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Why Do Code Reviews?

Sharing knowledge about code
● Code you wrote

– Reasons for its design
– How it addresses intended problems

● Code someone else wrote
– Correctness (does the code do what was intended?)
– Clarity
– Design (are there better alternatives?)
– Style (is another approach more consistent?)

Code reviews build & maintain
institutional knowledge
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How To Improve Code Reviews

● Practice
● Practice
● Structure
● Patience
● Learning how to do code reviews is difficult, and the 

best way to improve is through practice.
● But...   there are patterns & structure that help
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What Are Code Reviews?
Many different approaches
● Passarounds-

– Developer submits code to many teammates for feedback
● Walkthroughs-

– Developer guides the team or reviewers through changes 
to explain the code and design

● Inspections-
– Reviewer (& sometimes mediator) examines the code and 

focuses on core objectives (security, API, …)
● Audits-

– Third party inspections of conformance & quality

Also less formal approaches:
ad hoc reviews, pair programming, etc.
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What Are The Outcomes?

● Depends on the approach
– e.g. Walkthroughs- informal feedback
– e.g. Inspections- (Accept, accept w. change, redo)
– e.g. Audits- Full reports on overall quality

From Barr's audit
of Toyota code:
http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf

http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf
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What Are Code Reviews?

● Most often, people think of “passarounds”:
e.g. http://llvm-reviews.chandlerc.com/D3009

● Patches with explanations & feedback with {accept, 
accept w/changes, change & resubmit}

● More rigorous approaches (inspections,audits,...) are 
more likely to find bugs

http://llvm-reviews.chandlerc.com/D3009
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When To Review

What approaches have you used?
● Can vary with institutional process
● Good approach:

– Informal review before every commit!
● Increasingly in depth reviews as necessary
● Regularly scheduled walkthroughs/inspections.

Why?
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Not a formal term
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Why might reviewing smaller
sections of code be reasonable?
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Passarounds

● Review cohesive but small changes
– No more than 400 lines of code at a time is reasonable
– Why might smaller be a problem?
– Why might larger be a problem?

● Review in short periods – Why?!
– If your attention wanes, it is useless
– Fast/prompt feedback is crucial to progress
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● Everyone should read the code in advance to look 
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Why don't we want to fix the issues now?
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Walkthroughs

● Guide the team / reviewers through changes or 
through the code and its design
– A middle ground of formality
– Range from looking at code on a projector to discussions 

in front of a whiteboard
● Everyone should read the code in advance to look 

for issues
● Knowledge & design decisions are explicitly 

disseminated throughout the team
● Shouldn't last more than an hour
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Inspections

● Reviewer (& sometimes mediator) examines the 
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● Thorough inspections can eliminate 70-85% of bugs
● Best with preparation & a focused checklist of 

criteria 

Often, these are required,
although we won't use them in our exercises
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code and focuses on core objectives

● Thorough inspections can eliminate 70-85% of bugs
● Best with preparation & a focused checklist of 

criteria 
● Driven by 4 roles:

– Moderator, Author, Reviewer, Scribe

Keeps meeting moving.
Makes sure that reported items are acted on.
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Inspections

● Reviewer (& sometimes mediator) examines the 
code and focuses on core objectives

● Thorough inspections can eliminate 70-85% of bugs
● Best with preparation & a focused checklist of 

criteria 
● Driven by 4 roles:

– Moderator, Author, Reviewer, Scribe

Explains the code.
Answers questions of the Reviewer.
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Inspections

● Reviewer (& sometimes mediator) examines the 
code and focuses on core objectives

● Thorough inspections can eliminate 70-85% of bugs
● Best with preparation & a focused checklist of 

criteria 
● Driven by 4 roles:

– Moderator, Author, Reviewer, Scribe

Searches for issues in the code.
Prepares in advance for the inspection meeting.
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Inspections

● Reviewer (& sometimes mediator) examines the 
code and focuses on core objectives

● Thorough inspections can eliminate 70-85% of bugs
● Best with preparation & a focused checklist of 

criteria 
● Driven by 4 roles:

– Moderator, Author, Reviewer, Scribe

Records the issues and proposed actions.
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Inspection

● Planning

● Overview? → A risky option
● Preparation

Author Moderator

code

Reviewer

code
checklist
schedule
priorities

Reviewer

Codechecklist
priorities
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Inspection

● Inspection Meeting
– Moderator selects a nonauthor to lead through and 

explain each line & all logic in the code
– Scribe records all errors
– Discussion of an error stops once it is detected

● Report
– Each defect along with checklist violation & severity is 

disseminated
● Fixing & Followups

– Fixes are assigned & ensured by the moderator
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Ego

● Code reviews are socially troublesome in the same 
way as bug reporting

● Effective reviews must be egoless
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