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Fixing bugs is costly

● The longer broken code exists, the more code 
depends upon it.

● Once developers have moved on, finding the root 
cause of a bug is difficult

● Bugs that escape into the wild have real world 
impact
– Unintended car acceleration
– Spacecraft crashes
– Security leaks
– ...
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Fixing bugs is costly

● Strategy so far:
– Test to ensure that expected behaviors seem okay

Why do we still have bugs?
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Fixing bugs is costly

● Strategy so far:
– Test to ensure that expected behaviors seem okay
– But we have seen that testing alone is a best effort 

process: no panacea in adequacy criteria
● Instead we can be proactive:

– Explicitly search for certain known classes of bugs
– Guard against certain classes of bugs
– Even prove that certain bugs are not present
– Identify bad styles that may lead to bugs
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How can we do this?

● Increasingly pervasive approach is to use program 
analysis
– Set of tools/techniques that allow computers to 

automatically reason about the behavior of programs
● Push the burden of understanding programs onto 

computers
– People have trouble with repetitive, subtle behavior
– Computers excel at it
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For example

if ((err = update(&ctx, &server)) != 0)
goto fail;

if ((err = update(&ctx, &params)) != 0)
goto fail;
goto fail;

if ((err = final(&ctx, &hashOut)) != 0)
goto fail;
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For example

if ((err = update(&ctx, &server)) != 0)
goto fail;

if ((err = update(&ctx, &params)) != 0)
goto fail;
goto fail;

if ((err = final(&ctx, &hashOut)) != 0)
goto fail;

Why is this difficult for people to catch?

Why should a computer be able to find it?
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For example

● There are bugs that people can miss but that 
computers can easily find.
– Rules can determine what is buggy or not

if ((err = update(&ctx, &server)) != 0)
goto fail;

if ((err = update(&ctx, &params)) != 0)
goto fail;
goto fail;

if ((err = final(&ctx, &hashOut)) != 0)
goto fail;
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BUG: Both branches of the
if statement have the same target

For example

● There are bugs that people can miss but that 
computers can easily find.
– Rules can determine what is buggy or not

if ((err = update(&ctx, &server)) != 0)
goto fail;

if ((err = update(&ctx, &params)) != 0)
goto fail;
goto fail;

if ((err = final(&ctx, &hashOut)) != 0)
goto fail;
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Two main categories of tools

● Dynamic analysis tools
– Run the program and reason about that single execution
– Best at helping explain bugs that are already occurring

● Static analysis tools
– Examine the source code or binary and reason about all 

possible executions
– Best at identifying bugs that haven't struck yet but might 

in the future
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Two main categories of tools

● Neither approach is perfect

What are the limitations of dynamic approaches?

What are the limitations of static approaches?

This one is tougher....
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Two main categories of tools

● Neither approach is perfect
– Dynamic approaches require a test case to analyze
– Static approaches are limited by the halting problem

The halting problem strikes again....
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Two main categories of tools

● Neither approach is perfect
– Dynamic approaches require a test case to analyze
– Static approaches are limited by the halting problem

● The results are imperfect
– False positives – Warnings about bugs that don't actually 

exist
– False negatives – Missing warnings for bugs that do exist

● Learning how to use these tools effectively can take 
practice
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But what can they actually do?

● You've already seen the PVS-Studio examples

Was it a static or dynamic tool?
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But what can they actually do?

● You've already seen the PVS-Studio examples
● Many tools are freely available:

– *Lint
– FindBugs
– Clang Static Analyzer
– ESC/Java
– Valgrind
– Clang Sanitizers
– … (and more on the course web page)
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Taking a look at Valgrind

● Valgrind
– Uses dynamic binary instrumentation
– Modifies an already compiled binary to check for errors
– Many built in tools

● Memcheck – memory safety analyses
● Cachegrind – performance analyses
● Helgrind & DRD – Thread safety analyses

– Used extensively in the real world
● http://valgrind.org/gallery/

Does not work for Java or Python by default. Why?!

http://valgrind.org/gallery/
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Taking a look at clang sanitizers

● Clang sanitizers
– Use compile time instrumentation
– Rewrites the program once to perform analyses every 

time it executes
– Able to exploit source level information
– Many built in tools

● AddressSanitizer – Address safety analysis
● MemorySanitizer – Defined value analysis
● TheadSanitizer – Thread safety analysis
● Undefined Behavior – Just what it sounds like

– Used extensively at google (chrome, ...)
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So far...

● We've looked at dynamic analysis tools.
– False positives are less common
– False negatives are inherent

● What about the static analysis tools?
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Clang static analyzer

● 'scan-build'
– Integrates into the build process
– Uses abstract interpretation to simulate many different 

paths through the program at once
– Generates summaries showing exactly how errors may 

occur
– Many automatically recognized bugs

● And a plug-in system for recognizing new ones.
– Poorly organized & asserted code yields many errors
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Google Error Prone

● Google Error Prone
– Plugin using the modern Java compiler APIs
– Uses several techniques to balance

speed, precision, false positives, and false negatives
– Emphasis on pragmatic, actionable results

● Older tools like FindBugs are great if they work for you
– Broader classes of bugs handled
– Can analyze all dependencies of a project using static 

analysis
– Not as well maintained anymore
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Dealing With False Information

● False negatives are unfortunate, but no extra 
burden

● False positives can waste developer time
– Like chasing ghosts through the source code

You must eventually figure out
that the ghost isn't real
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Dealing With False Information

● False negatives are unfortunate, but no extra 
burden

● False positives can waste developer time
– Like chasing ghosts through the source code
– Want to determine whether warnings are real

This takes a lot of work & happens every time.
Can we do better?
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Dealing With False Information

● False negatives are unfortunate, but no extra 
burden

● False positives can waste developer time
– Like chasing ghosts through the source code
– Want to determine whether warnings are real
– Avoid chasing this same ghost in the future!

Deny lists & suppression allows us to “remember” false 
positives & prevent them in the future....

[DEMO]



61

Verification

● The tools so far try to look for bugs
– They can still miss them [Clang SA DEMO]



62

Verification

● The tools so far try to look for bugs
– They can still miss them [Clang SA DEMO]

● In contrast, we can try to use verification to prove 
the absence of (certain types of) bugs.

Have you seen / heard of such tools before?
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Verification

● The tools so far try to look for bugs
– They can still miss them [Clang SA DEMO]

● In contrast, we can try to use verification to prove 
the absence of (certain types of) bugs.
– [CBMC DEMO]

● Why didn't we just do this from the beginning?

Any ideas?
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Verification

● The tools so far try to look for bugs
– They can still miss them [Clang SA DEMO]

● In contrast, we can try to use verification to prove 
the absence of (certain types of) bugs.
– [CBMC DEMO]

● Why didn't we just do this from the beginning?
– Historically more difficult to use
– Historically more complex → more overhead
– Still approximate, at some level (time, space, …)

● They'll still miss bugs in the end

But they are getting better!
Used extensively in safety critical systems.
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