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Technique limitations vs risks

● Most techniques have limited claims
– Testing

● Show the program can behave correctly
● Provide confidence for given criteria

– Dynamic Analysis
● Helps find bugs
● Collect information about programs

– Code Review
● Finds many surface level issues

● Programs may exhibit subtle, hard to identify issues
– Distributed file system integrity
– Coordinating telephony

● But what if these components are mission critical?!
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Proving properties of programs

● If a particular property is mission critical,
it may be worth proving that the property holds
– This often has a higher cost than applying other tools
– The ROI for mission critical infrastructure can pay off

● What kinds of properties would be interesting?
– Safety – Something bad never happens
– Liveness – Something good eventually happens

Some things should always be true (invariants),
while others should eventually be true.

● Model checking is one such tool for proving
these properties
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How can we specify properties?

● Often in the same language, inspired by temporal logic

● Temporal constraints help express properties
particularly interesting to concurrent and distributed 
systems
– e.g. The oven doesn’t heat up until the door is closed

● Temporal constraints for a proposition p:
– p will hold eventually in the future
– p holds in all future states
– p holds in the next state
– p holds until another proposition q holds
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Traffic Lights

● Traffic lights are a common application of safety 
critical embedded systems

● Interesting properties
– The light is green infinitely often

– A red light does not immediately
become green

– ...

● You can also specify lights at an intersection as a 
distributed system & check the consistency!
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● Aerospace
● Hardware
● Critical infrastructure providers (including Amazon)
● Microsoft holds internal (& external) lectures on it

Amazon’s experience (Using TLA+)

● Now used by several teams within AWS

● Each system has a 1-2KLOC TLA+ specification

● Detected several internal issues before they struck

It is increasingly desirable for platform providers



  

What does TLA+ look like?

● Let’s walk through an example...
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Summary

● Model checking can be an excellent way of proving 
properties about programs.

● While it requires more effort and cost, it can 
prevent critical issues.

● One such platform for model checking is TLA+.
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