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Our test suites are intrinsically limited

● Test suites are limited
– A test suite typically contains enough tests to instill confidence but no more
– Test suite adequacy measures help us quantify that confidence
– Program analysis can help to uncover interesting bugs in a given test suite

● How can we hope to uncover new & unexpected bugs?
– Static analysis provides one direction but is still challenging
– Maybe our first naive solution was not naive...

for test in allPossibleInputs:
    run_program(test)

How might this be 
pragmatically useful?
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Random Testing

● We can continuously run new tests
– Doing this manually / with manually constructed tests is clearly wrong

● Random Testing
– Use program analysis to randomly sample new tests

without user interaction

● Several directions have arisen

– Fuzz Testing
Generating new inputs from a model or existing suite

– Feedback Directed Random Testing
Generating OOP unit tests as a sequence of method calls

– Property based testing
– Chaos Engineering

We’ll discuss these more later.
The need not be random.
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Fuzz Testing

● Historically, fuzz testing was naive:
1) Generate random file/string
2) Pass random string/file to program
3) Look for crash

● But it was alarmingly effective even then

● Techniques have evolved along several dimensions
– Is an initial test suite required?
– How are new tests generated?
– How does the success / failure of previous tests affect test generation?
– What kinds of bugs can be found?

./grep “02d6…” RandomFile

Found buffer overflows (25%-33% of programs).
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Fuzz Testing

● Can be classified along many dimensions
– Each of those previous points and more that we will consider

● 2 major ways to generate inputs:
– Generational

● Creates entirely new inputs
● Needs a model of the possible input space

– Mutational
● Modifies an existing suite of inputs
● Seeing a resurgence in tools like 

– Even more state of the art approaches blend generation & mutation further
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Generational Fuzz Testing

● Sample inputs from a model of the input space
– What might a model be in this case?

● Simple textual grammars may not suffice.
– What about binary file formats? Wire protocols?
– Specifications may include richer information about

values, structure, and dependences

a*bc(d|e)c* A → aAb
A → cA
A → ε…
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Generational Fuzz Testing

● Example: Peach Fuzzer (peachfuzzer.com)
– Specifications are provided through “peach pits”
– XML specifications of both protocols & data
– e.g.

(https://github.com/MozillaSecurity/peach/blob/master/Pits/Files/WebVTT/vtt.xml)
<DataModel name="_Timestamp">
  <String name="Hour">
    <Hint name="NumericalString" value="true"/>
  </String>
  <String name="Seperator" value=":" token="true"/>
  <String name="Minute">
    <Hint name="NumericalString" value="true"/>
  </String>
  <String name="Period" value="." token="true"/>
  <String name="Second">
    <Hint name="NumericalString" value="true"/>
  </String>
</DataModel>
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Mutational Fuzz Testing

● Given a corpus of inputs,
evolve new inputs using fitness heuristics
– Even an empty corpus may suffice:

– The power comes from the fitness heuristics

● Coverage Guided Fuzzing (CGF)
– Use some notion of test coverage
– Evolve a test suite toward more coverage

Pulling JPEGS out of thin air
[Zalewski, 2014]

https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html
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● Let us consider just statement coverage

void
foo(char a, char b) {
  if (a > 127) {
    ...
  else {
    ...
  }
  if (b > 127) {
    ...
  } else {
    ...
  }
}

I1: (0,0) I2: (200,200) I3: (0,200) I4: (200,0)
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feels like finding a needle in a haystack!

What can we do?
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Even simple coverage heuristics are powerful

● Let us consider just statement coverage

void
foo(long a, long b) {
  if (a == 112358) {
    ...
  else {
    ...
  }
  if (b == 4879235) {
    ...
  } else {
    ...
  }
}

I1:

48 bits

37 bits

I2:

63 bits

54 bits

I3:

64 bits similar

64 bits similar



  

Even simple coverage heuristics are powerful

● Let us consider just statement coverage

void
foo(long a, long b) {
  if (a == 112358) {
    ...
  else {
    ...
  }
  ...
} Compilers can transform a program

to make it amenable to testing!



  

Even simple coverage heuristics are powerful

● Let us consider just statement coverage

void
foo(long a, long b) {
  if (a == 112358) {
    ...
  else {
    ...
  }
  ...
}

void
foo(long a, long b) {
  if (byte0(a) == 0xE6
      && byte1(a) == 0xB6
      && byte2(a) == 0x01
      && byte4(a) == 0x00) {
    ...
  else {
    ...
  }
  ...
}

Compilers can transform a program
to make it amenable to testing!
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Domain specific heuristics enable custom fuzzers

● Computational overhead/denial of service
– Count per instruction frequency in coverage

● Memory consumption
– Count allocated memory per allocation site
– Automatically generates PNG bombs in practice!

● Energy consumption?
– Measure power consumption over, e.g. tasks

● REST API invocations
– Measure diversity of resquests fed to server

● ...



  

American Fuzzy Lop

● (AFL) is one commonly used fuzzer that was supported by Google

Let’s see an example.
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● We have referred to this as random testing, but what are our oracles?

● Common universal oracles
– Never crash
– No undefined behavior
– No failures from dynamic analysis tools X, Y, or Z

● Differential Testing
– Feed input into N different implementations & vote
– Feed input into N configurations of one implementation & vote
– This is a major approach in modern compiler testing!

● Metamorphic Testing
– Identify key properties that enable correct results to be known relative to 

mutations (e.g. graphics drivers, machine learning, ...)
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Other challenges in fuzzing

● Highly structured inputs require more care
– Grammar + CGF hybrids
– Input generators
– ...

● Making use of nuanced oracles can be challenging in practice

● It can be most effective at a whole program or single function level
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Feedback Directed Random Testing

● In practice, input fuzzing may not apply
– What if the thing we want to test is an API rather than a program?
– What if it is an object oriented API?

● It can be preferable to generate some other model of behavior

● Feedback Directed Random Testing
– Consider a unit test with Arranging, Acting, and Asserting
– Generate a sequence of such operations randomly to explore API behavior
– Use coverage feedback again to guide the process

● Available through such tools as Randoop, GRT, ...

https://randoop.github.io/randoop/
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Feedback Directed Random Testing

TEST(...,...) {
  Triangle t{1,1,1};

}

TEST(...,...) {
  Triangle t{1,1,1};
  t.isEquilateral();

}

TEST(...,...) {
  Triangle t{1,1,1};
  t.isEquilateral();
  Triangle t2{1,2,1};

}

TEST(...,...) {
  Triangle t{1,1,1};
  t.isEquilateral();
  Triangle t2{1,2,1};
  t2.contains(t1);

}

TEST(...,...) {
  Triangle t{1,1,1};
  t.isEquilateral();
  Triangle t2{1,2,1};
  t2.contains(t1);
  ...

}
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Challenges in Feedback Directed Random Testing

● What notions of coverage are good?
– Sometimes a sequence extension does not add value

● Oracles, again
– Simple contracts & exceptions are easy
– Invariant violation?
– Near invariants?
– Alternate schedules?
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Summary

● Random testing strategies provide a means of continuous testing

● They can be surprisingly effective in practice

● Effective application to a specific problem may require tailoring a tool
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