
Making Unit Tests
More Powerful

CMPT 473
Software Quality Atssurance

Nick Sumner

2

Recall Unit Tests

● We started of tte semester by talking about testng.
Wtat is a test?

3

Recall Unit Tests

● We started of tte semester by talking about testng.

– Input to drive a betavior
– Atn oracle to cteck a betavior

4

Recall Unit Tests

● We started of tte semester by talking about testng.

– Input to drive a betavior
– Atn oracle to cteck a betavior

5

Recall Unit Tests

● We started of tte semester by talking about testng.

– Input to drive a betavior
– Atn oracle to cteck a betavior

● Testng samples tte concrete betaviors of a program

6

Recall Unit Tests

● We started of tte semester by talking about testng.

– Input to drive a betavior
– Atn oracle to cteck a betavior

● Testng samples tte concrete betaviors of a program
Did we tave ways of getng

more informaton from eact test?

7

Recall Unit Tests

● We started of tte semester by talking about testng.

– Input to drive a betavior
– Atn oracle to cteck a betavior

● Testng samples tte concrete betaviors of a program

– Atnalyzing equivalence classes

8

Recall Unit Tests

● We started of tte semester by talking about testng.

– Input to drive a betavior
– Atn oracle to cteck a betavior

● Testng samples tte concrete betaviors of a program

– Atnalyzing equivalence classes

9

Recall Unit Tests

● We started of tte semester by talking about testng.

– Input to drive a betavior
– Atn oracle to cteck a betavior

● Testng samples tte concrete betaviors of a program

– Atnalyzing equivalence classes
– Program analysis can fnd ricter bugs over a test suite.

10

Recall Unit Tests

● We started of tte semester by talking about testng.

– Input to drive a betavior
– Atn oracle to cteck a betavior

● Testng samples tte concrete betaviors of a program

– Atnalyzing equivalence classes
– Program analysis can fnd ricter bugs over a test suite.

Do ttese completely solve tte problem?

11

Recall Unit Tests

● We started of tte semester by talking about testng.

– Input to drive a betavior
– Atn oracle to cteck a betavior

● Testng samples tte concrete betaviors of a program

– Atnalyzing equivalence classes
– Program analysis can fnd ricter bugs over a test suite.

● Formal reasoning & program analysis can also make
eact test cover more betavior!

12

Recall Unit Tests

● We started of tte semester by talking about testng.

– Input to drive a betavior
– Atn oracle to cteck a betavior

● Testng samples tte concrete betaviors of a program

– Atnalyzing equivalence classes
– Program analysis can fnd ricter bugs over a test suite.

● Formal reasoning & program analysis can also make
eact test cover more betavior!

– Property based testng

13

Atbstractng Unit Tests
TEST(testCaseName, testName) {
 // Set up scenario
 // Run scenario on component
 // Check oracle
}

14

Atbstractng Unit Tests

● At scenario could be concrete or abstract

TEST(testCaseName, testName) {
 // Set up scenario
 // Run scenario on component
 // Check oracle
}

x = 5 ∀x : x > 0

15

Atbstractng Unit Tests

● At scenario could be concrete or abstract

● For an abstract test case, we could (1) generate
tests and (2) cteck tte oracle

– Emptasis is on tte scenario & oracle

TEST(testCaseName, testName) {
 // Set up scenario
 // Run scenario on component
 // Check oracle
}

x = 5 ∀x : x > 0

16

Atbstractng Unit Tests

● At scenario could be concrete or abstract

● For an abstract test case, we could (1) generate
tests and (2) cteck tte oracle

– Emptasis is on tte scenario & oracle

TEST(testCaseName, testName) {
 // Set up scenario
 // Run scenario on component
 // Check oracle
}

x = 5 ∀x : x > 0

How can we generate tests?

17

Atbstractng Unit Tests

● At scenario could be concrete or abstract

● For an abstract test case, we could (1) generate
tests and (2) cteck tte oracle

– Emptasis is on tte scenario & oracle

● 2 approactes we tave already seen can be used

1) Random testng
2) Symbolic executon

TEST(testCaseName, testName) {
 // Set up scenario
 // Run scenario on component
 // Check oracle
}

x = 5 ∀x : x > 0

18

Property Based Testng

● Ttis forms tte motvaton of property based testin

19

Property Based Testng

● Ttis forms tte motvaton of property based testin

– Testng ttat focuses on functonal propertes and
generates many tests to cteck ttem.

20

Property Based Testng

● Ttis forms tte motvaton of property based testin

– Testng ttat focuses on functonal propertes and
generates many tests to cteck ttem.

● Defniton is stll evolving

– Originated witt QuickCteck for Haskell in 2000

– Focus was on generatng many random tests from rict
type informaton and ctecking property assertons

21

Property Based Testng

● Ttis forms tte motvaton of property based testin

– Testng ttat focuses on functonal propertes and
generates many tests to cteck ttem.

● Defniton is stll evolving

– Originated witt QuickCteck for Haskell in 2000

– Focus was on generatng many random tests from rict
type informaton and ctecking property assertons

– Test case reducton was also automatcally applied

22

Property Based Testng

● Ttis forms tte motvaton of property based testin

– Testng ttat focuses on functonal propertes and
generates many tests to cteck ttem.

● Defniton is stll evolving

– Originated witt QuickCteck for Haskell in 2000

– Focus was on generatng many random tests from rict
type informaton and ctecking property assertons

– Test case reducton was also automatcally applied

– Now includes symbolic executon

23

Property Based Testng

● Traditonal testng can be seen as example based.
x = 5

24

Property Based Testng

● Traditonal testng can be seen as example based.

● Property based testng focuses on tte generic
propertes ttat stould told.

∀x : x > 0

25

Property Based Testng

● Traditonal testng can be seen as example based.

● Property based testng focuses on tte generic
propertes ttat stould told.

∀x : x > 0
Wtat is x and tow does it ft into testng?

26

Property Based Testng

● Traditonal testng can be seen as example based.

● Property based testng focuses on tte generic
propertes ttat stould told.

● For random testng, generators can provide a way to
randomly sample complex types.

∀x : x > 0

27

Property Based Testng

● Traditonal testng can be seen as example based.

● Property based testng focuses on tte generic
propertes ttat stould told.

● For random testng, generators can provide a way to
randomly sample complex types.

– Substantal efort to create generator infrastructure
initally

∀x : x > 0

28

Property Based Testng

● Follow common test paterns:

– Symmetry encode(decode(x)) == x

29

Property Based Testng

● Follow common test paterns:

– Symmetry

– Atlternatves

encode(decode(x)) == x

bubbleSort(x) == qsort(x)

30

Property Based Testng

● Follow common test paterns:

– Symmetry

– Atlternatves

– Inducton

encode(decode(x)) == x

bubbleSort(x) == qsort(x)

car(cons(head,tail)) == head

31

Property Based Testng

● Follow common test paterns:

– Symmetry

– Atlternatves

– Inducton

– Idempotence

encode(decode(x)) == x

bubbleSort(x) == qsort(x)

car(cons(head,tail)) == head

qsort(qsort(x)) == qsort(x)

32

Property Based Testng

● Follow common test paterns:

– Symmetry

– Atlternatves

– Inducton

– Idempotence

– Invariants

encode(decode(x)) == x

bubbleSort(x) == qsort(x)

car(cons(head,tail)) == head

qsort(qsort(x)) == qsort(x)

qsort(x).size() == x.size()

33

Property Based Testng

● Follow common test paterns:

– Symmetry

– Atlternatves

– Inducton

– Idempotence

– Invariants

encode(decode(x)) == x

bubbleSort(x) == qsort(x)

car(cons(head,tail)) == head

qsort(qsort(x)) == qsort(x)

qsort(x).size() == x.size()

Wtat else migtt we cteck tere?

34

Benefts of PBT

● Tests can tave a clear, mattematcal presentaton

35

Benefts of PBT

● Tests can tave a clear, mattematcal presentaton

● Can avoid fnding & writng every case for eact
property (focus on tte wtat not tte tow)

36

Benefts of PBT

● Tests can tave a clear, mattematcal presentaton

● Can avoid fnding & writng every case for eact
property (focus on tte wtat not tte tow)

● Can decrease maintenance costs witt tte same (&
sometme greater) coverage

37

Benefts of PBT

● Tests can tave a clear, mattematcal presentaton

● Can avoid fnding & writng every case for eact
property (focus on tte wtat not tte tow)

● Can decrease maintenance costs witt tte same (&
sometme greater) coverage

Random testng often gives ttese in practce.
Is ttat a guarantee?

38

In Practce: Hypottesis

● Hypottesis (ttps://typottesis.works/)

– Pytton, Java, (speculatve C, C++)

– Random testng approact (maybe SymEx in future)

– Uses Generators to construct data

https://hypothesis.works/

39

In Practce: Hypottesis

● Hypottesis (ttps://typottesis.works/)

– Pytton, Java, (speculatve C, C++)

– Random testng approact (maybe SymEx in future)

– Uses Generators to construct data

from hypothesis import given
from hypothesis.strategies import text

@given(text())
@example('')
def test_decode_inverts_encode(s):
 assert decode(encode(s)) == s

https://hypothesis.works/

40

In Practce: Hypottesis

● Hypottesis (ttps://typottesis.works/)

– Pytton, Java, (speculatve C, C++)

– Random testng approact (maybe SymEx in future)

– Uses Generators to construct data

from hypothesis import given
from hypothesis.strategies import text

@given(text())
@example('')
def test_decode_inverts_encode(s):
 assert decode(encode(s)) == s

https://hypothesis.works/

41

In Practce: Hypottesis

● Hypottesis (ttps://typottesis.works/)

– Pytton, Java, (speculatve C, C++)

– Random testng approact (maybe SymEx in future)

– Uses Generators to construct data

from hypothesis import given
from hypothesis.strategies import text

@given(text())
@example('')
def test_decode_inverts_encode(s):
 assert decode(encode(s)) == s

https://hypothesis.works/

42

In Practce: Hypottesis

● Hypottesis (ttps://typottesis.works/)

– Pytton, Java, (speculatve C, C++)

– Random testng approact (maybe SymEx in future)

– Uses Generators to construct data

from hypothesis import given
from hypothesis.strategies import text

@given(text())
@example('')
def test_decode_inverts_encode(s):
 assert decode(encode(s)) == s

https://hypothesis.works/

43

In Practce: Hypottesis

● Many generators are built in.

44

In Practce: Hypottesis

● Many generators are built in.

● Complex input spaces may require custom
generators

45

In Practce: Hypottesis

● Many generators are built in.

● Complex input spaces may require custom
generators

● At rict set of primitves is available for more complex
generator needs

@composite
def distinct_strings_with_common_characters(draw):
 x = draw(text(), min_size=1)
 y = draw(text(alphabet=x))
 assume(x != y)
 return (x, y)

46

In Practce: DeepState

● DeepState (ttps://gittub.com/trailoflits/deepstate)

– C and C++ focused
– AtPI is compatble witt GoogleTest
– Symbolic executon tries to automatcally extract inputs

https://github.com/trailofbits/deepstate

47

In Practce: DeepState

● DeepState (ttps://gittub.com/trailoflits/deepstate)

– C and C++ focused
– AtPI is compatble witt GoogleTest
– Symbolic executon tries to automatcally extract inputs

TEST(PrimePolynomial, OnlyGeneratesPrimes_NoStreaming) {
 symbolic_unsigned x, y, z;
 DeepState_Assume(x > 0);
 unsigned poly = (x * x) + x + 41;
 DeepState_Assume(y > 1);
 DeepState_Assume(z > 1);
 DeepState_Assume(y < poly);
 DeepState_Assume(z < poly);
 DeepState_Assert(poly != (y * z));
 DeepState_Assert(IsPrime(Pump(poly)));
}

https://github.com/trailofbits/deepstate

48

Summary: Property Based Testng

● Atn approact for testng based on tte intended
propertes ratter ttan tte implementaton

49

Summary: Property Based Testng

● Atn approact for testng based on tte intended
propertes ratter ttan tte implementaton

● Stll tries to cover tte betaviors of tte
implementaton as well

50

Summary: Property Based Testng

● Atn approact for testng based on tte intended
propertes ratter ttan tte implementaton

● Stll tries to cover tte betaviors of tte
implementaton as well

● Atvailability improves every year

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

