
CMPT 473
Software Testing, Reliability and Security

Nick Sumner
wsumner@sfu.ca

Random Testing

Our test suites are intrinsically limited

● Test suites are limited

Our test suites are intrinsically limited

● Test suites are limited
– A test suite typically contains enough tests to instill confidence but no more

Our test suites are intrinsically limited

● Test suites are limited
– A test suite typically contains enough tests to instill confidence but no more
– Test suite adequacy measures help us quantify that confidence

Our test suites are intrinsically limited

● Test suites are limited
– A test suite typically contains enough tests to instill confidence but no more
– Test suite adequacy measures help us quantify that confidence
– Program analysis can help to uncover interesting bugs in a given test suite

Our test suites are intrinsically limited

● Test suites are limited
– A test suite typically contains enough tests to instill confidence but no more
– Test suite adequacy measures help us quantify that confidence
– Program analysis can help to uncover interesting bugs in a given test suite

● How can we hope to uncover new & unexpected bugs?

Our test suites are intrinsically limited

● Test suites are limited
– A test suite typically contains enough tests to instill confidence but no more
– Test suite adequacy measures help us quantify that confidence
– Program analysis can help to uncover interesting bugs in a given test suite

● How can we hope to uncover new & unexpected bugs?
– Static analysis provides one direction but is still challenging

Our test suites are intrinsically limited

● Test suites are limited
– A test suite typically contains enough tests to instill confidence but no more
– Test suite adequacy measures help us quantify that confidence
– Program analysis can help to uncover interesting bugs in a given test suite

● How can we hope to uncover new & unexpected bugs?
– Static analysis provides one direction but is still challenging
– Maybe our first naive solution was not naive...

Our test suites are intrinsically limited

● Test suites are limited
– A test suite typically contains enough tests to instill confidence but no more
– Test suite adequacy measures help us quantify that confidence
– Program analysis can help to uncover interesting bugs in a given test suite

● How can we hope to uncover new & unexpected bugs?
– Static analysis provides one direction but is still challenging
– Maybe our first naive solution was not naive...

for test in allPossibleInputs:
 run_program(test)

Our test suites are intrinsically limited

● Test suites are limited
– A test suite typically contains enough tests to instill confidence but no more
– Test suite adequacy measures help us quantify that confidence
– Program analysis can help to uncover interesting bugs in a given test suite

● How can we hope to uncover new & unexpected bugs?
– Static analysis provides one direction but is still challenging
– Maybe our first naive solution was not naive...

for test in allPossibleInputs:
 run_program(test)

How might this be
pragmatically useful?

Random Testing

● We can continuously run new tests
– Doing this manually / with manually constructed tests is clearly wrong

Random Testing

● We can continuously run new tests
– Doing this manually / with manually constructed tests is clearly wrong

● Random Testing
– Use program analysis to randomly sample new tests

without user interaction

Random Testing

● We can continuously run new tests
– Doing this manually / with manually constructed tests is clearly wrong

● Random Testing
– Use program analysis to randomly sample new tests

without user interaction

● Several directions have arisen

Random Testing

● We can continuously run new tests
– Doing this manually / with manually constructed tests is clearly wrong

● Random Testing
– Use program analysis to randomly sample new tests

without user interaction

● Several directions have arisen

– Fuzz Testing
Generating new inputs from a model or existing suite

Random Testing

● We can continuously run new tests
– Doing this manually / with manually constructed tests is clearly wrong

● Random Testing
– Use program analysis to randomly sample new tests

without user interaction

● Several directions have arisen

– Fuzz Testing
Generating new inputs from a model or existing suite

– Feedback Directed Random Testing
Generating OOP unit tests as a sequence of method calls

Random Testing

● We can continuously run new tests
– Doing this manually / with manually constructed tests is clearly wrong

● Random Testing
– Use program analysis to randomly sample new tests

without user interaction

● Several directions have arisen

– Fuzz Testing
Generating new inputs from a model or existing suite

– Feedback Directed Random Testing
Generating OOP unit tests as a sequence of method calls

– Property based testing
– Chaos Engineering

Random Testing

● We can continuously run new tests
– Doing this manually / with manually constructed tests is clearly wrong

● Random Testing
– Use program analysis to randomly sample new tests

without user interaction

● Several directions have arisen

– Fuzz Testing
Generating new inputs from a model or existing suite

– Feedback Directed Random Testing
Generating OOP unit tests as a sequence of method calls

– Property based testing
– Chaos Engineering

We’ll discuss these more later.
The need not be random.

Fuzz Testing

● Historically, fuzz testing was naive:

Fuzz Testing

● Historically, fuzz testing was naive:
1) Generate random file/string
2) Pass random string/file to program
3) Look for crash

Fuzz Testing

● Historically, fuzz testing was naive:
1) Generate random file/string
2) Pass random string/file to program
3) Look for crash

● But it was alarmingly effective even then
./grep “02d6…” RandomFile

Found buffer overflows (25%-33% of programs).

Fuzz Testing

● Historically, fuzz testing was naive:
1) Generate random file/string
2) Pass random string/file to program
3) Look for crash

● But it was alarmingly effective even then

● Techniques have evolved along several dimensions
– Is an initial test suite required?
– How are new tests generated?
– How does the success / failure of previous tests affect test generation?
– What kinds of bugs can be found?

./grep “02d6…” RandomFile

Found buffer overflows (25%-33% of programs).

Fuzz Testing

● Can be classified along many dimensions
– Each of those previous points and more that we will consider

Fuzz Testing

● Can be classified along many dimensions
– Each of those previous points and more that we will consider

● 2 major ways to generate inputs:

Fuzz Testing

● Can be classified along many dimensions
– Each of those previous points and more that we will consider

● 2 major ways to generate inputs:
– Generational

● Creates entirely new inputs
● Needs a model of the possible input space

Fuzz Testing

● Can be classified along many dimensions
– Each of those previous points and more that we will consider

● 2 major ways to generate inputs:
– Generational

● Creates entirely new inputs
● Needs a model of the possible input space

– Mutational
● Modifies an existing suite of inputs
● Seeing a resurgence in tools like

Fuzz Testing

● Can be classified along many dimensions
– Each of those previous points and more that we will consider

● 2 major ways to generate inputs:
– Generational

● Creates entirely new inputs
● Needs a model of the possible input space

– Mutational
● Modifies an existing suite of inputs
● Seeing a resurgence in tools like

– Even more state of the art approaches blend generation & mutation further

Generational Fuzz Testing

● Sample inputs from a model of the input space

Generational Fuzz Testing

● Sample inputs from a model of the input space
– What might a model be in this case?

Generational Fuzz Testing

● Sample inputs from a model of the input space
– What might a model be in this case?

a*bc(d|e)c*

Generational Fuzz Testing

● Sample inputs from a model of the input space
– What might a model be in this case?

a*bc(d|e)c* A → aAb
A → cA
A → ε

Generational Fuzz Testing

● Sample inputs from a model of the input space
– What might a model be in this case?

a*bc(d|e)c* A → aAb
A → cA
A → ε…

Generational Fuzz Testing

● Sample inputs from a model of the input space
– What might a model be in this case?

a*bc(d|e)c* A → aAb
A → cA
A → ε…

We can randomly rewrite nonterminals to sample:
A

Generational Fuzz Testing

● Sample inputs from a model of the input space
– What might a model be in this case?

a*bc(d|e)c* A → aAb
A → cA
A → ε…

We can randomly rewrite nonterminals to sample:
A → aAb

Generational Fuzz Testing

● Sample inputs from a model of the input space
– What might a model be in this case?

a*bc(d|e)c* A → aAb
A → cA
A → ε…

We can randomly rewrite nonterminals to sample:
A → aAb → aaAbb

Generational Fuzz Testing

● Sample inputs from a model of the input space
– What might a model be in this case?

a*bc(d|e)c* A → aAb
A → cA
A → ε…

We can randomly rewrite nonterminals to sample:
A → aAb → aaAbb → aabb

Generational Fuzz Testing

● Sample inputs from a model of the input space
– What might a model be in this case?

● Simple textual grammars may not suffice.

a*bc(d|e)c* A → aAb
A → cA
A → ε…

Generational Fuzz Testing

● Sample inputs from a model of the input space
– What might a model be in this case?

● Simple textual grammars may not suffice.
– What about binary file formats? Wire protocols?

a*bc(d|e)c* A → aAb
A → cA
A → ε…

Generational Fuzz Testing

● Sample inputs from a model of the input space
– What might a model be in this case?

● Simple textual grammars may not suffice.
– What about binary file formats? Wire protocols?
– Specifications may include richer information about

values, structure, and dependences

a*bc(d|e)c* A → aAb
A → cA
A → ε…

Generational Fuzz Testing

● Example: Peach Fuzzer (peachfuzzer.com)

Generational Fuzz Testing

● Example: Peach Fuzzer (peachfuzzer.com)
– Specifications are provided through “peach pits”
– XML specifications of both protocols & data

Generational Fuzz Testing

● Example: Peach Fuzzer (peachfuzzer.com)
– Specifications are provided through “peach pits”
– XML specifications of both protocols & data
– e.g.

(https://github.com/MozillaSecurity/peach/blob/master/Pits/Files/WebVTT/vtt.xml)
<DataModel name="_Timestamp">
 <String name="Hour">
 <Hint name="NumericalString" value="true"/>
 </String>
 <String name="Seperator" value=":" token="true"/>
 <String name="Minute">
 <Hint name="NumericalString" value="true"/>
 </String>
 <String name="Period" value="." token="true"/>
 <String name="Second">
 <Hint name="NumericalString" value="true"/>
 </String>
</DataModel>

Mutational Fuzz Testing

● Given a corpus of inputs,
evolve new inputs using fitness heuristics

Mutational Fuzz Testing

● Given a corpus of inputs,
evolve new inputs using fitness heuristics
– Even an empty corpus may suffice:

Mutational Fuzz Testing

● Given a corpus of inputs,
evolve new inputs using fitness heuristics
– Even an empty corpus may suffice:

Pulling JPEGS out of thin air
[Zalewski, 2014]

https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

Mutational Fuzz Testing

● Given a corpus of inputs,
evolve new inputs using fitness heuristics
– Even an empty corpus may suffice:

– The power comes from the fitness heuristics

Pulling JPEGS out of thin air
[Zalewski, 2014]

https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

Mutational Fuzz Testing

● Given a corpus of inputs,
evolve new inputs using fitness heuristics
– Even an empty corpus may suffice:

– The power comes from the fitness heuristics

● Coverage Guided Fuzzing (CGF)
– Use some notion of test coverage
– Evolve a test suite toward more coverage

Pulling JPEGS out of thin air
[Zalewski, 2014]

https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

Mutational Fuzz Testing

● Given a corpus of inputs,
evolve new inputs using fitness heuristics

S <- initial corpus
total_coverage <- {}
repeat

for i in S:
if sample P(i) then

i’ <- mutate(i)
coverage <- execute(i’)
if coverage not in total_coverage:

S <- S and {i’}
total_coverage.add(coverage)

until timeout
return S

This is just the big picture.
Many optimizations complicate

an implementation.

Mutational Fuzz Testing

● Given a corpus of inputs,
evolve new inputs using fitness heuristics

S <- initial corpus
total_coverage <- {}
repeat

for i in S:
if sample P(i) then

i’ <- mutate(i)
coverage <- execute(i’)
if coverage not in total_coverage:

S <- S and {i’}
total_coverage.add(coverage)

until timeout
return S

This is just the big picture.
Many optimizations complicate

an implementation.

Mutational Fuzz Testing

● Given a corpus of inputs,
evolve new inputs using fitness heuristics

S <- initial corpus
total_coverage <- {}
repeat

for i in S:
if sample P(i) then

i’ <- mutate(i)
coverage <- execute(i’)
if coverage not in total_coverage:

S <- S and {i’}
total_coverage.add(coverage)

until timeout
return S

This is just the big picture.
Many optimizations complicate

an implementation.

Mutational Fuzz Testing

● Given a corpus of inputs,
evolve new inputs using fitness heuristics

S <- initial corpus
total_coverage <- {}
repeat

for i in S:
if sample P(i) then

i’ <- mutate(i)
coverage <- execute(i’)
if coverage not in total_coverage:

S <- S and {i’}
total_coverage.add(coverage)

until timeout
return S

Mutational Fuzz Testing

● Given a corpus of inputs,
evolve new inputs using fitness heuristics

S <- initial corpus
total_coverage <- {}
repeat

for i in S:
if sample P(i) then

i’ <- mutate(i)
coverage <- execute(i’)
if coverage not in total_coverage:

S <- S and {i’}
total_coverage.add(coverage)

until timeout
return S

Mutational Fuzz Testing

● Given a corpus of inputs,
evolve new inputs using fitness heuristics

S <- initial corpus
total_coverage <- {}
repeat

for i in S:
if sample P(i) then

i’ <- mutate(i)
coverage <- execute(i’)
if coverage not in total_coverage:

S <- S and {i’}
total_coverage.add(coverage)

until timeout
return S

Mutational Fuzz Testing

● Given a corpus of inputs,
evolve new inputs using fitness heuristics

S <- initial corpus
total_coverage <- {}
repeat

for i in S:
if sample P(i) then

i’ <- mutate(i)
coverage <- execute(i’)
if coverage not in total_coverage:

S <- S and {i’}
total_coverage.add(coverage)

until timeout
return S

Mutational Fuzz Testing

● Given a corpus of inputs,
evolve new inputs using fitness heuristics

S <- initial corpus
total_coverage <- {}
repeat

for i in S:
if sample P(i) then

i’ <- mutate(i)
coverage <- execute(i’)
if coverage not in total_coverage:

S <- S and {i’}
total_coverage.add(coverage)

until timeout
return S

Even simple coverage heuristics are powerful

● Let us consider just statement coverage

void
foo(char a, char b) {
 if (a > 127) {
 ...
 else {
 ...
 }
 if (b > 127) {
 ...
 } else {
 ...
 }
}

I1: (0,0) I2: (200,200)

Even simple coverage heuristics are powerful

● Let us consider just statement coverage

void
foo(char a, char b) {
 if (a > 127) {
 ...
 else {
 ...
 }
 if (b > 127) {
 ...
 } else {
 ...
 }
}

I1: (0,0) I2: (200,200) I3: (0,200)

Even simple coverage heuristics are powerful

● Let us consider just statement coverage

void
foo(char a, char b) {
 if (a > 127) {
 ...
 else {
 ...
 }
 if (b > 127) {
 ...
 } else {
 ...
 }
}

I1: (0,0) I2: (200,200) I3: (0,200) I4: (200,0)

Even simple coverage heuristics are powerful

● Let us consider just statement coverage

void
foo(long a, long b) {
 if (a == 112358) {
 ...
 else {
 ...
 }
 if (b == 4879235) {
 ...
 } else {
 ...
 }
}

Covering both true branches
feels like finding a needle in a haystack!

What can we do?

Even simple coverage heuristics are powerful

● Let us consider just statement coverage

void
foo(long a, long b) {
 if (a == 112358) {
 ...
 else {
 ...
 }
 if (b == 4879235) {
 ...
 } else {
 ...
 }
}

I1:

Even simple coverage heuristics are powerful

● Let us consider just statement coverage

void
foo(long a, long b) {
 if (a == 112358) {
 ...
 else {
 ...
 }
 if (b == 4879235) {
 ...
 } else {
 ...
 }
}

I1:

48 bits

37 bits

Adding notions of coverage can
steer the evolution however we desire

Even simple coverage heuristics are powerful

● Let us consider just statement coverage

void
foo(long a, long b) {
 if (a == 112358) {
 ...
 else {
 ...
 }
 if (b == 4879235) {
 ...
 } else {
 ...
 }
}

I1:

48 bits

37 bits

I2:

63 bits

54 bits

Even simple coverage heuristics are powerful

● Let us consider just statement coverage

void
foo(long a, long b) {
 if (a == 112358) {
 ...
 else {
 ...
 }
 if (b == 4879235) {
 ...
 } else {
 ...
 }
}

I1:

48 bits

37 bits

I2:

63 bits

54 bits

I3:

64 bits similar

64 bits similar

Even simple coverage heuristics are powerful

● Let us consider just statement coverage

void
foo(long a, long b) {
 if (a == 112358) {
 ...
 else {
 ...
 }
 ...
} Compilers can transform a program

to make it amenable to testing!

Even simple coverage heuristics are powerful

● Let us consider just statement coverage

void
foo(long a, long b) {
 if (a == 112358) {
 ...
 else {
 ...
 }
 ...
}

void
foo(long a, long b) {
 if (byte0(a) == 0xE6
 && byte1(a) == 0xB6
 && byte2(a) == 0x01
 && byte4(a) == 0x00) {
 ...
 else {
 ...
 }
 ...
}

Compilers can transform a program
to make it amenable to testing!

Domain specific heuristics enable custom fuzzers

● Computational overhead/denial of service
– Count per instruction frequency in coverage

Domain specific heuristics enable custom fuzzers

● Computational overhead/denial of service
– Count per instruction frequency in coverage

● Memory consumption
– Count allocated memory per allocation site
– Automatically generates PNG bombs in practice!

Domain specific heuristics enable custom fuzzers

● Computational overhead/denial of service
– Count per instruction frequency in coverage

● Memory consumption
– Count allocated memory per allocation site
– Automatically generates PNG bombs in practice!

● Energy consumption?
– Measure power consumption over, e.g. tasks

Domain specific heuristics enable custom fuzzers

● Computational overhead/denial of service
– Count per instruction frequency in coverage

● Memory consumption
– Count allocated memory per allocation site
– Automatically generates PNG bombs in practice!

● Energy consumption?
– Measure power consumption over, e.g. tasks

● REST API invocations
– Measure diversity of resquests fed to server

Domain specific heuristics enable custom fuzzers

● Computational overhead/denial of service
– Count per instruction frequency in coverage

● Memory consumption
– Count allocated memory per allocation site
– Automatically generates PNG bombs in practice!

● Energy consumption?
– Measure power consumption over, e.g. tasks

● REST API invocations
– Measure diversity of resquests fed to server

● ...

American Fuzzy Lop

● (AFL) is one commonly used fuzzer that was supported by Google

Let’s see an example.

The Oracle Problem

● We have referred to this as random testing, but what are our oracles?

The Oracle Problem

● We have referred to this as random testing, but what are our oracles?

● Common universal oracles
– Never crash
– No undefined behavior
– No failures from dynamic analysis tools X, Y, or Z

The Oracle Problem

● We have referred to this as random testing, but what are our oracles?

● Common universal oracles
– Never crash
– No undefined behavior
– No failures from dynamic analysis tools X, Y, or Z

● Differential Testing
– Feed input into N different implementations & vote
– Feed input into N configurations of one implementation & vote
– This is a major approach in modern compiler testing!

The Oracle Problem

● We have referred to this as random testing, but what are our oracles?

● Common universal oracles
– Never crash
– No undefined behavior
– No failures from dynamic analysis tools X, Y, or Z

● Differential Testing
– Feed input into N different implementations & vote
– Feed input into N configurations of one implementation & vote
– This is a major approach in modern compiler testing!

● Metamorphic Testing
– Identify key properties that enable correct results to be known relative to

mutations (e.g. graphics drivers, machine learning, ...)

Other challenges in fuzzing

● Highly structured inputs require more care
– Grammar + CGF hybrids
– Input generators
– ...

Other challenges in fuzzing

● Highly structured inputs require more care
– Grammar + CGF hybrids
– Input generators
– ...

● Making use of nuanced oracles can be challenging in practice

Other challenges in fuzzing

● Highly structured inputs require more care
– Grammar + CGF hybrids
– Input generators
– ...

● Making use of nuanced oracles can be challenging in practice

● It can be most effective at a whole program or single function level

Feedback Directed Random Testing

● In practice, input fuzzing may not apply

Feedback Directed Random Testing

● In practice, input fuzzing may not apply
– What if the thing we want to test is an API rather than a program?
– What if it is an object oriented API?

Feedback Directed Random Testing

● In practice, input fuzzing may not apply
– What if the thing we want to test is an API rather than a program?
– What if it is an object oriented API?

● It can be preferable to generate some other model of behavior

Feedback Directed Random Testing

● In practice, input fuzzing may not apply
– What if the thing we want to test is an API rather than a program?
– What if it is an object oriented API?

● It can be preferable to generate some other model of behavior

● Feedback Directed Random Testing

Feedback Directed Random Testing

● In practice, input fuzzing may not apply
– What if the thing we want to test is an API rather than a program?
– What if it is an object oriented API?

● It can be preferable to generate some other model of behavior

● Feedback Directed Random Testing
– Consider a unit test with Arranging, Acting, and Asserting

Feedback Directed Random Testing

● In practice, input fuzzing may not apply
– What if the thing we want to test is an API rather than a program?
– What if it is an object oriented API?

● It can be preferable to generate some other model of behavior

● Feedback Directed Random Testing
– Consider a unit test with Arranging, Acting, and Asserting
– Generate a sequence of such operations randomly to explore API behavior

Feedback Directed Random Testing

● In practice, input fuzzing may not apply
– What if the thing we want to test is an API rather than a program?
– What if it is an object oriented API?

● It can be preferable to generate some other model of behavior

● Feedback Directed Random Testing
– Consider a unit test with Arranging, Acting, and Asserting
– Generate a sequence of such operations randomly to explore API behavior
– Use coverage feedback again to guide the process

Feedback Directed Random Testing

● In practice, input fuzzing may not apply
– What if the thing we want to test is an API rather than a program?
– What if it is an object oriented API?

● It can be preferable to generate some other model of behavior

● Feedback Directed Random Testing
– Consider a unit test with Arranging, Acting, and Asserting
– Generate a sequence of such operations randomly to explore API behavior
– Use coverage feedback again to guide the process

● Available through such tools as Randoop, GRT, ...

https://randoop.github.io/randoop/

Feedback Directed Random Testing

TEST(...,...) {
 Triangle t{1,1,1};

}

Feedback Directed Random Testing

TEST(...,...) {
 Triangle t{1,1,1};

}

TEST(...,...) {
 Triangle t{1,1,1};
 t.isEquilateral();

}

Feedback Directed Random Testing

TEST(...,...) {
 Triangle t{1,1,1};

}

TEST(...,...) {
 Triangle t{1,1,1};
 t.isEquilateral();

}

TEST(...,...) {
 Triangle t{1,1,1};
 t.isEquilateral();
 Triangle t2{1,2,1};

}

Feedback Directed Random Testing

TEST(...,...) {
 Triangle t{1,1,1};

}

TEST(...,...) {
 Triangle t{1,1,1};
 t.isEquilateral();

}

TEST(...,...) {
 Triangle t{1,1,1};
 t.isEquilateral();
 Triangle t2{1,2,1};

}

TEST(...,...) {
 Triangle t{1,1,1};
 t.isEquilateral();
 Triangle t2{1,2,1};
 t2.contains(t1);

}

Feedback Directed Random Testing

TEST(...,...) {
 Triangle t{1,1,1};

}

TEST(...,...) {
 Triangle t{1,1,1};
 t.isEquilateral();

}

TEST(...,...) {
 Triangle t{1,1,1};
 t.isEquilateral();
 Triangle t2{1,2,1};

}

TEST(...,...) {
 Triangle t{1,1,1};
 t.isEquilateral();
 Triangle t2{1,2,1};
 t2.contains(t1);

}

TEST(...,...) {
 Triangle t{1,1,1};
 t.isEquilateral();
 Triangle t2{1,2,1};
 t2.contains(t1);
 ...

}

Challenges in Feedback Directed Random Testing

● What notions of coverage are good?
– Sometimes a sequence extension does not add value

Challenges in Feedback Directed Random Testing

● What notions of coverage are good?
– Sometimes a sequence extension does not add value

● Oracles, again
– Simple contracts & exceptions are easy
– Invariant violation?
– Near invariants?
– Alternate schedules?

Summary

● Random testing strategies provide a means of continuous testing

Summary

● Random testing strategies provide a means of continuous testing

● They can be surprisingly effective in practice

Summary

● Random testing strategies provide a means of continuous testing

● They can be surprisingly effective in practice

● Effective application to a specific problem may require tailoring a tool

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

