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Recall Unit Tests

● We started off the semester by talking about testing
– Input to drive a behavior
– An oracle to check a behavior

● Testing samples the concrete behaviors of the program
– Analyzing equivalence classes
– Program analysis can find richer bugs over a test suite
– Fuzzing can proactively explore the input space but faces hurdles

● Formal reasoning and program analysis can also make each test
cover more behavior

● Property based testing
– Define tests over invariant properties or specifications
– Sample constructively from the input space to explore & find bugs

You can already see how it relates to
fuzzing & symbolic execution!
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Abstracting Unit Tests

● A scenario could be concrete or abstract

● For an abstract test case, we can
– Generate test cases
– Consult the oracle

● The emphasis is on defining (1) the scenario & (2) the oracle

● And we can use test generation strategies that we have already seen!
– random testing
– symbolic execution

TEST(testCaseName, testName) {
  // Set up scenario
  // Run scenario on component
  // Check oracle
}

x = 5 ∀x : x > 0
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Property Based Testing

● This forms the motivation of property based testing
– The testing process focuses on functional properties

and generating many tests for them

● The exact definition is still evolving
– First developed with QuickCheck for Haskell in 2000
– Focus was on generating many random tests from rich type information
– Test case reduction was also automatically applied
– Now includes symbolic execution as a means of generation
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Property Based Testing

● Traditional testing can be seen as example based

● Property testing focuses on generic properties that should hold

● For random sampling, generators provide ways to sample complex types
– Property testing tools can provide libraries to help define input spaces
– Some domains may require substantial initial effort (similar to fuzzing)

● Because the process is so specification focused,
it can also help developers understand the intent of their own code

x = 5

∀x : x > 0∀x , y, z: φ(x,y,z) -> ψ(x, y, z)
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Defining Common Properties

● There are common patterns that we saw before with fuzzing:
– Symmetry
– Alternatives
– Induction
– Idempotence
– Invariants

encode(decode(x)) == x

bubblesort(x) == qsort(x)

car(cons(head,tail)) == head

qsort(qsort(x)) == qsort(x)

qsort(x).size() == x.size()
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Digging Deeper

● What are good properties to check for a sorting function?

● What if we have a sort over only one field?

● The actual properties to check can be more subtle than they appear!

def sort(x):
    ...
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Common Benefits

● Tests have a clear mathematical presentation

● The testing process moves from examples to the entire input space
– You do not need to write every case for each property
– The testing process is thus more goal oriented & value driven

● Can actually decrease maintenance costs with the same (or 
sometimes greater) coverage
– What happens if you change an API with normal unit tests?
– What happens with property based tests?

● Failing test cases even have test case reduction applied
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In Practice: Hypothesis

● Many generators are built in

● Complex input spaces can require custom generators as mentioned

● A rich set of primitives is available for more complex generator needs

@composite
def distinct_strings_with_common_characters(draw):
  x = draw(text(), min_size=1)
  y = draw(text(alphabet=x))
  assume(x != y)
  return (x, y)
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In Practice: DeepState

● DeepState [https://github.com/trailofbits/deepstate]
– C and C++ focused
– API is compatible with GoogleTest
– Symbolic execution tries to automatically extract inputs
TEST(PrimePolynomial, OnlyGeneratesPrimes_NoStreaming) {
  symbolic_unsigned x, y, z;
  DeepState_Assume(x > 0);
  unsigned poly = (x * x) + x + 41;
  DeepState_Assume(y > 1);
  DeepState_Assume(z > 1);
  DeepState_Assume(y < poly);
  DeepState_Assume(z < poly);
  DeepState_Assert(poly != (y * z));
  DeepState_Assert(IsPrime(Pump(poly)));
}

https://github.com/trailofbits/deepstate
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Summary

● Property based testing combines test generation & unit tests

● By focusing more on goals rather than examples,
it can have benefits even outside of testing

● Adoption can still require effort in defining good generators
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