
Model Checking

CMPT 473
Software Testing, Reliability and Security

Nick Sumner
wsumner@sfu.ca

Technique limitations vs risks

● Most techniques have limited claims

Technique limitations vs risks

● Most techniques have limited claims
– Testing

● Show the program can behave correctly
● Provide confidence for given criteria

Technique limitations vs risks

● Most techniques have limited claims
– Testing

● Show the program can behave correctly
● Provide confidence for given criteria

– Dynamic Analysis
● Helps find bugs
● Collect information about programs

Technique limitations vs risks

● Most techniques have limited claims
– Testing

● Show the program can behave correctly
● Provide confidence for given criteria

– Dynamic Analysis
● Helps find bugs
● Collect information about programs

– Code Review
● Finds many surface level issues

Technique limitations vs risks

● Most techniques have limited claims
– Testing

● Show the program can behave correctly
● Provide confidence for given criteria

– Dynamic Analysis
● Helps find bugs
● Collect information about programs

– Code Review
● Finds many surface level issues

● Programs may exhibit subtle, hard to identify issues
– Distributed file system integrity
– Coordinating telephony

Technique limitations vs risks

● Most techniques have limited claims
– Testing

● Show the program can behave correctly
● Provide confidence for given criteria

– Dynamic Analysis
● Helps find bugs
● Collect information about programs

– Code Review
● Finds many surface level issues

● Programs may exhibit subtle, hard to identify issues
– Distributed file system integrity
– Coordinating telephony

● But what if these components are mission critical?!

Proving properties of programs

● If a particular property is mission critical,
it may be worth proving that the property holds

Proving properties of programs

● If a particular property is mission critical,
it may be worth proving that the property holds
– This often has a higher cost than applying other tools

Proving properties of programs

● If a particular property is mission critical,
it may be worth proving that the property holds
– This often has a higher cost than applying other tools
– The ROI for mission critical infrastructure can pay off

Proving properties of programs

● If a particular property is mission critical,
it may be worth proving that the property holds
– This often has a higher cost than applying other tools
– The ROI for mission critical infrastructure can pay off

● What kinds of properties would be interesting?

Proving properties of programs

● If a particular property is mission critical,
it may be worth proving that the property holds
– This often has a higher cost than applying other tools
– The ROI for mission critical infrastructure can pay off

● What kinds of properties would be interesting?
– Safety – Something bad never happens

Proving properties of programs

● If a particular property is mission critical,
it may be worth proving that the property holds
– This often has a higher cost than applying other tools
– The ROI for mission critical infrastructure can pay off

● What kinds of properties would be interesting?
– Safety – Something bad never happens
– Liveness – Something good eventually happens

Proving properties of programs

● If a particular property is mission critical,
it may be worth proving that the property holds
– This often has a higher cost than applying other tools
– The ROI for mission critical infrastructure can pay off

● What kinds of properties would be interesting?
– Safety – Something bad never happens
– Liveness – Something good eventually happens

Some things should always be true (invariants),
while others should eventually be true.

Proving properties of programs

● If a particular property is mission critical,
it may be worth proving that the property holds
– This often has a higher cost than applying other tools
– The ROI for mission critical infrastructure can pay off

● What kinds of properties would be interesting?
– Safety – Something bad never happens
– Liveness – Something good eventually happens

Some things should always be true (invariants),
while others should eventually be true.

● Model checking is one such tool for proving
these properties

Model Checking Overview

● Model checking is an automated technique for
proving properties of finite state systems

Model Checking Overview

● Model checking is an automated technique for
proving properties of finite state systems

System
Design

Implementation

Model Checking Overview

● Model checking is an automated technique for
proving properties of finite state systems

System
Design

Implementation

Formal
Abstract
Model

Model Checking Overview

● Model checking is an automated technique for
proving properties of finite state systems

System
Design

Implementation

Formal
Property

Specification

Formal
Abstract
Model

Model Checking Overview

● Model checking is an automated technique for
proving properties of finite state systems

System
Design

Implementation

Formal
Property

Specification

Formal
Abstract
Model

Verifier

Model Checking Overview

● Model checking is an automated technique for
proving properties of finite state systems

System
Design

Implementation

Formal
Property

Specification

Formal
Abstract
Model

Proof

Verifier

Model Checking Overview

● Model checking is an automated technique for
proving properties of finite state systems

System
Design

Implementation

Formal
Property

Specification

Formal
Abstract
Model

Proof Counterexample

Verifier

Model Checking Overview

● Model checking is an automated technique for
proving properties of finite state systems

System
Design

Implementation

Formal
Property

Specification

Formal
Abstract
Model

Proof Counterexample ?

Verifier

How can we specify the model?

● Often written in a formal specification language
– temporal logic (CTL, LTL), Alloy, TLA, ...

How can we specify the model?

● Often written in a formal specification language
– temporal logic (CTL, LTL), Alloy, TLA, ...

● Need to express the finite states & transitions

How can we specify the model?

● Often written in a formal specification language
– temporal logic (CTL, LTL), Alloy, TLA, ...

● Need to express the finite states & transitions
– (Oven example from Edmund Clarke)

 Start
 Close
 Heat
 Error

How can we specify the model?

● Often written in a formal specification language
– temporal logic (CTL, LTL), Alloy, TLA, ...

● Need to express the finite states & transitions
– (Oven example from Edmund Clarke)

¬ Start
¬ Close
¬ Heat
¬ Error

How can we specify the model?

● Often written in a formal specification language
– temporal logic (CTL, LTL), Alloy, TLA, ...

● Need to express the finite states & transitions
– (Oven example from Edmund Clarke)

Start
¬ Close
¬ Heat
Error

¬ Start
¬ Close
¬ Heat
¬ Error

¬ Start
Close

¬ Heat
¬ Error

How can we specify the model?

● Often written in a formal specification language
– temporal logic (CTL, LTL), Alloy, TLA, ...

● Need to express the finite states & transitions
– (Oven example from Edmund Clarke)

Start
¬ Close
¬ Heat
Error

Start
Close

¬ Heat
Error

¬ Start
¬ Close
¬ Heat
¬ Error

¬ Start
Close

¬ Heat
¬ Error

Start
Close

¬ Heat
¬ Error

How can we specify the model?

● Often written in a formal specification language
– temporal logic (CTL, LTL), Alloy, TLA, ...

● Need to express the finite states & transitions
– (Oven example from Edmund Clarke)

Start
¬ Close
¬ Heat
Error

Start
Close

¬ Heat
Error

¬ Start
¬ Close
¬ Heat
¬ Error

¬ Start
Close

¬ Heat
¬ Error

Start
Close

¬ Heat
¬ Error

Start
Close
Heat

¬ Error

How can we specify the model?

● Often written in a formal specification language
– temporal logic (CTL, LTL), Alloy, TLA, ...

● Need to express the finite states & transitions
– (Oven example from Edmund Clarke)

Start
¬ Close
¬ Heat
Error

Start
Close

¬ Heat
Error

¬ Start
¬ Close
¬ Heat
¬ Error

¬ Start
Close

¬ Heat
¬ Error

Start
Close

¬ Heat
¬ Error

¬ Start
Close
Heat

¬ Error

Start
Close
Heat

¬ Error

How can we specify the model?

● Often written in a formal specification language
– temporal logic (CTL, LTL), Alloy, TLA, ...

● Need to express the finite states & transitions
– (Oven example from Edmund Clarke)

Start
¬ Close
¬ Heat
Error

Start
Close

¬ Heat
Error

¬ Start
¬ Close
¬ Heat
¬ Error

¬ Start
Close

¬ Heat
¬ Error

Start
Close

¬ Heat
¬ Error

¬ Start
Close
Heat

¬ Error

Start
Close
Heat

¬ Error

How can we specify the model?

● Often written in a formal specification language
– temporal logic (CTL, LTL), Alloy, TLA, ...

● Need to express the finite states & transitions
– (Oven example from Edmund Clarke)

Start
¬ Close
¬ Heat
Error

Start
Close

¬ Heat
Error

¬ Start
¬ Close
¬ Heat
¬ Error

¬ Start
Close

¬ Heat
¬ Error

Start
Close

¬ Heat
¬ Error

¬ Start
Close
Heat

¬ Error

Start
Close
Heat

¬ Error

● Often written in a formal specification language
– temporal logic (CTL, LTL), Alloy, TLA, ...

● Need to express the finite states & transitions
– (Oven example from Edmund Clarke)

How can we specify the model?

Start
¬ Close
¬ Heat
Error

Start
Close

¬ Heat
Error

¬ Start
¬ Close
¬ Heat
¬ Error

¬ Start
Close

¬ Heat
¬ Error

Start
Close

¬ Heat
¬ Error

¬ Start
Close
Heat

¬ Error

Start
Close
Heat

¬ Error

Start
Close
Heat
Error

?

● Often written in a formal specification language
– temporal logic (CTL, LTL), Alloy, TLA, ...

● Need to express the finite states & transitions
– (Oven example from Edmund Clarke)

How can we specify the model?

Start
¬ Close
¬ Heat
Error

Start
Close

¬ Heat
Error

¬ Start
¬ Close
¬ Heat
¬ Error

¬ Start
Close

¬ Heat
¬ Error

Start
Close

¬ Heat
¬ Error

¬ Start
Close
Heat

¬ Error

Start
Close
Heat

¬ Error

Start
Close
Heat
Error

?

How can we specify properties?

● Often in the same language, inspired by temporal logic

How can we specify properties?

● Often in the same language, inspired by temporal logic

● Temporal constraints help express properties
particularly interesting to concurrent and distributed
systems

How can we specify properties?

● Often in the same language, inspired by temporal logic

● Temporal constraints help express properties
particularly interesting to concurrent and distributed
systems
– e.g. The oven doesn’t heat up until the door is closed

How can we specify properties?

● Often in the same language, inspired by temporal logic

● Temporal constraints help express properties
particularly interesting to concurrent and distributed
systems
– e.g. The oven doesn’t heat up until the door is closed

● Temporal constraints for a proposition p:

How can we specify properties?

● Often in the same language, inspired by temporal logic

● Temporal constraints help express properties
particularly interesting to concurrent and distributed
systems
– e.g. The oven doesn’t heat up until the door is closed

● Temporal constraints for a proposition p:
– p will hold eventually in the future

How can we specify properties?

● Often in the same language, inspired by temporal logic

● Temporal constraints help express properties
particularly interesting to concurrent and distributed
systems
– e.g. The oven doesn’t heat up until the door is closed

● Temporal constraints for a proposition p:
– p will hold eventually in the future
– p holds in all future states

How can we specify properties?

● Often in the same language, inspired by temporal logic

● Temporal constraints help express properties
particularly interesting to concurrent and distributed
systems
– e.g. The oven doesn’t heat up until the door is closed

● Temporal constraints for a proposition p:
– p will hold eventually in the future
– p holds in all future states
– p holds in the next state

How can we specify properties?

● Often in the same language, inspired by temporal logic

● Temporal constraints help express properties
particularly interesting to concurrent and distributed
systems
– e.g. The oven doesn’t heat up until the door is closed

● Temporal constraints for a proposition p:
– p will hold eventually in the future
– p holds in all future states
– p holds in the next state
– p holds until another proposition q holds

Traffic Lights

● Traffic lights are a common application of safety
critical embedded systems

Traffic Lights

● Traffic lights are a common application of safety
critical embedded systems

Yellow

Red

Green

Waiting

Traffic Lights

● Traffic lights are a common application of safety
critical embedded systems

● Interesting properties?
Yellow

Red

Green

Waiting

Traffic Lights

● Traffic lights are a common application of safety
critical embedded systems

● Interesting properties
– The light is green infinitely often

Yellow

Red

Green

Waiting

Traffic Lights

● Traffic lights are a common application of safety
critical embedded systems

● Interesting properties
– The light is green infinitely often

– A red light does not immediately
become green

– ...

Yellow

Red

Green

Waiting

Traffic Lights

● Traffic lights are a common application of safety
critical embedded systems

● Interesting properties
– The light is green infinitely often

– A red light does not immediately
become green

– ...

● You can also specify lights at an intersection as a
distributed system & check the consistency!

Yellow

Red

Green

Waiting

Do people actually use it?

● Aerospace
● Hardware
● Critical infrastructure providers (including Amazon)
● Microsoft holds internal (& external) lectures on it

Do people actually use it?

● Aerospace
● Hardware
● Critical infrastructure providers (including Amazon)
● Microsoft holds internal (& external) lectures on it

Amazon’s experience (Using TLA+)

● Now used by several teams within AWS

● Each system has a 1-2KLOC TLA+ specification

● Detected several internal issues before they struck

Do people actually use it?

● Aerospace
● Hardware
● Critical infrastructure providers (including Amazon)
● Microsoft holds internal (& external) lectures on it

Amazon’s experience (Using TLA+)

● Now used by several teams within AWS

● Each system has a 1-2KLOC TLA+ specification

● Detected several internal issues before they struck

It is increasingly desirable for platform providers

What does TLA+ look like?

● Let’s walk through an example...

Summary

● Model checking can be an excellent way of proving
properties about programs.

Summary

● Model checking can be an excellent way of proving
properties about programs.

● While it requires more effort and cost, it can
prevent critical issues.

Summary

● Model checking can be an excellent way of proving
properties about programs.

● While it requires more effort and cost, it can
prevent critical issues.

● One such platform for model checking is TLA+.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

