
Security

CMPT 473
Software Testing, Reliability and Security

Nick Sumner



  

Security in General

● Security
– Maintaining desired properties in the the presence of 

adversaries



  

Security in General

● Security
– Maintaining desired properties in the the presence of 

adversaries

So what are the desired 
properties?



  

Security in General

● Security
– Maintaining desired properties in the the presence of 

adversaries

● CIA Model – classic security properties



  

Security in General

● Security
– Maintaining desired properties in the the presence of 

adversaries

● CIA Model – classic security properties
– Confidentiality

● Information is only disclosed to those authorized to 
know it



  

Security in General

● Security
– Maintaining desired properties in the the presence of 

adversaries

● CIA Model – classic security properties
– Confidentiality

– Integrity
● Only modify information in allowed ways by 

authorized parties



  

Security in General

● Security
– Maintaining desired properties in the the presence of 

adversaries

● CIA Model – classic security properties
– Confidentiality

– Integrity
● Only modify information in allowed ways by 

authorized parties
● Do what is expected



  

Security in General

● Security
– Maintaining desired properties in the the presence of 

adversaries

● CIA Model – classic security properties
– Confidentiality

– Integrity

– Availability
● Those authorized for access are not prevented from it



  

Security in Software

● Bugs in software can lead to policy violations
– Information leaks (C)



  

Security in Software

● Bugs in software can lead to policy violations
– Information leaks (C)

– Data Corruption (I)



  

Security in Software

● Bugs in software can lead to policy violations
– Information leaks (C)

– Data Corruption (I)

– Denial of service (A)



  

Security in Software

● Bugs in software can lead to policy violations
– Information leaks (C)

– Data Corruption (I)

– Denial of service (A)

– Remote execution – (CIA) arbitrarily bad!



  

Security in Software

● Bugs in software can lead to policy violations

● Bugs make software vulnerable to attack



  

Security in Software

● Bugs in software can lead to policy violations

● Bugs make software vulnerable to attack
– XSS

– SQL Injection

– Buffer overflow

– Path replacement

– Integer overflow

– Race conditions (TOCTOU – Time of Check to Time of Use)

– Unsanitized format strings

– ... All create attack vectors
for a malicious adversary



15

Why Is This Special?

Poor security comes from unintended behavior.

→ Quality software shouldn't allow such actions anyway.



16

Why Is This Special?

Poor security comes from unintended behavior.

→ Quality software shouldn't allow such actions anyway.

● While our testing techniques so far find some 
security issues, many slip through! Why?



17

Why Is This Special?

Poor security comes from unintended behavior.

→ Quality software shouldn't allow such actions anyway.

● While our testing techniques so far find some 
security issues, many slip through! Why?
– We cannot test everything



18

Why Is This Special?

Poor security comes from unintended behavior.

→ Quality software shouldn't allow such actions anyway.

● While our testing techniques so far find some 
security issues, many slip through! Why?
– We cannot test everything
– Concessions form part of an attack surface

● Networks, Software, People



19

Why Is This Special?

Poor security comes from unintended behavior.

→ Quality software shouldn't allow such actions anyway.

● While our testing techniques so far find some 
security issues, many slip through! Why?
– We cannot test everything
– Concessions form part of an attack surface

● Networks, Software, People

● Need additional policies & testing methods that 
specifically address security



20

What Could Possible Go Wrong?

● Many ways to attack different programs

● MITRE groups the most common into:



21

What Could Possible Go Wrong?

● Many ways to attack different programs

● MITRE groups the most common into:
– Insecure Interaction

● Data sent between components in an insecure fashion



22

What Could Possible Go Wrong?

● Many ways to attack different programs

● MITRE groups the most common into:
– Insecure Interaction

● Data sent between components in an insecure fashion

– Risky Resource Management
● Bad creation, use, transfer, & destruction of resources



23

What Could Possible Go Wrong?

● Many ways to attack different programs

● MITRE groups the most common into:
– Insecure Interaction

● Data sent between components in an insecure fashion

– Risky Resource Management
● Bad creation, use, transfer, & destruction of resources

– Porous Defenses
● Standard security practices that are missing or incorrect

[http://cwe.mitre.org/top25/#Categories]

http://cwe.mitre.org/top25/#Categories


  

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

http://www.pl-enthusiast.net/2014/07/21/memory-safety/


  

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

● Provide common attack patterns [Eternal War in Memory]

http://www.pl-enthusiast.net/2014/07/21/memory-safety/
https://www.cs.berkeley.edu/~dawnsong/papers/Oakland13-SoK-CR.pdf


  

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

● Provide common attack patterns [Eternal War in Memory]

Read or 
Write

Dangling or 
OOB *

Dangling or
OOB *

http://www.pl-enthusiast.net/2014/07/21/memory-safety/
https://www.cs.berkeley.edu/~dawnsong/papers/Oakland13-SoK-CR.pdf


  

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

● Provide common attack patterns [Eternal War in Memory]

Read or 
Write

Δ Data *

Dangling or 
OOB *

Dangling or
OOB *

http://www.pl-enthusiast.net/2014/07/21/memory-safety/
https://www.cs.berkeley.edu/~dawnsong/papers/Oakland13-SoK-CR.pdf


  

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

● Provide common attack patterns [Eternal War in Memory]

Δ Data *

Code
Corruption

Δ Code

Dangling or 
OOB *

Dangling or
OOB *

Read or 
Write

http://www.pl-enthusiast.net/2014/07/21/memory-safety/
https://www.cs.berkeley.edu/~dawnsong/papers/Oakland13-SoK-CR.pdf


  

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

● Provide common attack patterns [Eternal War in Memory]

Δ Data * Δ Code

Code
Corruption

Read or 
Write

Δ Code *

Dangling or 
OOB *

Dangling or
OOB *

Control Flow
Hijack

Use * in
call/jmp/ret

http://www.pl-enthusiast.net/2014/07/21/memory-safety/
https://www.cs.berkeley.edu/~dawnsong/papers/Oakland13-SoK-CR.pdf


  

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

● Provide common attack patterns [Eternal War in Memory]

Δ Data * Δ Code Δ Code *

Code
Corruption

Control Flow
Hijack

Use * in
call/jmp/ret

Read or 
Write

Δ Data

Dangling or 
OOB *

Dangling or
OOB *

Data Only
Attack

Use
Data

http://www.pl-enthusiast.net/2014/07/21/memory-safety/
https://www.cs.berkeley.edu/~dawnsong/papers/Oakland13-SoK-CR.pdf


  

Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

● Provide common attack patterns [Eternal War in Memory]

Δ Data * Δ Code Δ Code * Δ Data

Code
Corruption

Control Flow
Hijack

Data Only
Attack

Use
Data

Use * in
call/jmp/ret

Read or 
Write

Output
Data

Dangling or 
OOB *

Dangling or
OOB *

Info
Leak

http://www.pl-enthusiast.net/2014/07/21/memory-safety/
https://www.cs.berkeley.edu/~dawnsong/papers/Oakland13-SoK-CR.pdf


  

Code Corruption

● How can we prevent this?

def foo():
  # original code
  ...

def foo():
  # malicious code
  ...



  

Code Corruption

● How can we prevent this?

● What problems does this solution create?

def foo():
  # original code
  ...

def foo():
  # malicious code
  ...



  

Control Flow Hijacking

void foo(char *input) {
  unsigned secureData;
  char buffer[16]; 
  strcpy(buffer, input);
}

How many of you recall what a stack frame looks like?



  

Data Only Attacks

0x000

0xFFF

A
d

d
re

ss
es

Stack… void foo(char *input) {
  unsigned secureData;
  char buffer[16]; 
  strcpy(buffer, input);
}

Previous Frame



  

Data Only Attacks

0x000

0xFFF

A
d

d
re

ss
es

Previous Frame

Stack…

St
ac

k 
G

ro
w

th

void foo(char *input) {
  unsigned secureData;
  char buffer[16]; 
  strcpy(buffer, input);
}



  

Data Only Attacks

0x000

0xFFF

A
d

d
re

ss
es

Previous Frame

Stack…

Return Address

Old Frame Ptr
St

ac
k 

G
ro

w
th

secureData

buffer[15]

buffer[14]

...

buffer[0]

Stack frame for foo

void foo(char *input) {
  unsigned secureData;
  char buffer[16]; 
  strcpy(buffer, input);
}



  

Data Only Attacks

0x000

0xFFF

A
d

d
re

ss
es

Previous Frame

Stack…

Return Address

Old Frame Ptr
St

ac
k 

G
ro

w
th

buffer[15]

buffer[14]

...

buffer[0]

void foo(char *input) {
  unsigned secureData;
  char buffer[16]; 
  strcpy(buffer, input);
}

secureData



  

Data Only Attacks

0x000

0xFFF

A
d

d
re

ss
es

Previous Frame

Stack…

Return Address

Old Frame Ptr
St

ac
k 

G
ro

w
th

secureData

buffer[15]

buffer[14]

...

buffer[0]

void foo(char *input) {
  unsigned secureData;
  char buffer[16]; 
  strcpy(buffer, input);
}

What can go wrong?



  

Data Only Attacks

0x000

0xFFF

A
d

d
re

ss
es

Previous Frame

Stack…

Return Address

Old Frame Ptr
St

ac
k 

G
ro

w
th

secureData

buffer[15]

buffer[14]

...

buffer[0]

void foo(char *input) {
  unsigned secureData;
  char buffer[16]; 
  strcpy(buffer, input);
}

input = “normal input”
               + “insecureData”



  

Data Only Attacks

0x000

0xFFF

A
d

d
re

ss
es

Previous Frame

Stack…

Return Address

Old Frame Ptr
St

ac
k 

G
ro

w
th

secureData

buffer[15]

buffer[14]

...

buffer[0]

void foo(char *input) {
  unsigned secureData;
  char buffer[16]; 
  strcpy(buffer, input);
}

input = “normal input”
               + “insecureData”

buffer overflow attack



  

Data Only Attacks

0x000

0xFFF

A
d

d
re

ss
es

Previous Frame

Stack…

Return Address

Old Frame Ptr
St

ac
k 

G
ro

w
th

secureData

buffer[15]

buffer[14]

...

buffer[0]

void foo(char *input) {
  unsigned secureData;
  char buffer[16]; 
  strcpy(buffer, input);
}

input = “normal input”
               + “insecureData”

The integrity of the
secure data is corrupted.



  

Control Flow Hijacking

0x000

0xFFF

A
d

d
re

ss
es

Previous Frame

Stack…

Old Frame Ptr
St

ac
k 

G
ro

w
th

secureData

buffer[15]

buffer[14]

...

buffer[0]

void foo(char *input) {
  unsigned secureData;
  char buffer[16]; 
  strcpy(buffer, input);
}

Return Address



  

Control Flow Hijacking

0x000

0xFFF

A
d

d
re

ss
es

Previous Frame

Stack…

Return Address

Old Frame Ptr
St

ac
k 

G
ro

w
th

secureData

buffer[15]

buffer[14]

...

buffer[0]

void foo(char *input) {
  unsigned secureData;
  char buffer[16]; 
  strcpy(buffer, input);
}

input = “input”
               + “payload address”
               + “payload (shell code)”



  

Control Flow Hijacking

0x000

0xFFF

A
d

d
re

ss
es

Stack…

Old Frame Ptr
St

ac
k 

G
ro

w
th

secureData

buffer[15]

buffer[14]

...

buffer[0]

void foo(char *input) {
  unsigned secureData;
  char buffer[16]; 
  strcpy(buffer, input);
}

input = “input”
               + “payload address”
               + “payload (shell code)”

On return, we'll execute 
the shell code

Return Address

Previous Frame



  

Control Flow Hijacking

● How can we prevent this basic approach?
– Stack Canaries



  

Control Flow Hijacking

● How can we prevent this basic approach?
– Stack Canaries

Previous Frame

Return Address

Old Frame Ptr

secureData

buffer[15]

buffer[14]

...

buffer[0]



  

Control Flow Hijacking

● How can we prevent this basic approach?
– Stack Canaries

Previous Frame

Return Address

Old Frame Ptr

secureData

buffer[15]

buffer[14]

...

buffer[0]

Previous Frame

Return Address

Old Frame Ptr

secureData

buffer[15]

buffer[14]

...

buffer[0]

Canary



  

Control Flow Hijacking

● How can we prevent this basic approach?
– Stack Canaries

Previous Frame

Return Address

Old Frame Ptr

secureData

buffer[15]

buffer[14]

...

buffer[0]

Previous Frame

Return Address

Old Frame Ptr

secureData

buffer[15]

buffer[14]

...

buffer[0]

Canary



  

Control Flow Hijacking

● How can we prevent this basic approach?
– Stack Canaries

Previous Frame

Return Address

Old Frame Ptr

secureData

buffer[15]

buffer[14]

...

buffer[0]

Previous Frame

Return Address

Old Frame Ptr

secureData

buffer[15]

buffer[14]

...

buffer[0]

Canary

Abort because 
canary changed!



  

Control Flow Hijacking

● How can we prevent this basic approach?
– Stack Canaries

– DEP – Data Execution Prevention / W X⊕



  

Control Flow Hijacking

● How can we prevent this basic approach?
– Stack Canaries

– DEP – Data Execution Prevention / W X⊕
Previous Frame

Return Address

Old Frame Ptr

secureData

buffer[15]

buffer[14]

...

buffer[0]

Canary

shell code:



  

Control Flow Hijacking

● How can we prevent this basic approach?
– Stack Canaries

– DEP – Data Execution Prevention / W X⊕
Previous Frame

Return Address

Old Frame Ptr

secureData

buffer[15]

buffer[14]

...

buffer[0]

Canary

shell code:

Abort because 
W but not X



  

Control Flow Hijacking

● How can we prevent this basic approach?
– Stack Canaries

– DEP – Data Execution Prevention / W X⊕

But these are still 
easily bypassed!



  

Return to libc Attacks

● Reuse existing code to bypass W X ⊕



  

Return to libc Attacks

● Reuse existing code to bypass W X ⊕
Previous Frame

Return Address

Old Frame Ptr

secureData

buffer[15]

buffer[14]

...

buffer[0]

Fake Argument

Ptr To Function

Old Frame Ptr

secureData

buffer[15]

buffer[14]

...

buffer[0]

system()

“/usr/bin/minesweeper”



  

Return to libc Attacks

● Reuse existing code to bypass W X ⊕
Previous Frame

Return Address

Old Frame Ptr

secureData

buffer[15]

buffer[14]

...

buffer[0]

Fake Argument

Ptr To Function

Old Frame Ptr

secureData

buffer[15]

buffer[14]

...

buffer[0]

system()

“/usr/bin/minesweeper”

Even construct new 
functions piece by piece!



  

Return to libc Attacks

● Reuse existing code to bypass W X ⊕
● Return Oriented Programming

– Build new functionality from pieces of existing functions



  

Return to libc Attacks

● Reuse existing code to bypass W X ⊕
● Return Oriented Programming

– Build new functionality from pieces of existing functions
void a() {
  ...
  ...
  ...
  ...
  ...
  ...
  ...
  ...
}
void b() {
  ...
  ...
  ...
  ...
  ...
  ...
}

...
Ptr To Gadget

...

...

...

...

...

void c() {
  ...
  ...
  ...
  ...
  ...
  ...
  ...
  ...
}
void d() {
  ...
  ...
  ...
  ...
  ...
  ...
}

void e() {
  ...
  ...
  ...
  ...
  ...
  ...
  ...
  ...
}
void f() {
  ...
  ...
  ...
  ...
  ...
  ...
}

void g() {
  ...
  ...
  ...
  ...
  ...
  ...
  ...
  ...
}
void h() {
  ...
  ...
  ...
  ...
  ...
  ...
}



  

ASLR

● Address Space Layout Randomization
– You can't use it if you can't find it!

Stack

Heap

LibC

Program

NCurses Stack

Heap

LibC

Program

NCurses

Run 1 Run 2



  

ASLR

● Address Space Layout Randomization
– You can't use it if you can't find it!

But even this is 
“easily” broken

Stack

Heap

LibC

Program

NCurses Stack

Heap

LibC

Program

NCurses

Run 1 Run 2



  

Control Flow Integrity

● Restrict indirect control flow to needed targets
– Jmp */call */ret

foo = ...

foo();



  

Control Flow Integrity

● Restrict indirect control flow to needed targets
– Jmp */call */ret

foo = ...
if foo not in [...] abort()
foo();

void a() {
  ...
  ...
  ...
  ...
  ...
  ...
  ...
  ...
}
void b() {
  ...
  ...
  ...
  ...
  ...
  ...
}

...
Ptr To Gadget

...

...

...

...

...



  

Control Flow Integrity

● Restrict indirect control flow to needed targets
– Jmp */call */ret

foo = ...
if foo not in [...] abort()
foo();

void a() {
  ...
  ...
  ...
  ...
  ...
  ...
  ...
  ...
}
void b() {
  ...
  ...
  ...
  ...
  ...
  ...
}

...
Ptr To Gadget

...

...

...

...

...

clang -flto -fsanitize=cfi -fsanitize=safe-stack

clang -fsanitize=safe-stack



65

Memory Safety

● Vulnerabilities come from reading/writing/freeing
– Out of bounds pointers

– Dangling pointers



66

Memory Safety

● Vulnerabilities come from reading/writing/freeing
– Out of bounds pointers

– Dangling pointers

● Why doesn't Java face this issue?



67

Memory Safety

● Vulnerabilities come from reading/writing/freeing
– Out of bounds pointers

– Dangling pointers

● Why doesn't Java face this issue?

● Is this intrinsic to languages like C++?
– Why/Why not?



68

Memory Safety

● Vulnerabilities come from reading/writing/freeing
– Out of bounds pointers

– Dangling pointers

● Why doesn't Java face this issue?

● Is this intrinsic to languages like C++?
– Why/Why not?

● Are these still a real issue?



69

Memory Safety

● Vulnerabilities come from reading/writing/freeing
– Out of bounds pointers

– Dangling pointers

● Why doesn't Java face this issue?

● Is this intrinsic to languages like C++?
– Why/Why not?

● Are these still a real issue?
– http://www.symantec.com/security_response/vulnerability.jsp?bid=70332

– http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0015

– http://seclists.org/oss-sec/2016/q1/645

– …

http://www.symantec.com/security_response/vulnerability.jsp?bid=70332
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0015
http://seclists.org/oss-sec/2016/q1/645


70

Root Causes Over Time

[Matt Miller – BlueHat 2019]

https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf


71

Another Case: SQL Injection

SQL – a query language for databases

● Queries like:
“SELECT grade,id FROM students 
 WHERE name=” + username;



72

Another Case: SQL Injection

SQL – a query language for databases

● Queries like:
“SELECT grade,id FROM students 
 WHERE name=” + username;

ID Name Grade

0 Alice 92

1 Bob 87

2 Mallory 75



73

Another Case: SQL Injection

SQL – a query language for databases

● Queries like:
“SELECT grade,id FROM students 
 WHERE name=” + username;

● Values for name, grade often come from user input.

ID Name Grade

0 Alice 92

1 Bob 87

2 Mallory 75



74

Another Case: SQL Injection

SQL – a query language for databases

● Queries like:
“SELECT grade,id FROM students 
 WHERE name=” + username;

● Values for name, grade often come from user input.

ID Name Grade

0 Alice 92

1 Bob 87

2 Mallory 75

Why is this a problem?



75

Another Case: SQL Injection

username = “'bob'; DROP TABLE students”

● What happens?



76

SQL Injection

[http://xkcd.com/327/] [http://bobby-tables.com/]

● The user may include commands in their input!

http://xkcd.com/327/
http://bobby-tables.com/


77

SQL Injection

[http://xkcd.com/327/] [http://bobby-tables.com/]

● The user may include commands in their input!

● Need to sanitize the input before use

http://xkcd.com/327/
http://bobby-tables.com/


78

SQL Injection

[http://xkcd.com/327/] [http://bobby-tables.com/]

● The user may include commands in their input!

● Need to sanitize the input before use

How would you prevent this problem?

http://xkcd.com/327/
http://bobby-tables.com/


79

SQL Injection

● Do not write raw SQL. (examples from bobby-tables.com)



80

SQL Injection

● Do not write raw SQL. (examples from bobby-tables.com)

– Sanitizing APIs



81

SQL Injection

● Do not write raw SQL. (examples from bobby-tables.com)

– Sanitizing APIs

List<Person>; people = //user input
Connection connection = DriverManager.getConnection(...);
connection.setAutoCommit(false);
try {
    PreparedStatement statement = connection.prepareStatement(
            "UPDATE people SET lastName = ?, age = ? WHERE id = ?");
    for (Person person : people){
        statement.setString(1, person.getLastName());
        statement.setInt(2, person.getAge());
        statement.setInt(3, person.getId());
        statement.execute();
    }
    connection.commit();
} catch (SQLException e) {
    connection.rollback();
}



82

SQL Injection

● Do not write raw SQL. (examples from bobby-tables.com)

– Sanitizing APIs

EntityManager em = getEntityManager();
Query query = em.createNativeQuery("SELECT E.* from EMP E, ADDRESS A
                                                                      WHERE E.EMP_ID = A.EMP_ID AND A.CITY = ?",
                                                                      Employee.class);
query.setParameter(1, "Ottawa");
List<Employee> employees = query.getResultList();



83

SQL Injection

● Do not write raw SQL. (examples from bobby-tables.com)

– Sanitizing APIs

– ORMs (to some degree!) [Fixing SQL Injection w/ Hibernate]

https://software-security.sans.org/developer-how-to/fix-sql-injection-in-java-hibernate


84

SQL Injection

● Do not write raw SQL. (examples from bobby-tables.com)

– Sanitizing APIs

– ORMs (to some degree!) [Fixing SQL Injection w/ Hibernate]

String name = //user input
int age = //user input
Session session = //...
Query query = session.createQuery(

"from People where lastName = :name and age > :age");
query.setString("name", name);
query.setInteger("age", age);
Iterator people = query.iterate();

https://software-security.sans.org/developer-how-to/fix-sql-injection-in-java-hibernate


85

SQL Injection

● Do not write raw SQL. (examples from bobby-tables.com)

– Sanitizing APIs

– ORMs (to some degree!) [Fixing SQL Injection w/ Hibernate]

● Use abstractions that design error away if possible!
– Applies whenever you generate code in another language

(think web apps)

String name = //user input
int age = //user input
Session session = //...
Query query = session.createQuery(

"from People where lastName = :name and age > :age");
query.setString("name", name);
query.setInteger("age", age);
Iterator people = query.iterate();

https://software-security.sans.org/developer-how-to/fix-sql-injection-in-java-hibernate


86

Side Channels

● So far we have looked for ways to directly violate CIA



87

Side Channels

● So far we have looked for ways to directly violate CIA
– Execute code
– Explicitly broadcast a value
– …



88

Side Channels

● So far we have looked for ways to directly violate CIA
– Execute code
– Explicitly broadcast a value
– …

● An attacker can indirectly violate CIA by inferring 
sensitive information



89

Side Channels

● So far we have looked for ways to directly violate CIA
– Execute code
– Explicitly broadcast a value
– …

● An attacker can indirectly violate CIA by inferring 
sensitive information
– Side channel attacks can infer secret information about a 

system based on implementation details



90

Side Channels

● So far we have looked for ways to directly violate CIA
– Execute code
– Explicitly broadcast a value
– …

● An attacker can indirectly violate CIA by inferring 
sensitive information
– Side channel attacks can infer secret information about a 

system based on implementation details

– These leaks can be present even for algorithms that are 
mathematically correct



91

Side Channels

● So far we have looked for ways to directly violate CIA
– Execute code
– Explicitly broadcast a value
– …

● An attacker can indirectly violate CIA by inferring 
sensitive information
– Side channel attacks can infer secret information about a 

system based on implementation details

– These leaks can be present even for algorithms that are 
mathematically correct

– Leaks can come from:
Output, Timing (compute, cache, MDS,...), Power, Sound, Light, ...



92

Side Channels

● Consider code that directly leaks a sensitive boolean

def very_stupid(greeting, sensitive):
...
log_to_nonsensitive(sensitive)
...



93

Side Channels

● Consider code that directly leaks a sensitive boolean

– This could be tweaked to become an indirect leak

def very_stupid(greeting, sensitive):
...
log_to_nonsensitive(sensitive)
...

def still_bad(greeting, sensitive):
...
if sensitive:

log_to_nonsensitive(greeting)
...



94

Side Channels

● Consider code that directly leaks a sensitive boolean

– This could be tweaked to become an indirect leak

– The value of the sensitive information can be inferred by 
the existence of the nonsensitive information!

def very_stupid(greeting, sensitive):
...
log_to_nonsensitive(sensitive)
...

def still_bad(greeting, sensitive):
...
if sensitive:

log_to_nonsensitive(greeting)
...



95

Side Channels

● Any difference in behavior between sensitive and 
nonsensitive tasks can be measured and used



96

Side Channels

● Any difference in behavior between sensitive and 
nonsensitive tasks can be measured and used

def subtly_bad(greeting, sensitive):
...
if sensitive:

expensive_computation()
log_to_nonsensitive(greeting)
...



97

Side Channels

● Any difference in behavior between sensitive and 
nonsensitive tasks can be measured and used

def subtly_bad(greeting, sensitive):
...
if sensitive:

expensive_computation()
log_to_nonsensitive(greeting)
...

This has been the downfall of
crypto implementations!



98

Side Channels

● Any difference in behavior between sensitive and 
nonsensitive tasks can be measured and used

def subtly_bad(greeting, sensitive):
...
if sensitive:

expensive_computation()
log_to_nonsensitive(greeting)
...

def deviously_bad(greeting, sensitive):
...
if sensitive:

a[not_in_cache] = ...
log_to_nonsensitive(greeting)
...



99

Side Channels

● This is the fundamental premise behind Spectre and 
generic MDS based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences



100

Side Channels

● This is the fundamental premise behind Spectre and 
generic MDS based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

if x < array1.size:
y = array2[array1[x] * 4096]



101

Side Channels

● This is the fundamental premise behind Spectre and 
generic MDS based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

if x < array1.size:
y = array2[array1[x] * 4096]



102

Side Channels

● This is the fundamental premise behind Spectre and 
generic MDS based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

if x < array1.size:
y = array2[array1[x] * 4096]

When the condition is true,
array1[x] will be in bounds



103

Side Channels

● This is the fundamental premise behind Spectre and 
generic MDS based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

if x < array1.size:
y = array2[array1[x] * 4096]

When the condition is true,
array1[x] will be in bounds

When the condition is false,
array1[x] can be anywhere



104

Side Channels

● This is the fundamental premise behind Spectre and 
generic MDS based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

if x < array1.size:
y = array2[array1[x] * 4096]

When the condition is true,
array1[x] will be in bounds

When the condition is false,
array1[x] can be anywhere

An attacker can



105

Side Channels

● This is the fundamental premise behind Spectre and 
generic MDS based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

if x < array1.size:
y = array2[array1[x] * 4096]

When the condition is true,
array1[x] will be in bounds

When the condition is false,
array1[x] can be anywhere

An attacker can
1) make array1[x] point to sensitive data



106

Side Channels

● This is the fundamental premise behind Spectre and 
generic MDS based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

if x < array1.size:
y = array2[array1[x] * 4096]

When the condition is true,
array1[x] will be in bounds

When the condition is false,
array1[x] can be anywhere

An attacker can
1) make array1[x] point to sensitive data
2) train the branch to speculate true



107

Side Channels

● This is the fundamental premise behind Spectre and 
generic MDS based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

if x < array1.size:
y = array2[array1[x] * 4096]

When the condition is true,
array1[x] will be in bounds

When the condition is false,
array1[x] can be anywhere

An attacker can
1) make array1[x] point to sensitive data
2) train the branch to speculate true

The sensitive data is
speculatively read and used!



108

Side Channels

● This is the fundamental premise behind Spectre and 
generic MDS based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

if x < array1.size:
y = array2[array1[x] * 4096]

When the condition is true,
array1[x] will be in bounds

When the condition is false,
array1[x] can be anywhere

An attacker can
1) make array1[x] point to sensitive data
2) train the branch to speculate true
3) extract the data through a 1-hot encoding

in the time to access elements of array2
(or a buffer sharing the cache mapping of array2)



109

Side Channels

● This is the fundamental premise behind Spectre and 
generic MDS based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

if x < array1.size:
y = array2[array1[x] * 4096]

# foo is a function pointer
foo()

Foo can be trained to speculate to an arbitrary gadget!



110

Side Channels

● This is the fundamental premise behind Spectre and 
generic MDS based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

if x < array1.size:
y = array2[array1[x] * 4096]

# foo is a function pointer
foo()

def foo():
return

Return targets can be trained to speculate to gadgets!



111

Side Channels

● This is the fundamental premise behind Spectre and 
generic MDS based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

if x < array1.size:
y = array2[array1[x] * 4096]

# foo is a function pointer
foo()

Note: This means that ROP gadgets can once again be used!
Newer compiler options can mitigate but not remove the challenge

def foo():
return

[Speculative Load Hardening in LLVM] clang -mretpoline -mspeculative-load-hardening ...

https://llvm.org/docs/SpeculativeLoadHardening.html


112

Side Channels

● This is the fundamental premise behind Spectre and 
generic MDS based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

– MDS attacks leverage other CPU artifacts to achieve similar 
goals (line buffers, ports, etc.)

● Contention on any resource affects timing

if x < array1.size:
y = array2[array1[x] * 4096]

# foo is a function pointer
foo()

def foo():
return



113

A Subtle Problem in General

● The problems may be much more subtle:

User A can read files X,Y,Z and write to S,T
User B can read files X,Y,S and write to Z,T



114

A Subtle Problem in General

● The problems may be much more subtle:

User A can read files X,Y,Z and write to S,T
User B can read files X,Y,S and write to Z,T

How can we ensure that no information
from A is ever written to Z?



115

A Subtle Problem in General

● The problems may be much more subtle:

User A can read files X,Y,Z and write to S,T
User B can read files X,Y,S and write to Z,T

How can we ensure that no information
from A is ever written to Z?

Can you envision a scenario
that creates this problem?



116

A Subtle Problem in General

● The problems may be much more subtle:

● Care may be required to enforce access control 
policies

User A can read files X,Y,Z and write to S,T
User B can read files X,Y,S and write to Z,T

How can we ensure that no information
from A is ever written to Z?



117

A Subtle Problem in General

● The problems may be much more subtle:

● Care may be required to enforce access control 
policies
– Discretionary access control – owner determines access

User A can read files X,Y,Z and write to S,T
User B can read files X,Y,S and write to Z,T

How can we ensure that no information
from A is ever written to Z?



118

A Subtle Problem in General

● The problems may be much more subtle:

● Care may be required to enforce access control 
policies
– Discretionary access control – owner determines access

– Mandatory access control – clearance determines access

User A can read files X,Y,Z and write to S,T
User B can read files X,Y,S and write to Z,T

How can we ensure that no information
from A is ever written to Z?



119

Assuring Security

● Make risky operations someone else's job
– e.g. Google Checkout, PayPal, Amazon, etc.



120

Assuring Security

● Make risky operations someone else's job
– e.g. Google Checkout, PayPal, Amazon, etc.

● Define rigorous security policies
– What are your CIA security criteria?



121

Assuring Security

● Make risky operations someone else's job
– e.g. Google Checkout, PayPal, Amazon, etc.

● Define rigorous security policies
– What are your CIA security criteria?

● Follow secure design & coding policies
– And include them in your review criteria



122

Assuring Security

● Make risky operations someone else's job
– e.g. Google Checkout, PayPal, Amazon, etc.

● Define rigorous security policies
– What are your CIA security criteria?

● Follow secure design & coding policies
– And include them in your review criteria

– Apple secure coding policies

– CERT Top 10 Practices

– Mitre Mitigation Strategies

https://developer.apple.com/library/mac/documentation/security/conceptual/SecureCodingGuide/Introduction.html
https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices
http://cwe.mitre.org/top25/#Mitigations


123

Assuring Security

● Make risky operations someone else's job
– e.g. Google Checkout, PayPal, Amazon, etc.

● Define rigorous security policies
– What are your CIA security criteria?

● Follow secure design & coding policies
– And include them in your review criteria

● Formal certification



124

Assuring Security

● Make risky operations someone else's job
– e.g. Google Checkout, PayPal, Amazon, etc.

● Define rigorous security policies
– What are your CIA security criteria?

● Follow secure design & coding policies
– And include them in your review criteria

● Formal certification

● Follow established security workflows
(OWASP, BSIMM, ...)



125

Common Proactive Approaches

How are these techniques applied?



126

Common Proactive Approaches

How are these techniques applied?

● Security must be part of design
– Prepared Statements, Safe Arrays, etc.



127

Common Proactive Approaches

How are these techniques applied?

● Security must be part of design
– Prepared Statements, Safe Arrays, etc.

● Regular security audits
– Retrospective analysis & suggestions



128

Common Proactive Approaches

How are these techniques applied?

● Security must be part of design
– Prepared Statements, Safe Arrays, etc.

● Regular security audits
– Retrospective analysis & suggestions

● Penetration testing (Pen Testing)
– Can someone skilled break it?



129

When you find a vulnerability

● Reporting security vulnerabilities is good



130

When you find a vulnerability

● Reporting security vulnerabilities is good

● Making them public immediately is not



131

When you find a vulnerability

● Reporting security vulnerabilities is good

● Making them public immediately is not

● Responsible disclosure policies govern the trade off 
between allowing a fix to be deployed & awareness



132

When you find a vulnerability

● Reporting security vulnerabilities is good

● Making them public immediately is not

● Responsible disclosure policies govern the trade off 
between allowing a fix to be deployed & awareness
– e.g. Google standard 90 day window

7 month window for Spectre due to severity
...



133

Security Overall

● Security is now a pressing concern for all software



134

Security Overall

● Security is now a pressing concern for all software
– Old software was designed in an era of naiveté and is 

often vulnerable/broken



135

Security Overall

● Security is now a pressing concern for all software
– Old software was designed in an era of naiveté and is 

often vulnerable/broken

– New software is built to perform sensitive operations in 
a multiuser and networked environment.



136

Security Overall

● Security is now a pressing concern for all software
– Old software was designed in an era of naiveté and is 

often vulnerable/broken

– New software is built to perform sensitive operations in 
a multiuser and networked environment.

Not planning for security concerns from the beginning 
is a broken approach to development


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136

