
A Brief Intro to
Automated Test Generation

CMPT 473
Software Quality Assurance

Nick Sumner

Our Test Suites Are Still Limited

● There is only so much we can include
● Even covering interesting interactions is a challenge

Our Test Suites Are Still Limited

● There is only so much we can include
● Even covering interesting interactions is a challenge

Our first naive solution may not have been naive!
for test in allPossibleInputs:
 run_program(test)

Our Test Suites Are Still Limited

● There is only so much we can include
● Even covering interesting interactions is a challenge

Our first naive solution may not have been naive!
for test in allPossibleInputs:
 run_program(test)

How might this be
pragmatically useful?

Automated Test Generation

● We can continuously run new tests

Automated Test Generation

● We can continuously run new tests
– But manual testing this way won't work!

Automated Test Generation

● We can continuously run new tests
– But manual testing this way won't work!

● Automated Test Generation
– Use program analysis to derive new tests without the

user

Automated Test Generation

● We can continuously run new tests
– But manual testing this way won't work!

● Automated Test Generation
– Use program analysis to derive new tests without the

user
● 2 approaches are increasingly common

Automated Test Generation

● We can continuously run new tests
– But manual testing this way won't work!

● Automated Test Generation
– Use program analysis to derive new tests without the

user
● 2 approaches are increasingly common

– Fuzz Testing

Automated Test Generation

● We can continuously run new tests
– But manual testing this way won't work!

● Automated Test Generation
– Use program analysis to derive new tests without the

user
● 2 approaches are increasingly common

– Fuzz Testing
– Symbolic Execution

Fuzz Testing

● An approach for generating test inputs

Fuzz Testing

● An approach for generating test inputs
● Originally just feeding large random inputs to

programs [Miller 1990]

./grep “02d6…” RandomFile

ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf

Fuzz Testing

● An approach for generating test inputs
● Originally just feeding large random inputs to

programs [Miller 1990]

./grep “02d6…” RandomFile

It was distressingly effective at finding
buffer overflows (25%-33% of programs).

Fuzz Testing

● An approach for generating test inputs
● Originally just feeding large random inputs to

programs [Miller 1990]

● Now 2 main types

Fuzz Testing

● An approach for generating test inputs
● Originally just feeding large random inputs to

programs [Miller 1990]

● Now 2 main types
1) Generational (model based)

● Creates entirely new inputs

Fuzz Testing

● An approach for generating test inputs
● Originally just feeding large random inputs to

programs [Miller 1990]

● Now 2 main types
1) Generational (model based)

● Creates entirely new inputs
● Needs a model for the input

Fuzz Testing

● An approach for generating test inputs
● Originally just feeding large random inputs to

programs [Miller 1990]

● Now 2 main types
1) Generational (model based)

● Creates entirely new inputs
● Needs a model for the input

a*bc(d|e)c*

Fuzz Testing

● An approach for generating test inputs
● Originally just feeding large random inputs to

programs [Miller 1990]

● Now 2 main types
1) Generational (model based)

● Creates entirely new inputs
● Needs a model for the input

a*bc(d|e)c* A → aAb
A → cA
A → ε

Fuzz Testing

● An approach for generating test inputs
● Originally just feeding large random inputs to

programs [Miller 1990]

● Now 2 main types
1) Generational (model based)

● Creates entirely new inputs
● Needs a model for the input

a*bc(d|e)c* A → aAb
A → cA
A → ε…

Fuzz Testing

● An approach for generating test inputs
● Originally just feeding large random inputs to

programs [Miller 1990]

● Now 2 main types
1) Generational (model based)
2) Mutational (heuristic change based)

● Modify an existing test suite

Fuzz Testing

● An approach for generating test inputs
● Originally just feeding large random inputs to

programs [Miller 1990]

● Now 2 main types
1) Generational (model based)
2) Mutational (heuristic change based)

● Modify an existing test suite
● Seeing a resurgance via AFL & libFuzzer

http://lcamtuf.coredump.cx/afl/
http://llvm.org/docs/LibFuzzer.html

American Fuzzy Lop

● Increasingly used mutational fuzzer
– Effective at finding buffer overflows

American Fuzzy Lop

● Increasingly used mutational fuzzer
– Effective at finding buffer overflows

24

Symbolic Execution

● An approach for generating test
inputs.

x ← input()
y ← input()

if x == 2*y

Cadar & Sen, 2013

if x > y+10

25

Symbolic Execution

● An approach for generating test
inputs.

● Replace the concrete inputs of a
program with symbolic values

x ← symbolic()
y ← symbolic()

if x == 2*y

Cadar & Sen, 2013

if x > y+10

26

Symbolic Execution

● An approach for generating test
inputs.

● Replace the concrete inputs of a
program with symbolic values

● Execute the program along a
path using the symbolic values
to build a formula over the input
symbols.

x ← symbolic()
y ← symbolic()

if x == 2*y

Cadar & Sen, 2013

if x > y+10

27

Symbolic Execution

● An approach for generating test
inputs.

● Replace the concrete inputs of a
program with symbolic values

● Execute the program along a
path using the symbolic values
to build a formula over the input
symbols.

x ← symbolic()
y ← symbolic()

if x == 2*y

Cadar & Sen, 2013

if x > y+10

x = 2*y
y > 10

Path Constraint

28

Symbolic Execution

● An approach for generating test
inputs.

● Replace the concrete inputs of a
program with symbolic values

● Execute the program along a
path using the symbolic values
to build a formula over the input
symbols.

● Solve for the symbolic symbols
to find inputs that yield the
path.

x ← symbolic()
y ← symbolic()

if x == 2*y

Cadar & Sen, 2013

if x > y+10

x=30
y=15

29

Symbolic Execution

● An approach for generating test
inputs.

● Replace the concrete inputs of a
program with symbolic values

● Execute the program along a
path using the symbolic values
to build a formula over the input
symbols.

● Solve for the symbolic symbols
to find inputs that yield the
path.

x ← symbolic()
y ← symbolic()

if x == 2*y

Cadar & Sen, 2013

if x > y+10

x=30
y=15

x=2
y=1

30

Symbolic Execution

● An approach for generating test
inputs.

● Replace the concrete inputs of a
program with symbolic values

● Execute the program along a
path using the symbolic values
to build a formula over the input
symbols.

● Solve for the symbolic symbols
to find inputs that yield the
path.

x ← symbolic()
y ← symbolic()

if x == 2*y

Cadar & Sen, 2013

if x > y+10

x=30
y=15

x=2
y=1

x=0
y=1

31

How Can We Solve Constraints?

● SMT Solvers
– Satisfiability Modulo Theories
– SAT with extra logic
– Standard interfaces through SMTLIB2

32

How Can We Solve Constraints?

● SMT Solvers
– Satisfiability Modulo Theories
– SAT with extra logic
– Standard interfaces through SMTLIB2

(declare-const x Int)
(declare-const y Int)
(assert (= x (* 2 y)))
(assert (> y 10))
(check-sat)
(get-model)

x = 2*y
y > 10

33

How Can We Solve Constraints?

● SMT Solvers
– Satisfiability Modulo Theories
– SAT with extra logic
– Standard interfaces through SMTLIB2

(declare-const x Int)
(declare-const y Int)
(assert (= x (* 2 y)))
(assert (> y 10))
(check-sat)
(get-model)

x = 2*y
y > 10

Z3

34

How Can We Solve Constraints?

● SMT Solvers
– Satisfiability Modulo Theories
– SAT with extra logic
– Standard interfaces through SMTLIB2

(declare-const x Int)
(declare-const y Int)
(assert (= x (* 2 y)))
(assert (> y 10))
(check-sat)
(get-model)

x = 2*y
y > 10

Z3 sat
(model
 (define-fun y () Int 11)
 (define-fun x () Int 22)
)

x=22
y=11

35

How Can We Solve Constraints?

● SMT Solvers
– Satisfiability Modulo Theories
– SAT with extra logic
– Standard interfaces through SMTLIB2

(declare-const x Int)
(declare-const y Int)
(assert (= x (* 2 y)))
(assert (> y 10))
(check-sat)
(get-model)

x = 2*y
y > 10

Z3 sat
(model
 (define-fun y () Int 11)
 (define-fun x () Int 22)
)

x=22
y=11

Try it online:
http://www.rise4fun.com/Z3/tutorial/

http://www.rise4fun.com/Z3/tutorial/

36

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

x ← input()
y ← input()

if x == 2*y

if x > y+10

Cadar & Sen, 2013

http://www.eecs.berkeley.edu/~ksen/papers/cacm13.pdf

37

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

x ← input()
y ← input()

if x == 2*y

if x > y+10

Cadar & Sen, 2013

http://www.eecs.berkeley.edu/~ksen/papers/cacm13.pdf

38

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main
approaches

x ← input()
y ← input()

if x == 2*y

if x > y+10

Cadar & Sen, 2013

http://www.eecs.berkeley.edu/~ksen/papers/cacm13.pdf

39

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main
approaches
– Concolic (dynamic symbolic)

x ← input()
y ← input()

if x == 2*y

if x > y+10

Cadar & Sen, 2013

http://www.eecs.berkeley.edu/~ksen/papers/cacm13.pdf

40

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main
approaches
– Concolic (dynamic symbolic)

x ← input()
y ← input()

if x == 2*y

if x > y+10

Cadar & Sen, 2013

http://www.eecs.berkeley.edu/~ksen/papers/cacm13.pdf

41

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main
approaches
– Concolic (dynamic symbolic)

x ← input()
y ← input()

if x == 2*y

if x > y+10

(x=2*y) ∧ (x>y+10)

Cadar & Sen, 2013

http://www.eecs.berkeley.edu/~ksen/papers/cacm13.pdf

42

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main
approaches
– Concolic (dynamic symbolic)

x ← input()
y ← input()

if x == 2*y

if x > y+10

(x=2*y) ∧ ¬(x>y+10)

Cadar & Sen, 2013

http://www.eecs.berkeley.edu/~ksen/papers/cacm13.pdf

43

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main
approaches
– Concolic (dynamic symbolic)

x ← input()
y ← input()

if x == 2*y

if x > y+10

Cadar & Sen, 2013

http://www.eecs.berkeley.edu/~ksen/papers/cacm13.pdf

44

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main
approaches
– Concolic (dynamic symbolic)

– Execution Generated
Testing

x ← input()
y ← input()

if x == 2*y

if x > y+10

Cadar & Sen, 2013

http://www.eecs.berkeley.edu/~ksen/papers/cacm13.pdf

45

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main
approaches
– Concolic (dynamic symbolic)

– Execution Generated
Testing

x ← input()
y ← input()

if x == 2*y

if x > y+10

X= ?
y=10

Cadar & Sen, 2013

http://www.eecs.berkeley.edu/~ksen/papers/cacm13.pdf

46

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main
approaches
– Concolic (dynamic symbolic)

– Execution Generated
Testing

x ← input()
y ← input()

if x == 2*y

if x > y+10 X=?≠20
y=10

X=20
y=10

Cadar & Sen, 2013

http://www.eecs.berkeley.edu/~ksen/papers/cacm13.pdf

47

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main
approaches
– Concolic (dynamic symbolic)

– Execution Generated
Testing

x ← input()
y ← input()

if x == 2*y

if x > y+10 X=?≠20
y=10

X=20
y=10

Execution on this side is
concrete from this point on.

Cadar & Sen, 2013

http://www.eecs.berkeley.edu/~ksen/papers/cacm13.pdf

48

Symbolic Execution

● Increasingly scalable every year

49

Symbolic Execution

● Increasingly scalable every year
● Can automatically generate test inputs from

constraints

50

Symbolic Execution

● Increasingly scalable every year
● Can automatically generate test inputs from

constraints
● The resulting symbolic formulae have many used

beyond just testing.

51

Symbolic Execution

● Increasingly scalable every year
● Can automatically generate test inputs from

constraints
● The resulting symbolic formulae have many used

beyond just testing.

Try it out:
https://github.com/klee/klee

https://github.com/klee/klee

52

Where They Fit in the Process

● Automated test generation is a continual process.

53

Where They Fit in the Process

● Automated test generation is a continual process.
● Just as much a part of modern QA as continuous

integration

54

Where They Fit in the Process

● Automated test generation is a continual process.
● Just as much a part of modern QA as continuous

integration
● Especially crucial as part of maintaining security

(more on this later!)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

