
Program Analysis Tools

CMPT 473
Software Testing, Reliability and Security

Nick Sumner

2

Fixing bugs is costly

Why?

3

Fixing bugs is costly

● The longer broken code exists, the more code
depends upon it.

4

Fixing bugs is costly

● The longer broken code exists, the more code
depends upon it.

● Once developers have moved on, finding the root
cause of a bug is difficult

5

Fixing bugs is costly

● The longer broken code exists, the more code
depends upon it.

● Once developers have moved on, finding the root
cause of a bug is difficult

● Bugs that escape into the wild have real world
impact
– Unintended car acceleration
– Spacecraft crashes
– Security leaks
– ...

6

Fixing bugs is costly

● Strategy so far:
– Test to ensure that expected behaviors seem okay

7

Fixing bugs is costly

● Strategy so far:
– Test to ensure that expected behaviors seem okay

Why do we still have bugs?

8

Fixing bugs is costly

● Strategy so far:
– Test to ensure that expected behaviors seem okay
– But we have seen that testing alone is a best effort

process: no panacea in adequacy criteria

9

Fixing bugs is costly

● Strategy so far:
– Test to ensure that expected behaviors seem okay
– But we have seen that testing alone is a best effort

process: no panacea in adequacy criteria
● Instead we can be proactive:

– Explicitly search for certain known classes of bugs

10

Fixing bugs is costly

● Strategy so far:
– Test to ensure that expected behaviors seem okay
– But we have seen that testing alone is a best effort

process: no panacea in adequacy criteria
● Instead we can be proactive:

– Explicitly search for certain known classes of bugs
– Guard against certain classes of bugs

11

Fixing bugs is costly

● Strategy so far:
– Test to ensure that expected behaviors seem okay
– But we have seen that testing alone is a best effort

process: no panacea in adequacy criteria
● Instead we can be proactive:

– Explicitly search for certain known classes of bugs
– Guard against certain classes of bugs
– Even prove that certain bugs are not present

12

Fixing bugs is costly

● Strategy so far:
– Test to ensure that expected behaviors seem okay
– But we have seen that testing alone is a best effort

process: no panacea in adequacy criteria
● Instead we can be proactive:

– Explicitly search for certain known classes of bugs
– Guard against certain classes of bugs
– Even prove that certain bugs are not present
– Identify bad styles that may lead to bugs

13

How can we do this?

● Increasingly pervasive approach is to use program
analysis

14

How can we do this?

● Increasingly pervasive approach is to use program
analysis
– Set of tools/techniques that allow computers to

automatically reason about the behavior of programs

15

How can we do this?

● Increasingly pervasive approach is to use program
analysis
– Set of tools/techniques that allow computers to

automatically reason about the behavior of programs
● Push the burden of understanding programs onto

computers

16

How can we do this?

● Increasingly pervasive approach is to use program
analysis
– Set of tools/techniques that allow computers to

automatically reason about the behavior of programs
● Push the burden of understanding programs onto

computers
– People have trouble with repetitive, subtle behavior

17

How can we do this?

● Increasingly pervasive approach is to use program
analysis
– Set of tools/techniques that allow computers to

automatically reason about the behavior of programs
● Push the burden of understanding programs onto

computers
– People have trouble with repetitive, subtle behavior
– Computers excel at it

18

For example

if ((err = update(&ctx, &server)) != 0)
goto fail;

if ((err = update(&ctx, ¶ms)) != 0)
goto fail;
goto fail;

if ((err = final(&ctx, &hashOut)) != 0)
goto fail;

19

For example

if ((err = update(&ctx, &server)) != 0)
goto fail;

if ((err = update(&ctx, ¶ms)) != 0)
goto fail;
goto fail;

if ((err = final(&ctx, &hashOut)) != 0)
goto fail;

Why is this difficult for people to catch?

20

For example

if ((err = update(&ctx, &server)) != 0)
goto fail;

if ((err = update(&ctx, ¶ms)) != 0)
goto fail;
goto fail;

if ((err = final(&ctx, &hashOut)) != 0)
goto fail;

Why is this difficult for people to catch?

Why should a computer be able to find it?

21

For example

● There are bugs that people can miss but that
computers can easily find.
– Rules can determine what is buggy or not

if ((err = update(&ctx, &server)) != 0)
goto fail;

if ((err = update(&ctx, ¶ms)) != 0)
goto fail;
goto fail;

if ((err = final(&ctx, &hashOut)) != 0)
goto fail;

22

BUG: Both branches of the
if statement have the same target

For example

● There are bugs that people can miss but that
computers can easily find.
– Rules can determine what is buggy or not

if ((err = update(&ctx, &server)) != 0)
goto fail;

if ((err = update(&ctx, ¶ms)) != 0)
goto fail;
goto fail;

if ((err = final(&ctx, &hashOut)) != 0)
goto fail;

23

Two main categories of tools

● Dynamic analysis tools
– Run the program and reason about that single execution

24

Two main categories of tools

● Dynamic analysis tools
– Run the program and reason about that single execution
– Best at helping explain bugs that are already occurring

25

Two main categories of tools

● Dynamic analysis tools
– Run the program and reason about that single execution
– Best at helping explain bugs that are already occurring

● Static analysis tools
– Examine the source code or binary and reason about all

possible executions

26

Two main categories of tools

● Dynamic analysis tools
– Run the program and reason about that single execution
– Best at helping explain bugs that are already occurring

● Static analysis tools
– Examine the source code or binary and reason about all

possible executions
– Best at identifying bugs that haven't struck yet but might

in the future

27

Two main categories of tools

● Neither approach is perfect

28

Two main categories of tools

● Neither approach is perfect

What are the limitations of dynamic approaches?

29

Two main categories of tools

● Neither approach is perfect

What are the limitations of dynamic approaches?

What are the limitations of static approaches?

This one is tougher....

30

Two main categories of tools

● Neither approach is perfect
– Dynamic approaches require a test case to analyze

31

Two main categories of tools

● Neither approach is perfect
– Dynamic approaches require a test case to analyze
– Static approaches are limited by the halting problem

The halting problem strikes again....

32

Two main categories of tools

● Neither approach is perfect
– Dynamic approaches require a test case to analyze
– Static approaches are limited by the halting problem

● The results are imperfect
– False positives – Warnings about bugs that don't actually

exist

33

Two main categories of tools

● Neither approach is perfect
– Dynamic approaches require a test case to analyze
– Static approaches are limited by the halting problem

● The results are imperfect
– False positives – Warnings about bugs that don't actually

exist
– False negatives – Missing warnings for bugs that do exist

34

Two main categories of tools

● Neither approach is perfect
– Dynamic approaches require a test case to analyze
– Static approaches are limited by the halting problem

● The results are imperfect
– False positives – Warnings about bugs that don't actually

exist
– False negatives – Missing warnings for bugs that do exist

● Learning how to use these tools effectively can take
practice

35

But what can they actually do?

● You've already seen the PVS-Studio examples

Was it a static or dynamic tool?

36

But what can they actually do?

● You've already seen the PVS-Studio examples
● Many tools are freely available:

– *Lint
– FindBugs
– Clang Static Analyzer
– ESC/Java
– Valgrind
– Clang Sanitizers
– … (and more on the course web page)

37

Taking a look at Valgrind

● Valgrind
– Uses dynamic binary instrumentation

38

Taking a look at Valgrind

● Valgrind
– Uses dynamic binary instrumentation
– Modifies an already compiled binary to check for errors

39

Taking a look at Valgrind

● Valgrind
– Uses dynamic binary instrumentation
– Modifies an already compiled binary to check for errors
– Many built in tools

● Memcheck – memory safety analyses
● Cachegrind – performance analyses
● Helgrind & DRD – Thread safety analyses

40

Taking a look at Valgrind

● Valgrind
– Uses dynamic binary instrumentation
– Modifies an already compiled binary to check for errors
– Many built in tools

● Memcheck – memory safety analyses
● Cachegrind – performance analyses
● Helgrind & DRD – Thread safety analyses

– Used extensively in the real world
● http://valgrind.org/gallery/

http://valgrind.org/gallery/

41

Taking a look at Valgrind

● Valgrind
– Uses dynamic binary instrumentation
– Modifies an already compiled binary to check for errors
– Many built in tools

● Memcheck – memory safety analyses
● Cachegrind – performance analyses
● Helgrind & DRD – Thread safety analyses

– Used extensively in the real world
● http://valgrind.org/gallery/

Does not work for Java or Python by default. Why?!

http://valgrind.org/gallery/

42

Taking a look at clang sanitizers

● Clang sanitizers
– Use compile time instrumentation

43

Taking a look at clang sanitizers

● Clang sanitizers
– Use compile time instrumentation
– Rewrites the program once to perform analyses every

time it executes
– Able to exploit source level information

44

Taking a look at clang sanitizers

● Clang sanitizers
– Use compile time instrumentation
– Rewrites the program once to perform analyses every

time it executes
– Able to exploit source level information
– Many built in tools

● AddressSanitizer – Address safety analysis
● MemorySanitizer – Defined value analysis
● TheadSanitizer – Thread safety analysis
● Undefined Behavior – Just what it sounds like (which is?)

45

Taking a look at clang sanitizers

● Clang sanitizers
– Use compile time instrumentation
– Rewrites the program once to perform analyses every

time it executes
– Able to exploit source level information
– Many built in tools

● AddressSanitizer – Address safety analysis
● MemorySanitizer – Defined value analysis
● TheadSanitizer – Thread safety analysis
● Undefined Behavior – Just what it sounds like

– Used extensively at google (chrome, ...)

46

So far...

● We've looked at dynamic analysis tools.
– False positives are less common
– False negatives are inherent

47

So far...

● We've looked at dynamic analysis tools.
– False positives are less common
– False negatives are inherent

● What about the static analysis tools?

48

Clang static analyzer

● 'scan-build'
– Integrates into the build process

49

Clang static analyzer

● 'scan-build'
– Integrates into the build process
– Uses abstract interpretation to simulate many different

paths through the program at once

50

Clang static analyzer

● 'scan-build'
– Integrates into the build process
– Uses abstract interpretation to simulate many different

paths through the program at once
– Generates summaries showing exactly how errors may

occur

51

Clang static analyzer

● 'scan-build'
– Integrates into the build process
– Uses abstract interpretation to simulate many different

paths through the program at once
– Generates summaries showing exactly how errors may

occur
– Many automatically recognized bugs

● And a plug-in system for recognizing new ones.

52

Clang static analyzer

● 'scan-build'
– Integrates into the build process
– Uses abstract interpretation to simulate many different

paths through the program at once
– Generates summaries showing exactly how errors may

occur
– Many automatically recognized bugs

● And a plug-in system for recognizing new ones.
– Poorly organized & asserted code yields many errors

53

Google Error Prone

● Google Error Prone
– Plugin using the modern Java compiler APIs

54

Google Error Prone

● Google Error Prone
– Plugin using the modern Java compiler APIs
– Uses several techniques to balance

speed, precision, false positives, and false negatives
– Emphasis on pragmatic, actionable results

55

Google Error Prone

● Google Error Prone
– Plugin using the modern Java compiler APIs
– Uses several techniques to balance

speed, precision, false positives, and false negatives
– Emphasis on pragmatic, actionable results

● Older tools like FindBugs are great if they work for you
– Broader classes of bugs handled
– Can analyze all dependencies of a project using static

analysis
– Not as well maintained anymore

56

Dealing With False Information

● False negatives are unfortunate, but no extra
burden

57

Dealing With False Information

● False negatives are unfortunate, but no extra
burden

● False positives can waste developer time
– Like chasing ghosts through the source code

You must eventually figure out
that the ghost isn't real

58

Dealing With False Information

● False negatives are unfortunate, but no extra
burden

● False positives can waste developer time
– Like chasing ghosts through the source code
– Want to determine whether warnings are real

This takes a lot of work & happens every time.
Can we do better?

59

Dealing With False Information

● False negatives are unfortunate, but no extra
burden

● False positives can waste developer time
– Like chasing ghosts through the source code
– Want to determine whether warnings are real
– Avoid chasing this same ghost in the future!

60

Dealing With False Information

● False negatives are unfortunate, but no extra
burden

● False positives can waste developer time
– Like chasing ghosts through the source code
– Want to determine whether warnings are real
– Avoid chasing this same ghost in the future!

Deny lists & suppression allows us to “remember” false
positives & prevent them in the future....

[DEMO]

61

Verification

● The tools so far try to look for bugs
– They can still miss them [Clang SA DEMO]

62

Verification

● The tools so far try to look for bugs
– They can still miss them [Clang SA DEMO]

● In contrast, we can try to use verification to prove
the absence of (certain types of) bugs.

Have you seen / heard of such tools before?

63

Verification

● The tools so far try to look for bugs
– They can still miss them [Clang SA DEMO]

● In contrast, we can try to use verification to prove
the absence of (certain types of) bugs.
– [CBMC DEMO]

64

Verification

● The tools so far try to look for bugs
– They can still miss them [Clang SA DEMO]

● In contrast, we can try to use verification to prove
the absence of (certain types of) bugs.
– [CBMC DEMO]

● Why didn't we just do this from the beginning?

Any ideas?

65

Verification

● The tools so far try to look for bugs
– They can still miss them [Clang SA DEMO]

● In contrast, we can try to use verification to prove
the absence of (certain types of) bugs.
– [CBMC DEMO]

● Why didn't we just do this from the beginning?
– Historically more difficult to use

66

Verification

● The tools so far try to look for bugs
– They can still miss them [Clang SA DEMO]

● In contrast, we can try to use verification to prove
the absence of (certain types of) bugs.
– [CBMC DEMO]

● Why didn't we just do this from the beginning?
– Historically more difficult to use
– Historically more complex → more overhead

67

Verification

● The tools so far try to look for bugs
– They can still miss them [Clang SA DEMO]

● In contrast, we can try to use verification to prove
the absence of (certain types of) bugs.
– [CBMC DEMO]

● Why didn't we just do this from the beginning?
– Historically more difficult to use
– Historically more complex → more overhead
– Still approximate, at some level (time, space, …)

● They'll still miss bugs in the end

68

Verification

● The tools so far try to look for bugs
– They can still miss them [Clang SA DEMO]

● In contrast, we can try to use verification to prove
the absence of (certain types of) bugs.
– [CBMC DEMO]

● Why didn't we just do this from the beginning?
– Historically more difficult to use
– Historically more complex → more overhead
– Still approximate, at some level (time, space, …)

● They'll still miss bugs in the end

But they are getting better!
Used extensively in safety critical systems.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

