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Our Test Suites Are Still Limited

● There is only so much we can include
● Even covering interesting interactions is a challenge

Our first naive solution may not have been naive!
for test in allPossibleInputs:
    run_program(test)

How might this be 
pragmatically useful?
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● We can continuously run new tests
– But manual testing this way won't work!

● Automated Test Generation
– Use program analysis to derive new tests without the 

user
● 2 approaches are increasingly common

– Fuzz Testing
– Symbolic Execution
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Fuzz Testing

● An approach for generating test inputs
● Originally just feeding large random inputs to 

programs [Miller 1990]

● Now 2 main types
1) Generational (model based)
2) Mutational (heuristic change based)

● Modify an existing test suite
● Seeing a resurgance via AFL & libFuzzer

http://lcamtuf.coredump.cx/afl/
http://llvm.org/docs/LibFuzzer.html
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x ← input()
y ← input()

if x == 2*y

Cadar & Sen, 2013

if x > y+10
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Symbolic Execution

● An approach for generating test 
inputs.

● Replace the concrete inputs of a 
program with symbolic values

● Execute the program along a 
path using the symbolic values 
to build a formula over the input 
symbols.

x ← symbolic()
y ← symbolic()

if x == 2*y

Cadar & Sen, 2013

if x > y+10

x = 2*y
y > 10

Path Constraint
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Symbolic Execution

● An approach for generating test 
inputs.

● Replace the concrete inputs of a 
program with symbolic values

● Execute the program along a 
path using the symbolic values 
to build a formula over the input 
symbols.

● Solve for the symbolic symbols 
to find inputs that yield the 
path.

x ← symbolic()
y ← symbolic()

if x == 2*y

Cadar & Sen, 2013

if x > y+10

x=30
y=15

x=2
y=1

x=0
y=1
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x = 2*y
y > 10
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How Can We Solve Constraints?

● SMT Solvers
– Satisfiability Modulo Theories
– SAT with extra logic
– Standard interfaces through SMTLIB2

(declare-const x Int)
(declare-const y Int)
(assert (= x (* 2 y)))
(assert (> y 10))
(check-sat)
(get-model)

x = 2*y
y > 10

Z3 sat 
(model
    (define-fun y () Int 11)
    (define-fun x () Int 22)
)

x=22
y=11

Try it online:
http://www.rise4fun.com/Z3/tutorial/

http://www.rise4fun.com/Z3/tutorial/
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Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

x ← input()
y ← input()

if x == 2*y

if x > y+10

Cadar & Sen, 2013

http://www.eecs.berkeley.edu/~ksen/papers/cacm13.pdf
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Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main
approaches

x ← input()
y ← input()

if x == 2*y

if x > y+10

Cadar & Sen, 2013

http://www.eecs.berkeley.edu/~ksen/papers/cacm13.pdf
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y ← input()

if x == 2*y

if x > y+10

Cadar & Sen, 2013
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approaches
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Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main
approaches
– Concolic (dynamic symbolic)

x ← input()
y ← input()

if x == 2*y

if x > y+10

(x=2*y) ∧ (x>y+10)

Cadar & Sen, 2013

http://www.eecs.berkeley.edu/~ksen/papers/cacm13.pdf
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Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main
approaches
– Concolic (dynamic symbolic)

x ← input()
y ← input()

if x == 2*y

if x > y+10

(x=2*y) ∧ ¬(x>y+10)

Cadar & Sen, 2013

http://www.eecs.berkeley.edu/~ksen/papers/cacm13.pdf
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Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main
approaches
– Concolic (dynamic symbolic)

x ← input()
y ← input()

if x == 2*y

if x > y+10

Cadar & Sen, 2013

http://www.eecs.berkeley.edu/~ksen/papers/cacm13.pdf


44

Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main
approaches
– Concolic (dynamic symbolic)

– Execution Generated
Testing

x ← input()
y ← input()

if x == 2*y

if x > y+10

Cadar & Sen, 2013
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Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main
approaches
– Concolic (dynamic symbolic)

– Execution Generated
Testing

x ← input()
y ← input()

if x == 2*y

if x > y+10

X= ?
y=10

Cadar & Sen, 2013

http://www.eecs.berkeley.edu/~ksen/papers/cacm13.pdf
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Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main
approaches
– Concolic (dynamic symbolic)

– Execution Generated
Testing

x ← input()
y ← input()

if x == 2*y

if x > y+10 X=?≠20
y=10

X=20
y=10

Cadar & Sen, 2013

http://www.eecs.berkeley.edu/~ksen/papers/cacm13.pdf
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Exploring the Execution Tree

● The possible paths of a program form an
execution tree.

● Traversing the tree will
yield tests for all paths.

● Mechanizing the traversal
yields two main
approaches
– Concolic (dynamic symbolic)

– Execution Generated
Testing

x ← input()
y ← input()

if x == 2*y

if x > y+10 X=?≠20
y=10

X=20
y=10

Execution on this side is
concrete from this point on.

Cadar & Sen, 2013

http://www.eecs.berkeley.edu/~ksen/papers/cacm13.pdf


48

Symbolic Execution

● Increasingly scalable every year



49

Symbolic Execution

● Increasingly scalable every year
● Can automatically generate test inputs from 

constraints



50

Symbolic Execution

● Increasingly scalable every year
● Can automatically generate test inputs from 

constraints
● The resulting symbolic formulae have many used 

beyond just testing.



51

Symbolic Execution

● Increasingly scalable every year
● Can automatically generate test inputs from 

constraints
● The resulting symbolic formulae have many used 

beyond just testing.

Try it out:
https://github.com/klee/klee

https://github.com/klee/klee
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Where They Fit in the Process

● Automated test generation is a continual process.
● Just as much a part of modern QA as continuous 

integration
● Especially crucial as part of maintaining security 

(more on this later!)
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