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Debugging

● We have discussed
– Handling bugs during execution
– Submitting effective bug reports
– Bug triage and management

But debugging can require significant time and effort

● Debugging involves 2 keys issues
– Understanding why a program misbehaves
– Correcting the behavior

Anecdotally, the people I see who are best at debugging
are also the best programmers.
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Antipatterns in debugging

● Blaming the computer immediately
– Even if the computer is at fault, you don’t know

● Random changes (shotgun debugging)

● Random search

● Stack Overflow
– “If all of your friends drove off a cliff...”

● Good debugging:
– Is systematic
– Progressively converges on the source of misbehavior

Good debugging involves investigation.
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How can you identify the possible causes?
Can you write code to help?
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Understanding bugs is an investigation
● Start by foregoing assumptions

– Your mental model of the code is incorrect
– The things you believed to be true were not
– The comments may not be correct

● Reproduce the bug
● Ask: Why did the code produce the wrong behavior?

– Read the code
– Think of several possibilities
– Each is a hypothesis about the buggy behavior

● Rank the hypotheses
– How easy are they to eliminate?
– How likely are they to cause the bug?

● Try to disprove each hypothesis
– Collect more information & update your list as you go

This should sound very familiar.
Why?
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The scientific method

● Understanding bugs is a scientific investigation

Ask a question Collect initial information

Hypothesize

Test a hypothesisAnalyze the results

Act on outcomes All built on a foundation of skepticism
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Debuggers

● Interactive debuggers are a key part of the investigation
– Built into an IDE (like MSVC) or external (like GDB)

● Common set of features helps with
– Fact finding
– Identifying possible causes
– Testing the causes as hypotheses

● We will use GDB as a driving example
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Common Features

Basic commands for exploring 

● Running

● Breakpoints

● Stepping

● Continuing

● Backtraces

continue
finish

gdb --args ./myprogram arg1 arg2
...
> run break meaningoflife.c:42

break foo
break foo if x > 0

step
step 60
next
return

bt
bt 5
bt -5
bt full 2
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Common Features

print x->y
ptype x
whatis x->foo()

call foo()
call printExtraInfo()
call dumpData()

set var x=42

watch x

Basic commands for investigation

● Printing state

● Calling functions
– Designing for debugging

● Changing state and continuing (hypothesis testing)

● Watchpoints (breakpoints for data)
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GDB Specifics

● TUI Mode

Enter ctrl-x-a
Repaint ctrl-l
Window Cycle ctrl-x-2
“” in reverse ctrl-x-1
Previous Command ctrl-p
Next Command ctrl-n



  

GDB Specifics

● Built in Python interpreter
– Defining your own GDB commands
– Programmatic breakpoint manipulation

> python
...

!



  

Reverse Execution

● Available in GDB, MSVC, Mozilla RR, ...



  

Reverse Execution

● Available in GDB, MSVC, Mozilla RR, ...

● Mozilla RR (record & replay based debugging)
– Records behavior to a trace file
– Allows deterministic replay of the same execution



  

Reverse Execution

● Available in GDB, MSVC, Mozilla RR, ...

● Mozilla RR (record & replay based debugging)
– Records behavior to a trace file
– Allows deterministic replay of the same execution
– The trace may even be shared across computers



  

Reverse Execution

● Available in GDB, MSVC, Mozilla RR, ...

● Mozilla RR (record & replay based debugging)
– Records behavior to a trace file
– Allows deterministic replay of the same execution
– The trace may even be shared across computers
– System design enables running an execution backward



  

Reverse Execution

● Available in GDB, MSVC, Mozilla RR, ...

● Mozilla RR (record & replay based debugging)
– Records behavior to a trace file
– Allows deterministic replay of the same execution
– The trace may even be shared across computers
– System design enables running an execution backward

rr record /path/to/my/program --args
rr replay
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Reverse Execution

● Interacting with watchpoints & breakpoints

reverse-continue
reverse-step
reverse-next
reverse-finish

*p Segmentation fault

watch p
reverse-continue

p = nullptr
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Summary

● Good debugging follows a methodical process

● Iteratively get closer to the buggy behavior

● Make the most of your investigative tools
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