CMPT 473
Software Quality Assurance

Making Unit Tests
More Powerful

Nick Sumner



Recall Unit Tests

e We started off the semester by talking about testing.
What is a test?




Recall Unit Tests

e We started off the semester by talking about testing.

— Input to drive a behavior
— An oracle to check a behavior



Recall Unit Tests

e We started off the semester by talking about testing.

— Input to drive a behavior
— An oracle to check a behavior



Recall Unit Tests

e We started off the semester by talking about testing.

— Input to drive a behavior
— An oracle to check a behavior

e Testing samples the concrete behaviors of a program




Recall Unit Tests

e We started off the semester by talking about testing.

— Input to drive a behavior
— An oracle to check a behavior

e Testing samples the concrete behaviors of a program

Did we have ways of getting
more information from each test?




Recall Unit Tests

e We started off the semester by talking about testing.

— Input to drive a behavior
— An oracle to check a behavior

e Testing samples the concrete behaviors of a program

— Analyzing equivalence classes




Recall Unit Tests

e We started off the semester by talking about testing.

— Input to drive a behavior
— An oracle to check a behavior

e Testing samples the concrete behaviors of a program

— Analyzing equivalence classes




Recall Unit Tests

e We started off the semester by talking about testing.

— Input to drive a behavior
— An oracle to check a behavior

e Testing samples the concrete behaviors of a program

— Analyzing equivalence classes
— Program analysis can find richer bugs over a test suite.



Recall Unit Tests

e We started off the semester by talking about testing.

— Input to drive a behavior
— An oracle to check a behavior

e Testing samples the concrete behaviors of a program

— Analyzing equivalence classes
— Program analysis can find richer bugs over a test suite.

Do these completely solve the problem?

10



Recall Unit Tests

e We started off the semester by talking about testing.

— Input to drive a behavior
— An oracle to check a behavior

e Testing samples the concrete behaviors of a program

— Analyzing equivalence classes
— Program analysis can find richer bugs over a test suite.

e Formal reasoning & program analysis can also make
each test cover more behavior!

11



Recall Unit Tests

e We started off the semester by talking about testing.

— Input to drive a behavior
— An oracle to check a behavior

e Testing samples the concrete behaviors of a program

— Analyzing equivalence classes
— Program analysis can find richer bugs over a test suite.

e Formal reasoning & program analysis can also make
each test cover more behavior!

— Property based testing

12



Abstracting Unit Tests

13



Abstracting Unit Tests

e A scenario could be concrete or abstract
X =5 VX : x>0

14



Abstracting Unit Tests

e A scenario could be concrete or abstract
X =5 VX : x>0

e For an abstract test case, we could (1) generate
tests and (2) check the oracle

— Emphasis is on the scenario & oracle

15



Abstracting Unit Tests

e A scenario could be concrete or abstract
X =5 VX : x>0

e For an abstract test case, we could (1) generate
tests and (2) check the oracle

— Emphasis is on the scenario & oracle
How can we generate tests?

16



Abstracting Unit Tests

e A scenario could be concrete or abstract
X =5 VX : x>0

e For an abstract test case, we could (1) generate
tests and (2) check the oracle
— Emphasis is on the scenario & oracle

e 2 approaches we have already seen can be used

1) Random testing
2) Symbolic execution

17



Property Based Testing

e This forms the motivation of property based testing

18



Property Based Testing

e This forms the motivation of property based testing

— Testing that focuses on functional properties and
generates many tests to check them.

19



Property Based Testing

e This forms the motivation of property based testing

— Testing that focuses on functional properties and
generates many tests to check them.

e Definition is still evolving
— Originated with QuickCheck for Haskell in 2000

— Focus was on generating many random tests from rich
type information and checking property assertions

20



Property Based Testing

e This forms the motivation of property based testing

— Testing that focuses on functional properties and
generates many tests to check them.

e Definition is still evolving
— Originated with QuickCheck for Haskell in 2000

— Focus was on generating many random tests from rich
type information and checking property assertions

— Test case reduction was also automatically applied

21



Property Based Testing

e This forms the motivation of property based testing

Testing that focuses on functional properties and
generates many tests to check them.

e Definition is still evolving

Originated with QuickCheck for Haskell in 2000

Focus was on generating many random tests from rich
type information and checking property assertions

Test case reduction was also automatically applied
Now includes symbolic execution

22



Property Based Testing

« Traditional testing can be seen as example based.
X =05

23



Property Based Testing

« Traditional testing can be seen as example based.

e Property based testing focuses on the generic
properties that should hold.

VX : x>0

24



Property Based Testing

« Traditional testing can be seen as example based.

e Property based testing focuses on the generic
properties that should hold.
Ux : x>0
What is x and how does it fit into testing?

25



Property Based Testing

« Traditional testing can be seen as example based.

e Property based testing focuses on the generic
properties that should hold.
Ux : x>0
e For random testing, generators can provide a way to
randomly sample complex types.

26



Property Based Testing

« Traditional testing can be seen as example based.

e Property based testing focuses on the generic
properties that should hold.
Ux : x>0
e For random testing, generators can provide a way to
randomly sample complex types.

— Substantial effort to create generator infrastructure
initially

27



Property Based Testing

e Follow common test patterns:

28



Property Based Testing

e Follow common test patterns:

— Symmetry
— Alternatives

29



Property Based Testing

e Follow common test patterns:

— Symmetry
— Alternatives
— Induction

30



Property Based Testing

e Follow common test patterns:
— Symmetry
— Alternatives

— Induction
— ldempotence

31



Property Based Testing

e Follow common test patterns:
— Symmetry
— Alternatives
— Induction
— ldempotence

— Invariants



Property Based Testing

e Follow common test patterns:

Symmetry
Alternatives
nduction
dempotence

nvariants

What else might we check here?

33



Benefits of PBT

o Tests can have a clear, mathematical presentation

34



Benefits of PBT

o Tests can have a clear, mathematical presentation

e Can avoid finding & writing every case for each
property (focus on the what not the how)

35



Benefits of PBT

o Tests can have a clear, mathematical presentation

e Can avoid finding & writing every case for each
property (focus on the what not the how)

e Can decrease maintenance costs with the same (&
sometime greater) coverage

36



Benefits of PBT

o Tests can have a clear, mathematical presentation

e Can avoid finding & writing every case for each
property (focus on the what not the how)

e Can decrease maintenance costs with the same (&
sometime greater) coverage

Random testing often gives these in practice.
Is that a guarantee?

37



In Practice: Hypothesis

 Hypothesis (https://hypothesis.works/)

— Python, Java, (speculative C, C++)
— Random testing approach (maybe SymEx in future)
— Uses Generators to construct data

38


https://hypothesis.works/

In Practice: Hypothesis

e Hypothesis (https://hypothesis.works/)

— Python, Java, (speculative C, C++)
— Random testing approach (maybe SymEx in future)
— Uses Generators to construct data

39


https://hypothesis.works/

In Practice: Hypothesis

e Hypothesis (https://hypothesis.works/)

— Python, Java, (speculative C, C++)
— Random testing approach (maybe SymEx in future)
— Uses Generators to construct data

40


https://hypothesis.works/

In Practice: Hypothesis

e Hypothesis (https://hypothesis.works/)

— Python, Java, (speculative C, C++)
— Random testing approach (maybe SymEx in future)
— Uses Generators to construct data

41


https://hypothesis.works/

In Practice: Hypothesis

e Hypothesis (https://hypothesis.works/)

— Python, Java, (speculative C, C++)
— Random testing approach (maybe SymEx in future)
— Uses Generators to construct data

42


https://hypothesis.works/

In Practice: Hypothesis

e Many generators are built in.

43



In Practice: Hypothesis

e Many generators are built in.

o Complex input spaces may require custom
generators

44



In Practice: Hypothesis

e Many generators are built in.

o Complex input spaces may require custom
generators

e Arich set of primitives is available for more complex
generator needs

45



In Practice: DeepState

e DeepState (https://github.com/trailofbits/deepstate)

— C and C++ focused
— APl is compatible with GoogleTest
— Symbolic execution tries to automatically extract inputs

46


https://github.com/trailofbits/deepstate

In Practice: DeepState

e DeepState (https://github.com/trailofbits/deepstate)

— C and C++ focused
— API is compatible with GoogleTest
— Symbolic execution tries to automatically extract inputs



https://github.com/trailofbits/deepstate

Summary: Property Based Testing

e An approach for testing based on the intended
properties rather than the implementation

48



Summary: Property Based Testing

e An approach for testing based on the intended
properties rather than the implementation

o Still tries to cover the behaviors of the
implementation as well

49



Summary: Property Based Testing

e An approach for testing based on the intended
properties rather than the implementation

o Still tries to cover the behaviors of the
implementation as well

e Availability improves every year

50



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

