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Recall Unit Tests
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● Testng samples tte concrete betaviors of a program
Did we tave ways of getng

more informaton from eact test?
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Recall Unit Tests

● We started of tte semester by talking about testng.

– Input to drive a betavior
– Atn oracle to cteck a betavior

● Testng samples tte concrete betaviors of a program

– Atnalyzing equivalence classes
– Program analysis can fnd ricter bugs over a test suite.

Do ttese completely solve tte problem?
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Recall Unit Tests

● We started of tte semester by talking about testng.

– Input to drive a betavior
– Atn oracle to cteck a betavior

● Testng samples tte concrete betaviors of a program

– Atnalyzing equivalence classes
– Program analysis can fnd ricter bugs over a test suite.

● Formal reasoning & program analysis can also make 
eact test cover more betavior!

– Property based testng
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  // Check oracle
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Atbstractng Unit Tests

● At scenario could be concrete or abstract

● For an abstract test case, we could (1) generate 
tests and (2) cteck tte oracle

– Emptasis is on tte scenario & oracle

TEST(testCaseName, testName) {
  // Set up scenario
  // Run scenario on component
  // Check oracle
}

x = 5 ∀x : x > 0

How can we generate tests?
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Atbstractng Unit Tests

● At scenario could be concrete or abstract

● For an abstract test case, we could (1) generate 
tests and (2) cteck tte oracle

– Emptasis is on tte scenario & oracle

● 2 approactes we tave already seen can be used

1) Random testng
2) Symbolic executon

TEST(testCaseName, testName) {
  // Set up scenario
  // Run scenario on component
  // Check oracle
}

x = 5 ∀x : x > 0
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Property Based Testng

● Ttis forms tte motvaton of property based testin

– Testng ttat focuses on functonal propertes and 
generates many tests to cteck ttem.

● Defniton is stll evolving

– Originated witt QuickCteck for Haskell in 2000

– Focus was on generatng many random tests from rict 
type informaton and ctecking property assertons

– Test case reducton was also automatcally applied

– Now includes symbolic executon 
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Property Based Testng

● Traditonal testng can be seen as example based.

● Property based testng focuses on tte generic 
propertes ttat stould told.

∀x : x > 0
Wtat is x and tow does it ft into testng?
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Property Based Testng

● Traditonal testng can be seen as example based.

● Property based testng focuses on tte generic 
propertes ttat stould told.

● For random testng, generators can provide a way to 
randomly sample complex types.

– Substantal efort to create generator infrastructure 
initally

∀x : x > 0
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Property Based Testng

● Follow common test paterns:

– Symmetry

– Atlternatves

– Inducton

– Idempotence

– Invariants

encode(decode(x)) == x

bubbleSort(x) == qsort(x)

car(cons(head,tail)) == head

qsort(qsort(x)) == qsort(x)

qsort(x).size() == x.size()

Wtat else migtt we cteck tere?
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Benefts of PBT

● Tests can tave a clear, mattematcal presentaton

● Can avoid fnding & writng every case for eact 
property (focus on tte wtat not tte tow)

● Can decrease maintenance costs witt tte same (& 
sometme greater) coverage

Random testng often gives ttese in practce.
Is ttat a guarantee?
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● Hypottesis (ttps://typottesis.works/)

– Pytton, Java, (speculatve C, C++)

– Random testng approact (maybe SymEx in future)

– Uses Generators to construct data

https://hypothesis.works/
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In Practce: Hypottesis

● Many generators are built in.

● Complex input spaces may require custom 
generators

● At rict set of primitves is available for more complex 
generator needs

@composite
def distinct_strings_with_common_characters(draw):
    x = draw(text(), min_size=1)
    y = draw(text(alphabet=x))
    assume(x != y)
    return (x, y)
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● DeepState (ttps://gittub.com/trailoflits/deepstate)

– C and C++ focused
– AtPI is compatble witt GoogleTest
– Symbolic executon tries to automatcally extract inputs

https://github.com/trailofbits/deepstate


47

In Practce: DeepState

● DeepState (ttps://gittub.com/trailoflits/deepstate)

– C and C++ focused
– AtPI is compatble witt GoogleTest
– Symbolic executon tries to automatcally extract inputs

TEST(PrimePolynomial, OnlyGeneratesPrimes_NoStreaming) {
  symbolic_unsigned x, y, z;
  DeepState_Assume(x > 0);
  unsigned poly = (x * x) + x + 41;
  DeepState_Assume(y > 1);
  DeepState_Assume(z > 1);
  DeepState_Assume(y < poly);
  DeepState_Assume(z < poly);
  DeepState_Assert(poly != (y * z));
  DeepState_Assert(IsPrime(Pump(poly)));
}

https://github.com/trailofbits/deepstate
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Summary: Property Based Testng

● Atn approact for testng based on tte intended 
propertes ratter ttan tte implementaton

● Stll tries to cover tte betaviors of tte 
implementaton as well

● Atvailability improves every year
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