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Why care about software design?

● Software Design
– The components into which a problem is broken down
– The ways those components interact
– The interfaces and abstractions they expose or hide

● Design affects the value of software
– Understandability
– Performance
– Reliability
– Ease of change

– Poor value on these metrics is a significant risk
– Good design can mitigate these risks

My goal is to have you able read and understand
design decisions at FAANG....
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What is bad design?

● Several red flags [Ousterhout 2018, ...]

– Seemingly simple changes require modifying many locations
– A developer needs to know a great deal to complete a task
– What code must be modified is unclear
– The impact of a change is unclear

● Possible causes [Ousterhout 2018]

– Dependencies – Code cannot be understood in isolation
– Obscurity – Important information is not obvious

● Design complexity arises from many portions of code interacting
– Think of a basket or a braid. [Hickey 2011]

Changing one strand is hard....



  

What is common in good designs?

● Loose Coupling (connectivity)



  

What is common in good designs?

● Loose Coupling (connectivity)
worse

better vs



  

What is common in good designs?

● Loose Coupling (connectivity)
– Contentworse

better



  

What is common in good designs?

● Loose Coupling (connectivity)
– Contentworse

better
...
goto yourcode
... ...

yourcode:
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What is common in good designs?

● Loose Coupling (connectivity)
– Content
– Common global data

worse

better int global = ...

global = ...

int global = ...

global = ...

... = global

... = global
Note: “Solutions” like singletons have these constraints and worse.
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What is common in good designs?

● Loose Coupling (connectivity)
– Content
– Common global data
– Subclassing

worse

better

class Parent {
public:
  void foo() { barImpl(); }
  void bar() { barImpl(); }
private:
  virtual void barImpl() = 0;
};

[Bloch, “Effective Java”]

class Parent {
public:
  virtual void foo() { bar(); }
  virtual void bar() {}
};class Child : public Parent {
public:
  virtual void bar() { foo(); }
};

Non Virtual Interfaces (NVI) help
clarify & are common in C++.
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What is common in good designs?

● Loose Coupling (connectivity)
– Content
– Common global data
– Subclassing
– Temporal

worse

better

Cat cat = new Cat;
...
delete cat;

Process p;
p.doStep1();
p.doStep2();
p.doStep3();

This is more insidious!

Process p;
p.foo();
p.bar();
p.baz();



  

What is common in good designs?

● Loose Coupling (connectivity)
– Content
– Common global data
– Subclassing
– Temporal
– Passing data to/from each other

worse

better

x = foo(1,2)
def foo(a, b):
    ...



  

What is common in good designs?

● Loose Coupling (connectivity)
– Content
– Common global data
– Subclassing
– Temporal
– Passing data to/from each other
– Independence

worse

better
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foo()

bar() baz()

vs
foo()

bar()
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What is common in good designs?

● Loose Coupling
● High fan in / low fan out
● Layers / Stratification

New / Greenfield
Code

Wrapper API

External Library
Layers are just a form of decoupling.
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What is common in good designs?

● Loose Coupling
● High fan in / low fan out
● Layers / Stratification
● Cohesion

These attributes promote ease of change
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What are our tools in creating designs?

● The same tools arise across languages
– Polymorphism
– Composition

– Understanding and leveraging these can enable
safe, efficient, modifiable, and clear designs

– So we need to understand them....
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Polymorphism

● What is polymorphism?
– A component is polymorphic if it may operate on multiple types

● What kinds of polymorphism are there?
– At least 4(ish) broad classes that people should be familiar with
– Even more (and further subdivision) in richer languages

1) Runtime polymorphism (e.g. via inheritance in OOP)
2) Parametric polymorphism (e.g. via generics / templates)
3) Overloading (e.g. via classic overloading / type classes / traits)
4) Coercion* (e.g. via implicit conversion)
5) ... Different forms of polymorphism have

different design trade offs



Polymorphism via Inheritance
(a quick review)



  

Polymorphism via Inheritance

● Inheritance
– An approach of constructing a new entity in terms of an existing one

 



  

Polymorphism via Inheritance

● Inheritance
– An approach of constructing a new entity in terms of an existing one
– Can apply to classes, objects, ...

 



  

Polymorphism via Inheritance

● Inheritance
– An approach of constructing a new entity in terms of an existing one
– Can apply to classes, objects, ...
– Most familiar nowadays through Object Oriented Programming (OOP)

 



  

Polymorphism via Inheritance

● Inheritance
– An approach of constructing a new entity in terms of an existing one
– Can apply to classes, objects, ...
– Most familiar nowadays through Object Oriented Programming (OOP)

● Class Inheritance
– Creates a new class in terms of an existing class

 

List

ArrayList



  

Polymorphism via Inheritance

● Inheritance
– An approach of constructing a new entity in terms of an existing one
– Can apply to classes, objects, ...
– Most familiar nowadays through Object Oriented Programming (OOP)

● Class Inheritance
– Creates a new class in terms of an existing class
– Shares properties and behaviors with the new class

  

List
+ add()

ArrayList
+ add()



  

Polymorphism via Inheritance

● Inheritance
– An approach of constructing a new entity in terms of an existing one
– Can apply to classes, objects, ...
– Most familiar nowadays through Object Oriented Programming (OOP)

● Class Inheritance
– Creates a new class in terms of an existing class
– Shares properties and behaviors with the new class
– Can establish a subtyping relationship

  

List
+ add()

ArrayList
+ add()

is-a



  

Polymorphism via Inheritance

● Inheritance
– An approach of constructing a new entity in terms of an existing one
– Can apply to classes, objects, ...
– Most familiar nowadays through Object Oriented Programming (OOP)

● Class Inheritance
– Creates a new class in terms of an existing class
– Shares properties and behaviors with the new class
– Can establish a subtyping relationship

  

List
+ add()

ArrayList
+ add()

is-a

List list = new ArrayList();

void foo(List& someList);
...
ArrayList list;
foo(list);Java

C++
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What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance
– Liskov Substitution Principle

● If φ is true for the base, then φ is true the derived
● Arguments in the subtype may be more general

Base
A foo(B b)

Derived
C foo(D d)

B <: D

Arguments are contravariant

Drawer
+ void draw(Rectangle)

LinuxDrawer
+ void draw(Shape)

LinuxDrawer

Drawer

Rectangle

Shape
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What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance
– Liskov Substitution Principle

● If φ is true for the base, then φ is true the derived
● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained

Base
A foo(B b)

Derived
C foo(D d)

C <: A

Return types are covariant

LinuxDrawer

Drawer

Rectangle

Shape

Drawer
+ Shape getBounds()

LinuxDrawer
+ Rectangle getBounds()
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● Initial guidelines:
– Prefer composition to inheritance
– Liskov Substitution Principle

● If φ is true for the base, then φ is true the derived
● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained
● Preconditions are not stronger
● Postconditions are not weaker

Base
A foo(B b)

Derived
C foo(D d)

assert(result != 0) assert(result > 0)



  

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance
– Liskov Substitution Principle

● If φ is true for the base, then φ is true the derived
● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained
● Preconditions are not stronger
● Postconditions are not weaker

Base
A foo(B b)

Derived
C foo(D d)

assert(result != 0) assert(result > 0)



  

What does good inheritance look like?

● Initial guidelines:
– Prefer composition to inheritance
– Liskov Substitution Principle

● If φ is true for the base, then φ is true the derived
● Arguments in the subtype may be more general
● Return values in the subtype may be more constrained
● Preconditions are not stronger
● Postconditions are not weaker
● Invariants must still hold

Base
A foo(B b)

Derived
C foo(D d)



  

So why is inheritance hard?



  

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to 
apply inheritance?



  

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to 
apply inheritance?

● Every is-a relationship could instead be has-a!



  

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to 
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components



  

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to 
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Professor



  

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to 
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher
is-a

Professor



  

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to 
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher
is-a

Teacher

Professor
is-a



  

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to 
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher
is-a

Teacher Napper
is-a is-a

Professor



  

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to 
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher
Professor

has-a



  

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to 
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher
Professor

has-a
Teacherhas-a



  

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to 
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Researcher
Professor

has-a
Teacherhas-a
Napperhas-a



  

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to 
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

Note, these are now roles,
not people.

Researcher
Professor

has-a
Teacherhas-a
Napperhas-a



  

So why is inheritance hard?

● Do the LSP and has-a relationships unambiguously tell us how to 
apply inheritance?

● Every is-a relationship could instead be has-a!
– These often capture finer grained relationships
– Break individual responsibilities into components

● Whenever is-a applies, you must still make a decision

Note, these are now roles,
not people.

Researcher
Professor

has-a
Teacherhas-a
Napperhas-a
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– Use composition if the relationship is dynamic

● Guide 2: Might the type be used polymorphically?
– Composition does not intrinsically aid it
– Inheritance can enable it
– Consider inheritance when a reference to a general type may point to a 

more specific one.

0) Student
1) Student
2) Lecturer
3) Professor
4) Student

std::vector<People*> folks;



  

Choosing is-a or has-a

● Guide 1: Might the behavior need to change?
– Inheritance often precludes it
– Composition often simplifies it
– Use composition if the relationship is dynamic

● Guide 2: Might the type be used polymorphically?
– Composition does not intrinsically aid it
– Inheritance can enable it
– Consider inheritance when a reference to a general type may point to a 

more specific one.

0) Student
1) Student
2) Lecturer
3) Professor
4) Student

std::vector<People*> folks;

We will revisit this in the context of
algebraic data types.
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So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Animal

ProfessorCat CorgiParrot

Maine Coon Bengal

Is this good?

Does it achieve reuse?

What if I want a new
Animal at run time?
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So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

If someone on my team did this multiple times,
I would consider firing them.

Can we do better?

Hierarchies in data need not be
hierarchies in the type system!
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– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.
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So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movementhas-a

Movement selects from the
ways any Animal can move.



  

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change
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So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change
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So let’s try it out...

● I need
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– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change
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So let’s try it out...

● I need
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– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change
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So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change
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Movement
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has-a
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So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change
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So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a

MeowTweet Ramble

Crawl Fly Saunter



  

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a

MeowTweet Ramble Bark

Crawl Fly Saunter



  

So let’s try it out...

● I need
– Many different types of animals.
– Each should be able to move() and speak().
– An Animal& should be able to refer to any of them.

Can we do better? Recall: identify & isolate change

Animal

Movement

Vocalization

has-a

has-a

MeowTweet Ramble Bark

Crawl Fly Saunter

class Animal {
  Movement& m;
  void move() {
    m.move();
  }
};
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● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal
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● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

● Inheritance contracts for fine grained policies
● Enables dynamic selection & configuration of which policies are 

desired
– e.g. A Cat may start out Stationary, then Run, then be Stationary

Previously static requirements will often become dynamic.
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● Directly identifies & addresses risks of change in class design



  

Shallow, fine grained inheritance

● Avoids reimplementation of common behavior
– e.g. Common aspects of Animal are just fields of Animal

● Inheritance contracts for fine grained policies
● Enables dynamic selection & configuration of which policies are 

desired
– e.g. A Cat may start out Stationary, then Run, then be Stationary

● Directly identifies & addresses risks of change in class design
● Does not focus on reusing from the base class.

Instead makes the derived class reusable.



  

Violating Examples

● There a few bad examples that students & text books have brought to me

JPanel

CustomJPanel

JComponent
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Violating Examples

● There a few bad examples that students & text books have brought to me

Rectangle

Square TextFrame
JPanel

CustomJPanel

JComponent

Stack

Vector



Parametric Polymorphism
(a quick review?)
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Parametric Polymorphism

● Parametric polymorphism enables
defining generic components
over a family of types
using type parameters

public class ArrayList<E> {...} 
Java

template <class E>
class vector;

C++
class ArrayList<E> {...} 

Typescript
T = TypeVar('T')
class SpecialList(Generic[T]):
    def __init__(self, value: T) -> None:
        ...

Python

Commonly referred to as generics or templates



  

Parametric Polymorphism

● Parametric polymorphism enables
defining generic components
over a family of types
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C++

public class ArrayList<E> {...} 
Java

template <class E>
class vector;

C++
class ArrayList<E> {...} 

Typescript
T = TypeVar('T')
class SpecialList(Generic[T]):
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        ...

Python



  

Parametric Polymorphism

● Parametric polymorphism enables
defining generic components
over a family of types
using type parameters

std::vector<int> v1 = {1, 2, 3, 4, 5};
C++

std::vector v1 = {1, 2, 3, 4, 5};

public class ArrayList<E> {...} 
Java

template <class E>
class vector;

C++
class ArrayList<E> {...} 

Typescript
T = TypeVar('T')
class SpecialList(Generic[T]):
    def __init__(self, value: T) -> None:
        ...

Python

Parameters can sometimes be inferred.



  

Parametric Polymorphism

● Parametric polymorphism enables
defining generic components
over a family of types
using type parameters

● Enables careful abstraction of design components
– A class/function/data structure/algorithm can be written & validated once
– Intentions can be clearer within code



  

● Suppose an algorithm needs to find an element in a collection & 
increment it.

Parametric Polymorphism



  

● Suppose an algorithm needs to find an element in a collection & 
increment it.

void bigAlgorithm(...) {
std::vector<int> c;
...
for (auto i = begin(c), e = end(c); i != e; ++i) {

if (*i == v) {
++*i;
break;

}
}
...

}

Parametric Polymorphism



  

● Suppose an algorithm needs to find an element in a collection & 
increment it.

void bigAlgorithm(...) {
std::vector<int> c;
...
for (auto i = begin(c), e = end(c); i != e; ++i) {

if (*i == v) {
++*i;
break;

}
}
...

}

Parametric Polymorphism

This is awful.
Intentions are unclear.

Modifiability is low.
Reusability is low.



  

● Suppose an algorithm needs to find an element in a collection & 
increment it.

void bigAlgorithm(...) {
std::vector<int> c;
...
for (auto i = begin(c), e = end(c); i != e; ++i) {

if (*i == v) {
++*i;
break;

}
}
...

}

Parametric Polymorphism

template<typename C, typename V>
size_t find(const C& c, const V& v) {

for (auto& [index, element] : enumerate(c)) {
if (element == v) {

return index;
}

}
return (size_t)-1;

}



  

● Suppose an algorithm needs to find an element in a collection & 
increment it.

void bigAlgorithm(...) {
std::vector<int> c;
...
for (auto i = begin(c), e = end(c); i != e; ++i) {

if (*i == v) {
++*i;
break;

}
}
...

}

template<typename C, typename V>
size_t find(const C& c, const V& v) {

for (auto& [index, element] : enumerate(c)) {
if (element == v) {

return index;
}

}
return (size_t)-1;

}

Parametric Polymorphism

void bigAlgorithm(...) {
std::vector<int> c;
...
auto index = find(c, v);
++c[index];
...

}



  

● Suppose an algorithm needs to find an element in a collection & 
increment it.

void bigAlgorithm(...) {
std::vector<int> c;
...
for (auto i = begin(c), e = end(c); i != e; ++i) {

if (*i == v) {
++*i;
break;

}
}
...

}

Parametric Polymorphism

template<typename C, typename V>
size_t find(const C& c, const V& v) {

for (auto& [index, element] : enumerate(c)) {
if (element == v) {

return index;
}

}
return (size_t)-1;

}

void bigAlgorithm(...) {
std::vector<int> c;
...
auto index = find(c, v);
++c[index];
...

}
void otherAlgorithm(...) {

std::vector<string> d = ...;
auto index = find(d, w);
...

}



  

Parametric Polymorphism

● Type variables can also be bounded / restricted
– Consider find(C,V), it should require that ElementType(C) = V
– Restricting to subtypes / supertypes is common

Java
class D <T extends A & B & C> { }
class F <? extends E> { }
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Parametric Polymorphism

● Type variables can also be bounded / restricted
– Consider find(C,V), it should require that ElementType(C) = V
– Restricting to subtypes / supertypes is common

Java
class D <T extends A & B & C> { }
class F <? extends E> { }

C++
template <typename T, typename=std::enable_if_t<std::is_class_v<T>>>
void foo(const T& t) {
  std::cout << "T is a class type\n";
}

Such constraints can be
cleaner in C++20.

public interface Map<K,V> {
  void putAll(Map<? extends K,? extends V> m)
}



  

Parametric Polymorphism

● Type variables can also be bounded / restricted
– Consider find(C,V), it should require that ElementType(C) = V
– Restricting to subtypes / supertypes is common

Java
class D <T extends A & B & C> { }
class F <? extends E> { }

C++
template <typename T, typename=std::enable_if_t<std::is_class_v<T>>>
void foo(const T& t) {
  std::cout << "T is a class type\n";
} template <typename C>

C::iterator_type find(const C& c, C::element_type v) {
  ...
}

Some scenarios are bounded
by convention.

public interface Map<K,V> {
  void putAll(Map<? extends K,? extends V> m)
}



  

Parametric Polymorphism

● Specialized instances can sometimes be created
– Sometimes domain knowledge allows more efficient implementations
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  PointedTo* getP();
  Value getV();
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template <class PointedTo, class Value>
class PointerValuePair {
  PointedTo* p;
  Value v;
  PointedTo* getP();
  Value getV();
}; template <class PointedTo>

class PointerValuePair<PointedTo,int> {
  uintptr_t compact;
  PointedTo* getP() {
    return reinterpret_cast<PointedTo*>(compact & ~0xFFFFFFF8);
  }
  int getV() { return compact & 0x00000007; }
};



  

Parametric Polymorphism

● Specialized instances can sometimes be created

template <class PointedTo, class Value>
class PointerValuePair {
  PointedTo* p;
  Value v;
  PointedTo* getP();
  Value getV();
}; template <class PointedTo>

class PointerValuePair<PointedTo,int> {
  uintptr_t compact;
  PointedTo* getP() {
    return reinterpret_cast<PointedTo*>(compact & ~0xFFFFFFF8);
  }
  int getV() { return compact & 0x00000007; }
};

Note, this example is still 
too simple to be safe.
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class.
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  T& getDerived() { return *static_cast<T*>(this); }
};
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Selecting forms of polymorphism

● Sometimes information needs to flow from a derived class to a base 
class.

template<class T>
class Base {
public:
  void print() { getDerived().printImpl(); }
private:
  T& getDerived() { return *static_cast<T*>(this); }
};

class Specific : public Base<Specific> {
public:
  void printImpl() { printf("Yo\n"); }
}; What other approaches could we have used?

What are the trade offs?

Flexibility vs Efficiency
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Have those of you familiar
with Java seen this before?
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Selecting forms of polymorphism

● Sometimes information needs to flow from a derived class to a base 
class.

Have those of you familiar
with Java seen this before?

public class LocalTime
       implements Comparable<LocalTime> {
  ...
} public interface Comparable<T> {

  int compareTo(T o);
}

This Curiosly Recurring Template Pattern (CRTP)
Can help in building more robust APIs.



  

Selecting forms of polymorphism

● There are richer interactions between polymorphisms that enable
clean & simple API design.



  

Selecting forms of polymorphism

● There are richer interactions between polymorphisms that enable
clean & simple API design.
– These issues are not the focus of this class
– They are discussed more in CMPT 373
– Feel free to ask questions about them on our discussion fora



Ad-hoc Polymorphism



  

Ad-hoc Polymorphism

● Ad-hoc polymorphism can occur on a case by case basis
– Overloading
– Type conversions  / coercion
– Type traits & type classes for flexible & structured overloading



  

Coercion

● Defining allowed conversions can lead to safe & intuitive APIs
● Example:

Suppose we want APIs that can operate on contiguous collections.
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Coercion
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● Example:

Suppose we want APIs that can operate on contiguous collections.
template<class E, auto N>
void foo(const E(&c)[N]);

template<class E, auto N>
void foo(const std::array<E,N>& c);

template<class E>
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Coercion

● Defining allowed conversions can lead to safe & intuitive APIs
● Example:

Suppose we want APIs that can operate on contiguous collections.
template<class E, auto N>
void foo(const E(&c)[N]);

template<class E, auto N>
void foo(const std::array<E,N>& c);

template<class E>
void foo(const std::vector<E>& c);

void foo(const std::string& c);

template<class E, auto N>
void bar(const E(&c)[N]);

template<class E, auto N>
void bar(const std::array<E,N>& c);

template<class E>
void bar(const std::vector<E>& c);

void bar(const std::string& c);



  

Coercion

● Defining allowed conversions can lead to safe & intuitive APIs
● Example:

Suppose we want APIs that can operate on contiguous collections.
template<class E, auto N>
void foo(const E(&c)[N]);

template<class E, auto N>
void foo(const std::array<E,N>& c);

template<class E>
void foo(const std::vector<E>& c);

void foo(const std::string& c);

template<class E, auto N>
void bar(const E(&c)[N]);

template<class E, auto N>
void bar(const std::array<E,N>& c);

template<class E>
void bar(const std::vector<E>& c);

void bar(const std::string& c);
Yuck.



  

Coercion

● Perhaps we can construct a new type that is conversion compatible 
with all desired types...

We can start by thinking what is common.
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Coercion

● Perhaps we can construct a new type that is conversion compatible 
with all desired types...

template<class E>
struct Span {  

template<class E, auto N>
Span(const std::array<E,N>& c);

E* first;
size_t count;

};

In C++, a non explicit 1 arg constructor
defines a compatible conversion



  

Coercion

● Perhaps we can construct a new type that is conversion compatible 
with all desired types...

template<class E>
struct Span {  

template<class E, auto N>
Span(const std::array<E,N>& c);

template<class E>
Span(const std::vector<E>& c);

E* first;
size_t count;

};



  

template<class E>
struct Span {  

template<class E, auto N>
Span(const std::array<E,N>& c);

template<class E>
Span(const std::vector<E>& c);

E* first;
size_t count;

};

Coercion

● Perhaps we can construct a new type that is conversion compatible 
with all desired types... void foo(Span<E> c);

void bar(Span<E> c);

...

std::vector v = {1, 2, 3, 4, 5};
foo(v);

int v[] = {1, 2, 3, 4, 5};
bar(v);

foo(“This works for free”);

This enables convenient & efficient generic APIs.



  

template<class E>
struct Span {  

template<class E, auto N>
Span(const std::array<E,N>& c);

template<class E>
Span(const std::vector<E>& c);

E* first;
size_t count;

};

void foo(Span<E> c);
void bar(Span<E> c);

...

std::vector v = {1, 2, 3, 4, 5};
foo(v);

int v[] = {1, 2, 3, 4, 5};
bar(v);

foo(“This works for free”);

Coercion

This enables convenient & efficient generic APIs.

● Perhaps we can construct a new type that is conversion compatible 
with all desired types...

std::array<E,N>

std::vector<E>

E[N]

foo()

bar()



  

template<class E>
struct Span {  

template<class E, auto N>
Span(const std::array<E,N>& c);

template<class E>
Span(const std::vector<E>& c);

E* first;
size_t count;

};

void foo(Span<E> c);
void bar(Span<E> c);

...

std::vector v = {1, 2, 3, 4, 5};
foo(v);

int v[] = {1, 2, 3, 4, 5};
bar(v);

foo(“This works for free”);

Coercion

This enables convenient & efficient generic APIs.

● Perhaps we can construct a new type that is conversion compatible 
with all desired types...

std::array<E,N>

std::vector<E>

E[N]

Span<E> foo()

bar()



  

template<class E>
struct Span {  

template<class E, auto N>
Span(const std::array<E,N>& c);

template<class E>
Span(const std::vector<E>& c);

E* first;
size_t count;

};

void foo(Span<E> c);
void bar(Span<E> c);

...

std::vector v = {1, 2, 3, 4, 5};
foo(v);

int v[] = {1, 2, 3, 4, 5};
bar(v);

foo(“This works for free”);

Coercion

● Perhaps we can construct a new type that is conversion compatible 
with all desired types...

std::array<E,N>

std::vector<E>

E[N]

Span<E> foo()

bar()

We can even add additional safety features
(e.g. bounds checks) at this choke point!

https://www.youtube.com/watch?v=nPRY8-FtzZg
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Type Traits

● Careful use of specialization can structure overloading & extend 
behaviors

● Suppose we want to implement graph algorithms to traverse arbitrary 
data structures.
– What constraints exist?
– How might we design a nice API?

● Via inheritance?
● Via parametric polymorphism?

● Type traits and specialization can convey details about a type that 
enable generic algorithms
– Specializations carry the extra details for an overload
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  using Error = typename GraphKind::ABCD;
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template<typename GraphKind>
struct GraphTraits {
  using Error = typename GraphKind::ABCD;
};

template<>
struct GraphTraits<SocialGraph> {
  using NodeRef = ...;
  using ChildIterator = ...;
  static NodeRef get_entry(SocialGraph&) {...}
  static ChildIterator child_begin(NodeRef&) {...}
  static ChildIterator child_end(NodeRef&) {...}
};

Type Traits

template<class Kind, class GT=GraphTraits<Kind>>
void visualizeGraph(Kind& graph);

Regardless of the actual graph data structure,
or even its API,

traits allow generic algorithms to work!

SocialGraph g;
...
visualizeGraph(g);
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Type Traits

● They are even common in the C++ standard library
<functional>
namespace std {
  template< class Key >
  struct hash;
}

<unordered_set>
template<
  class Key,
  class Hash = std::hash<Key>,
  class KeyEqual = std::equal_to<Key>,
  class Allocator = std::allocator<Key>
> class unordered_set;<Cats.h>

namespace std {
  template<>
  struct hash<Cat> {
    std::size_t
    operator()(Cat const& s) const noexcept {
      return ...;
    }
  };
}

std::unordered_set<Cat> bigBagOfCats;
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Composition

● The Principle of Compositionality (roughly)
– The meaning of a complex entity is determined by the meanings of its 

constituents and the rules used to combine them.

– The meaning of a component should be clear from the meanings of its 
constituents and how they are used.

● But how can we achieve this? We’ll look at a few approaches
– Region / scope bounded behavior
– Ownership
– Algebraic data types

Or in software
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Region based behaviors

● Consider functions as a unit of abstraction
– Possible incoming data
– Behavior
– Possible outgoing data

● Good abstractions tend to be self contained, but bad ones will leak 
obligations on their users

foo()

Mutex m;
lock(m);
...
unlock(m);

What if we don’t unlock the mutex?
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  ...
}

try (BufferedReader br =
    new BufferedReader(new FileReader(path))) {
  return br.readLine();
}
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● Examples
– Java: synchronized blocks/methods, try-with-resources
– Python: with
– C#: using
– C++: RAII

void memoryResource() {
  auto w = std::make_unique<Widget>(3, "bofrot");
  foo(*w);
}

void memoryResource() {
  Widget w(3, "bofrot");
  foo(w);
}

Or better...



  

Region based behaviors

● Modern languages enable denoting the region for an abstraction
– Helps to bound the impact and provide composable interfaces.
– Design the inconsistency and lack of hygiene out of a system

● Examples
– Java: synchronized blocks/methods, try-with-resources
– Python: with
– C#: using
– C++: RAII

void memoryResource() {
  auto w = std::make_unique<Widget>(3, "bofrot");
  foo(*w);
}

void fileResource() {
  std::ofstream out{"output.txt"};
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Region based behaviors

● Modern languages enable denoting the region for an abstraction
– Helps to bound the impact and provide composable interfaces.
– Design the inconsistency and lack of hygiene out of a system

● Examples
– Java: synchronized blocks/methods, try-with-resources
– Python: with
– C#: using
– C++: RAII

void memoryResource() {
  auto w = std::make_unique<Widget>(3, "bofrot");
  foo(*w);
}

void fileResource() {
  std::ofstream out{"output.txt"};
  out << "Boston cream\n";
}

std::mutex m;
void synchronization() {
  std::lock_guard<std::mutex> guard(g_pages_mutex);
  out << "Thread safe fritter\n";
}



  

Region based behaviors

● Modern languages enable denoting the region for an abstraction
– Helps to bound the impact and provide composable interfaces.
– Design the inconsistency and lack of hygiene out of a system

● Examples
– Java: synchronized blocks/methods, try-with-resources
– Python: with
– C#: using
– C++: RAII
– Rust: lifetimes, borrowing, RAII, ...
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● Sometimes lexical bounds are not known
– Ownership designates whose responsibility it is to manage a resource
– Applies when a resource has uncertain lifetimes
– Combines region abstractions to clean up automatically 

std::unique_ptr<Widget>
memoryResource() {
  auto w = std::make_unique<Widget>(3, "bofrot");
  ...
  return w;
}

Whose responsibility is it to clean w?
When does it happen?



  

Ownership

● Sometimes lexical bounds are not known
– Ownership designates whose responsibility it is to manage a resource
– Applies when a resource has uncertain lifetimes
– Combines region abstractions to clean up automatically 

void foo(unique_ptr<Widget> w);

What do these signatures connote?

void foo(unique_ptr<Widget>& w);

void foo(Widget& w);
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Algebraic Data Types

● Carefully combining types can design more inconsistent & erroneous 
states out of a system

struct Cat {
  enum Activity {RUNNING, SLEEPING};
  Activity activity;
  uint64_t runningSpeed;
}; What problems does this design enable?
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Algebraic Data Types

● Carefully combining types can design more inconsistent & erroneous 
states out of a system

type Bool = True | False

type Activity = Running(int speed) | Sleeping

Note: it is impossible to ask for the
running speed of something sleeping!
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● Carefully combining types can design more inconsistent & erroneous 
states out of a system

● Algebraic Data Types enable the composable construction of types 
through combining types
– Sum types express disjoint alternatives

type Activity = Running(int speed) | Sleeping

How would you express this is C?
In C++?
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Algebraic Data Types

● Carefully combining types can design more inconsistent & erroneous 
states out of a system

● Algebraic Data Types enable the composable construction of types 
through combining types
– Sum types express disjoint alternatives
– Product types express combinations

struct MapEntry { Key key; Value value; };
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    Write(String)
}
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● Carefully combining types can design more inconsistent & erroneous 
states out of a system

● Algebraic Data Types enable the composable construction of types 
through combining types
– Sum types express disjoint alternatives
– Product types express combinations

● Note, the preferred way of extracting from an ADT is through pattern 
matching

enum Message {
    Quit,
    Move { x: i32, y: i32 },
    Write(String)
}
let msg = Message::Quit;
match msg {
    Message::Quit => {
        println!("The Quit variant has no data to destructure.")
    },
    Message::Move { x, y } => {
        println!("Move {} and {}", x, y);
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}

[From the Rust Book]
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What are design patterns?

● Design patterns are reusable solutions and metaphors for addressing 
problems

● They provide
– Common Language 

● discuss complex solutions more easily by name.
– Archetypes

● Their trade-offs are well understood
● New solutions can be modelled after them effectively

Note:
– As in literature, you do not copy the archetype directly.
– Adapt it to your specific needs & trade offs.
– Why a pattern exists is more important than just knowing that pattern!

Blind use of patterns is
another reason why people dislike OOP.
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  Result doWork() {...}
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  Result doWork() {...}
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Problem: Separate Caller & Callee

● What if we want to fully decouple actions to be taken from their call 
sites?
– Sometimes you must execute an action without any knowledge of what 

that action is.

class WorkKind1 : public Work {
  Result doWork() override{...}
};

auto result = worker.doWork();

class WorkKind2 : public Work {
  Result doWork() override{...}
};class Work {

  virtual Result doWork() = 0;
};
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e.g. Behavioral Pattern: Command

● This is the command pattern
● It is nothing more than an object oriented callback

class Command {
public:
  virtual void execute() = 0;
};

Why not just use a lambda?
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The Command Pattern

● Benefits
– Decouples a request / behavior from the invoker
– Invoker decides when to invoke without caring what
– Parameterizable via constructor

auto result = foo(x, y, z);
...
...

auto command = FooCommand(x, y, z);
...
...

command.execute();



  

The Command Pattern

● Benefits
– Decouples a request / behavior from the invoker
– Invoker decides when to invoke without caring what
– Parameterizable via constructor
– Sequences of commands can be easily batched



  

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently



  

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently

Manager Underling

Employee



  

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently

Manager manager;
manager.updatePay();

Underling underling;
underling.updatePay();

Manager Underling

Employee



  

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently
● Sometimes you want to add a new kind of action to a set of related 

classes



  

Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently
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Manager manager;
manager.serialize();

Underling underling;
underling.serialize();
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Problem: Add new behaviors to a set of types

● Different classes can perform the same action differently
● Sometimes you want to add a new kind of action to a set of related 

classes
● There may be many different types of actions to add
● Sometimes, you can't even know all of the actions in advance!

Why are these problems?
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Employee* employee = 

auto result = employee->foo(x, y, z);
...
...

...
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Solutions

● We need to find a better way

We want to be able to add new behaviors, 
so we should not need to know them

Employee* employee = 

auto result = employee->foo(x, y, z);



  

Solutions

● We need to find a better way

We also want possibly different behavior
for different subtypes.

Employee* employee = 

auto result = employee->foo(x, y, z);
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– What are the tools at our disposal?
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Solutions

● We need to find a better way

– What are the tools at our disposal?
● Classes
● Polymorphism

– How can we use them to attack the problem?
● Group related behaviors into classes
● Invoke them when desired



  

Grouping Related Behavior

● How should we group related behaviors?

What does SRP dictate?
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● How should we group related behaviors?
– Each offending method becomes a new class



  

Grouping Related Behavior

● How should we group related behaviors?
– Each offending method becomes a new class

class EmployeeSerializer {
public:
  void serialize(Manager &manager);
  void serialize(Underling &underling);
};

class PerformanceReviewPrinter {
public:
  void printReview(Manager &manager);
  void printReview(Underling &underling);
};



  

How Do We Invoke It?



  

How Do We Invoke It?

EmployeeSerializer serializer;
std::vector<Employee*> employees;

for (auto *employee : employees) {
  serializer.serialize(*employee);
}



  

EmployeeSerializer serializer;
std::vector<Employee*> employees;

for (auto *employee : employees) {
  serializer.serialize(*employee);
}

How Do We Invoke It?

?
Will this work? Why?
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How Do We Invoke It?

No!
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EmployeeSerializer serializer;
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  serializer.serialize(*employee);
}

How Do We Invoke It?

No!
What is the core problem?
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serializer.serialize(*employee);
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How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types
– Multiple Dispatch (or double dispatch in this case)

serializer.serialize(*employee);

EmployeeSerializer Manager/Underling
But we only know that employee is an Employee*



  

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types
– Multiple Dispatch (or double dispatch in this case)

serializer.serialize(*employee);

EmployeeSerializer Manager/Underling

for (auto* employee : employees) {
  serializer.serialize(*employee);
}

But we only know that employee is an Employee*



  

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types
– Multiple Dispatch (or double dispatch in this case)

serializer.serialize(*employee);

EmployeeSerializer Manager/Underling

How can we resolve the issue?

But we only know that employee is an Employee*
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● Problem:
– We want to call a method based on multiple dynamic types
– Multiple Dispatch (or double dispatch in this case)

● Solution:
– The Visitor Pattern

serializer.serialize(*employee);



  

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types
– Multiple Dispatch (or double dispatch in this case)

● Solution:
– The Visitor Pattern
– Goal:

serializer.serialize(*employee);

base->xxxxx(xxxxx);



  

How Do We Invoke It?

● Problem:
– We want to call a method based on multiple dynamic types
– Multiple Dispatch (or double dispatch in this case)

● Solution:
– The Visitor Pattern
– Goal:

serializer.serialize(*employee);

base->xxxxx(xxxxx);

Invoke the correct behavior regardless of the dynamic type!



  

The Visitor Pattern

class EmployeeSerializer : public Visitor {
public:
  void visit(Manager &manager) override;
  void visit(Underling &underling) override;
};

Abstract away the added behaviors:



  

The Visitor Pattern

class EmployeeSerializer : public Visitor {
public:
  void visit(Manager &manager) override;
  void visit(Underling &underling) override;
};

Abstract away the added behaviors:

Giving behaviors a common API
allows us to use all behaviors in the same way



  

The Visitor Pattern

class Employee {
public:
  virtual void accept(Visitor &v) = 0;
}
class Manager : public Employee {
  ...
  void accept(Visitor &v) override {
    v.visit(*this);
  }
};

Change the original classes:



  

class Employee {
public:
  virtual void accept(Visitor &v) = 0;
}
class Manager : public Employee {
  ...
  void accept(Visitor &v) override {
    v.visit(*this);
  }
};

The Visitor Pattern

Change the original classes:

The dynamic type of Employee is known!
Calls visit(Manager &manager) here.



  

The Visitor Pattern

Use the new behaviors through their classes:

EmployeeSerializer serializer;
PerformanceReviewPrinter reviewer;
std::vector<Employee*> employees;

for (auto* employee : employees) {
  employee->accept(serializer);
  employee->accept(reviewer);
}



  

The Visitor Pattern

Use the new behaviors through their classes:

EmployeeSerializer serializer;
PerformanceReviewPrinter reviewer;
std::vector<Employee*> employees;

for (auto* employee : employees) {
  employee->accept(serializer);
  employee->accept(reviewer);
} What if we want a return value?



  

The Visitor Pattern

Use the new behaviors through their classes:

std::vector<Visitor*> actions;
std::vector<Employee*> employees;
...
for (auto* employee : employees) {
  for (auto* action : actions) {
    employee->accept(*action);
  }
}



  

The Visitor Pattern

● A behavioral pattern
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The Visitor Pattern

● A behavioral pattern
● Useful for adding new behaviors to a collection of related classes

– It also keeps those behaviors isolated!



  

The Visitor Pattern

● A behavioral pattern
● Useful for adding new behaviors to a collection of related classes

– It also keeps those behaviors isolated!
– Useful for designing APIs open to extension



  

The Visitor Pattern

● A behavioral pattern
● Useful for adding new behaviors to a collection of related classes
● But what are the downsides?

– Can we overcome them?
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● The visitor pattern
– makes adding new behaviors trivial
– can leave adding new types challenging
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Making tradoffs

● The visitor pattern
– makes adding new behaviors trivial
– can leave adding new types challenging

● What if we expect adding new types to be more common?
– A similar pattern called the interpreter emerges
– Each behavior is just a method of the type involved

● Choose between them by likelihood of change & maintainability

You can help or hurt
an open/closed design



  

Making tradoffs

● The visitor pattern
– makes adding new behaviors trivial
– can leave adding new types challenging

● What if we expect adding new types to be more common?
– A similar pattern called the interpreter emerges
– Each behavior is just a method of the type involved

● Choose between them by likelihood of change & maintainability
● Adding new types vs adding new behaviors is a common tension

when designing maintainable software
– This is classically known as the expression problem.



  

Designing Design Patterns

● Instead of memorizing them, you should be able to create them



  

Summary

● Careful software design focuses responsibilities & makes changes 
easier



  

Summary

● Careful software design focuses responsibilities & makes changes 
easier

● Polymorphism & composition help provide clear abstractions
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