
Code Reviews

CMPT 473
Software Quality Assurance

Nick Sumner

2

Code Reviews

● Informally, code reviews are techniques for
discussing and sharing knowledge about code

3

Code Reviews

● Informally, code reviews are techniques for
discussing and sharing knowledge about code

How many of you do code reviews
 as part of jobs / co-ops?

4

Code Reviews

● Informally, code reviews are techniques for
discussing and sharing knowledge about code

● Why do code reviews?

How many of you do code reviews
 as part of jobs / co-ops?

5

Why Do Code Reviews?

Sharing knowledge about code

6

Why Do Code Reviews?

Sharing knowledge about code
● Code you wrote

What might you share?

7

Why Do Code Reviews?

Sharing knowledge about code
● Code you wrote

– Reasons for its design

8

Why Do Code Reviews?

Sharing knowledge about code
● Code you wrote

– Reasons for its design
– How it addresses intended problems

9

Why Do Code Reviews?

Sharing knowledge about code
● Code you wrote

– Reasons for its design
– How it addresses intended problems

● Code someone else wrote

What might you give feedback on?

10

Why Do Code Reviews?

Sharing knowledge about code
● Code you wrote

– Reasons for its design
– How it addresses intended problems

● Code someone else wrote
– Correctness (does the code do what was intended?)

11

Why Do Code Reviews?

Sharing knowledge about code
● Code you wrote

– Reasons for its design
– How it addresses intended problems

● Code someone else wrote
– Correctness (does the code do what was intended?)
– Clarity

12

Why Do Code Reviews?

Sharing knowledge about code
● Code you wrote

– Reasons for its design
– How it addresses intended problems

● Code someone else wrote
– Correctness (does the code do what was intended?)
– Clarity
– Design (are there better alternatives?)

13

Why Do Code Reviews?

Sharing knowledge about code
● Code you wrote

– Reasons for its design
– How it addresses intended problems

● Code someone else wrote
– Correctness (does the code do what was intended?)
– Clarity
– Design (are there better alternatives?)
– Style (is another approach more consistent?)

14

Why Do Code Reviews?

Sharing knowledge about code
● Code you wrote

– Reasons for its design
– How it addresses intended problems

● Code someone else wrote
– Correctness (does the code do what was intended?)
– Clarity
– Design (are there better alternatives?)
– Style (is another approach more consistent?)

Code reviews build & maintain
institutional knowledge

15

How To Improve Code Reviews

● Practice

16

How To Improve Code Reviews

● Practice
● Practice

17

How To Improve Code Reviews

● Practice
● Practice
● Structure

18

How To Improve Code Reviews

● Practice
● Practice
● Structure
● Patience

19

How To Improve Code Reviews

● Practice
● Practice
● Structure
● Patience
● Learning how to do code reviews is difficult, and the

best way to improve is through practice.

20

How To Improve Code Reviews

● Practice
● Practice
● Structure
● Patience
● Learning how to do code reviews is difficult, and the

best way to improve is through practice.
● But... there are patterns & structure that help

21

What Are Code Reviews?
Many different approaches

22

What Are Code Reviews?
Many different approaches
● Passarounds-

– Developer submits code to many teammates for feedback

23

What Are Code Reviews?
Many different approaches
● Passarounds-

– Developer submits code to many teammates for feedback
● Walkthroughs-

– Developer guides the team or reviewers through changes
to explain the code and design

24

What Are Code Reviews?
Many different approaches
● Passarounds-

– Developer submits code to many teammates for feedback
● Walkthroughs-

– Developer guides the team or reviewers through changes
to explain the code and design

● Inspections-
– Reviewer (& sometimes mediator) examines the code and

focuses on core objectives (security, API, …)

25

What Are Code Reviews?
Many different approaches
● Passarounds-

– Developer submits code to many teammates for feedback
● Walkthroughs-

– Developer guides the team or reviewers through changes
to explain the code and design

● Inspections-
– Reviewer (& sometimes mediator) examines the code and

focuses on core objectives (security, API, …)
● Audits-

– Third party inspections of conformance & quality

26

What Are Code Reviews?
Many different approaches
● Passarounds-

– Developer submits code to many teammates for feedback
● Walkthroughs-

– Developer guides the team or reviewers through changes
to explain the code and design

● Inspections-
– Reviewer (& sometimes mediator) examines the code and

focuses on core objectives (security, API, …)
● Audits-

– Third party inspections of conformance & quality

Why / when might you do audits?

27

What Are Code Reviews?
Many different approaches
● Passarounds-

– Developer submits code to many teammates for feedback
● Walkthroughs-

– Developer guides the team or reviewers through changes
to explain the code and design

● Inspections-
– Reviewer (& sometimes mediator) examines the code and

focuses on core objectives (security, API, …)
● Audits-

– Third party inspections of conformance & quality

Also less formal approaches:
ad hoc reviews, pair programming, etc.

28

What Are The Outcomes?

● Depends on the approach

29

What Are The Outcomes?

● Depends on the approach
– e.g. Walkthroughs- informal feedback

30

What Are The Outcomes?

● Depends on the approach
– e.g. Walkthroughs- informal feedback
– e.g. Inspections- (Accept, accept w. change, redo)

31

What Are The Outcomes?

● Depends on the approach
– e.g. Walkthroughs- informal feedback
– e.g. Inspections- (Accept, accept w. change, redo)
– e.g. Audits- Full reports on overall quality

32

What Are The Outcomes?

● Depends on the approach
– e.g. Walkthroughs- informal feedback
– e.g. Inspections- (Accept, accept w. change, redo)
– e.g. Audits- Full reports on overall quality

From Barr's audit
of Toyota code:
http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf

http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf

33

What Are Code Reviews?

● Most often, people think of “passarounds”:
e.g. http://llvm-reviews.chandlerc.com/D3009

http://llvm-reviews.chandlerc.com/D3009

34

What Are Code Reviews?

● Most often, people think of “passarounds”:
e.g. http://llvm-reviews.chandlerc.com/D3009

● Patches with explanations & feedback with {accept,
accept w/changes, change & resubmit}

http://llvm-reviews.chandlerc.com/D3009

35

What Are Code Reviews?

● Most often, people think of “passarounds”:
e.g. http://llvm-reviews.chandlerc.com/D3009

● Patches with explanations & feedback with {accept,
accept w/changes, change & resubmit}

● More rigorous approaches (inspections,audits,...) are
more likely to find bugs

http://llvm-reviews.chandlerc.com/D3009

36

When To Review

What approaches have you used?

37

When To Review

What approaches have you used?
● Can vary with institutional process

38

When To Review

What approaches have you used?
● Can vary with institutional process
● Good approach:

– Informal review before every commit!

39

When To Review

What approaches have you used?
● Can vary with institutional process
● Good approach:

– Informal review before every commit!
● Increasingly in depth reviews as necessary

40

When To Review

What approaches have you used?
● Can vary with institutional process
● Good approach:

– Informal review before every commit!
● Increasingly in depth reviews as necessary
● Regularly scheduled walkthroughs/inspections.

Why?

41

Passarounds

Not a formal term

42

Passarounds

● Review cohesive but small changes
– No more than 400 lines of code at a time is reasonable

43

Passarounds

● Review cohesive but small changes
– No more than 400 lines of code at a time is reasonable
– Why might smaller be a problem?

44

Passarounds

● Review cohesive but small changes
– No more than 400 lines of code at a time is reasonable
– Why might smaller be a problem?
– Why might larger be a problem?

45

Passarounds

● Review cohesive but small changes
– No more than 400 lines of code at a time is reasonable
– Why might smaller be a problem?
– Why might larger be a problem?

Why might reviewing smaller
sections of code be reasonable?

46

Passarounds

● Review cohesive but small changes
– No more than 400 lines of code at a time is reasonable
– Why might smaller be a problem?
– Why might larger be a problem?

● Review in short periods – Why?!

47

Passarounds

● Review cohesive but small changes
– No more than 400 lines of code at a time is reasonable
– Why might smaller be a problem?
– Why might larger be a problem?

● Review in short periods – Why?!
– If your attention wanes, it is useless

48

Passarounds

● Review cohesive but small changes
– No more than 400 lines of code at a time is reasonable
– Why might smaller be a problem?
– Why might larger be a problem?

● Review in short periods – Why?!
– If your attention wanes, it is useless
– Fast/prompt feedback is crucial to progress

49

Walkthroughs

● Guide the team / reviewers through changes or
through the code and its design
– A middle ground of formality

50

Walkthroughs

● Guide the team / reviewers through changes or
through the code and its design
– A middle ground of formality
– Range from looking at code on a projector to discussions

in front of a whiteboard

51

Walkthroughs

● Guide the team / reviewers through changes or
through the code and its design
– A middle ground of formality
– Range from looking at code on a projector to discussions

in front of a whiteboard
● Everyone should read the code in advance to look

for issues

52

Walkthroughs

● Guide the team / reviewers through changes or
through the code and its design
– A middle ground of formality
– Range from looking at code on a projector to discussions

in front of a whiteboard
● Everyone should read the code in advance to look

for issues

Why don't we want to fix the issues now?

53

Walkthroughs

● Guide the team / reviewers through changes or
through the code and its design
– A middle ground of formality
– Range from looking at code on a projector to discussions

in front of a whiteboard
● Everyone should read the code in advance to look

for issues
● Knowledge & design decisions are explicitly

disseminated throughout the team

54

Walkthroughs

● Guide the team / reviewers through changes or
through the code and its design
– A middle ground of formality
– Range from looking at code on a projector to discussions

in front of a whiteboard
● Everyone should read the code in advance to look

for issues
● Knowledge & design decisions are explicitly

disseminated throughout the team
● Shouldn't last more than an hour

55

Inspections

● Reviewer (& sometimes mediator) examines the
code and focuses on core objectives

56

Inspections

● Reviewer (& sometimes mediator) examines the
code and focuses on core objectives

● Thorough inspections can eliminate 70-85% of bugs

57

Inspections

● Reviewer (& sometimes mediator) examines the
code and focuses on core objectives

● Thorough inspections can eliminate 70-85% of bugs
● Best with preparation & a focused checklist of

criteria

Often, these are required,
although we won't use them in our exercises

58

Inspections

● Reviewer (& sometimes mediator) examines the
code and focuses on core objectives

● Thorough inspections can eliminate 70-85% of bugs
● Best with preparation & a focused checklist of

criteria
● Driven by 4 roles:

– Moderator, Author, Reviewer, Scribe

59

Inspections

● Reviewer (& sometimes mediator) examines the
code and focuses on core objectives

● Thorough inspections can eliminate 70-85% of bugs
● Best with preparation & a focused checklist of

criteria
● Driven by 4 roles:

– Moderator, Author, Reviewer, Scribe

Keeps meeting moving.
Makes sure that reported items are acted on.

60

Inspections

● Reviewer (& sometimes mediator) examines the
code and focuses on core objectives

● Thorough inspections can eliminate 70-85% of bugs
● Best with preparation & a focused checklist of

criteria
● Driven by 4 roles:

– Moderator, Author, Reviewer, Scribe

Explains the code.
Answers questions of the Reviewer.

61

Inspections

● Reviewer (& sometimes mediator) examines the
code and focuses on core objectives

● Thorough inspections can eliminate 70-85% of bugs
● Best with preparation & a focused checklist of

criteria
● Driven by 4 roles:

– Moderator, Author, Reviewer, Scribe

Searches for issues in the code.
Prepares in advance for the inspection meeting.

62

Inspections

● Reviewer (& sometimes mediator) examines the
code and focuses on core objectives

● Thorough inspections can eliminate 70-85% of bugs
● Best with preparation & a focused checklist of

criteria
● Driven by 4 roles:

– Moderator, Author, Reviewer, Scribe

Records the issues and proposed actions.

63

Inspection

● Planning

Author Moderator

code

64

Inspection

● Planning

Author Moderator

code

Reviewer

code
checklist
schedule
priorities

65

Inspection

● Planning

● Overview? → A risky option
Author Moderator

code

Reviewer

code
checklist
schedule
priorities

66

Inspection

● Planning

● Overview? → A risky option
● Preparation

Author Moderator

code

Reviewer

code
checklist
schedule
priorities

Reviewer

Code

67

Inspection

● Planning

● Overview? → A risky option
● Preparation

Author Moderator

code

Reviewer

code
checklist
schedule
priorities

Reviewer

Codechecklist
priorities

68

Inspection

● Inspection Meeting
– Moderator selects a nonauthor to lead through and

explain each line & all logic in the code
– Scribe records all errors

69

Inspection

● Inspection Meeting
– Moderator selects a nonauthor to lead through and

explain each line & all logic in the code
– Scribe records all errors
– Discussion of an error stops once it is detected

Why isn't it fixed?

70

Inspection

● Inspection Meeting
– Moderator selects a nonauthor to lead through and

explain each line & all logic in the code
– Scribe records all errors
– Discussion of an error stops once it is detected

● Report
– Each defect along with checklist violation & severity is

disseminated

71

Inspection

● Inspection Meeting
– Moderator selects a nonauthor to lead through and

explain each line & all logic in the code
– Scribe records all errors
– Discussion of an error stops once it is detected

● Report
– Each defect along with checklist violation & severity is

disseminated
● Fixing & Followups

– Fixes are assigned & ensured by the moderator

72

Ego

● Code reviews are socially troublesome in the same
way as bug reporting

73

Ego

● Code reviews are socially troublesome in the same
way as bug reporting

● Effective reviews must be egoless

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

