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● The scenario
– You maintain a web site and are considering a change
– You hypothesize that the change improves outcomes in some way

● The problem
– How can you find out whether one change (or many!) improves results?
– How can you do this without costing your company money?

Why Snapchat's re-redesign will fail and how to fix it, TechCrunch, 2018.

https://techcrunch.com/2018/05/11/how-snapchat-should-work/
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You should already have an intuition for attacking this.
What should you do?
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How do you know that a change adds value?

● The scenario
– You maintain a web site and are considering a change
– You hypothesize that the change improves outcomes in some way

● The problem
– How can you find out whether one change (or many!) improves results?
– How can you do this without costing your company money?

● Solutions
– A/B Testing uses different forms of hypothesis testing
– Alternatively, you can use multi-armed bandits to attack the problem
– Key idea: run controlled experiments live on the deployed software

● Caveat: We will not dive into a full stats background for these
– We will discuss some common pitfalls that arise from misunderstandings
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When might you want to know?

● Exploring ideas to improve usability
– Or performance (throughput, latency, ...)

● Establishing the effectiveness of promotion before campaigns

● Staged rollouts of major changes
– Minimizing risk of: CD, fragmented configurations, ...

e.g. rolling out apps to the Android store



  

Simple A/B Testing

● You have:
–  two solutions, A and B (e.g., A is old, B is new)
– A hypothesis (e.g. A will improve conversion over B by at least 5%)



  

Simple A/B Testing

● You have:
–  two solutions, A and B (e.g., A is old, B is new)
– A hypothesis (e.g. A will improve conversion over B by at least 5%)

● Basic solution:
– Determine what data to collect (choose population, metric, & size up front!!!)



  

Simple A/B Testing

● You have:
–  two solutions, A and B (e.g., A is old, B is new)
– A hypothesis (e.g. A will improve conversion over B by at least 5%)

● Basic solution:
– Determine what data to collect (choose population, metric, & size up front!!!)

– Randomly provide(/serve) A to one population and B to another to collect 
predetermined stats



  

Simple A/B Testing

● You have:
–  two solutions, A and B (e.g., A is old, B is new)
– A hypothesis (e.g. A will improve conversion over B by at least 5%)

● Basic solution:
– Determine what data to collect (choose population, metric, & size up front!!!)

– Randomly provide(/serve) A to one population and B to another to collect 
predetermined stats

– Use a basic t-test to measure differences in the populations



  

Simple A/B Testing

● You have:
–  two solutions, A and B (e.g., A is old, B is new)
– A hypothesis (e.g. A will improve conversion over B by at least 5%)

● Basic solution:
– Determine what data to collect (choose population, metric, & size up front!!!)

– Randomly provide(/serve) A to one population and B to another to collect 
predetermined stats

– Use a basic t-test to measure differences in the populations
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Recalling T-tests

● Can be one-sided (tailed) or two sided (tailed)
– distinguishing directed and undirected differences

● Assume (1) observation independence and (2) normal distribution

● Distinguish 2 hypotheses (e.g.):
– H0: (the null hypothesis – assumed true until disproven)

– H1: (the alternative)

– RECALL:
We never prove a hypothesis!
We gather sufficient evidence to reject the null hypothesis and thus accept 
the alternative

μ1−μ2=0
μ1<μ2
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But subtle challenges arise in practice!
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● The hypothesis in question may not apply to everyone
– Is there a specific user segment that it should apply to?

(Users of features X,Y,Z? Users in a specific country? Early adopters?)

● The hypothesis might affect different subpopulations differently
– People familiar with workflow X
– Different age groups
– People speaking different languages
– People using the software on different workdays

● Possible factors in the results ought to be identified up front.
Collecting them after the fact requires rerunning an experiment.

● Your sample ought to be representative.



  

β

Problem: False positives and negatives

P[fail to reject H
0
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0
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There is always a risk of error

α

Type I error

Type II error
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● Can you simply test any and all hypotheses?
Can you run your tests and try many hypotheses later?
– Define clear goals. Hypotheses not targetting goals are useless.

– Testing many things increases the likelihood of false positives

– The temptation (and management pressure) favors p-hacking

p=P[A sample is at least as extreme as observed | H
0
]

Suppose you run 5 tests with p=0.1,
What is the likelihood of a false positive?



  

Problem: Choosing hypotheses

● Can you simply test any and all hypotheses?
Can you run your tests and try many hypotheses later?
– Define clear goals. Hypotheses not targetting goals are useless.

– Testing many things increases the likelihood of false positives

– The temptation (and management pressure) favors p-hacking

p=P[A sample is at least as extreme as observed | H
0
]

Could you correct for this?



  

Problem: Choosing hypotheses

● Can you simply test any and all hypotheses?
Can you run your tests and try many hypotheses later?
– Define clear goals. Hypotheses not targetting goals are useless.

– Testing many things increases the likelihood of false positives

– The temptation (and management pressure) favors p-hacking

● The more hypotheses you test, the greater your risk of false positives
– This can be mitigated, but you should choose hypotheses well up front
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Problem: Stopping criteria & confidence

● In order to test with a certain significance (e.g. α=0.05),
the size of a test campaign with T-tests must be set up front.
– Calculate the number of samples required first, then run the test.

– Do not just observe the process and stop it “after significance reached”

● But then how many samples are required?
– First determine the acceptable error probabilities, α and β (often 5% & 20%)

– The power of a test is (1-β).     P[reject H0 | ¬H0] 

– This can also be expressed as “minimum detectable effect size”

– If variance and sample sizes can differ, this is challenging,
so most just use available sample size calculators based on α and β.

https://www.optimizely.com/sample-size-calculator/
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Problem: Regression to the mean

● Following an extreme event, the next event is likely less extreme.

● Suppose poorly performing students are put in a special program.
– After completion of the program, they perform better.
– Is the program effective?
– If they were already poor performers, improving was more likely anyway!
– This can be used to falsely justify punishment & rewards

● The illusion of significance
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Problem: Novelty effects

● Users are used to seeing a blue “buy” button and ignore it, so you 
change it to red.
– Sales skyrocket. Red is clearly better!

– Until a week later when sales return to normal...

● The novelty of the change for the sample may bias the underlying 
results of the study
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– Known variance?

– Independence?

– Normality?

– Qualitative vs Quantitative measures? (does a relationship exist at all?)

– Small sample sizes expected?

– ... If the testing is important,
you should be doing something obvious

or consulting a statistician.
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Other forms of hypothesis testing

● T-tests are not the only approach and do not always apply
– Known variance?

– Independence?

– Normality?

– Qualitative vs Quantitative measures? (does a relationship exist at all?)

– Small sample sizes expected?

– ...

● But what if even the notion of a predetermined campaign does not fit?
– Sequential hypothesis testing & Bayesian approaches
– Bandits
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Sequential Hypothesis Testing

● Consider managing an assembly line
– Making components for computers
– Up to 5% of the components can be faulty, otherwise the line should be 

stopped and inspected/fixed

● There may be sufficient evidence to stop the test early
– Especially when an effect is extreme!
– ✓ ✓✗✗ ✗✗✗✗...
– What are the stopping criteria?

When is there enough evidence to be convinced?

● NOTE: This problem is challenging and is an active area of research
– We will only look at one approach
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Sequential Hypothesis Testing

● Given a sequence of observations X1X2X3...XK, we want A,B,SK such that

– A < B
– B < SK  reject H0 and stop⇒
– SK < A  fail to reject H0 and stop⇒
– A < SK < B  continue sampling⇒

● Done using Wald’s Sequential Probability Ratio Test

● Caveat/risk:
– May only be beneficial/useful for simple hypotheses. Otherwise it is complex.

● Simpler approaches exist based on the Gambler’s Ruin (w/ no H0 estimate)
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S
K

SK=log∏
i=1

K p(X i∣HA)

p (X i∣H0)
A=log

β
1−α

B=log
1−β
αa likelihood ratio test

https://www.evanmiller.org/sequential-ab-testing.html
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Multi-Armed Bandits

● What if we don’t really care whether H0 is false;
we just want to make a good choice now? 

● Given options A, B, C, and D, which is the best to use based on 
evidence so far?

● This is attacked with multi armed bandits
– Each arm has an unknown likelihood of paying out when chosen
– Want to maximize profit over time
– Fundamentally choosing between exploration & exploitation
– We only want to spend enough effort on bad arms to believe they are bad

A B C D
So why might you prefer bandits over A/B tests

(or vice versa)?



  

Multi-Armed Bandits

● What if we don’t really care whether H0 is false;
we just want to make a good choice now? 

● Given options A, B, C, and D, which is the best to use based on 
evidence so far?

● This is attacked with multi armed bandits
– Each arm has an unknown likelihood of paying out when chosen
– Want to maximize profit over time
– Fundamentally choosing between exploration & exploitation
– We only want to spend enough effort on bad arms to believe they are bad

● Many solutions. Two common ones:
– 𝝴-greedy strategy
– Thompson sampling
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Multi-Armed Bandits

● Usual assumptions
– Reward probabilities (like conversion rates) don’t change

– Sampling is singular & instantaneous (choosing a version & its reward)

– Samples are independent (i.i.d.)

● While solutions can be robust when assumptions are violated,
there can be better variants or better solutions
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Multi-Armed Bandits: -Greedy Strategy𝝴

● 𝝴-greedy strategy
– Has the benefit of being dead simple

– May be too sensitive to variance and perform worse than other approaches

– Choosing 𝝴
● A higher  favors exploration.𝝴
● Lower  favors exploitation.𝝴
● 0.1 is common

● Can also vary/scale  over time.𝝴
– Can be used to logarithmically bound regret by limiting future exploration 

(decay)

● Feels a bit ad hoc. Why would you use it?

on_choice():
  with probability 1-ε:
    pull the best arm so far
  else:
    pull a random arm
  update pulled arm stats  
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Contextual Bandits

● What if the reward likelihood depends on
– History

– Environmental state

● Contextual Bandits are able to take features at time t into account
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Other uses of bandits in software quality

● Fuzz testing

● Auto configuration / optimization
– Finding optimal configurations for cloud workloads

– Command line options for compilers to improve performance

– Fine tuning for databases

– Hyperparameter tuning in machine learning

– ...

● Verification & cryptanalysis

● ...



  

Choosing a solution

● A/B Testing
– Can be robust as long as the sample is representative

● Bandits
– Allow you to take advantage of results as they find the solution

– Can enable adaptation over time rather than one shot optimality



  

Summary: A/B Testing & Bandits

● Hypothesis testing can help you choose one version of something 
over another

● Sequential strategies can allow for early stopping & peeking

● Bandit based techniques allow for optimizing expected benefit while 
exploring options
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