
CMPT 473
Software Testing, Reliability and Security

Nick Sumner
wsumner@sfu.ca

Property Based Testing

Recall Unit Tests

● We started off the semester by talking about testing
– Input to drive a behavior
– An oracle to check a behavior

Recall Unit Tests

● We started off the semester by talking about testing
– Input to drive a behavior
– An oracle to check a behavior

Recall Unit Tests

● We started off the semester by talking about testing
– Input to drive a behavior
– An oracle to check a behavior

● Testing samples the concrete behaviors of the program

Recall Unit Tests

● We started off the semester by talking about testing
– Input to drive a behavior
– An oracle to check a behavior

● Testing samples the concrete behaviors of the program
– Analyzing equivalence classes

Recall Unit Tests

● We started off the semester by talking about testing
– Input to drive a behavior
– An oracle to check a behavior

● Testing samples the concrete behaviors of the program
– Analyzing equivalence classes
– Program analysis can find richer bugs over a test suite

Recall Unit Tests

● We started off the semester by talking about testing
– Input to drive a behavior
– An oracle to check a behavior

● Testing samples the concrete behaviors of the program
– Analyzing equivalence classes
– Program analysis can find richer bugs over a test suite
– Fuzzing can proactively explore the input space but faces hurdles

Recall Unit Tests

● We started off the semester by talking about testing
– Input to drive a behavior
– An oracle to check a behavior

● Testing samples the concrete behaviors of the program
– Analyzing equivalence classes
– Program analysis can find richer bugs over a test suite
– Fuzzing can proactively explore the input space but faces hurdles

● Formal reasoning and program analysis can also make each test
cover more behavior

Recall Unit Tests

● We started off the semester by talking about testing
– Input to drive a behavior
– An oracle to check a behavior

● Testing samples the concrete behaviors of the program
– Analyzing equivalence classes
– Program analysis can find richer bugs over a test suite
– Fuzzing can proactively explore the input space but faces hurdles

● Formal reasoning and program analysis can also make each test
cover more behavior

● Property based testing
– Define tests over invariant properties or specifications
– Sample constructively from the input space to explore & find bugs

Recall Unit Tests

● We started off the semester by talking about testing
– Input to drive a behavior
– An oracle to check a behavior

● Testing samples the concrete behaviors of the program
– Analyzing equivalence classes
– Program analysis can find richer bugs over a test suite
– Fuzzing can proactively explore the input space but faces hurdles

● Formal reasoning and program analysis can also make each test
cover more behavior

● Property based testing
– Define tests over invariant properties or specifications
– Sample constructively from the input space to explore & find bugs

You can already see how it relates to
fuzzing & symbolic execution!

Abstracting Unit Tests
TEST(testCaseName, testName) {
 // Set up scenario
 // Run scenario on component
 // Check oracle
}

Abstracting Unit Tests

● A scenario could be concrete or abstract

TEST(testCaseName, testName) {
 // Set up scenario
 // Run scenario on component
 // Check oracle
}

Abstracting Unit Tests

● A scenario could be concrete or abstract

TEST(testCaseName, testName) {
 // Set up scenario
 // Run scenario on component
 // Check oracle
}

x = 5 ∀x : x > 0

Abstracting Unit Tests

● A scenario could be concrete or abstract

● For an abstract test case, we can
– Generate test cases
– Consult the oracle

TEST(testCaseName, testName) {
 // Set up scenario
 // Run scenario on component
 // Check oracle
}

x = 5 ∀x : x > 0

Abstracting Unit Tests

● A scenario could be concrete or abstract

● For an abstract test case, we can
– Generate test cases
– Consult the oracle

● The emphasis is on defining (1) the scenario & (2) the oracle

TEST(testCaseName, testName) {
 // Set up scenario
 // Run scenario on component
 // Check oracle
}

x = 5 ∀x : x > 0

Abstracting Unit Tests

● A scenario could be concrete or abstract

● For an abstract test case, we can
– Generate test cases
– Consult the oracle

● The emphasis is on defining (1) the scenario & (2) the oracle

● And we can use test generation strategies that we have already seen!
– random testing
– symbolic execution

TEST(testCaseName, testName) {
 // Set up scenario
 // Run scenario on component
 // Check oracle
}

x = 5 ∀x : x > 0

Property Based Testing

● This forms the motivation of property based testing
– The testing process focuses on functional properties

and generating many tests for them

Property Based Testing

● This forms the motivation of property based testing
– The testing process focuses on functional properties

and generating many tests for them

● The exact definition is still evolving
– First developed with QuickCheck for Haskell in 2000
– Focus was on generating many random tests from rich type information

Property Based Testing

● This forms the motivation of property based testing
– The testing process focuses on functional properties

and generating many tests for them

● The exact definition is still evolving
– First developed with QuickCheck for Haskell in 2000
– Focus was on generating many random tests from rich type information
– Test case reduction was also automatically applied

Property Based Testing

● This forms the motivation of property based testing
– The testing process focuses on functional properties

and generating many tests for them

● The exact definition is still evolving
– First developed with QuickCheck for Haskell in 2000
– Focus was on generating many random tests from rich type information
– Test case reduction was also automatically applied
– Now includes symbolic execution as a means of generation

Property Based Testing

● Traditional testing can be seen as example based

● Property testing focuses on generic properties that should hold
x = 5

∀x : x > 0∀x , y, z: φ(x,y,z) -> ψ(x, y, z)

Property Based Testing

● Traditional testing can be seen as example based

● Property testing focuses on generic properties that should hold

● For random sampling, generators provide ways to sample complex types
– Property testing tools can provide libraries to help define input spaces
– Some domains may require substantial initial effort (similar to fuzzing)

x = 5

∀x : x > 0∀x , y, z: φ(x,y,z) -> ψ(x, y, z)

Property Based Testing

● Traditional testing can be seen as example based

● Property testing focuses on generic properties that should hold

● For random sampling, generators provide ways to sample complex types
– Property testing tools can provide libraries to help define input spaces
– Some domains may require substantial initial effort (similar to fuzzing)

● Because the process is so specification focused,
it can also help developers understand the intent of their own code

x = 5

∀x : x > 0∀x , y, z: φ(x,y,z) -> ψ(x, y, z)

Defining Common Properties

● There are common patterns that we saw before with fuzzing:

Defining Common Properties

● There are common patterns that we saw before with fuzzing:
– Symmetry encode(decode(x)) == x

Defining Common Properties

● There are common patterns that we saw before with fuzzing:
– Symmetry
– Alternatives

encode(decode(x)) == x

bubblesort(x) == qsort(x)

Defining Common Properties

● There are common patterns that we saw before with fuzzing:
– Symmetry
– Alternatives
– Induction

encode(decode(x)) == x

bubblesort(x) == qsort(x)

car(cons(head,tail)) == head

Defining Common Properties

● There are common patterns that we saw before with fuzzing:
– Symmetry
– Alternatives
– Induction
– Idempotence

encode(decode(x)) == x

bubblesort(x) == qsort(x)

car(cons(head,tail)) == head

qsort(qsort(x)) == qsort(x)

Defining Common Properties

● There are common patterns that we saw before with fuzzing:
– Symmetry
– Alternatives
– Induction
– Idempotence
– Invariants

encode(decode(x)) == x

bubblesort(x) == qsort(x)

car(cons(head,tail)) == head

qsort(qsort(x)) == qsort(x)

qsort(x).size() == x.size()

Digging Deeper

● What are good properties to check for a sorting function?
def sort(x):
 ...

Digging Deeper

● What are good properties to check for a sorting function?

● What if we have a sort over only one field?

● The actual properties to check can be more subtle than they appear!

def sort(x):
 ...

Common Benefits

● Tests have a clear mathematical presentation

Common Benefits

● Tests have a clear mathematical presentation

● The testing process moves from examples to the entire input space
– You do not need to write every case for each property
– The testing process is thus more goal oriented & value driven

Common Benefits

● Tests have a clear mathematical presentation

● The testing process moves from examples to the entire input space
– You do not need to write every case for each property
– The testing process is thus more goal oriented & value driven

● Can actually decrease maintenance costs with the same (or
sometimes greater) coverage
– What happens if you change an API with normal unit tests?
– What happens with property based tests?

Common Benefits

● Tests have a clear mathematical presentation

● The testing process moves from examples to the entire input space
– You do not need to write every case for each property
– The testing process is thus more goal oriented & value driven

● Can actually decrease maintenance costs with the same (or
sometimes greater) coverage
– What happens if you change an API with normal unit tests?
– What happens with property based tests?

● Failing test cases even have test case reduction applied

In Practice: Hypothesis

● Hypothesis [https://hypothesis.works/]
– Python, Java, ...
– Presently uses random testing
– Enables convenient generators for constructing data

https://hypothesis.works/

In Practice: Hypothesis

● Hypothesis [https://hypothesis.works/]
– Python, Java, ...
– Presently uses random testing
– Enables convenient generators for constructing data

from hypothesis import given
from hypothesis.strategies import text

@given(text())
@example('')
def test_decode_inverts_encode(s):
 assert decode(encode(s)) == s

https://hypothesis.works/

In Practice: Hypothesis

● Hypothesis [https://hypothesis.works/]
– Python, Java, ...
– Presently uses random testing
– Enables convenient generators for constructing data

from hypothesis import given
from hypothesis.strategies import text

@given(text())
@example('')
def test_decode_inverts_encode(s):
 assert decode(encode(s)) == s

https://hypothesis.works/

In Practice: Hypothesis

● Hypothesis [https://hypothesis.works/]
– Python, Java, ...
– Presently uses random testing
– Enables convenient generators for constructing data

from hypothesis import given
from hypothesis.strategies import text

@given(text())
@example('')
def test_decode_inverts_encode(s):
 assert decode(encode(s)) == s

https://hypothesis.works/

In Practice: Hypothesis

● Hypothesis [https://hypothesis.works/]
– Python, Java, ...
– Presently uses random testing
– Enables convenient generators for constructing data

from hypothesis import given
from hypothesis.strategies import text

@given(text())
@example('')
def test_decode_inverts_encode(s):
 assert decode(encode(s)) == s

https://hypothesis.works/

In Practice: Hypothesis

● Many generators are built in

● Complex input spaces can require custom generators as mentioned

In Practice: Hypothesis

● Many generators are built in

● Complex input spaces can require custom generators as mentioned

● A rich set of primitives is available for more complex generator needs

@composite
def distinct_strings_with_common_characters(draw):
 x = draw(text(), min_size=1)
 y = draw(text(alphabet=x))
 assume(x != y)
 return (x, y)

In Practice: DeepState

● DeepState [https://github.com/trailofbits/deepstate]
– C and C++ focused
– API is compatible with GoogleTest
– Symbolic execution tries to automatically extract inputs

https://github.com/trailofbits/deepstate

In Practice: DeepState

● DeepState [https://github.com/trailofbits/deepstate]
– C and C++ focused
– API is compatible with GoogleTest
– Symbolic execution tries to automatically extract inputs
TEST(PrimePolynomial, OnlyGeneratesPrimes_NoStreaming) {
 symbolic_unsigned x, y, z;
 DeepState_Assume(x > 0);
 unsigned poly = (x * x) + x + 41;
 DeepState_Assume(y > 1);
 DeepState_Assume(z > 1);
 DeepState_Assume(y < poly);
 DeepState_Assume(z < poly);
 DeepState_Assert(poly != (y * z));
 DeepState_Assert(IsPrime(Pump(poly)));
}

https://github.com/trailofbits/deepstate

Summary

● Property based testing combines test generation & unit tests

Summary

● Property based testing combines test generation & unit tests

● By focusing more on goals rather than examples,
it can have benefits even outside of testing

Summary

● Property based testing combines test generation & unit tests

● By focusing more on goals rather than examples,
it can have benefits even outside of testing

● Adoption can still require effort in defining good generators

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

