::array<E,N>

std::vector<E>

E[N]

Span<E> foo()

bar()

template<class E>
struct Span {

template<class E, auto N>
Span(const std::array<E,N>& c);

template<class E>
Span(const std::vector<E>& c);

E* first;
size_t count;

};

void foo(Span<E> c);
void bar(Span<E> c);

...

std::vector v = {1, 2, 3, 4, 5};
foo(v);

int v[] = {1, 2, 3, 4, 5};
bar(v);

foo(“This works for free”);

Coercion

● Perhaps we can construct a new type that is conversion compatible
with all desired types...

std::array<E,N>

std::vector<E>

E[N]

Span<E> foo()

bar()

We can even add additional safety features
(e.g. bounds checks) at this choke point!

https://www.youtube.com/watch?v=nPRY8-FtzZg

Type Traits

● Careful use of specialization can structure overloading & extend
behaviors

Type Traits

● Careful use of specialization can structure overloading & extend
behaviors

● Suppose we want to implement graph algorithms to traverse arbitrary
data structures.

Type Traits

● Careful use of specialization can structure overloading & extend
behaviors

● Suppose we want to implement graph algorithms to traverse arbitrary
data structures.
– What constraints exist?

Type Traits

● Careful use of specialization can structure overloading & extend
behaviors

● Suppose we want to implement graph algorithms to traverse arbitrary
data structures.
– What constraints exist?
– How might we design a nice API?

● Via inheritance?
● Via parametric polymorphism?

Type Traits

● Careful use of specialization can structure overloading & extend
behaviors

● Suppose we want to implement graph algorithms to traverse arbitrary
data structures.
– What constraints exist?
– How might we design a nice API?

● Via inheritance?
● Via parametric polymorphism?

● Type traits and specialization can convey details about a type that
enable generic algorithms
– Specializations carry the extra details for an overload

Type Traits

template<typename GraphKind>
struct GraphTraits {
 using Error = typename GraphKind::ABCD;
};

Type Traits

template<typename GraphKind>
struct GraphTraits {
 using Error = typename GraphKind::ABCD;
};

template<>
struct GraphTraits<SocialGraph> {

};

Type Traits

template<typename GraphKind>
struct GraphTraits {
 using Error = typename GraphKind::ABCD;
};

template<>
struct GraphTraits<SocialGraph> {
 using NodeRef = ...;
 using ChildIterator = ...;
 static NodeRef get_entry(SocialGraph&) {...}
 static ChildIterator child_begin(NodeRef&) {...}
 static ChildIterator child_end(NodeRef&) {...}
};

Type Traits

template<typename GraphKind>
struct GraphTraits {
 using Error = typename GraphKind::ABCD;
};

template<>
struct GraphTraits<SocialGraph> {
 using NodeRef = ...;
 using ChildIterator = ...;
 static NodeRef get_entry(SocialGraph&) {...}
 static ChildIterator child_begin(NodeRef&) {...}
 static ChildIterator child_end(NodeRef&) {...}
};

Type Traits

template<typename GraphKind>
struct GraphTraits {
 using Error = typename GraphKind::ABCD;
};

template<>
struct GraphTraits<SocialGraph> {
 using NodeRef = ...;
 using ChildIterator = ...;
 static NodeRef get_entry(SocialGraph&) {...}
 static ChildIterator child_begin(NodeRef&) {...}
 static ChildIterator child_end(NodeRef&) {...}
};

template<class Kind, class GT=GraphTraits<Kind>>
void visualizeGraph(Kind& graph);

Type Traits

template<typename GraphKind>
struct GraphTraits {
 using Error = typename GraphKind::ABCD;
};

template<>
struct GraphTraits<SocialGraph> {
 using NodeRef = ...;
 using ChildIterator = ...;
 static NodeRef get_entry(SocialGraph&) {...}
 static ChildIterator child_begin(NodeRef&) {...}
 static ChildIterator child_end(NodeRef&) {...}
};

template<class Kind, class GT=GraphTraits<Kind>>
void visualizeGraph(Kind& graph);

Type Traits

template<typename GraphKind>
struct GraphTraits {
 using Error = typename GraphKind::ABCD;
};

template<>
struct GraphTraits<SocialGraph> {
 using NodeRef = ...;
 using ChildIterator = ...;
 static NodeRef get_entry(SocialGraph&) {...}
 static ChildIterator child_begin(NodeRef&) {...}
 static ChildIterator child_end(NodeRef&) {...}
};

template<class Kind, class GT=GraphTraits<Kind>>
void visualizeGraph(Kind& graph);

SocialGraph g;
...
visualizeGraph(g);

template<typename GraphKind>
struct GraphTraits {
 using Error = typename GraphKind::ABCD;
};

template<>
struct GraphTraits<SocialGraph> {
 using NodeRef = ...;
 using ChildIterator = ...;
 static NodeRef get_entry(SocialGraph&) {...}
 static ChildIterator child_begin(NodeRef&) {...}
 static ChildIterator child_end(NodeRef&) {...}
};

Type Traits

template<class Kind, class GT=GraphTraits<Kind>>
void visualizeGraph(Kind& graph);

Regardless of the actual graph data structure,
or even its API,

traits allow generic algorithms to work!

SocialGraph g;
...
visualizeGraph(g);

Type Traits

● They are even common in the C++ standard library

Type Traits

● They are even common in the C++ standard library
<functional>
namespace std {
 template< class Key >
 struct hash;
}

Type Traits

● They are even common in the C++ standard library
<functional>
namespace std {
 template< class Key >
 struct hash;
}

<unordered_set>
template<
 class Key,
 class Hash = std::hash<Key>,
 class KeyEqual = std::equal_to<Key>,
 class Allocator = std::allocator<Key>
> class unordered_set;

Type Traits

● They are even common in the C++ standard library
<functional>
namespace std {
 template< class Key >
 struct hash;
}

This doesn’t implement hashing for custom types.
What if I want to add a Cat to an unordered_set?

<unordered_set>
template<
 class Key,
 class Hash = std::hash<Key>,
 class KeyEqual = std::equal_to<Key>,
 class Allocator = std::allocator<Key>
> class unordered_set;

Type Traits

● They are even common in the C++ standard library
<functional>
namespace std {
 template< class Key >
 struct hash;
}

<unordered_set>
template<
 class Key,
 class Hash = std::hash<Key>,
 class KeyEqual = std::equal_to<Key>,
 class Allocator = std::allocator<Key>
> class unordered_set;<Cats.h>

namespace std {
 template<>
 struct hash<Cat> {
 std::size_t
 operator()(Cat const& s) const noexcept {
 return ...;
 }
 };
}

Type Traits

● They are even common in the C++ standard library
<functional>
namespace std {
 template< class Key >
 struct hash;
}

<unordered_set>
template<
 class Key,
 class Hash = std::hash<Key>,
 class KeyEqual = std::equal_to<Key>,
 class Allocator = std::allocator<Key>
> class unordered_set;<Cats.h>

namespace std {
 template<>
 struct hash<Cat> {
 std::size_t
 operator()(Cat const& s) const noexcept {
 return ...;
 }
 };
}

std::unordered_set<Cat> bigBagOfCats;

Composition

Composition

● The Principle of Compositionality (roughly)
– The meaning of a complex entity is determined by the meanings of its

constituents and the rules used to combine them.

Composition

● The Principle of Compositionality (roughly)
– The meaning of a complex entity is determined by the meanings of its

constituents and the rules used to combine them.

– The meaning of a component should be clear from the meanings of its
constituents and how they are used.

Or in software

Composition

● The Principle of Compositionality (roughly)
– The meaning of a complex entity is determined by the meanings of its

constituents and the rules used to combine them.

– The meaning of a component should be clear from the meanings of its
constituents and how they are used.

● But how can we achieve this? We’ll look at a few approaches
– Region / scope bounded behavior
– Ownership
– Algebraic data types

Or in software

Region based behaviors

● Consider functions as a unit of abstraction
– Possible incoming data
– Behavior
– Possible outgoing data

Region based behaviors

● Consider functions as a unit of abstraction
– Possible incoming data
– Behavior
– Possible outgoing data

foo()

Region based behaviors

● Consider functions as a unit of abstraction
– Possible incoming data
– Behavior
– Possible outgoing data

foo()

Region based behaviors

● Consider functions as a unit of abstraction
– Possible incoming data
– Behavior
– Possible outgoing data

● Good abstractions tend to be self contained, but bad ones will leak
obligations on their users

foo()

Region based behaviors

● Consider functions as a unit of abstraction
– Possible incoming data
– Behavior
– Possible outgoing data

● Good abstractions tend to be self contained, but bad ones will leak
obligations on their users

foo()

Mutex m;
lock(m);
...
unlock(m);

Region based behaviors

● Consider functions as a unit of abstraction
– Possible incoming data
– Behavior
– Possible outgoing data

● Good abstractions tend to be self contained, but bad ones will leak
obligations on their users

foo()

Mutex m;
lock(m);
...
unlock(m);

What if we don’t unlock the mutex?

Region based behaviors

● Modern languages enable denoting the region for an abstraction
– Helps to bound the impact and provide composable interfaces.
– Design the inconsistency and lack of hygiene out of a system

Region based behaviors

● Modern languages enable denoting the region for an abstraction
– Helps to bound the impact and provide composable interfaces.
– Design the inconsistency and lack of hygiene out of a system

● Examples
– Java: synchronized blocks/methods, try-with-resources
synchronized (this){
 ...
}

try (BufferedReader br =
 new BufferedReader(new FileReader(path))) {
 return br.readLine();
}

Region based behaviors

● Modern languages enable denoting the region for an abstraction
– Helps to bound the impact and provide composable interfaces.
– Design the inconsistency and lack of hygiene out of a system

● Examples
– Java: synchronized blocks/methods, try-with-resources
– Python: with with open(path) as infile:

 ...

Region based behaviors

● Modern languages enable denoting the region for an abstraction
– Helps to bound the impact and provide composable interfaces.
– Design the inconsistency and lack of hygiene out of a system

● Examples
– Java: synchronized blocks/methods, try-with-resources
– Python: with
– C#: using

using (var reader = new StreamReader(path)) {
 ...
}

Region based behaviors

● Modern languages enable denoting the region for an abstraction
– Helps to bound the impact and provide composable interfaces.
– Design the inconsistency and lack of hygiene out of a system

● Examples
– Java: synchronized blocks/methods, try-with-resources
– Python: with
– C#: using
– C++: RAII (Resource Acquisition Is Initialization)

Region based behaviors

● Modern languages enable denoting the region for an abstraction
– Helps to bound the impact and provide composable interfaces.
– Design the inconsistency and lack of hygiene out of a system

● Examples
– Java: synchronized blocks/methods, try-with-resources
– Python: with
– C#: using
– C++: RAII

void memoryResource() {
 auto w = std::make_unique<Widget>(3, "bofrot");
 foo(*w);
}

Region based behaviors

● Modern languages enable denoting the region for an abstraction
– Helps to bound the impact and provide composable interfaces.
– Design the inconsistency and lack of hygiene out of a system

● Examples
– Java: synchronized blocks/methods, try-with-resources
– Python: with
– C#: using
– C++: RAII

void memoryResource() {
 auto w = std::make_unique<Widget>(3, "bofrot");
 foo(*w);
}

void memoryResource() {
 Widget w(3, "bofrot");
 foo(w);
}

Or better...

Region based behaviors

● Modern languages enable denoting the region for an abstraction
– Helps to bound the impact and provide composable interfaces.
– Design the inconsistency and lack of hygiene out of a system

● Examples
– Java: synchronized blocks/methods, try-with-resources
– Python: with
– C#: using
– C++: RAII

void memoryResource() {
 auto w = std::make_unique<Widget>(3, "bofrot");
 foo(*w);
}

void fileResource() {
 std::ofstream out{"output.txt"};
 out << "Boston cream\n";
}

Region based behaviors

● Modern languages enable denoting the region for an abstraction
– Helps to bound the impact and provide composable interfaces.
– Design the inconsistency and lack of hygiene out of a system

● Examples
– Java: synchronized blocks/methods, try-with-resources
– Python: with
– C#: using
– C++: RAII

void memoryResource() {
 auto w = std::make_unique<Widget>(3, "bofrot");
 foo(*w);
}

void fileResource() {
 std::ofstream out{"output.txt"};
 out << "Boston cream\n";
}

std::mutex m;
void synchronization() {
 std::lock_guard<std::mutex> guard(g_pages_mutex);
 out << "Thread safe fritter\n";
}

Region based behaviors

● Modern languages enable denoting the region for an abstraction
– Helps to bound the impact and provide composable interfaces.
– Design the inconsistency and lack of hygiene out of a system

● Examples
– Java: synchronized blocks/methods, try-with-resources
– Python: with
– C#: using
– C++: RAII
– Rust: lifetimes, borrowing, RAII, ...

Ownership

● Sometimes lexical bounds are not known
– Ownership designates whose responsibility it is to manage a resource

makes explicit & obvious

Ownership

● Sometimes lexical bounds are not known
– Ownership designates whose responsibility it is to manage a resource
– Applies when a resource has uncertain lifetimes

Ownership

● Sometimes lexical bounds are not known
– Ownership designates whose responsibility it is to manage a resource
– Applies when a resource has uncertain lifetimes
– Combines region abstractions to clean up automatically

Ownership

● Sometimes lexical bounds are not known
– Ownership designates whose responsibility it is to manage a resource
– Applies when a resource has uncertain lifetimes
– Combines region abstractions to clean up automatically

std::unique_ptr<Widget>
memoryResource() {
 auto w = std::make_unique<Widget>(3, "bofrot");
 ...
 return w;
}

Whose responsibility is it to clean w?
When does it happen?

Ownership

● Sometimes lexical bounds are not known
– Ownership designates whose responsibility it is to manage a resource
– Applies when a resource has uncertain lifetimes
– Combines region abstractions to clean up automatically

void foo(unique_ptr<Widget> w);

What do these signatures connote?

void foo(unique_ptr<Widget>& w);

void foo(Widget& w);

Algebraic Data Types

● Carefully combining types can design more inconsistent & erroneous
states out of a system

Algebraic Data Types

● Carefully combining types can design more inconsistent & erroneous
states out of a system

struct Cat {
 enum Activity {RUNNING, SLEEPING};
 Activity activity;
 uint64_t runningSpeed;
}; What problems does this design enable?

Algebraic Data Types

● Carefully combining types can design more inconsistent & erroneous
states out of a system

type Bool = True | False

Algebraic Data Types

● Carefully combining types can design more inconsistent & erroneous
states out of a system

type Bool = True | False

type Activity = Running(int speed) | Sleeping

Algebraic Data Types

● Carefully combining types can design more inconsistent & erroneous
states out of a system

type Bool = True | False

type Activity = Running(int speed) | Sleeping

Note: it is impossible to ask for the
running speed of something sleeping!

Algebraic Data Types

● Carefully combining types can design more inconsistent & erroneous
states out of a system

● Algebraic Data Types enable the composable construction of types
through combining types

Algebraic Data Types

● Carefully combining types can design more inconsistent & erroneous
states out of a system

● Algebraic Data Types enable the composable construction of types
through combining types
– Sum types express disjoint alternatives

type Activity = Running(int speed) | Sleeping

Algebraic Data Types

● Carefully combining types can design more inconsistent & erroneous
states out of a system

● Algebraic Data Types enable the composable construction of types
through combining types
– Sum types express disjoint alternatives

type Activity = Running(int speed) | Sleeping

How would you express this is C?
In C++?

Algebraic Data Types

● Carefully combining types can design more inconsistent & erroneous
states out of a system

● Algebraic Data Types enable the composable construction of types
through combining types
– Sum types express disjoint alternatives

type Activity = Running(int speed) | Sleeping

Algebraic Data Types

● Carefully combining types can design more inconsistent & erroneous
states out of a system

● Algebraic Data Types enable the composable construction of types
through combining types
– Sum types express disjoint alternatives
– Product types express combinations

struct MapEntry { Key key; Value value; };

Algebraic Data Types

● Carefully combining types can design more inconsistent & erroneous
states out of a system

● Algebraic Data Types enable the composable construction of types
through combining types
– Sum types express disjoint alternatives
– Product types express combinations

● Note, the preferred way of extracting from an ADT is through pattern
matching

Algebraic Data Types

● Carefully combining types can design more inconsistent & erroneous
states out of a system

● Algebraic Data Types enable the composable construction of types
through combining types
– Sum types express disjoint alternatives
– Product types express combinations

● Note, the preferred way of extracting from an ADT is through pattern
matching

enum Message {
 Quit,
 Move { x: i32, y: i32 },
 Write(String)
}
let msg = Message::Quit;
match msg {
 Message::Quit => {
 println!("The Quit variant has no data to destructure.")
 },
 Message::Move { x, y } => {
 println!("Move {} and {}", x, y);
 },
 Message::Write(text) => println!("Text message: {}", text),
}

[From the Rust Book]

Algebraic Data Types

● Carefully combining types can design more inconsistent & erroneous
states out of a system

● Algebraic Data Types enable the composable construction of types
through combining types
– Sum types express disjoint alternatives
– Product types express combinations

● Note, the preferred way of extracting from an ADT is through pattern
matching

enum Message {
 Quit,
 Move { x: i32, y: i32 },
 Write(String)
}
let msg = Message::Quit;
match msg {
 Message::Quit => {
 println!("The Quit variant has no data to destructure.")
 },
 Message::Move { x, y } => {
 println!("Move {} and {}", x, y);
 },
 Message::Write(text) => println!("Text message: {}", text),
}

[From the Rust Book]

Algebraic Data Types

● Carefully combining types can design more inconsistent & erroneous
states out of a system

● Algebraic Data Types enable the composable construction of types
through combining types
– Sum types express disjoint alternatives
– Product types express combinations

● Note, the preferred way of extracting from an ADT is through pattern
matching

enum Message {
 Quit,
 Move { x: i32, y: i32 },
 Write(String)
}
let msg = Message::Quit;
match msg {
 Message::Quit => {
 println!("The Quit variant has no data to destructure.")
 },
 Message::Move { x, y } => {
 println!("Move {} and {}", x, y);
 },
 Message::Write(text) => println!("Text message: {}", text),
}

[From the Rust Book]

Designing Design Patterns

What are design patterns?

● Design patterns are reusable solutions and metaphors for addressing
problems

What are design patterns?

● Design patterns are reusable solutions and metaphors for addressing
problems

● They provide
– Common Language

● discuss complex solutions more easily by name.

What are design patterns?

● Design patterns are reusable solutions and metaphors for addressing
problems

● They provide
– Common Language

● discuss complex solutions more easily by name.
– Archetypes

What are design patterns?

● Design patterns are reusable solutions and metaphors for addressing
problems

● They provide
– Common Language

● discuss complex solutions more easily by name.
– Archetypes

What are design patterns?

● Design patterns are reusable solutions and metaphors for addressing
problems

● They provide
– Common Language

● discuss complex solutions more easily by name.
– Archetypes

● Their trade-offs are well understood
● New solutions can be modelled after them effectively

What are design patterns?

● Design patterns are reusable solutions and metaphors for addressing
problems

● They provide
– Common Language

● discuss complex solutions more easily by name.
– Archetypes

● Their trade-offs are well understood
● New solutions can be modelled after them effectively

Note:
– As in literature, you do not copy the archetype directly.

What are design patterns?

● Design patterns are reusable solutions and metaphors for addressing
problems

● They provide
– Common Language

● discuss complex solutions more easily by name.
– Archetypes

● Their trade-offs are well understood
● New solutions can be modelled after them effectively

Note:
– As in literature, you do not copy the archetype directly.
– Adapt it to your specific needs & trade offs.

What are design patterns?

● Design patterns are reusable solutions and metaphors for addressing
problems

● They provide
– Common Language

● discuss complex solutions more easily by name.
– Archetypes

● Their trade-offs are well understood
● New solutions can be modelled after them effectively

Note:
– As in literature, you do not copy the archetype directly.
– Adapt it to your specific needs & trade offs.
– Why a pattern exists is more important than just knowing that pattern

What are design patterns?

● Design patterns are reusable solutions and metaphors for addressing
problems

● They provide
– Common Language

● discuss complex solutions more easily by name.
– Archetypes

● Their trade-offs are well understood
● New solutions can be modelled after them effectively

Note:
– As in literature, you do not copy the archetype directly.
– Adapt it to your specific needs & trade offs.
– Why a pattern exists is more important than just knowing that pattern!

What are design patterns?

● Design patterns are reusable solutions and metaphors for addressing
problems

● They provide
– Common Language

● discuss complex solutions more easily by name.
– Archetypes

● Their trade-offs are well understood
● New solutions can be modelled after them effectively

Note:
– As in literature, you do not copy the archetype directly.
– Adapt it to your specific needs & trade offs.
– Why a pattern exists is more important than just knowing that pattern!

Blind use of patterns is
another reason why people dislike OOP.

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call
sites?

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call
sites?

What are the forms of
coupling that arise?

auto result = foo(x, y, z);
...
...

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call
sites?

What are the forms of
coupling that arise?

auto result = foo(x, y, z);
...
...

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call
sites?
– Sometimes you must execute an action without any knowledge of what

that action is.

auto result = foo(x, y, z);
...
...

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call
sites?
– Sometimes you must execute an action without any knowledge of what

that action is.

Create some work.

Do the created work.

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call
sites?
– Sometimes you must execute an action without any knowledge of what

that action is.

– What interface captures this?

Create some work.

Do the created work.

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call
sites?
– Sometimes you must execute an action without any knowledge of what

that action is.

auto result = foo(x, y, z);
...
...

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call
sites?
– Sometimes you must execute an action without any knowledge of what

that action is.

auto result = worker.doWork();

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call
sites?
– Sometimes you must execute an action without any knowledge of what

that action is. class Work {
 // Information about work
 // ...
 Result doWork() {...}
};auto result = worker.doWork();

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call
sites?
– Sometimes you must execute an action without any knowledge of what

that action is. class Work {
 // Information about work
 // ...
 Result doWork() {...}
};auto result = worker.doWork();

class OtherKindOfWork {
 Result doWork() {...}
};

Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call
sites?
– Sometimes you must execute an action without any knowledge of what

that action is.

class WorkKind1 : public Work {
 Result doWork() override{...}
};

auto result = worker.doWork();

class WorkKind2 : public Work {
 Result doWork() override{...}
};class Work {

 virtual Result doWork() = 0;
};

e.g. Behavioral Pattern: Command

class Command {
public:
 virtual void execute() = 0;
};

e.g. Behavioral Pattern: Command

● This is the command pattern

class Command {
public:
 virtual void execute() = 0;
};

e.g. Behavioral Pattern: Command

● This is the command pattern
● It is nothing more than an object oriented callback

class Command {
public:
 virtual void execute() = 0;
};

e.g. Behavioral Pattern: Command

● This is the command pattern
● It is nothing more than an object oriented callback

class Command {
public:
 virtual void execute() = 0;
};

Why not just use a lambda?

The Command Pattern

● Benefits
– Decouples a request / behavior from the invoker

The Command Pattern

● Benefits
– Decouples a request / behavior from the invoker
– Invoker decides when to invoke without caring what

The Command Pattern

● Benefits
– Decouples a request / behavior from the invoker
– Invoker decides when to invoke without caring what
– Parameterizable via constructor

The Command Pattern

● Benefits
– Decouples a request / behavior from the invoker
– Invoker decides when to invoke without caring what
– Parameterizable via constructor

auto result = foo(x, y, z);
...
...

The Command Pattern

● Benefits
– Decouples a request / behavior from the invoker
– Invoker decides when to invoke without caring what
– Parameterizable via constructor

auto result = foo(x, y, z);
...
...

auto command = FooCommand(x, y, z);
...
...

command.execute();

The Command Pattern

● Benefits
– Decouples a request / behavior from the invoker
– Invoker decides when to invoke without caring what
– Parameterizable via constructor
– Sequences of commands can be easily batched

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently

Manager Underling

Employee

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently

Manager manager;
manager.updatePay();

Underling underling;
underling.updatePay();

Manager Underling

Employee

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently
● Sometimes you want to add a new kind of action to a set of related

classes

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently
● Sometimes you want to add a new kind of action to a set of related

classes

Manager manager;
manager.serialize();

Underling underling;
underling.serialize();

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently
● Sometimes you want to add a new kind of action to a set of related

classes
● There may be many different types of actions to add

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently
● Sometimes you want to add a new kind of action to a set of related

classes
● There may be many different types of actions to add

Operations for Employees
updatePay

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently
● Sometimes you want to add a new kind of action to a set of related

classes
● There may be many different types of actions to add

updatePay
serialize

Operations for Employees

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently
● Sometimes you want to add a new kind of action to a set of related

classes
● There may be many different types of actions to add

updatePay
serialize
printPerformanceReview

Operations for Employees

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently
● Sometimes you want to add a new kind of action to a set of related

classes
● There may be many different types of actions to add

Operations for Employees
updatePay
serialize
printPerformanceReview
...

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently
● Sometimes you want to add a new kind of action to a set of related

classes
● There may be many different types of actions to add
● Sometimes, you can't even know all of the actions in advance!

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently
● Sometimes you want to add a new kind of action to a set of related

classes
● There may be many different types of actions to add
● Sometimes, you can't even know all of the actions in advance!

Why are these problems?

Problem: Add new behaviors to a set of types

● Let us take a look at our Employee base class...
class Employee {
public:
 ...
 virtual void updatePay() = 0;
 virtual void performJob() = 0;
 virtual void serialize() = 0;
 virtual void displayAvatar() = 0;
 virtual void printPerformanceReview() = 0;
 virtual void findFavoriteOfficeMate() = 0;
 virtual void procrastinate() = 0;
};

Problem: Add new behaviors to a set of types

● Let us take a look at our Employee base class...
class Employee {
public:
 ...
 virtual void updatePay() = 0;
 virtual void performJob() = 0;
 virtual void serialize() = 0;
 virtual void displayAvatar() = 0;
 virtual void printPerformanceReview() = 0;
 virtual void findFavoriteOfficeMate() = 0;
 virtual void procrastinate() = 0;
};

Why does this feel so wrong?

Problem: Add new behaviors to a set of types

● Let us take a look at our Employee base class...
class Employee {
public:
 ...
 virtual void updatePay() = 0;
 virtual void performJob() = 0;
 virtual void serialize() = 0;
 virtual void displayAvatar() = 0;
 virtual void printPerformanceReview() = 0;
 virtual void findFavoriteOfficeMate() = 0;
 virtual void procrastinate() = 0;
};

Why does this feel so wrong?

Solutions

● We need to find a better way

Solutions

● We need to find a better way

Employee* employee =

auto result = employee->foo(x, y, z);
...
...

...

Solutions

● We need to find a better way

Employee* employee =

auto result = employee->foo(x, y, z);

Solutions

● We need to find a better way

We want to be able to add new behaviors,
so we should not need to know them

Employee* employee =

auto result = employee->foo(x, y, z);

Solutions

● We need to find a better way

We also want possibly different behavior
for different subtypes.

Employee* employee =

auto result = employee->foo(x, y, z);

Solutions

● We need to find a better way

– What are the tools at our disposal?

Solutions

● We need to find a better way

– What are the tools at our disposal?
● Classes
● Polymorphism

Solutions

● We need to find a better way

– What are the tools at our disposal?
● Classes
● Polymorphism

– How can we use them to attack the problem?

Solutions

● We need to find a better way

– What are the tools at our disposal?
● Classes
● Polymorphism

– How can we use them to attack the problem?
● Group related behaviors into classes
● Invoke them when desired

Grouping Related Behavior

● How should we group related behaviors?

What does SRP dictate?

Grouping Related Behavior

● How should we group related behaviors?
– Each offending method becomes a new class

Grouping Related Behavior

● How should we group related behaviors?
– Each offending method becomes a new class

class EmployeeSerializer {
public:
 void serialize(Manager &manager);
 void serialize(Underling &underling);
};

class PerformanceReviewPrinter {
public:
 void printReview(Manager &manager);
 void printReview(Underling &underling);
};

How Do We Invoke It?

How Do We Invoke It?

EmployeeSerializer serializer;
std::vector<Employee*> employees;

for (auto *employee : employees) {
 serializer.serialize(*employee);
}

EmployeeSerializer serializer;
std::vector<Employee*> employees;

for (auto *employee : employees) {
 serializer.serialize(*employee);
}

How Do We Invoke It?

?
Will this work? Why?

EmployeeSerializer serializer;
std::vector<Employee*> employees;

for (auto *employee : employees) {
 serializer.serialize(*employee);
}

How Do We Invoke It?

No!

EmployeeSerializer serializer;
std::vector<Employee*> employees;

for (auto *employee : employees) {
 serializer.serialize(*employee);
}

How Do We Invoke It?

No!
What is the core problem?

EmployeeSerializer serializer;
std::vector<Employee*> employees;

for (auto *employee : employees) {
 serializer.serialize(*employee);
}

How Do We Invoke It?

No!
What is the core problem?

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types

serializer.serialize(*employee);

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types

serializer.serialize(*employee);

EmployeeSerializer

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types

serializer.serialize(*employee);

EmployeeSerializer Manager/Underling

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types
– Multiple Dispatch (or double dispatch in this case)

serializer.serialize(*employee);

EmployeeSerializer Manager/Underling

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types
– Multiple Dispatch (or double dispatch in this case)

serializer.serialize(*employee);

EmployeeSerializer Manager/Underling
But we only know that employee is an Employee*

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types
– Multiple Dispatch (or double dispatch in this case)

serializer.serialize(*employee);

EmployeeSerializer Manager/Underling

for (auto* employee : employees) {
 serializer.serialize(*employee);
}

But we only know that employee is an Employee*

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types
– Multiple Dispatch (or double dispatch in this case)

serializer.serialize(*employee);

EmployeeSerializer Manager/Underling

How can we resolve the issue?

But we only know that employee is an Employee*

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types
– Multiple Dispatch (or double dispatch in this case)

● Solution:
– The Visitor Pattern

serializer.serialize(*employee);

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types
– Multiple Dispatch (or double dispatch in this case)

● Solution:
– The Visitor Pattern
– Goal:

serializer.serialize(*employee);

base->xxxxx(xxxxx);

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types
– Multiple Dispatch (or double dispatch in this case)

● Solution:
– The Visitor Pattern
– Goal:

serializer.serialize(*employee);

base->xxxxx(xxxxx);

Invoke the correct behavior regardless of the dynamic type!

The Visitor Pattern

class EmployeeSerializer : public Visitor {
public:
 void visit(Manager &manager) override;
 void visit(Underling &underling) override;
};

Abstract away the added behaviors:

The Visitor Pattern

class EmployeeSerializer : public Visitor {
public:
 void visit(Manager &manager) override;
 void visit(Underling &underling) override;
};

Abstract away the added behaviors:

Giving behaviors a common API
allows us to use all behaviors in the same way

The Visitor Pattern

class Employee {
public:
 virtual void accept(Visitor &v) = 0;
}
class Manager : public Employee {
 ...
 void accept(Visitor &v) override {
 v.visit(*this);
 }
};

Change the original classes:

class Employee {
public:
 virtual void accept(Visitor &v) = 0;
}
class Manager : public Employee {
 ...
 void accept(Visitor &v) override {
 v.visit(*this);
 }
};

The Visitor Pattern

Change the original classes:

The dynamic type of Employee is known!
Calls visit(Manager &manager) here.

The Visitor Pattern

Use the new behaviors through their classes:

EmployeeSerializer serializer;
PerformanceReviewPrinter reviewer;
std::vector<Employee*> employees;

for (auto* employee : employees) {
 employee->accept(serializer);
 employee->accept(reviewer);
}

The Visitor Pattern

Use the new behaviors through their classes:

EmployeeSerializer serializer;
PerformanceReviewPrinter reviewer;
std::vector<Employee*> employees;

for (auto* employee : employees) {
 employee->accept(serializer);
 employee->accept(reviewer);
} What if we want a return value?

The Visitor Pattern

Use the new behaviors through their classes:

std::vector<Visitor*> actions;
std::vector<Employee*> employees;
...
for (auto* employee : employees) {
 for (auto* action : actions) {
 employee->accept(*action);
 }
}

The Visitor Pattern

● A behavioral pattern

The Visitor Pattern

● A behavioral pattern
● Useful for adding new behaviors to a collection of related classes

The Visitor Pattern

● A behavioral pattern
● Useful for adding new behaviors to a collection of related classes

– It also keeps those behaviors isolated!

The Visitor Pattern

● A behavioral pattern
● Useful for adding new behaviors to a collection of related classes

– It also keeps those behaviors isolated!
– Useful for designing APIs open to extension

The Visitor Pattern

● A behavioral pattern
● Useful for adding new behaviors to a collection of related classes
● But what are the downsides?

– Can we overcome them?

Making tradoffs

● The visitor pattern
– makes adding new behaviors trivial
– can leave adding new types challenging

Making tradoffs

● The visitor pattern
– makes adding new behaviors trivial
– can leave adding new types challenging

● What if we expect adding new types to be more common?
– A similar pattern called the interpreter emerges
– Each behavior is just a method of the type involved

Making tradoffs

● The visitor pattern
– makes adding new behaviors trivial
– can leave adding new types challenging

● What if we expect adding new types to be more common?
– A similar pattern called the interpreter emerges
– Each behavior is just a method of the type involved

● Choose between them by likelihood of change & maintainability

Making tradoffs

● The visitor pattern
– makes adding new behaviors trivial
– can leave adding new types challenging

● What if we expect adding new types to be more common?
– A similar pattern called the interpreter emerges
– Each behavior is just a method of the type involved

● Choose between them by likelihood of change & maintainability

You can help or hurt
an open/closed design

Making tradoffs

● The visitor pattern
– makes adding new behaviors trivial
– can leave adding new types challenging

● What if we expect adding new types to be more common?
– A similar pattern called the interpreter emerges
– Each behavior is just a method of the type involved

● Choose between them by likelihood of change & maintainability
● Adding new types vs adding new behaviors is a common tension

when designing maintainable software
– This is classically known as the expression problem.

Designing Design Patterns

● Instead of memorizing them, you should be able to create them

Summary

● Careful software design focuses responsibilities & makes changes
easier

Summary

● Careful software design focuses responsibilities & makes changes
easier

● Polymorphism & composition help provide clear abstractions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299
	Slide 300
	Slide 301
	Slide 302
	Slide 303
	Slide 304
	Slide 305
	Slide 306
	Slide 307
	Slide 308
	Slide 309
	Slide 310
	Slide 311
	Slide 312
	Slide 313
	Slide 314
	Slide 315
	Slide 316
	Slide 317
	Slide 318
	Slide 319
	Slide 320
	Slide 321
	Slide 322
	Slide 323
	Slide 324
	Slide 325
	Slide 326
	Slide 327
	Slide 328
	Slide 329
	Slide 330
	Slide 331
	Slide 332
	Slide 333
	Slide 334
	Slide 335
	Slide 336

