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Distributed systems are challenging & pervasive

● Distributed applications face many hurdles
– Multiple participants
– Unreliable communication channels
– May be allowed to crash
– May need to tolerate malicious participants
– Must eventually agree an some set of decisions

● Every one of these challenges makes application writing harder
● And yet the trends (good or bad) are pushing in this direction

– SOA & Microservices
– IoT
– Control systems
– *coin & smart contracts
– ...
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● In general
– Failure is always an option
– Ordering is hard
– Agreement is hard
– The software and what you think it does may differ

● How do TLA+ and similar tools fit into the picture?
– Safety
– Liveness
– Fairness
– Actual behavior?
– Performance?

● Spec. verification still faces challenges on more empirical issues
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Focus on experimentation

● Instead, we can again perform experiments
on the live system
targeted at particular problems or goals

● Chaos engineering
The discipline of experimenting on system
in order to build confidence in the system’s capability to
withstand turbulent conditions in production [Principles Of Chaos]

● You can think about chaos engineering as
A/B testing for distributed systems
where tests focus on pathologies of system reliability

● Instead of looking for improvements, you look for degradation
● Chaos engineering is about finding the latent chaos in the system

https://principlesofchaos.org/
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The 8 fallacies of distributed computing

● Common mistakes from Lyon, Deutsch, & Gosling
1) The network is reliable
2) Latency is zero
3) Bandwidth is infinite
4) The network is secure
5) Topology doesn't change
6) There is one administrator
7) Transport cost is zero
8) The network is homogeneous

● Originally, experiments targeted these,
but others are inspired by fault injection, race conditions, ...

http://nighthacks.com/jag/res/Fallacies.html
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Coping with failure

● How failure is handled varies depending on a system
– Logging & continue?
– Rerouting?
– Approximation and quality of service degradation?
– Error reporting?
– Terminal failure?

● What impact might fallback strategies have on business performance?

fallback strategies
are common
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The structure of chaos experimentation

● Four common steps for a chaos experiment
– Measure & define the baseline behavior of the system
– Hypothesize that the baseline should continue under stress
– Simulate pathological behaviors on the deployed systems
– Try to disprove your hypothesis (show that there is a difference)

● The harder it is to show a difference,
the more confidence you have in the robustness of your system

● NOTE:
Just as in sequential hypothesis testing, you might want an “early out”
– Managing the risks is critical even to getting management buy in
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● Identify the key metrics that matter
– Common attributes like throughput, latency, availability are good
– The key business measures are even better

(clicks/sec, successful purchases, video views, ...)
● Recognize that the baseline captures a distribution with trends

[Netflix SPS, 2016]

https://arxiv.org/pdf/1702.05843.pdf


  

Defining your baseline

● Just like our discussion on performance,
if you measure the wrong thing then your results won’t make sense

● Identify the key metrics that matter
– Common attributes like throughput, latency, availability are good
– The key business measures are even better

(clicks/sec, successful purchases, video views, ...)
● Recognize that the baseline captures a distribution with trends
● Coarser grained metrics focus on business value and avoid getting 

distracted by details
– Netflix: CPU load vs SPS? SPS captures availability & business demands
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Choosing your stressors

● Choose “very real world events” and simulate them
● These drive away from the happy path and force fallbacks to be 

explored in practice
– 92% of distributed system failures come from poor error handling
– One form of failure leads to another, causing failure cascades

● Examples:
– Inject random latency on requests
– Terminate VM instances
– Force request failures
– Make entire Amazon regions unavailable
– Corrupt headers & communication
– Double send requests, permute orders, etc.
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Managing risk

● The chaos community calls this “limiting the blast radius”
● Choose your population based on service tolerances
● Design early exit strategies and circuit breakers into the process
● Start in test environments & work toward production
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Refining the objective of chaos

● Be careful that the goal is not to add instability to a system
● You are engineering the chaos already in the system,

and you want a methodical process to expose it
● The process should be one of discovery, uncovering unknowns, and 

making a system more resilient
● The goal is to uncover the latent chaos early in a controlled setting

– By identifying unlikely problems early, you can prevent uncontrolled risk
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Popular Tools

● Several tools are available
– Chaos Monkey (Netflix)
– Gremlin
– Chaos Mesh (Kubernetes)
– ToxiProxy (Shopify)
– ...

● They focus on different strategies & potential injection abilities
– e.g. Chaos Monkey just terminates VMs

● Several are open source
● We can explore examples through:

– (1) Problems, (2) Likely outcomes, and (3) Experiments to test them
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Examples: unreliable networks [Gremlin]

● What happens when your channel to a service fails?
● Likely outcomes:

– Traffic may be rerouted to alternates
– Fire alarms may trigger if critical
– Application level metrics should be preserved, but ...

● An experiment can simply make a service unreachable
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Examples: resource exhaustion [Gremlin]

● What happens when you saturate a resource like CPU, Memory, I/O?
● Likely outcomes:

– Increased error rates
– Increased latency
– QoS degradation if possible
– Load balancer invocation
– Fire alarm triggers

● An experiment can simply consume CPU cycles
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Examples: datastore saturation [Gremlin]

● What happens when a data service specifically becomes saturated?
● Likely effects:

– Increased application latency on data dependent paths
– Metrics on other paths ideally unaffected
– Fire alarms when critical

● This can be implemented by
– Making the datastore unavailable
– Increasing latency to the datastore
– Actually consuming bandwidth to the store
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Summary

● Chaos engineering builds upon other techniques we have seen to 
explore distributed system reliability in practice

● It can discover problems at a small scale before they become larger
● By managing the existing chaos in your apps, you can produce more 

reliable apps in general
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