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Basic Security

What are attributes of a secure program? CIA
● (C)onfidentiality

– No unauthorized information leaks

● (I)ntegrity
– No unauthorized data manipulation/corruption

● (A)vailability
– The system must be accessible as needed (no DOS)

● … (A2)uthenticity
– All actions are genuine, taken by the parties they 

claim/appear to be
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Why Is This Special?

Poor security comes from unintended behavior.
→ Quality software shouldn't allow such actions anyway.

● While our testing techniques so far find some 
security issues, many slip through! Why?
– We cannot test everything

– Concessions form part of an attack surface
● Networks, Software, People

● Need additional policies & testing methods that 
specifically address security
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What Could Possible Go Wrong?

● Many ways to attack different programs
● MITRE groups the most common into:

– Insecure Interaction
● Data sent between components in an insecure fashion

– Risky Resource Management
● Bad creation, use, transfer, & destruction of resources

– Porous Defenses
● Standard security practices that are missing or incorrect

[http://cwe.mitre.org/top25/#Categories]

http://cwe.mitre.org/top25/#Categories
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Deeper Dive: Memory Safety

● Memory safety is a fundamental security issue 
for languages like C, C++, Assembly, ….

● General idea:
– Accessing memory when you shouldn't be able to 

might read, write, or execute inappropriately

● Classic example:
– stack buffer overflow attacks

– Read more input into a buffer than the buffer can 
hold....

How many of you recall what a stack frame looks like?
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}

buffer[15]
buffer[14]

...
buffer[0]

input = “normal input”
               + “insecureData”

The integrity of the
secure data is corrupted.

secureData

What else can go wrong?
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void foo(char *input) {
  unsigned secureData;
  char buffer[16]; 
  strcpy(buffer, input);
}

secureData

buffer[15]
buffer[14]

...
buffer[0]

input = “input”
               + “payload address”
               + “payload”

What does this mean?



32

Memory Safety

● Vulnerabilities come from reading/writing/freeing
– Out of bounds pointers

– Dangling pointers



33

Memory Safety

● Vulnerabilities come from reading/writing/freeing
– Out of bounds pointers

– Dangling pointers

● Why doesn't Java face this issue?



34

Memory Safety

● Vulnerabilities come from reading/writing/freeing
– Out of bounds pointers

– Dangling pointers

● Why doesn't Java face this issue?
● Is this intrinsic to languages like C++?

– Why/Why not?



35

Memory Safety

● Vulnerabilities come from reading/writing/freeing
– Out of bounds pointers

– Dangling pointers

● Why doesn't Java face this issue?
● Is this intrinsic to languages like C++?

– Why/Why not?

● Are these still a real issue?



36

Memory Safety

● Vulnerabilities come from reading/writing/freeing
– Out of bounds pointers

– Dangling pointers

● Why doesn't Java face this issue?
● Is this intrinsic to languages like C++?

– Why/Why not?

● Are these still a real issue?
– http://www.symantec.com/security_response/vulnerability.jsp?

bid=70332

http://www.symantec.com/security_response/vulnerability.jsp?bid=70332
http://www.symantec.com/security_response/vulnerability.jsp?bid=70332


37

Another Case: SQL Injection

SQL – a query language for databases
● Queries like:

“SELECT grade,id FROM students 
WHERE name=” + username;

ID Name Grade
0 Alice 92
1 Bob 87
2 Mallory 75



38

Another Case: SQL Injection

SQL – a query language for databases
● Queries like:

“SELECT grade,id FROM students 
WHERE name=” + username;

● Values for name, grade often come from user 
input.

ID Name Grade
0 Alice 92
1 Bob 87
2 Mallory 75



39

Another Case: SQL Injection

SQL – a query language for databases
● Queries like:

“SELECT grade,id FROM students 
WHERE name=” + username;

● Values for name, grade often come from user 
input.

ID Name Grade
0 Alice 92
1 Bob 87
2 Mallory 75

Why is this a problem?
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Another Case: SQL Injection

username = “'bob'; DROP TABLE students”

● What happens?
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SQL Injection

[http://xkcd.com/327/] [http://bobby-tables.com/]

● The user may include commands in their input!

http://xkcd.com/327/
http://bobby-tables.com/
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SQL Injection

[http://xkcd.com/327/] [http://bobby-tables.com/]

● The user may include commands in their input!
● Need to sanitize the input before use

How would you prevent this problem?

http://xkcd.com/327/
http://bobby-tables.com/
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● The problems may be much more subtle:

User A can read files X,Y,Z and write to S,T
User B can read files X,Y,S and write to Z,T

How can we ensure that no information
from A is ever written to Z?

Can you envision a scenario
that creates this problem?
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A Subtle Problem in General

● The problems may be much more subtle:

● Care may be required to enforce access control 
policies
– Discretionary access control – owner determines access

– Mandatory access control – clearance determines access

User A can read files X,Y,Z and write to S,T
User B can read files X,Y,S and write to Z,T

How can we ensure that no information
from A is ever written to Z?
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Assuring Security

● Make risky operations someone else's job
– e.g. Google Checkout, PayPal, Amazon, etc.

● Define rigorous security policies
– What are your CIAA security criteria?

● Follow secure design & coding policies
– And include them in your review criteria

– Apple secure coding policies

– CERT Top 10 Practices

– Mitre Mitigation Strategies

https://developer.apple.com/library/mac/documentation/security/conceptual/SecureCodingGuide/Introduction.html
https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices
http://cwe.mitre.org/top25/#Mitigations
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Assuring Security

● Make risky operations someone else's job
– e.g. Google Checkout, PayPal, Amazon, etc.

● Define rigorous security policies
– What are your CIAA security criteria?

● Follow secure design & coding policies
– And include them in your review criteria

● Formal certification
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Common Proactive Approaches

How are these techniques applied?
● Security must be part of design

– Prepared Statements, Safe Arrays, etc.

● Regular security audits
– Retrospective analysis & suggestions

● Penetration testing
– Can someone skilled break it?
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Security Overall

● Security is now a pressing concern for all 
software
– Old software was designed in an era of naiveté and 

is often vulnerable/broken

– New software is built to perform sensitive 
operations in a multiuser and networked 
environment.

Not planning for security concerns from the 
beginning is a broken approach to development
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