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Performance & Measurement

● Real development must manage resources
– Time
– Memory
– Open connections
– VM instances
– Energy consumption
– ...

● Resource usage is one form of performance
– Performance – a measure of nonfunctional behavior of a program

● We often need to assess performance or a change in performance
Data Structure A Data Structure Bvs

How would you approach this in a data structures course?
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Performance & Measurement

● Performance assessment is deceptively hard
– Modern systems involve complex actors
– Theoretical models may be too approximate
– Even with the best intentions we can deceive ourselves

● Good performance evaluation should be rigorous & scientific
– The same process applies in development as in good research

1) Clear claims
2) Clear evidence
3) Correct reasoning from evidence to claims

– And yet this is challenging to get right!



  

Performance and Measurement

Several facets:

● Speed / Running time
– The total time required (latency?)

● Throughput
– Pages/Transactions per second, bytes per second

● Responsiveness
– UI response time, server response time at peak load

● Memory Consumption
– Peak memory consumption

● ...
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Measurement

● So how can we measure these?
– Idea: run the test suite and measure the resource in question
– How well does this capture system level performance?
– “ ” low level performance?

● A functionality based test suite will not capture performance concerns!
– Design tests that specifically target performance objectives

How? What should the tests capture?
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Benchmarking

● We must reason rigorously about performance during
assessment, investigation, & improvement

● Assessing performance is done through benchmarking
– Microbenchmarks 

● Focus on cost of an operation in isolation
● Can help identify core performance details & explain causes

– Macrobenchmarks
● Real world system performance

– Workloads (inputs) must be chosen carefully either way.
● representative, pathological, scenario driven, ...
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Benchmarking

● Suppose we want to run a microbenchmark
startTime = getCurrentTimeInSeconds();
doWorkloadOfInterest();
endTime = getCurrentTimeInSeconds();
reportResult(endTime – startTime);

What possible issues do you observe?



  

Benchmarking

● Suppose we want to run a microbenchmark

– Granularity of measurement
– Warm up effects
– Nondeterminism
– Size of workload
– System interference
– Frequency scaling?
– Interference of other workloads?
– Alignment?

startTime = getCurrentTimeInSeconds();
doWorkloadOfInterest();
endTime = getCurrentTimeInSeconds();
reportResult(endTime – startTime);
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Benchmarking

● Granularity & Units
– Why is granularity a problem?
– What are alternatives to getCurrentTimeInSeconds()?
– What if I want to predict performance on a different machine?

● Using cycles instead of wall clock time can be useful, but has its own 
limitations
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● Warm up time
– Why is warm up time necessary in general?
– Why is it especially problematic for systems like Java?
– How can we modify our example to facilitate this?

for (…) doWorkloadOfInterest();
startTime = getCurrentTimeInSeconds();
doWorkloadOfInterest();
endTime = getCurrentTimeInSeconds();
reportResult(endTime – startTime);
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Benchmarking

● Nondeterministic behavior
– Will getCurrentTimeInSeconds() always return the same 

number?
– So what reflects a meaningful result?

● Hint: The Law of Large Numbers!

● By running the same test many times,
the arithmetic mean will converge on the expected value

Is this always what you want?

http://en.wikipedia.org/wiki/Law_of_large_numbers


Benchmarking

● A revised (informal) approach:

for (…) doWorkloadOfInterest();
startTime = getCurrentTimeInNanos();
for (…) doWorkloadOfInterest();
endTime = getCurrentTimeInNanos();
reportResult(endTime – startTime);



Benchmarking

● A revised (informal) approach:

● This still does not solve everything
– Frequency scaling?
– Interference of other workloads?
– Alignment?

for (…) doWorkloadOfInterest();
startTime = getCurrentTimeInNanos();
for (…) doWorkloadOfInterest();
endTime = getCurrentTimeInNanos();
reportResult(endTime – startTime);
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● Now we have a benchmark, how do we interpret/report it?
– We must compare

● Benchmark vs expectation/mental model
● Different solutions
● Over time

● Results are often normalized against the baseline
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Benchmarking

● Now we have a benchmark, how do we interpret/report it?
– We must compare
– We must remember results are statistical

● Show the distribution (e.g. violin plots)
● Summarize the distribution (e.g. mean and confidence intervals, box & whisker)

[Seaborn Violinplot] [Seaborn Boxplot][Seaborn Barplot]
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● A benchmark suite comprises multiple benchmarks

● Now we have multiple results, how should we consider them?
– 2 major senarios

● Hypothesis testing
– Is solution A different than B?
– You can use ANOVA

Old

New

T1 T2 T3 T4 T5 T6
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Benchmarking

● A benchmark suite comprises multiple benchmarks

● Now we have multiple results, how should we consider them?
– 2 major senarios

● Hypothesis testing
● Summary statistics

– Condensing a suite to a single number
– Intrinsically lossy, but can still be useful

Old

New

T1 T2 T3 T4 T5 T6

Old: ?
New: ?

New
Old :?
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Summary Statistics

Averages of r1, r2, …, rN

● Many ways to measure expectation or tendency

● Arithmetic Mean

● Harmonic Mean

● Geometric Mean

1
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i=1

N

r i N
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N
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Each type means something different and has valid uses
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Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

for (x in 0 to 4)
  times[x] = doWorkloadOfInterest();

Handling Nondeterminism

E(time) = arithmean(times)

1
N∑
i=1

N

r i
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● Arithmetic Mean
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● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
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Summary Statistics

● Arithmetic Mean
– Good for reporting averages of numbers that mean the same thing
– Used for computing sample means
– e.g. Timing the same workload many times

● Harmonic Mean
– Good for reporting rates
– e.g. Required throughput for a set of tasks

1
N∑
i=1

N

r i

Given tasks t1, t2, & t3 serving 40 pages each:
thoughput(t1) = 10 pages/sec
thoughput(t2) = 20 pages/sec
thoughput(t3) = 20 pages/sec

What is the average throughput? What should it mean?
  Arithmetic = 16.7 p/s         Harmonic = 15 p/s
      120/16.7 = 7.2                   120/15 = 8

N

∑
i=1

N
1
r i

Identifies the constant rate
required for the same time

CAVEAT: If the size of each workload changes,
a weighted harmonic mean is required!
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Summary Statistics

● Geometric Mean 
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Any idea why it may be useful here?
(A bit of a thought experiment)

N√∏
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Summary Statistics

● Geometric Mean 
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Old
T1 T2

The (non) change to T1 dominates
any behavior for T2!

N√∏
i=1

N

r i
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● Geometric Mean 
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Summary Statistics

● Geometric Mean 
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks

Old
T1 T2

Geometric:
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Old New 1
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1
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New 2
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– e.g. Timing results across many different benchmarks
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Summary Statistics

● Geometric Mean
– Good for reporting results that mean different things
– e.g. Timing results across many different benchmarks
– A 10% difference in any benchmark affects the final value the same way

Note: It doesn't have an intuitive meaning!
It does provides a balanced score of performance.

See [Mashey 2004] for deeper insights.

N√∏i=1

N

ri
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Summary Statistics

● Remember the distributions
– Measurement is inherently nondeterministic
– Every measurement is a sample from a probability distribution

● Do these mean the same thing?
– You cannot ignore the spread of data
– You at least need to account for the sample standard deviation

● Recall that the standard deviation provides a notion of the spread
– Can be used to establish confidence in the mean
– If it is large (1) you may have methodological error (2) you may need more data

● More rigorously, consider
– Confidence intervals,    T-tests,    & ANOVA



Benchmarking

● In practice applying good benchmarking & statistics is made easier via 
frameworks
– Google benchmark (C & C++)
– Google Caliper (Java)
– Nonius
– Celero
– Easybench
– Pyperf
– ...
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Perf & event profiling

● Sometimes low-level architectural effects determine the performance
– Cache misses
– Misspeculations
– TLB misses

How well does sample based profiling work for these?

● Instead, we can leverage low level system counters via tools like perf
perf stat -e <events> -g <command>
perf record -e <events> -g <command>
perf report
perf list

task-clock,context-switches,cpu-migrations,
page-faults,cycles,instructions,branches,
branch-misses,cache-misses,cycle_activity.stalls_total

events like
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Optimizing Algorithms

● Improving real world algorithmic performance comes from 
recognizing the interplay between theory and hardware

● Hybrid algorithms
– Constants matter. Use thresholds to select algorithms.
– Use general N logN sorting for N above 300 [Alexandrescu 2019]

● Caching & Precomputing
– If you will reuse results, save them and avoid recomputing
– If all possible results are compact, just compute a table up front

https://www.youtube.com/watch?v=FJJTYQYB1JQ
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– Constants and artifacts of scale can actually dominate the real world 

performance
– We want modeling & algorithms that account for artifacts like:

memory, I/O, consistency & speculation, shapes of workloads

● Alternative approaches
– I/O complexity, I/O efficiency and cache awareness
– Cache oblivious algorithms & data structures
– Parameterized complexity
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Summary

● Reasoning rigorously about performance is challenging

● Good tooling can allow you to investigate performance well
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