
CMPT 473
Software Testing, Reliability and Security

Nick Sumner
wsumner@sfu.ca

Debugging

Debugging

● We have discussed

Debugging

● We have discussed
– Handling bugs during execution
– Submitting effective bug reports
– Bug triage and management

Debugging

● We have discussed
– Handling bugs during execution
– Submitting effective bug reports
– Bug triage and management

But debugging can require significant time and effort

Debugging

● We have discussed
– Handling bugs during execution
– Submitting effective bug reports
– Bug triage and management

But debugging can require significant time and effort

● Debugging involves 2 keys issues

Debugging

● We have discussed
– Handling bugs during execution
– Submitting effective bug reports
– Bug triage and management

But debugging can require significant time and effort

● Debugging involves 2 keys issues
– Understanding why a program misbehaves

Debugging

● We have discussed
– Handling bugs during execution
– Submitting effective bug reports
– Bug triage and management

But debugging can require significant time and effort

● Debugging involves 2 keys issues
– Understanding why a program misbehaves
– Correcting the behavior

Debugging

● We have discussed
– Handling bugs during execution
– Submitting effective bug reports
– Bug triage and management

But debugging can require significant time and effort

● Debugging involves 2 keys issues
– Understanding why a program misbehaves
– Correcting the behavior

Anecdotally, the people I see who are best at debugging
are also the best programmers.

Antipatterns in debugging

● Blaming the computer immediately

Antipatterns in debugging

● Blaming the computer immediately
– Even if the computer is at fault, you don’t know

Antipatterns in debugging

● Blaming the computer immediately
– Even if the computer is at fault, you don’t know

● Random changes (shotgun debugging)

Antipatterns in debugging

● Blaming the computer immediately
– Even if the computer is at fault, you don’t know

● Random changes (shotgun debugging)

● Random search

Antipatterns in debugging

● Blaming the computer immediately
– Even if the computer is at fault, you don’t know

● Random changes (shotgun debugging)

● Random search

● Stack Overflow
– “If all of your friends drove off a cliff...”

Antipatterns in debugging

● Blaming the computer immediately
– Even if the computer is at fault, you don’t know

● Random changes (shotgun debugging)

● Random search

● Stack Overflow
– “If all of your friends drove off a cliff...”

● Good debugging:

Antipatterns in debugging

● Blaming the computer immediately
– Even if the computer is at fault, you don’t know

● Random changes (shotgun debugging)

● Random search

● Stack Overflow
– “If all of your friends drove off a cliff...”

● Good debugging:
– Is systematic

Antipatterns in debugging

● Blaming the computer immediately
– Even if the computer is at fault, you don’t know

● Random changes (shotgun debugging)

● Random search

● Stack Overflow
– “If all of your friends drove off a cliff...”

● Good debugging:
– Is systematic
– Progressively converges on the source of misbehavior

Antipatterns in debugging

● Blaming the computer immediately
– Even if the computer is at fault, you don’t know

● Random changes (shotgun debugging)

● Random search

● Stack Overflow
– “If all of your friends drove off a cliff...”

● Good debugging:
– Is systematic
– Progressively converges on the source of misbehavior

Good debugging involves investigation.

Understanding bugs is an investigation
● Start by foregoing assumptions

Understanding bugs is an investigation
● Start by foregoing assumptions

– Your mental model of the code is incorrect

Understanding bugs is an investigation
● Start by foregoing assumptions

– Your mental model of the code is incorrect
– The things you believed to be true were not

Understanding bugs is an investigation
● Start by foregoing assumptions

– Your mental model of the code is incorrect
– The things you believed to be true were not
– The comments may not be correct

Understanding bugs is an investigation
● Start by foregoing assumptions

– Your mental model of the code is incorrect
– The things you believed to be true were not
– The comments may not be correct

● Reproduce the bug

Understanding bugs is an investigation
● Start by foregoing assumptions

– Your mental model of the code is incorrect
– The things you believed to be true were not
– The comments may not be correct

● Reproduce the bug
● Ask: Why did the code produce the wrong behavior?

– Read the code
– Think of several possibilities

Understanding bugs is an investigation
● Start by foregoing assumptions

– Your mental model of the code is incorrect
– The things you believed to be true were not
– The comments may not be correct

● Reproduce the bug
● Ask: Why did the code produce the wrong behavior?

– Read the code
– Think of several possibilities

How can you identify the possible causes?
Can you write code to help?

Understanding bugs is an investigation
● Start by foregoing assumptions

– Your mental model of the code is incorrect
– The things you believed to be true were not
– The comments may not be correct

● Reproduce the bug
● Ask: Why did the code produce the wrong behavior?

– Read the code
– Think of several possibilities
– Each is a hypothesis about the buggy behavior

Understanding bugs is an investigation
● Start by foregoing assumptions

– Your mental model of the code is incorrect
– The things you believed to be true were not
– The comments may not be correct

● Reproduce the bug
● Ask: Why did the code produce the wrong behavior?

– Read the code
– Think of several possibilities
– Each is a hypothesis about the buggy behavior

● Rank the hypotheses

Understanding bugs is an investigation
● Start by foregoing assumptions

– Your mental model of the code is incorrect
– The things you believed to be true were not
– The comments may not be correct

● Reproduce the bug
● Ask: Why did the code produce the wrong behavior?

– Read the code
– Think of several possibilities
– Each is a hypothesis about the buggy behavior

● Rank the hypotheses
– How easy are they to eliminate?
– How likely are they to cause the bug?

Understanding bugs is an investigation
● Start by foregoing assumptions

– Your mental model of the code is incorrect
– The things you believed to be true were not
– The comments may not be correct

● Reproduce the bug
● Ask: Why did the code produce the wrong behavior?

– Read the code
– Think of several possibilities
– Each is a hypothesis about the buggy behavior

● Rank the hypotheses
– How easy are they to eliminate?
– How likely are they to cause the bug?

● Try to disprove each hypothesis
– Collect more information & update your list as you go

Understanding bugs is an investigation
● Start by foregoing assumptions

– Your mental model of the code is incorrect
– The things you believed to be true were not
– The comments may not be correct

● Reproduce the bug
● Ask: Why did the code produce the wrong behavior?

– Read the code
– Think of several possibilities
– Each is a hypothesis about the buggy behavior

● Rank the hypotheses
– How easy are they to eliminate?
– How likely are they to cause the bug?

● Try to disprove each hypothesis
– Collect more information & update your list as you go

This should sound very familiar.
Why?

The scientific method

● Understanding bugs is a scientific investigation

Ask a question

The scientific method

● Understanding bugs is a scientific investigation

Ask a question Collect initial information

The scientific method

● Understanding bugs is a scientific investigation

Ask a question Collect initial information

Hypothesize

The scientific method

● Understanding bugs is a scientific investigation

Ask a question Collect initial information

Hypothesize

Test a hypothesis

The scientific method

● Understanding bugs is a scientific investigation

Ask a question Collect initial information

Hypothesize

Test a hypothesisAnalyze the results

The scientific method

● Understanding bugs is a scientific investigation

Ask a question Collect initial information

Hypothesize

Test a hypothesisAnalyze the results

The scientific method

● Understanding bugs is a scientific investigation

Ask a question Collect initial information

Hypothesize

Test a hypothesisAnalyze the results

The scientific method

● Understanding bugs is a scientific investigation

Ask a question Collect initial information

Hypothesize

Test a hypothesisAnalyze the results

The scientific method

● Understanding bugs is a scientific investigation

Ask a question Collect initial information

Hypothesize

Test a hypothesisAnalyze the results

Act on outcomes

The scientific method

● Understanding bugs is a scientific investigation

Ask a question Collect initial information

Hypothesize

Test a hypothesisAnalyze the results

Act on outcomes All built on a foundation of skepticism

Debuggers

● Interactive debuggers are a key part of the investigation
– Built into an IDE (like MSVC) or external (like GDB)

Debuggers

● Interactive debuggers are a key part of the investigation
– Built into an IDE (like MSVC) or external (like GDB)

● Common set of features helps with
– Fact finding
– Identifying possible causes
– Testing the causes as hypotheses

Debuggers

● Interactive debuggers are a key part of the investigation
– Built into an IDE (like MSVC) or external (like GDB)

● Common set of features helps with
– Fact finding
– Identifying possible causes
– Testing the causes as hypotheses

● We will use GDB as a driving example

Common Features

Basic commands for exploring

Common Features

Basic commands for exploring

● Running
gdb --args ./myprogram arg1 arg2
...
> run

Common Features

Basic commands for exploring

● Running

● Breakpoints

gdb --args ./myprogram arg1 arg2
...
> run break meaningoflife.c:42

break foo
break foo if x > 0

Common Features

Basic commands for exploring

● Running

● Breakpoints

● Stepping

gdb --args ./myprogram arg1 arg2
...
> run break meaningoflife.c:42

break foo
break foo if x > 0

step
step 60
next
return

Common Features

Basic commands for exploring

● Running

● Breakpoints

● Stepping

● Continuing

gdb --args ./myprogram arg1 arg2
...
> run break meaningoflife.c:42

break foo
break foo if x > 0

step
step 60
next
return

continue
finish

Common Features

Basic commands for exploring

● Running

● Breakpoints

● Stepping

● Continuing

● Backtraces

continue
finish

gdb --args ./myprogram arg1 arg2
...
> run break meaningoflife.c:42

break foo
break foo if x > 0

step
step 60
next
return

bt
bt 5
bt -5
bt full 2

Common Features

Basic commands for investigation

Common Features

Basic commands for investigation

● Printing state
print x->y
ptype x
whatis x->foo()

Common Features

Basic commands for investigation

● Printing state

● Calling functions

print x->y
ptype x
whatis x->foo()

call foo()
call printExtraInfo()
call dumpData()

Common Features

Basic commands for investigation

● Printing state

● Calling functions
– Designing for debugging

print x->y
ptype x
whatis x->foo()

call foo()
call printExtraInfo()
call dumpData()

Common Features

Basic commands for investigation

● Printing state

● Calling functions
– Designing for debugging

● Changing state and continuing (hypothesis testing)

print x->y
ptype x
whatis x->foo()

call foo()
call printExtraInfo()
call dumpData()

set var x=42

Common Features

print x->y
ptype x
whatis x->foo()

call foo()
call printExtraInfo()
call dumpData()

set var x=42

watch x

Basic commands for investigation

● Printing state

● Calling functions
– Designing for debugging

● Changing state and continuing (hypothesis testing)

● Watchpoints (breakpoints for data)

GDB Specifics

● TUI Mode

GDB Specifics

● TUI Mode

Enter ctrl-x-a
Repaint ctrl-l
Window Cycle ctrl-x-2
“” in reverse ctrl-x-1
Previous Command ctrl-p
Next Command ctrl-n

GDB Specifics

● Built in Python interpreter
– Defining your own GDB commands
– Programmatic breakpoint manipulation

> python
...

!

Reverse Execution

● Available in GDB, MSVC, Mozilla RR, ...

Reverse Execution

● Available in GDB, MSVC, Mozilla RR, ...

● Mozilla RR (record & replay based debugging)
– Records behavior to a trace file
– Allows deterministic replay of the same execution

Reverse Execution

● Available in GDB, MSVC, Mozilla RR, ...

● Mozilla RR (record & replay based debugging)
– Records behavior to a trace file
– Allows deterministic replay of the same execution
– The trace may even be shared across computers

Reverse Execution

● Available in GDB, MSVC, Mozilla RR, ...

● Mozilla RR (record & replay based debugging)
– Records behavior to a trace file
– Allows deterministic replay of the same execution
– The trace may even be shared across computers
– System design enables running an execution backward

Reverse Execution

● Available in GDB, MSVC, Mozilla RR, ...

● Mozilla RR (record & replay based debugging)
– Records behavior to a trace file
– Allows deterministic replay of the same execution
– The trace may even be shared across computers
– System design enables running an execution backward

rr record /path/to/my/program --args
rr replay

Reverse Execution
reverse-continue
reverse-step
reverse-next
reverse-finish

Reverse Execution

● Interacting with watchpoints & breakpoints

reverse-continue
reverse-step
reverse-next
reverse-finish

Reverse Execution

● Interacting with watchpoints & breakpoints

reverse-continue
reverse-step
reverse-next
reverse-finish

*p

p = nullptr

Reverse Execution

● Interacting with watchpoints & breakpoints

reverse-continue
reverse-step
reverse-next
reverse-finish

*p Segmentation fault

p = nullptr

Reverse Execution

● Interacting with watchpoints & breakpoints

reverse-continue
reverse-step
reverse-next
reverse-finish

*p Segmentation fault

watch p
reverse-continue

p = nullptr

Reverse Execution

● Interacting with watchpoints & breakpoints

reverse-continue
reverse-step
reverse-next
reverse-finish

*p Segmentation fault

watch p
reverse-continue

p = nullptr

Summary

● Good debugging follows a methodical process

Summary

● Good debugging follows a methodical process

● Iteratively get closer to the buggy behavior

Summary

● Good debugging follows a methodical process

● Iteratively get closer to the buggy behavior

● Make the most of your investigative tools

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

