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Security in General

● Security
– Maintaining desired properties in the the presence of 

adversaries

● CIA Model – classic security properties
– Confidentiality

– Integrity

– Availability
● Those authorized for access are not prevented from it
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Security in Software

● Bugs in software can lead to policy violations
– Information leaks (C)

– Data Corruption (I)

– Denial of service (A)

– Remote execution – (CIA) arbitrarily bad!
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Security in Software

● Bugs in software can lead to policy violations

● Bugs make software vulnerable to attack
– XSS

– SQL Injection

– Buffer overflow

– Path replacement

– Integer overflow

– Race conditions (TOCTOU – Time of Check to Time of Use)

– Unsanitized format strings

– ... All create attack vectors
for a malicious adversary
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Why Is This Special?

Poor security comes from unintended behavior.

→ Quality software shouldn't allow such actions anyway.

● While our testing techniques so far find some 
security issues, many slip through! Why?
– We cannot test everything
– Concessions form part of an attack surface

● Networks, Software, People

● Need additional policies & testing methods that 
specifically address security
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What Could Possible Go Wrong?

● Many ways to attack different programs

● MITRE groups the most common into:
– Insecure Interaction

● Data sent between components in an insecure fashion

– Risky Resource Management
● Bad creation, use, transfer, & destruction of resources

– Porous Defenses
● Standard security practices that are missing or incorrect

[http://cwe.mitre.org/top25/#Categories]

http://cwe.mitre.org/top25/#Categories
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● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

● Provide common attack patterns [Eternal War in Memory]

Δ Data * Δ Code

Code
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Memory Safety

● Unsafe memory accesses are a longstanding vector
– Memory Safety [http://www.pl-enthusiast.net/2014/07/21/memory-safety/]

● Provide common attack patterns [Eternal War in Memory]

Δ Data * Δ Code Δ Code * Δ Data

Code
Corruption

Control Flow
Hijack

Data Only
Attack

Use
Data

Use * in
call/jmp/ret

Read or 
Write

Output
Data

Dangling or 
OOB *

Dangling or
OOB *

Info
Leak

http://www.pl-enthusiast.net/2014/07/21/memory-safety/
https://www.cs.berkeley.edu/~dawnsong/papers/Oakland13-SoK-CR.pdf
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● How can we prevent this?

def foo():
  # original code
  ...

def foo():
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Code Corruption

● How can we prevent this?

● What problems does this solution create?

def foo():
  # original code
  ...

def foo():
  # malicious code
  ...



  

Control Flow Hijacking

void foo(char *input) {
  unsigned secureData;
  char buffer[16]; 
  strcpy(buffer, input);
}

How many of you recall what a stack frame looks like?
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void foo(char *input) {
  unsigned secureData;
  char buffer[16]; 
  strcpy(buffer, input);
}
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void foo(char *input) {
  unsigned secureData;
  char buffer[16]; 
  strcpy(buffer, input);
}

What can go wrong?
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void foo(char *input) {
  unsigned secureData;
  char buffer[16]; 
  strcpy(buffer, input);
}

input = “normal input”
               + “insecureData”

buffer overflow attack
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void foo(char *input) {
  unsigned secureData;
  char buffer[16]; 
  strcpy(buffer, input);
}

input = “normal input”
               + “insecureData”

The integrity of the
secure data is corrupted.
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Control Flow Hijacking
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St
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...

buffer[0]

void foo(char *input) {
  unsigned secureData;
  char buffer[16]; 
  strcpy(buffer, input);
}

input = “input”
               + “payload address”
               + “payload (shell code)”

On return, we'll execute 
the shell code

Return Address

Previous Frame
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Control Flow Hijacking

● How can we prevent this basic approach?
– Stack Canaries

Previous Frame

Return Address

Old Frame Ptr

secureData

buffer[15]

buffer[14]

...

buffer[0]

Previous Frame

Return Address

Old Frame Ptr

secureData

buffer[15]

buffer[14]

...

buffer[0]

Canary

Abort because 
canary changed!
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Control Flow Hijacking

● How can we prevent this basic approach?
– Stack Canaries

– DEP – Data Execution Prevention / W X⊕
Previous Frame

Return Address

Old Frame Ptr

secureData

buffer[15]

buffer[14]

...

buffer[0]

Canary

shell code:

Abort because 
W but not X



  

Control Flow Hijacking

● How can we prevent this basic approach?
– Stack Canaries

– DEP – Data Execution Prevention / W X⊕

But these are still 
easily bypassed!
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Return to libc Attacks

● Reuse existing code to bypass W X ⊕
Previous Frame

Return Address

Old Frame Ptr

secureData

buffer[15]

buffer[14]

...

buffer[0]

Fake Argument

Ptr To Function

Old Frame Ptr

secureData

buffer[15]

buffer[14]

...

buffer[0]

system()

“/usr/bin/minesweeper”



  

Return to libc Attacks

● Reuse existing code to bypass W X ⊕
Previous Frame

Return Address

Old Frame Ptr

secureData

buffer[15]

buffer[14]

...

buffer[0]

Fake Argument

Ptr To Function

Old Frame Ptr

secureData

buffer[15]

buffer[14]

...

buffer[0]

system()

“/usr/bin/minesweeper”

Even construct new 
functions piece by piece!
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Return to libc Attacks

● Reuse existing code to bypass W X ⊕
● Return Oriented Programming

– Build new functionality from pieces of existing functions
void a() {
  ...
  ...
  ...
  ...
  ...
  ...
  ...
  ...
}
void b() {
  ...
  ...
  ...
  ...
  ...
  ...
}

...
Ptr To Gadget

...

...

...

...

...

void c() {
  ...
  ...
  ...
  ...
  ...
  ...
  ...
  ...
}
void d() {
  ...
  ...
  ...
  ...
  ...
  ...
}

void e() {
  ...
  ...
  ...
  ...
  ...
  ...
  ...
  ...
}
void f() {
  ...
  ...
  ...
  ...
  ...
  ...
}

void g() {
  ...
  ...
  ...
  ...
  ...
  ...
  ...
  ...
}
void h() {
  ...
  ...
  ...
  ...
  ...
  ...
}



  

ASLR

● Address Space Layout Randomization
– You can't use it if you can't find it!

Stack

Heap

LibC

Program

NCurses Stack

Heap

LibC

Program
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Run 1 Run 2



  

ASLR

● Address Space Layout Randomization
– You can't use it if you can't find it!

But even this is 
“easily” broken

Stack

Heap

LibC

Program

NCurses Stack

Heap

LibC

Program

NCurses

Run 1 Run 2
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foo = ...
if foo not in [...] abort()
foo();

void a() {
  ...
  ...
  ...
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  ...
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void b() {
  ...
  ...
  ...
  ...
  ...
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}
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Ptr To Gadget
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...

...



  

Control Flow Integrity

● Restrict indirect control flow to needed targets
– Jmp */call */ret

foo = ...
if foo not in [...] abort()
foo();

void a() {
  ...
  ...
  ...
  ...
  ...
  ...
  ...
  ...
}
void b() {
  ...
  ...
  ...
  ...
  ...
  ...
}

...
Ptr To Gadget

...

...

...

...

...

clang -flto -fsanitize=cfi -fsanitize=safe-stack

clang -fsanitize=safe-stack
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Memory Safety

● Vulnerabilities come from reading/writing/freeing
– Out of bounds pointers

– Dangling pointers

● Why doesn't Java face this issue?

● Is this intrinsic to languages like C++?
– Why/Why not?

● Are these still a real issue?
– http://www.symantec.com/security_response/vulnerability.jsp?bid=70332

– http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0015

– http://seclists.org/oss-sec/2016/q1/645

– …

http://www.symantec.com/security_response/vulnerability.jsp?bid=70332
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0015
http://seclists.org/oss-sec/2016/q1/645
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Root Causes Over Time

[Matt Miller – BlueHat 2019]

https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
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Another Case: SQL Injection

SQL – a query language for databases

● Queries like:
“SELECT grade,id FROM students 
 WHERE name=” + username;
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Another Case: SQL Injection

SQL – a query language for databases

● Queries like:
“SELECT grade,id FROM students 
 WHERE name=” + username;

● Values for name, grade often come from user input.

ID Name Grade

0 Alice 92

1 Bob 87

2 Mallory 75

Why is this a problem?
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Another Case: SQL Injection

username = “'bob'; DROP TABLE students”

● What happens?
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SQL Injection

[http://xkcd.com/327/] [http://bobby-tables.com/]

● The user may include commands in their input!

http://xkcd.com/327/
http://bobby-tables.com/
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SQL Injection
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● The user may include commands in their input!

● Need to sanitize the input before use
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SQL Injection

[http://xkcd.com/327/] [http://bobby-tables.com/]

● The user may include commands in their input!

● Need to sanitize the input before use

How would you prevent this problem?

http://xkcd.com/327/
http://bobby-tables.com/
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SQL Injection

● Do not write raw SQL. (examples from bobby-tables.com)

– Sanitizing APIs

List<Person>; people = //user input
Connection connection = DriverManager.getConnection(...);
connection.setAutoCommit(false);
try {
    PreparedStatement statement = connection.prepareStatement(
            "UPDATE people SET lastName = ?, age = ? WHERE id = ?");
    for (Person person : people){
        statement.setString(1, person.getLastName());
        statement.setInt(2, person.getAge());
        statement.setInt(3, person.getId());
        statement.execute();
    }
    connection.commit();
} catch (SQLException e) {
    connection.rollback();
}
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SQL Injection

● Do not write raw SQL. (examples from bobby-tables.com)

– Sanitizing APIs

EntityManager em = getEntityManager();
Query query = em.createNativeQuery("SELECT E.* from EMP E, ADDRESS A
                                                                      WHERE E.EMP_ID = A.EMP_ID AND A.CITY = ?",
                                                                      Employee.class);
query.setParameter(1, "Ottawa");
List<Employee> employees = query.getResultList();



83

SQL Injection

● Do not write raw SQL. (examples from bobby-tables.com)

– Sanitizing APIs

– ORMs (to some degree!) [Fixing SQL Injection w/ Hibernate]

https://software-security.sans.org/developer-how-to/fix-sql-injection-in-java-hibernate
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SQL Injection

● Do not write raw SQL. (examples from bobby-tables.com)

– Sanitizing APIs

– ORMs (to some degree!) [Fixing SQL Injection w/ Hibernate]

String name = //user input
int age = //user input
Session session = //...
Query query = session.createQuery(

"from People where lastName = :name and age > :age");
query.setString("name", name);
query.setInteger("age", age);
Iterator people = query.iterate();

https://software-security.sans.org/developer-how-to/fix-sql-injection-in-java-hibernate
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SQL Injection

● Do not write raw SQL. (examples from bobby-tables.com)

– Sanitizing APIs

– ORMs (to some degree!) [Fixing SQL Injection w/ Hibernate]

● Use abstractions that design error away if possible!
– Applies whenever you generate code in another language

(think web apps)

String name = //user input
int age = //user input
Session session = //...
Query query = session.createQuery(

"from People where lastName = :name and age > :age");
query.setString("name", name);
query.setInteger("age", age);
Iterator people = query.iterate();

https://software-security.sans.org/developer-how-to/fix-sql-injection-in-java-hibernate


86

Side Channels

● So far we have looked for ways to directly violate CIA



87

Side Channels

● So far we have looked for ways to directly violate CIA
– Execute code
– Explicitly broadcast a value
– …



88

Side Channels

● So far we have looked for ways to directly violate CIA
– Execute code
– Explicitly broadcast a value
– …

● An attacker can indirectly violate CIA by inferring 
sensitive information



89

Side Channels

● So far we have looked for ways to directly violate CIA
– Execute code
– Explicitly broadcast a value
– …

● An attacker can indirectly violate CIA by inferring 
sensitive information
– Side channel attacks can infer secret information about a 

system based on implementation details



90

Side Channels

● So far we have looked for ways to directly violate CIA
– Execute code
– Explicitly broadcast a value
– …

● An attacker can indirectly violate CIA by inferring 
sensitive information
– Side channel attacks can infer secret information about a 

system based on implementation details

– These leaks can be present even for algorithms that are 
mathematically correct



91

Side Channels

● So far we have looked for ways to directly violate CIA
– Execute code
– Explicitly broadcast a value
– …

● An attacker can indirectly violate CIA by inferring 
sensitive information
– Side channel attacks can infer secret information about a 

system based on implementation details

– These leaks can be present even for algorithms that are 
mathematically correct

– Leaks can come from:
Output, Timing (compute, cache, MDS,...), Power, Sound, Light, ...
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Side Channels

● Consider code that directly leaks a sensitive boolean

– This could be tweaked to become an indirect leak

– The value of the sensitive information can be inferred by 
the existence of the nonsensitive information!

def very_stupid(greeting, sensitive):
...
log_to_nonsensitive(sensitive)
...

def still_bad(greeting, sensitive):
...
if sensitive:

log_to_nonsensitive(greeting)
...
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Side Channels

● Any difference in behavior between sensitive and 
nonsensitive tasks can be measured and used

def subtly_bad(greeting, sensitive):
...
if sensitive:

expensive_computation()
log_to_nonsensitive(greeting)
...

This has been the downfall of
crypto implementations!
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Side Channels

● Any difference in behavior between sensitive and 
nonsensitive tasks can be measured and used

def subtly_bad(greeting, sensitive):
...
if sensitive:

expensive_computation()
log_to_nonsensitive(greeting)
...

def deviously_bad(greeting, sensitive):
...
if sensitive:

a[not_in_cache] = ...
log_to_nonsensitive(greeting)
...
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Side Channels

● This is the fundamental premise behind Spectre and 
generic MDS based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

if x < array1.size:
y = array2[array1[x] * 4096]

When the condition is true,
array1[x] will be in bounds

When the condition is false,
array1[x] can be anywhere

An attacker can
1) make array1[x] point to sensitive data
2) train the branch to speculate true

The sensitive data is
speculatively read and used!
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Side Channels

● This is the fundamental premise behind Spectre and 
generic MDS based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

if x < array1.size:
y = array2[array1[x] * 4096]

When the condition is true,
array1[x] will be in bounds

When the condition is false,
array1[x] can be anywhere

An attacker can
1) make array1[x] point to sensitive data
2) train the branch to speculate true
3) extract the data through a 1-hot encoding

in the time to access elements of array2
(or a buffer sharing the cache mapping of array2)
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● This is the fundamental premise behind Spectre and 
generic MDS based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences
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Side Channels

● This is the fundamental premise behind Spectre and 
generic MDS based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

if x < array1.size:
y = array2[array1[x] * 4096]

# foo is a function pointer
foo()

def foo():
return

Return targets can be trained to speculate to gadgets!
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Side Channels

● This is the fundamental premise behind Spectre and 
generic MDS based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

if x < array1.size:
y = array2[array1[x] * 4096]

# foo is a function pointer
foo()

Note: This means that ROP gadgets can once again be used!
Newer compiler options can mitigate but not remove the challenge

def foo():
return

[Speculative Load Hardening in LLVM] clang -mretpoline -mspeculative-load-hardening ...

https://llvm.org/docs/SpeculativeLoadHardening.html
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Side Channels

● This is the fundamental premise behind Spectre and 
generic MDS based attacks
– Spectre worked by mistraining speculation &

then measuring timing differences

– MDS attacks leverage other CPU artifacts to achieve similar 
goals (line buffers, ports, etc.)

● Contention on any resource affects timing

if x < array1.size:
y = array2[array1[x] * 4096]

# foo is a function pointer
foo()

def foo():
return
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A Subtle Problem in General

● The problems may be much more subtle:

User A can read files X,Y,Z and write to S,T
User B can read files X,Y,S and write to Z,T

How can we ensure that no information
from A is ever written to Z?

Can you envision a scenario
that creates this problem?
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A Subtle Problem in General

● The problems may be much more subtle:

● Care may be required to enforce access control 
policies
– Discretionary access control – owner determines access

– Mandatory access control – clearance determines access

User A can read files X,Y,Z and write to S,T
User B can read files X,Y,S and write to Z,T

How can we ensure that no information
from A is ever written to Z?



119

Assuring Security

● Make risky operations someone else's job
– e.g. Google Checkout, PayPal, Amazon, etc.



120

Assuring Security

● Make risky operations someone else's job
– e.g. Google Checkout, PayPal, Amazon, etc.

● Define rigorous security policies
– What are your CIA security criteria?



121

Assuring Security

● Make risky operations someone else's job
– e.g. Google Checkout, PayPal, Amazon, etc.

● Define rigorous security policies
– What are your CIA security criteria?

● Follow secure design & coding policies
– And include them in your review criteria



122

Assuring Security

● Make risky operations someone else's job
– e.g. Google Checkout, PayPal, Amazon, etc.

● Define rigorous security policies
– What are your CIA security criteria?

● Follow secure design & coding policies
– And include them in your review criteria

– Apple secure coding policies

– CERT Top 10 Practices

– Mitre Mitigation Strategies

https://developer.apple.com/library/mac/documentation/security/conceptual/SecureCodingGuide/Introduction.html
https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices
http://cwe.mitre.org/top25/#Mitigations
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Assuring Security

● Make risky operations someone else's job
– e.g. Google Checkout, PayPal, Amazon, etc.

● Define rigorous security policies
– What are your CIA security criteria?

● Follow secure design & coding policies
– And include them in your review criteria

● Formal certification

● Follow established security workflows
(OWASP, BSIMM, ...)
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Common Proactive Approaches

How are these techniques applied?

● Security must be part of design
– Prepared Statements, Safe Arrays, etc.

● Regular security audits
– Retrospective analysis & suggestions

● Penetration testing (Pen Testing)
– Can someone skilled break it?
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When you find a vulnerability

● Reporting security vulnerabilities is good

● Making them public immediately is not

● Responsible disclosure policies govern the trade off 
between allowing a fix to be deployed & awareness
– e.g. Google standard 90 day window

7 month window for Spectre due to severity
...
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Security Overall

● Security is now a pressing concern for all software
– Old software was designed in an era of naiveté and is 

often vulnerable/broken

– New software is built to perform sensitive operations in 
a multiuser and networked environment.

Not planning for security concerns from the beginning 
is a broken approach to development
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