
CMPT 473
Software Testing, Reliability and Security

Nick Sumner
wsumner@sfu.ca

Performance

Performance & Measurement

● Real development must manage resources

Performance & Measurement

● Real development must manage resources
– Time
– Memory
– Open connections
– VM instances
– Energy consumption
– ...

Performance & Measurement

● Real development must manage resources
– Time
– Memory
– Open connections
– VM instances
– Energy consumption
– ...

● Resource usage is one form of performance
– Performance – a measure of nonfunctional behavior of a program

Performance & Measurement

● Real development must manage resources
– Time
– Memory
– Open connections
– VM instances
– Energy consumption
– ...

● Resource usage is one form of performance
– Performance – a measure of nonfunctional behavior of a program

● We often need to assess performance or a change in performance
Data Structure A Data Structure Bvs

Performance & Measurement

● Real development must manage resources
– Time
– Memory
– Open connections
– VM instances
– Energy consumption
– ...

● Resource usage is one form of performance
– Performance – a measure of nonfunctional behavior of a program

● We often need to assess performance or a change in performance
Data Structure A Data Structure Bvs

How would you approach this in a data structures course?

Performance & Measurement

● Performance assessment is deceptively hard
[Demo/Exercise]

Performance & Measurement

● Performance assessment is deceptively hard
– Modern systems involve complex actors

Performance & Measurement

● Performance assessment is deceptively hard
– Modern systems involve complex actors
– Theoretical models may be too approximate

Performance & Measurement

● Performance assessment is deceptively hard
– Modern systems involve complex actors
– Theoretical models may be too approximate
– Even with the best intentions we can deceive ourselves

Performance & Measurement

● Performance assessment is deceptively hard
– Modern systems involve complex actors
– Theoretical models may be too approximate
– Even with the best intentions we can deceive ourselves

● Good performance evaluation should be rigorous & scientific

Performance & Measurement

● Performance assessment is deceptively hard
– Modern systems involve complex actors
– Theoretical models may be too approximate
– Even with the best intentions we can deceive ourselves

● Good performance evaluation should be rigorous & scientific
– The same process applies in development as in good research

Performance & Measurement

● Performance assessment is deceptively hard
– Modern systems involve complex actors
– Theoretical models may be too approximate
– Even with the best intentions we can deceive ourselves

● Good performance evaluation should be rigorous & scientific
– The same process applies in development as in good research

1) Clear claims
2) Clear evidence
3) Correct reasoning from evidence to claims

Performance & Measurement

● Performance assessment is deceptively hard
– Modern systems involve complex actors
– Theoretical models may be too approximate
– Even with the best intentions we can deceive ourselves

● Good performance evaluation should be rigorous & scientific
– The same process applies in development as in good research

1) Clear claims
2) Clear evidence
3) Correct reasoning from evidence to claims

– And yet this is challenging to get right!

Performance and Measurement

Several facets:

● Speed / Running time
– The total time required (latency?)

● Throughput
– Pages/Transactions per second, bytes per second

● Responsiveness
– UI response time, server response time at peak load

● Memory Consumption
– Peak memory consumption

● ...

Measurement

● So how can we measure these?

Measurement

● So how can we measure these?
– Idea: run the test suite and measure the resource in question

Measurement

● So how can we measure these?
– Idea: run the test suite and measure the resource in question
– How well does this capture system level performance?
– “ ” low level performance?

Measurement

● So how can we measure these?
– Idea: run the test suite and measure the resource in question
– How well does this capture system level performance?
– “ ” low level performance?

● A functionality based test suite will not capture performance concerns!
– Design tests that specifically target performance objectives

Measurement

● So how can we measure these?
– Idea: run the test suite and measure the resource in question
– How well does this capture system level performance?
– “ ” low level performance?

● A functionality based test suite will not capture performance concerns!
– Design tests that specifically target performance objectives

How? What should the tests capture?

Benchmarking

● We must reason rigorously about performance during
assessment, investigation, & improvement

Benchmarking

● We must reason rigorously about performance during
assessment, investigation, & improvement

● Assessing performance is done through benchmarking

Benchmarking

● We must reason rigorously about performance during
assessment, investigation, & improvement

● Assessing performance is done through benchmarking
– Microbenchmarks

● Focus on cost of an operation in isolation
● Can help identify core performance details & explain causes

Benchmarking

● We must reason rigorously about performance during
assessment, investigation, & improvement

● Assessing performance is done through benchmarking
– Microbenchmarks

● Focus on cost of an operation in isolation
● Can help identify core performance details & explain causes

– Macrobenchmarks
● Real world system performance

Benchmarking

● We must reason rigorously about performance during
assessment, investigation, & improvement

● Assessing performance is done through benchmarking
– Microbenchmarks

● Focus on cost of an operation in isolation
● Can help identify core performance details & explain causes

– Macrobenchmarks
● Real world system performance

– Workloads (inputs) must be chosen carefully either way.
● representative, pathological, scenario driven, ...

Benchmarking

● Suppose we want to run a microbenchmark
startTime = getCurrentTimeInSeconds();
doWorkloadOfInterest();
endTime = getCurrentTimeInSeconds();
reportResult(endTime – startTime);

Benchmarking

● Suppose we want to run a microbenchmark
startTime = getCurrentTimeInSeconds();
doWorkloadOfInterest();
endTime = getCurrentTimeInSeconds();
reportResult(endTime – startTime);

What possible issues do you observe?

Benchmarking

● Suppose we want to run a microbenchmark

– Granularity of measurement
– Warm up effects
– Nondeterminism
– Size of workload
– System interference
– Frequency scaling?
– Interference of other workloads?
– Alignment?

startTime = getCurrentTimeInSeconds();
doWorkloadOfInterest();
endTime = getCurrentTimeInSeconds();
reportResult(endTime – startTime);

Benchmarking

● Granularity & Units
– Why is granularity a problem?
– What are alternatives to getCurrentTimeInSeconds()?

Benchmarking

● Granularity & Units
– Why is granularity a problem?
– What are alternatives to getCurrentTimeInSeconds()?
– What if I want to predict performance on a different machine?

Benchmarking

● Granularity & Units
– Why is granularity a problem?
– What are alternatives to getCurrentTimeInSeconds()?
– What if I want to predict performance on a different machine?

● Using cycles instead of wall clock time can be useful, but has its own
limitations

Benchmarking

● Warm up time
– Why is warm up time necessary in general?

Benchmarking

● Warm up time
– Why is warm up time necessary in general?
– Why is it especially problematic for systems like Java?

Benchmarking

● Warm up time
– Why is warm up time necessary in general?
– Why is it especially problematic for systems like Java?
– How can we modify our example to facilitate this?

Benchmarking

● Warm up time
– Why is warm up time necessary in general?
– Why is it especially problematic for systems like Java?
– How can we modify our example to facilitate this?

for (…) doWorkloadOfInterest();
startTime = getCurrentTimeInSeconds();
doWorkloadOfInterest();
endTime = getCurrentTimeInSeconds();
reportResult(endTime – startTime);

Benchmarking

● Nondeterministic behavior
– Will getCurrentTimeInSeconds() always return the same

number?

Why/why not?

Benchmarking

● Nondeterministic behavior
– Will getCurrentTimeInSeconds() always return the same

number?
– So what reflects a meaningful result?

● Hint: The Law of Large Numbers!

http://en.wikipedia.org/wiki/Law_of_large_numbers

Benchmarking

● Nondeterministic behavior
– Will getCurrentTimeInSeconds() always return the same

number?
– So what reflects a meaningful result?

● Hint: The Law of Large Numbers!

● By running the same test many times,
the arithmetic mean will converge on the expected value

http://en.wikipedia.org/wiki/Law_of_large_numbers

Benchmarking

● Nondeterministic behavior
– Will getCurrentTimeInSeconds() always return the same

number?
– So what reflects a meaningful result?

● Hint: The Law of Large Numbers!

● By running the same test many times,
the arithmetic mean will converge on the expected value

Is this always what you want?

http://en.wikipedia.org/wiki/Law_of_large_numbers

Benchmarking

● A revised (informal) approach:

for (…) doWorkloadOfInterest();
startTime = getCurrentTimeInNanos();
for (…) doWorkloadOfInterest();
endTime = getCurrentTimeInNanos();
reportResult(endTime – startTime);

Benchmarking

● A revised (informal) approach:

● This still does not solve everything
– Frequency scaling?
– Interference of other workloads?
– Alignment?

for (…) doWorkloadOfInterest();
startTime = getCurrentTimeInNanos();
for (…) doWorkloadOfInterest();
endTime = getCurrentTimeInNanos();
reportResult(endTime – startTime);

Benchmarking

● Now we have a benchmark, how do we interpret/report it?
– We must compare

Benchmarking

● Now we have a benchmark, how do we interpret/report it?
– We must compare

● Benchmark vs expectation/mental model
● Different solutions
● Over time

Benchmarking

● Now we have a benchmark, how do we interpret/report it?
– We must compare

● Benchmark vs expectation/mental model
● Different solutions
● Over time

● Results are often normalized against the baseline

Benchmarking

● Now we have a benchmark, how do we interpret/report it?
– We must compare
– We must remember results are statistical

Benchmarking

● Now we have a benchmark, how do we interpret/report it?
– We must compare
– We must remember results are statistical

● Show the distribution (e.g. violin plots)

[Seaborn Violinplot]

Benchmarking

● Now we have a benchmark, how do we interpret/report it?
– We must compare
– We must remember results are statistical

● Show the distribution (e.g. violin plots)
● Summarize the distribution (e.g. mean and confidence intervals, box & whisker)

[Seaborn Violinplot] [Seaborn Boxplot][Seaborn Barplot]

Benchmarking

● A benchmark suite comprises multiple benchmarks

Old

New

T1 T2 T3 T4 T5 T6

Benchmarking

● A benchmark suite comprises multiple benchmarks

● Now we have multiple results, how should we consider them?

Old

New

T1 T2 T3 T4 T5 T6

Benchmarking

● A benchmark suite comprises multiple benchmarks

● Now we have multiple results, how should we consider them?
– 2 major senarios

● Hypothesis testing
– Is solution A different than B?

Old

New

T1 T2 T3 T4 T5 T6

Benchmarking

● A benchmark suite comprises multiple benchmarks

● Now we have multiple results, how should we consider them?
– 2 major senarios

● Hypothesis testing
– Is solution A different than B?
– You can use ANOVA

Old

New

T1 T2 T3 T4 T5 T6

Benchmarking

● A benchmark suite comprises multiple benchmarks

● Now we have multiple results, how should we consider them?
– 2 major senarios

● Hypothesis testing
● Summary statistics

Old

New

T1 T2 T3 T4 T5 T6

Benchmarking

● A benchmark suite comprises multiple benchmarks

● Now we have multiple results, how should we consider them?
– 2 major senarios

● Hypothesis testing
● Summary statistics

– Condensing a suite to a single number
– Intrinsically lossy, but can still be useful

Old

New

T1 T2 T3 T4 T5 T6

Benchmarking

● A benchmark suite comprises multiple benchmarks

● Now we have multiple results, how should we consider them?
– 2 major senarios

● Hypothesis testing
● Summary statistics

– Condensing a suite to a single number
– Intrinsically lossy, but can still be useful

Old

New

T1 T2 T3 T4 T5 T6

Old: ?
New: ?

New
Old :?

Summary Statistics

Averages of r1, r2, …, rN

● Many ways to measure expectation or tendency

Summary Statistics

Averages of r1, r2, …, rN

● Many ways to measure expectation or tendency

● Arithmetic Mean 1
N ∑
i=1

N

r i

1
N∑
i=1

N

r i

Summary Statistics

Averages of r1, r2, …, rN

● Many ways to measure expectation or tendency

● Arithmetic Mean

● Harmonic Mean
N

∑
i=1

N
1
r i

Summary Statistics

Averages of r1, r2, …, rN

● Many ways to measure expectation or tendency

● Arithmetic Mean

● Harmonic Mean

● Geometric Mean

1
N∑
i=1

N

r i N

∑
i=1

N
1
r i

N√∏i=1

N

r i

Summary Statistics

Averages of r1, r2, …, rN

● Many ways to measure expectation or tendency

● Arithmetic Mean

● Harmonic Mean

● Geometric Mean

1
N∑
i=1

N

r i N

∑
i=1

N
1
r i

N√∏
i=1

N

r i

Each type means something different and has valid uses

Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing

1
N∑
i=1

N

r i

Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means

1
N∑
i=1

N

r i

Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times 1

N∑
i=1

N

r i

Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

for (x in 0 to 4)
 times[x] = doWorkloadOfInterest();

Handling Nondeterminism

E(time) = arithmean(times)

1
N∑
i=1

N

r i

Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

● Harmonic Mean
– Good for reporting rates

N

∑
i=1

N
1
r i

1
N∑
i=1

N

r i

Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

● Harmonic Mean
– Good for reporting rates
– e.g. Required throughput for a set of tasks

N

∑
i=1

N
1
r i

1
N∑
i=1

N

r i

Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

● Harmonic Mean
– Good for reporting rates
– e.g. Required throughput for a set of tasks

1
N∑
i=1

N

r i

N

∑
i=1

N
1
r i

Given tasks t1, t2, & t3 serving 40 pages each:
thoughput(t1) = 10 pages/sec
thoughput(t2) = 20 pages/sec
thoughput(t3) = 20 pages/sec

What is the average throughput? What should it mean?
1
N∑
i=1

N

r i

Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

● Harmonic Mean
– Good for reporting rates
– e.g. Required throughput for a set of tasks

1
N∑
i=1

N

r i

N

∑
i=1

N
1
r i

Given tasks t1, t2, & t3 serving 40 pages each:
thoughput(t1) = 10 pages/sec
thoughput(t2) = 20 pages/sec
thoughput(t3) = 20 pages/sec

What is the average throughput? What should it mean?
 Arithmetic = 16.7 p/s

1
N∑
i=1

N

r i

Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

● Harmonic Mean
– Good for reporting rates
– e.g. Required throughput for a set of tasks

1
N∑
i=1

N

r i

N

∑
i=1

N
1
r i

Given tasks t1, t2, & t3 serving 40 pages each:
thoughput(t1) = 10 pages/sec
thoughput(t2) = 20 pages/sec
thoughput(t3) = 20 pages/sec

What is the average throughput? What should it mean?
 Arithmetic = 16.7 p/s Harmonic = 15 p/s

1
N∑
i=1

N

r i

Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

● Harmonic Mean
– Good for reporting rates
– e.g. Required throughput for a set of tasks

1
N∑
i=1

N

r i

N

∑
i=1

N
1
r i

Given tasks t1, t2, & t3 serving 40 pages each:
thoughput(t1) = 10 pages/sec
thoughput(t2) = 20 pages/sec
thoughput(t3) = 20 pages/sec

What is the average throughput? What should it mean?
 Arithmetic = 16.7 p/s Harmonic = 15 p/s
 120/16.7 = 7.2 120/15 = 8

1
N∑
i=1

N

r i

Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

● Harmonic Mean
– Good for reporting rates
– e.g. Required throughput for a set of tasks

1
N∑
i=1

N

r i

N

∑
i=1

N
1
r i

Given tasks t1, t2, & t3 serving 40 pages each:
thoughput(t1) = 10 pages/sec
thoughput(t2) = 20 pages/sec
thoughput(t3) = 20 pages/sec

What is the average throughput? What should it mean?
 Arithmetic = 16.7 p/s Harmonic = 15 p/s
 120/16.7 = 7.2 120/15 = 8

Identifies the constant rate
required for the same time

1
N∑
i=1

N

r i

Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

● Harmonic Mean
– Good for reporting rates
– e.g. Required throughput for a set of tasks

1
N∑
i=1

N

r i

Given tasks t1, t2, & t3 serving 40 pages each:
thoughput(t1) = 10 pages/sec
thoughput(t2) = 20 pages/sec
thoughput(t3) = 20 pages/sec

What is the average throughput? What should it mean?
 Arithmetic = 16.7 p/s Harmonic = 15 p/s
 120/16.7 = 7.2 120/15 = 8

N

∑
i=1

N
1
r i

Identifies the constant rate
required for the same time

CAVEAT: If the size of each workload changes,
a weighted harmonic mean is required!

1
N∑
i=1

N

r i

Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

N√∏
i=1

N

r i

Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Any idea why it may be useful here?
(A bit of a thought experiment)

N√∏
i=1

N

r i

Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Old
T1 T2

N√∏
i=1

N

r i

Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Old
T1 T2

New 1

T1 T2

What happens to the
arithmetic mean?

halved

N√∏
i=1

N

r i

Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Old
T1 T2

What happens to the
arithmetic mean?

New 2

T1 T2

halved

N√∏
i=1

N

r i

Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Old
T1 T2

The (non) change to T1 dominates
any behavior for T2!

N√∏
i=1

N

r i

Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Old
T1 T2

Geometric:

√r1×r2

Old

N√∏
i=1

N

r i

Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Old
T1 T2

Geometric:

√r1×r2

Old New 1
√r1×(

1
2
r2)

N√∏
i=1

N

r i

Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Old
T1 T2

Geometric:

√r1×r2

Old New 1
√(

1
2
r1)×r2

New 2
√r1×(

1
2
r2)

N√∏
i=1

N

r i

Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Old
T1 T2

Geometric:

√r1×r2

Old New 1
√(

1
2
r1)×r2

New 2
√r1×(

1
2
r2) =√ 1

2
×r1×r2=

N√∏
i=1

N

r i

Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks
– A 10% difference in any benchmark affects the final value the same way

N√∏
i=1

N

r i

Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks
– A 10% difference in any benchmark affects the final value the same way

Note: It doesn't have an intuitive meaning!
It does provides a balanced score of performance.

See [Mashey 2004] for deeper insights.

N√∏i=1

N

ri

Summary Statistics

● Remember the distributions
– Measurement is inherently nondeterministic
– Every measurement is a sample from a probability distribution

P
ro

b
ab

ili
ty

Outcome
X X X

X
X

Summary Statistics

● Remember the distributions
– Measurement is inherently nondeterministic
– Every measurement is a sample from a probability distribution

● Do these mean the same thing?

P
ro

b
ab

ili
ty

Outcome

P
ro

b
ab

ili
ty

Outcome

Summary Statistics

● Remember the distributions
– Measurement is inherently nondeterministic
– Every measurement is a sample from a probability distribution

● Do these mean the same thing?
– You cannot ignore the spread of data
– You at least need to account for the sample standard deviation

Summary Statistics

● Remember the distributions
– Measurement is inherently nondeterministic
– Every measurement is a sample from a probability distribution

● Do these mean the same thing?
– You cannot ignore the spread of data
– You at least need to account for the sample standard deviation

● Recall that the standard deviation provides a notion of the spread
– Can be used to establish confidence in the mean
– If it is large (1) you may have methodological error (2) you may need more data

Summary Statistics

● Remember the distributions
– Measurement is inherently nondeterministic
– Every measurement is a sample from a probability distribution

● Do these mean the same thing?
– You cannot ignore the spread of data
– You at least need to account for the sample standard deviation

● Recall that the standard deviation provides a notion of the spread
– Can be used to establish confidence in the mean
– If it is large (1) you may have methodological error (2) you may need more data

● More rigorously, consider
– Confidence intervals, T-tests, & ANOVA

Benchmarking

● In practice applying good benchmarking & statistics is made easier via
frameworks
– Google benchmark (C & C++)
– Google Caliper (Java)
– Nonius
– Celero
– Easybench
– Pyperf
– ...

Perf & event profiling

● Sometimes low-level architectural effects determine the performance
– Cache misses
– Misspeculations
– TLB misses

Perf & event profiling

● Sometimes low-level architectural effects determine the performance
– Cache misses
– Misspeculations
– TLB misses

How well does sample based profiling work for these?

Perf & event profiling

● Sometimes low-level architectural effects determine the performance
– Cache misses
– Misspeculations
– TLB misses

How well does sample based profiling work for these?

● Instead, we can leverage low level system counters via tools like perf

Perf & event profiling

● Sometimes low-level architectural effects determine the performance
– Cache misses
– Misspeculations
– TLB misses

How well does sample based profiling work for these?

● Instead, we can leverage low level system counters via tools like perf
perf stat -e <events> -g <command>
perf record -e <events> -g <command>
perf report
perf list

Perf & event profiling

● Sometimes low-level architectural effects determine the performance
– Cache misses
– Misspeculations
– TLB misses

How well does sample based profiling work for these?

● Instead, we can leverage low level system counters via tools like perf
perf stat -e <events> -g <command>
perf record -e <events> -g <command>
perf report
perf list

task-clock,context-switches,cpu-migrations,
page-faults,cycles,instructions,branches,
branch-misses,cache-misses,cycle_activity.stalls_total

events like

Optimizing Algorithms

● Improving real world algorithmic performance comes from
recognizing the interplay between theory and hardware

Optimizing Algorithms

● Improving real world algorithmic performance comes from
recognizing the interplay between theory and hardware

● Hybrid algorithms
– Constants matter. Use thresholds to select algorithms.

Optimizing Algorithms

● Improving real world algorithmic performance comes from
recognizing the interplay between theory and hardware

● Hybrid algorithms
– Constants matter. Use thresholds to select algorithms.
– Use general N logN sorting for N above 300 [Alexandrescu 2019]

https://www.youtube.com/watch?v=FJJTYQYB1JQ

Optimizing Algorithms

● Improving real world algorithmic performance comes from
recognizing the interplay between theory and hardware

● Hybrid algorithms
– Constants matter. Use thresholds to select algorithms.
– Use general N logN sorting for N above 300 [Alexandrescu 2019]

● Caching & Precomputing

https://www.youtube.com/watch?v=FJJTYQYB1JQ

Optimizing Algorithms

● Improving real world algorithmic performance comes from
recognizing the interplay between theory and hardware

● Hybrid algorithms
– Constants matter. Use thresholds to select algorithms.
– Use general N logN sorting for N above 300 [Alexandrescu 2019]

● Caching & Precomputing
– If you will reuse results, save them and avoid recomputing

https://www.youtube.com/watch?v=FJJTYQYB1JQ

Optimizing Algorithms

● Improving real world algorithmic performance comes from
recognizing the interplay between theory and hardware

● Hybrid algorithms
– Constants matter. Use thresholds to select algorithms.
– Use general N logN sorting for N above 300 [Alexandrescu 2019]

● Caching & Precomputing
– If you will reuse results, save them and avoid recomputing
– If all possible results are compact, just compute a table up front

https://www.youtube.com/watch?v=FJJTYQYB1JQ

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!
– Constants and artifacts of scale can actually dominate the real world

performance

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!
– Constants and artifacts of scale can actually dominate the real world

performance

A uniform cost model
throws necessary information away

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!
– Constants and artifacts of scale can actually dominate the real world

performance
– We want modeling & algorithms that account for artifacts like:

memory, I/O, consistency & speculation, shapes of workloads

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!
– Constants and artifacts of scale can actually dominate the real world

performance
– We want modeling & algorithms that account for artifacts like:

memory, I/O, consistency & speculation, shapes of workloads

● Alternative approaches

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!
– Constants and artifacts of scale can actually dominate the real world

performance
– We want modeling & algorithms that account for artifacts like:

memory, I/O, consistency & speculation, shapes of workloads

● Alternative approaches
– I/O complexity, I/O efficiency and cache awareness

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!
– Constants and artifacts of scale can actually dominate the real world

performance
– We want modeling & algorithms that account for artifacts like:

memory, I/O, consistency & speculation, shapes of workloads

● Alternative approaches
– I/O complexity, I/O efficiency and cache awareness

CPU

Memory 1

Memory 2

Block size B

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!
– Constants and artifacts of scale can actually dominate the real world

performance
– We want modeling & algorithms that account for artifacts like:

memory, I/O, consistency & speculation, shapes of workloads

● Alternative approaches
– I/O complexity, I/O efficiency and cache awareness

CPU

Memory 1

Memory 2

Block size B

Complexity measured in block transfers

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!
– Constants and artifacts of scale can actually dominate the real world

performance
– We want modeling & algorithms that account for artifacts like:

memory, I/O, consistency & speculation, shapes of workloads

● Alternative approaches
– I/O complexity, I/O efficiency and cache awareness
– Cache oblivious algorithms & data structures

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!
– Constants and artifacts of scale can actually dominate the real world

performance
– We want modeling & algorithms that account for artifacts like:

memory, I/O, consistency & speculation, shapes of workloads

● Alternative approaches
– I/O complexity, I/O efficiency and cache awareness
– Cache oblivious algorithms & data structures

Similar to I/O, but agnostic to block size

Optimizing Algorithms

● Better performance modeling & algorithms
– The core approaches we use have not adapted to changing contexts

● Classic asymptotic complexity less useful in practice
– It uses an abstract machine model that is too approximate!
– Constants and artifacts of scale can actually dominate the real world

performance
– We want modeling & algorithms that account for artifacts like:

memory, I/O, consistency & speculation, shapes of workloads

● Alternative approaches
– I/O complexity, I/O efficiency and cache awareness
– Cache oblivious algorithms & data structures
– Parameterized complexity

Summary

● Reasoning rigorously about performance is challenging

Summary

● Reasoning rigorously about performance is challenging

● Good tooling can allow you to investigate performance well

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115

