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Symbolic Execution

e As we have seen, building constraints that model code can be useful

CBMC was able to prove
certain errors couldn’t exist!




Symbolic Execution

e With care, we can even use constraints to generate all inputs that are
“interesting”



Symbolic Execution

e Techniques for supporting this are known as symbolic execution
— (SymEx)



Symbolic Execution

e An approach for generating test inputs.
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Symbolic Execution

e Replace the concrete inputs of a program X « symbolic()
with symbolic values y « symbolic()
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Symbolic Execution

. X <fjsymbolic()
y —fsymbolic()

e Execute along a path using the symbolic
values to build a formula over the input
symbols.
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e Execute along a path using the symbolic
values to build a formula over the input
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Symbolic Execution

symbolic()
symbolic()

. X H/
y «—
e Execute along a path using the symbolic | /
values to build a formula over the input 1f/x

== z*y

symbols. / /\
A path constraint represents

all executions along that path i/f/x > y+10
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Symbolic Execution

e Solve for the symbolic symbols to find
inputs that yield the path.

X «[symbolic()
Yy <|symbolic()
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Symbolic Execution

e An approach for generating test inputs. [Cadar & SEn, 2013]

e Replace the concrete inputs of a program X « symbolic()
with symbolic values y « symbolic()

e Execute along a path using the symbolic
values to build a formula over the input
symbols.

e Solve for the symbolic symbols to find /\

inputs that yield the path. 1 X
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Symbolic Execution
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e An approach for generating test inputs. [Cadar & Sen, 2013]
e Replace the concrete inputs of a program X « symbolic()
with symbolic values y « ymbolic()
o Execute along a path using the symbolic P/
values to build a formula over the input 1f x 3 2%y
symbols. ’/f\\\\\\\k
e Solve for the symbolic symbols to find ¢
inputs that yield the path. 1t x > y+10
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Using SymEx to solve problems

e Note that we described SymEx over traces.
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Using SymEx to solve problems

e Note that we described SymEx over traces.
— This is dynamic symbolic execution.
— There is also static symbolic execution (e.g. CBMC).
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Using SymEx to solve problems

e Applying constraint based reasoning on traces can also yield insights

15



Using SymEx to solve problems

e Applying constraint based reasoning on traces can also yield insights
— e.g. Suppose you are given two versions of a program v,,v,
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Using SymEx to solve problems

e Applying constraint based reasoning on traces can also yield insights

— e.g. Suppose you are given two versions of a program v,,v,
and constraints on output ¢, in each from an input |
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Using SymEx to solve problems

e Applying constraint based reasoning on traces can also yield insights

— e.g. Suppose you are given two versions of a program v,,v,
and constraints on output ¢, in each from an input |

What is wp(p1) A =wp(@2)?
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How Can We Solve Constraints?

e SMT Solvers
— Satisfiability Modulo Theories
— SAT with extra logic
— Standard interfaces through SMTLIB2
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How Can We Solve Constraints?

e SMT Solvers
— Satisfiability Modulo Theories
— SAT with extra logic
— Standard interfaces through SMTLIB2
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How Can We Solve Constraints?

e SMT Solvers
— Satisfiability Modulo Theories
— SAT with extra logic
— Standard interfaces through SMTLIB2

X = 2%y
y > 10

(declare-const x Int)
(declare-const y Int)
(assert (=x (* 2y)))

(assert (>y 10))
(check-sat)
(get-model)
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How Can We Solve Constraints?

e SMT Solvers
— Satisfiability Modulo Theories
— SAT with extra logic
— Standard interfaces through SMTLIB2

X = 2%y
y > 10

declare-const x Int) 23

(

(declare-const y Int)  =——-
Eassert (=x(*2vy)))
(
(

assert (>y 10))
check-sat)
get-model)



How Can We Solve Constraints?

e SMT Solvers
— Satisfiability Modulo Theories
— SAT with extra logic
— Standard interfaces through SMTLIB2

X = 2%y

y > 10
(declare-const x Int) 23 sat
(declare-consty Int) — =————fp- (mModel
(assert (=x (* 2))) (define-funy () Int 11)
(assert (> y 10)) (define-fun x () Int 22)
(check-sat) )
(get-model)



How Can We Solve Constraints?

e SMT Solvers
— Satisfiability Modulo Theories
— SAT with extra logic
— Standard interfaces through SMTLIB2

X = 2%y X=22

y > 10 y=11
(declare-const x Int) 23 sat
(declare-const y Int) =) (model
(assert (=x (* 2))) (def!ne-fun y () Int 11)
(assert (> y 10)) (define-fun x () Int 22)
(check-sat) )
(get-model)



How Can We Solve Constraints?

e SMT Solvers
— Satisfiability Modulo Theories
— SAT with extra logic
— Standard interfaces through SMTLIB2

— Z*y X=22

y > 10 y=11
(declare-const x Int) 23 sat
(declare-const y Int) =t (model
(assert (=x (* 2y))) (def!ne-fun vy () Int 11)
(assert (> y 10)) (define-fun x () Int 22)
(check-sat) Try it online: )
(get-model) http://www.rise4fun.com/Z3/tutorial/


http://www.rise4fun.com/Z3/tutorial/

Exploring the Execution Tree

e The possible paths of a program form an
execution tree.
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Exploring the Execution Tree

e Traversing the tree will
yield tests for all paths.
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y < 1nput()
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Exploring the Execution Tree

e Mechanizing the traversal
yields two main approaches
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Exploring the Execution Tree

e Mechanizing the traversal
yields two main approaches

— Concolic (dynamic symbolic)
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Exploring the Execution Tree

e Mechanizing the traversal
yields two main approaches

— Concolic (dynamic symbolic)

X
y

input()
input()

1T/ x

== z*y

X >

y+10
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Exploring the Execution Tree

e Mechanizing the traversal
yields two main approaches

— Concolic (dynamic symbolic)

X <] input()
y nput()
i)y == 2*y

> y+10

(x=2*y) A (x>y+10)
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Exploring the Execution Tree

e Mechanizing the traversal
yields two main approaches

— Concolic (dynamic symbolic)

X < 1nput()
y < 1nput()

Y

if x == 2%y

Y/

if x > y+10

(x=2*y) A = (x>y+10)

/N
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Exploring the Execution Tree

e Mechanizing the traversal
yields two main approaches

— Concolic (dynamic symbolic)

(x=2*y) A =(x>y+10)
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Exploring the Execution Tree

e Mechanizing the traversal
yields two main approaches

— Execution Generated Testing

X < 1nput()
y < 1nput()
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if x == 2%y

/
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Exploring the Execution Tree

X < 1nput()
° ~ 1n ut(
y *P Y= 7
. : =10
e Mechanizing the traversal if x == 2%y Y
yields two main approaches /\
- Execution Generated Testing if x > y+10

/N
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Exploring the Execution Tree

e Mechanizing the traversal

yields two main approaches

— Execution Generated Testing

X < 1nput()
y < 1nput()

v

if x > y+10

f if x == 2%y
X=§¢20

YN\

36




Exploring the Execution Tree

X < 1nput()
. y < 1nput()
« Mechanizing the traversal if x == 2%y
yields two main approaches X=20 /
- Execution Generated Testing y=10 /if X > y+10

Execution on this side is
concrete from this point on.

YN\
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(Some) Applications

e Constructing test suites
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(Some) Applications

e Constructing test suites

- O

x=30
y=15
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(Some) Applications

e Targeted tests
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(Some) Applications

e Targeted tests
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(Some) Applications

e Targeted tests
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(Some) Applications

o Automated exploit discovery & synthesis
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(Some) Applications

o Automated exploit discovery & synthesis

Overflow!
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(Some) Applications

o Automated exploit discovery & synthesis

Overflow!
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(Some) Applications

o Automated exploit discovery & synthesis

Input = Overflow # StartsShellcode

This is the core process for

|
Darpa Cybersecurity Grand Challenge entries! Overflow!
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(Some) Applications

« Test driven model checking (Yogi)

¢ ... The latest testing & verification services from MS
are built around these techniques.
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(Some) Applications

Let’s revisit a familiar example...
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Challenges

e Path Explosion
e Challenging constraints

e Constraint representations & domain knowledge
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Path Explosion

e Loops

while i < j

N
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Path Explosion

e Loops

while i < j

O

while i < j

N
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Path Explosion

e Loops

while i < j

O

while i < j

NN

while i < j
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Path Explosion

e« Combinatorial Explosion
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Path Explosion

State of the art techniques carefully use
summarization & representations to minimize these
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Path Explosion

e Strategies
— Search heuristics
— Memoization
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Challenging Constraints

e Intuitively, we cannot solve all constraints

if hash(password) == y:
print(“how odd”)

What would it imply if we could?
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Challenging Constraints

e How can we address this?
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Challenging Constraints

How can we address this?
— |IDEA: Observe the actual values of variables in runs we have

password = fritter
hash(password) = HdjdskS&8sdh

if hash(password) == y:
print(“how odd”)
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Challenging Constraints

How can we address this?

IDEA: Observe the actual values of variables in runs we have
Substitute those observed values in challenging runs in the future

password = fritter
hash(password) = HjdjdskS&8sdh
y = HjdjdskS&8sdh

if hash(password) == y:
print(“how odd”)
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Challenging Constraints

e How can we address this?

— Build a library of (input,output) pairs for challenging expressions
(Use the theory of uninterpreted functions!)
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Challenging Constraints

How can we address this?

— Build a library of (input,output) pairs for challenging expressions
(Use the theory of uninterpreted functions!)

How do these affect our ability
to explore the execution tree?
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Domain Knowledge

« How should we represent memory?
— Alinear arrangement of memory?
— Combinatorial aliasing relation pairs?
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Domain Knowledge

e How should we represent memory?
— A linear arrangement of memory?
— Combinatorial aliasing relation pairs?

e Can we carefully explore interesting structures?
— Korat style enumeration

RENA


http://korat.sourceforge.net/

Symbolic Execution

e Increasingly scalable every year
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Symbolic Execution

e Increasingly scalable every year

e Can automatically generate test inputs from constraints
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Symbolic Execution

e Increasingly scalable every year
e Can automatically generate test inputs from constraints

e The resulting symbolic formulae have many uses beyond just testing.

66



Symbolic Execution

e Increasingly scalable every year
e Can automatically generate test inputs from constraints
e The resulting symbolic formulae have many uses beyond just testing.

Try it out:

1) https://github.com/klee/klee

2) Symbolic PathFinder

3) http://research.microsoft.com/Pex/
4) http://angr.io/
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https://github.com/klee/klee
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc
http://research.microsoft.com/Pex/
http://angr.io/
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