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Recall Unit Tests

e We started off the semester by talking about testing.
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Did we have ways of getting
more information from each test?
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Recall Unit Tests

e We started off the semester by talking about testing.

— Input to drive a behavior
— An oracle to check a behavior

e Testing samples the concrete behaviors of a program

— Analyzing equivalence classes
— Program analysis can find richer bugs over a test suite.

Do these completely solve the problem?
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Recall Unit Tests

e We started off the semester by talking about testing.

— Input to drive a behavior
— An oracle to check a behavior

e Testing samples the concrete behaviors of a program

— Analyzing equivalence classes
— Program analysis can find richer bugs over a test suite.

e Formal reasoning & program analysis can also make
each test cover more behavior!

— Property based testing
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Abstracting Unit Tests
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Abstracting Unit Tests

e A scenario could be concrete or abstract
X =5 VX : x>0

e For an abstract test case, we could (1) generate
tests and (2) check the oracle

— Emphasis is on the scenario & oracle
How can we generate tests?
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Abstracting Unit Tests

e A scenario could be concrete or abstract
X =5 VX : x>0

e For an abstract test case, we could (1) generate
tests and (2) check the oracle
— Emphasis is on the scenario & oracle

e 2 approaches we have already seen can be used

1) Random testing
2) Symbolic execution
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Property Based Testing

e This forms the motivation of property based testing

Testing that focuses on functional properties and
generates many tests to check them.

e Definition is still evolving

Originated with QuickCheck for Haskell in 2000

Focus was on generating many random tests from rich
type information and checking property assertions

Test case reduction was also automatically applied
Now includes symbolic execution
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Property Based Testing

« Traditional testing can be seen as example based.
X =05
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« Traditional testing can be seen as example based.

e Property based testing focuses on the generic
properties that should hold.

VX : x>0
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Property Based Testing

« Traditional testing can be seen as example based.

e Property based testing focuses on the generic
properties that should hold.
Ux : x>0
What is x and how does it fit into testing?
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Property Based Testing

« Traditional testing can be seen as example based.

e Property based testing focuses on the generic
properties that should hold.
Ux : x>0
e For random testing, generators can provide a way to
randomly sample complex types.

— Substantial effort to create generator infrastructure
initially
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Property Based Testing

e Follow common test patterns:

Symmetry
Alternatives
nduction
dempotence

nvariants

What else might we check here?
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Benefits of PBT

o Tests can have a clear, mathematical presentation

e Can avoid finding & writing every case for each
property (focus on the what not the how)

e Can decrease maintenance costs with the same (&
sometime greater) coverage

Random testing often gives these in practice.
Is that a guarantee?
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In Practice: Hypothesis

 Hypothesis (https://hypothesis.works/)

— Python, Java, (speculative C, C++)
— Random testing approach (maybe SymEx in future)
— Uses Generators to construct data
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In Practice: Hypothesis

e Many generators are built in.

o Complex input spaces may require custom
generators

e Arich set of primitives is available for more complex
generator needs
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In Practice: DeepState

e DeepState (https://github.com/trailofbits/deepstate)

— C and C++ focused
— APl is compatible with GoogleTest
— Symbolic execution tries to automatically extract inputs
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In Practice: DeepState

e DeepState (https://github.com/trailofbits/deepstate)

— C and C++ focused
— API is compatible with GoogleTest
— Symbolic execution tries to automatically extract inputs
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Summary: Property Based Testing

e An approach for testing based on the intended
properties rather than the implementation
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Summary: Property Based Testing

e An approach for testing based on the intended
properties rather than the implementation

o Still tries to cover the behaviors of the
implementation as well

e Availability improves every year
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