
Security

CMPT 473
Software Quality Assurance

Nick Sumner - Fall 2014

2

Basic Security

What are attributes of a secure program? CIA

3

Basic Security

What are attributes of a secure program? CIA
● (C)onfidentiality

– No unauthorized information leaks

4

Basic Security

What are attributes of a secure program? CIA
● (C)onfidentiality

– No unauthorized information leaks

● (I)ntegrity
– No unauthorized data manipulation/corruption

5

Basic Security

What are attributes of a secure program? CIA
● (C)onfidentiality

– No unauthorized information leaks

● (I)ntegrity
– No unauthorized data manipulation/corruption

● (A)vailability
– The system must be accessible as needed (no DOS)

6

Basic Security

What are attributes of a secure program? CIA
● (C)onfidentiality

– No unauthorized information leaks

● (I)ntegrity
– No unauthorized data manipulation/corruption

● (A)vailability
– The system must be accessible as needed (no DOS)

● … (A2)uthenticity
– All actions are genuine, taken by the parties they

claim/appear to be

7

Why Is This Special?

Poor security comes from unintended behavior.
→ Quality software shouldn't allow such actions anyway.

8

Why Is This Special?

Poor security comes from unintended behavior.
→ Quality software shouldn't allow such actions anyway.

● While our testing techniques so far find some
security issues, many slip through! Why?

9

Why Is This Special?

Poor security comes from unintended behavior.
→ Quality software shouldn't allow such actions anyway.

● While our testing techniques so far find some
security issues, many slip through! Why?
– We cannot test everything

10

Why Is This Special?

Poor security comes from unintended behavior.
→ Quality software shouldn't allow such actions anyway.

● While our testing techniques so far find some
security issues, many slip through! Why?
– We cannot test everything

– Concessions form part of an attack surface
● Networks, Software, People

11

Why Is This Special?

Poor security comes from unintended behavior.
→ Quality software shouldn't allow such actions anyway.

● While our testing techniques so far find some
security issues, many slip through! Why?
– We cannot test everything

– Concessions form part of an attack surface
● Networks, Software, People

● Need additional policies & testing methods that
specifically address security

12

What Could Possible Go Wrong?

● Many ways to attack different programs
● MITRE groups the most common into:

13

What Could Possible Go Wrong?

● Many ways to attack different programs
● MITRE groups the most common into:

– Insecure Interaction
● Data sent between components in an insecure fashion

14

What Could Possible Go Wrong?

● Many ways to attack different programs
● MITRE groups the most common into:

– Insecure Interaction
● Data sent between components in an insecure fashion

– Risky Resource Management
● Bad creation, use, transfer, & destruction of resources

15

What Could Possible Go Wrong?

● Many ways to attack different programs
● MITRE groups the most common into:

– Insecure Interaction
● Data sent between components in an insecure fashion

– Risky Resource Management
● Bad creation, use, transfer, & destruction of resources

– Porous Defenses
● Standard security practices that are missing or incorrect

[http://cwe.mitre.org/top25/#Categories]

http://cwe.mitre.org/top25/#Categories

16

Deeper Dive: Memory Safety

● Memory safety is a fundamental security issue
for languages like C, C++, Assembly, ….

17

Deeper Dive: Memory Safety

● Memory safety is a fundamental security issue
for languages like C, C++, Assembly, ….

● General idea:
– Accessing memory when you shouldn't be able to

might read, write, or execute inappropriately

18

Deeper Dive: Memory Safety

● Memory safety is a fundamental security issue
for languages like C, C++, Assembly, ….

● General idea:
– Accessing memory when you shouldn't be able to

might read, write, or execute inappropriately

● Classic example:
– stack buffer overflow attacks

19

Deeper Dive: Memory Safety

● Memory safety is a fundamental security issue
for languages like C, C++, Assembly, ….

● General idea:
– Accessing memory when you shouldn't be able to

might read, write, or execute inappropriately

● Classic example:
– stack buffer overflow attacks

– Read more input into a buffer than the buffer can
hold....

20

Deeper Dive: Memory Safety

● Memory safety is a fundamental security issue
for languages like C, C++, Assembly, ….

● General idea:
– Accessing memory when you shouldn't be able to

might read, write, or execute inappropriately

● Classic example:
– stack buffer overflow attacks

– Read more input into a buffer than the buffer can
hold....

How many of you recall what a stack frame looks like?

21

Stack Buffer Overflows

0x000

0xFFF

A
dd

re
ss

es

Stack… void foo(char *input) {
 unsigned secureData;
 char buffer[16];
 strcpy(buffer, input);
}

22

Stack Buffer Overflows

0x000

0xFFF

A
dd

re
ss

es

Previous Frame

Stack… void foo(char *input) {
 unsigned secureData;
 char buffer[16];
 strcpy(buffer, input);
}

23

Stack Buffer Overflows

0x000

0xFFF

A
dd

re
ss

es

Previous Frame

Stack…

S
ta

ck
 G

ro
w

th

void foo(char *input) {
 unsigned secureData;
 char buffer[16];
 strcpy(buffer, input);
}

24

Stack Buffer Overflows

0x000

0xFFF

A
dd

re
ss

es

Previous Frame

Stack…

Return Address

Old Frame Ptr
S

ta
ck

 G
ro

w
th

void foo(char *input) {
 unsigned secureData;
 char buffer[16];
 strcpy(buffer, input);
}

secureData

buffer[15]
buffer[14]

...
buffer[0]

Stack Frame for foo

25

Stack Buffer Overflows

0x000

0xFFF

A
dd

re
ss

es

Previous Frame

Stack…

Return Address

Old Frame Ptr
S

ta
ck

 G
ro

w
th

void foo(char *input) {
 unsigned secureData;
 char buffer[16];
 strcpy(buffer, input);
}

secureData

buffer[15]
buffer[14]

...
buffer[0]

Stack Frame for foo

What can go wrong?

26

Stack Buffer Overflows

0x000

0xFFF

A
dd

re
ss

es

Previous Frame

Stack…

Return Address

Old Frame Ptr
S

ta
ck

 G
ro

w
th

void foo(char *input) {
 unsigned secureData;
 char buffer[16];
 strcpy(buffer, input);
}

secureData

buffer[15]
buffer[14]

...
buffer[0]

input = “normal input”
 + “insecureData”

27

Stack Buffer Overflows

0x000

0xFFF

A
dd

re
ss

es

Previous Frame

Stack…

Return Address

Old Frame Ptr
S

ta
ck

 G
ro

w
th

void foo(char *input) {
 unsigned secureData;
 char buffer[16];
 strcpy(buffer, input);
}

buffer[15]
buffer[14]

...
buffer[0]

input = “normal input”
 + “insecureData”

secureData

28

Stack Buffer Overflows

0x000

0xFFF

A
dd

re
ss

es

Previous Frame

Stack…

Return Address

Old Frame Ptr
S

ta
ck

 G
ro

w
th

void foo(char *input) {
 unsigned secureData;
 char buffer[16];
 strcpy(buffer, input);
}

buffer[15]
buffer[14]

...
buffer[0]

input = “normal input”
 + “insecureData”

The integrity of the
secure data is corrupted.

secureData

29

Stack Buffer Overflows

0x000

0xFFF

A
dd

re
ss

es

Previous Frame

Stack…

Return Address

Old Frame Ptr
S

ta
ck

 G
ro

w
th

void foo(char *input) {
 unsigned secureData;
 char buffer[16];
 strcpy(buffer, input);
}

buffer[15]
buffer[14]

...
buffer[0]

input = “normal input”
 + “insecureData”

The integrity of the
secure data is corrupted.

secureData

What else can go wrong?

30

Stack Buffer Overflows

0x000

0xFFF

A
dd

re
ss

es

Previous Frame

Stack…

Return Address

Old Frame Ptr
S

ta
ck

 G
ro

w
th

void foo(char *input) {
 unsigned secureData;
 char buffer[16];
 strcpy(buffer, input);
}

secureData

buffer[15]
buffer[14]

...
buffer[0]

input = “input”
 + “payload address”
 + “payload”

31

Stack Buffer Overflows

0x000

0xFFF

A
dd

re
ss

es

Previous Frame

Stack…

Return Address

Old Frame Ptr
S

ta
ck

 G
ro

w
th

void foo(char *input) {
 unsigned secureData;
 char buffer[16];
 strcpy(buffer, input);
}

secureData

buffer[15]
buffer[14]

...
buffer[0]

input = “input”
 + “payload address”
 + “payload”

What does this mean?

32

Memory Safety

● Vulnerabilities come from reading/writing/freeing
– Out of bounds pointers

– Dangling pointers

33

Memory Safety

● Vulnerabilities come from reading/writing/freeing
– Out of bounds pointers

– Dangling pointers

● Why doesn't Java face this issue?

34

Memory Safety

● Vulnerabilities come from reading/writing/freeing
– Out of bounds pointers

– Dangling pointers

● Why doesn't Java face this issue?
● Is this intrinsic to languages like C++?

– Why/Why not?

35

Memory Safety

● Vulnerabilities come from reading/writing/freeing
– Out of bounds pointers

– Dangling pointers

● Why doesn't Java face this issue?
● Is this intrinsic to languages like C++?

– Why/Why not?

● Are these still a real issue?

36

Memory Safety

● Vulnerabilities come from reading/writing/freeing
– Out of bounds pointers

– Dangling pointers

● Why doesn't Java face this issue?
● Is this intrinsic to languages like C++?

– Why/Why not?

● Are these still a real issue?
– http://www.symantec.com/security_response/vulnerability.jsp?

bid=70332

http://www.symantec.com/security_response/vulnerability.jsp?bid=70332
http://www.symantec.com/security_response/vulnerability.jsp?bid=70332

37

Another Case: SQL Injection

SQL – a query language for databases
● Queries like:

“SELECT grade,id FROM students
WHERE name=” + username;

ID Name Grade
0 Alice 92
1 Bob 87
2 Mallory 75

38

Another Case: SQL Injection

SQL – a query language for databases
● Queries like:

“SELECT grade,id FROM students
WHERE name=” + username;

● Values for name, grade often come from user
input.

ID Name Grade
0 Alice 92
1 Bob 87
2 Mallory 75

39

Another Case: SQL Injection

SQL – a query language for databases
● Queries like:

“SELECT grade,id FROM students
WHERE name=” + username;

● Values for name, grade often come from user
input.

ID Name Grade
0 Alice 92
1 Bob 87
2 Mallory 75

Why is this a problem?

40

Another Case: SQL Injection

username = “'bob'; DROP TABLE students”

● What happens?

41

SQL Injection

[http://xkcd.com/327/] [http://bobby-tables.com/]

● The user may include commands in their input!

http://xkcd.com/327/
http://bobby-tables.com/

42

SQL Injection

[http://xkcd.com/327/] [http://bobby-tables.com/]

● The user may include commands in their input!
● Need to sanitize the input before use

http://xkcd.com/327/
http://bobby-tables.com/

43

SQL Injection

[http://xkcd.com/327/] [http://bobby-tables.com/]

● The user may include commands in their input!
● Need to sanitize the input before use

How would you prevent this problem?

http://xkcd.com/327/
http://bobby-tables.com/

44

A Subtle Problem in General

● The problems may be much more subtle:

User A can read files X,Y,Z and write to S,T
User B can read files X,Y,S and write to Z,T

How can we ensure that no information
from A is ever written to Z?

45

A Subtle Problem in General

● The problems may be much more subtle:

User A can read files X,Y,Z and write to S,T
User B can read files X,Y,S and write to Z,T

How can we ensure that no information
from A is ever written to Z?

Can you envision a scenario
that creates this problem?

46

A Subtle Problem in General

● The problems may be much more subtle:

● Care may be required to enforce access control
policies

User A can read files X,Y,Z and write to S,T
User B can read files X,Y,S and write to Z,T

How can we ensure that no information
from A is ever written to Z?

47

A Subtle Problem in General

● The problems may be much more subtle:

● Care may be required to enforce access control
policies
– Discretionary access control – owner determines access

User A can read files X,Y,Z and write to S,T
User B can read files X,Y,S and write to Z,T

How can we ensure that no information
from A is ever written to Z?

48

A Subtle Problem in General

● The problems may be much more subtle:

● Care may be required to enforce access control
policies
– Discretionary access control – owner determines access

– Mandatory access control – clearance determines access

User A can read files X,Y,Z and write to S,T
User B can read files X,Y,S and write to Z,T

How can we ensure that no information
from A is ever written to Z?

49

Assuring Security

● Make risky operations someone else's job
– e.g. Google Checkout, PayPal, Amazon, etc.

50

Assuring Security

● Make risky operations someone else's job
– e.g. Google Checkout, PayPal, Amazon, etc.

● Define rigorous security policies
– What are your CIAA security criteria?

51

Assuring Security

● Make risky operations someone else's job
– e.g. Google Checkout, PayPal, Amazon, etc.

● Define rigorous security policies
– What are your CIAA security criteria?

● Follow secure design & coding policies
– And include them in your review criteria

52

Assuring Security

● Make risky operations someone else's job
– e.g. Google Checkout, PayPal, Amazon, etc.

● Define rigorous security policies
– What are your CIAA security criteria?

● Follow secure design & coding policies
– And include them in your review criteria

– Apple secure coding policies

– CERT Top 10 Practices

– Mitre Mitigation Strategies

https://developer.apple.com/library/mac/documentation/security/conceptual/SecureCodingGuide/Introduction.html
https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices
http://cwe.mitre.org/top25/#Mitigations

53

Assuring Security

● Make risky operations someone else's job
– e.g. Google Checkout, PayPal, Amazon, etc.

● Define rigorous security policies
– What are your CIAA security criteria?

● Follow secure design & coding policies
– And include them in your review criteria

● Formal certification

54

Common Proactive Approaches

How are these techniques applied?

55

Common Proactive Approaches

How are these techniques applied?
● Security must be part of design

– Prepared Statements, Safe Arrays, etc.

56

Common Proactive Approaches

How are these techniques applied?
● Security must be part of design

– Prepared Statements, Safe Arrays, etc.

● Regular security audits
– Retrospective analysis & suggestions

57

Common Proactive Approaches

How are these techniques applied?
● Security must be part of design

– Prepared Statements, Safe Arrays, etc.

● Regular security audits
– Retrospective analysis & suggestions

● Penetration testing
– Can someone skilled break it?

58

Security Overall

● Security is now a pressing concern for all
software

59

Security Overall

● Security is now a pressing concern for all
software
– Old software was designed in an era of naiveté and

is often vulnerable/broken

60

Security Overall

● Security is now a pressing concern for all
software
– Old software was designed in an era of naiveté and

is often vulnerable/broken

– New software is built to perform sensitive
operations in a multiuser and networked
environment.

61

Security Overall

● Security is now a pressing concern for all
software
– Old software was designed in an era of naiveté and

is often vulnerable/broken

– New software is built to perform sensitive
operations in a multiuser and networked
environment.

Not planning for security concerns from the
beginning is a broken approach to development

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

