
Managing Bugs

CMPT 473
Software Quality Assurance

Nick Sumner - Fall 2014

2

Bugs!

● So far, we've been trying to find & avoid them
– Test, test, test!

3

Bugs!

● So far, we've been trying to find & avoid them
– Test, test, test!

● Eventually, you might actually encounter a
bug/error

4

Bugs!

● So far, we've been trying to find & avoid them
– Test, test, test!

● Eventually, you might actually encounter a
bug/error

● 2 perspectives to consider

5

Bugs!

● So far, we've been trying to find & avoid them
– Test, test, test!

● Eventually, you might actually encounter a
bug/error

● 2 perspectives to consider
– Developer – how should the program handle errors?

● Error Reporting

6

Bugs!

● So far, we've been trying to find & avoid them
– Test, test, test!

● Eventually, you might actually encounter a
bug/error

● 2 perspectives to consider
– Developer – how should the program handle errors?

● Error Reporting

– Client/Teammate – how should the bug be reported /
prioritized / fixed?

● Bug Advocacy

7

Bugs!

● So far, we've been trying to find & avoid them
– Test, test, test!

● Eventually, you might actually encounter a
bug/error

● 2 perspectives to consider
– Developer – how should the program handle errors?

● Error Reporting

– Client/Teammate – how should the bug be reported /
prioritized / fixed?

● Bug Advocacy

These perspectives are not independent!
Why?

8

Error Reporting

● What should the program do when it detects an
error?

9

Error Reporting

● What should the program do when it detects an
error?
– Simply ignoring the error is often a poor choice

10

Error Reporting

● What should the program do when it detects an
error?
– Simply ignoring the error is often a poor choice

– Log it, print it, or otherwise report it

11

Error Reporting

● What should the program do when it detects an
error?
– Simply ignoring the error is often a poor choice

– Log it, print it, or otherwise report it

– Fail gracefully, continuing if possible

12

Error Reporting

● What should the program do when it detects an
error?
– Simply ignoring the error is often a poor choice

– Log it, print it, or otherwise report it

– Fail gracefully, continuing if possible

● What should error messages contain?

13

Error Reporting

● What should the program do when it detects an
error?
– Simply ignoring the error is often a poor choice

– Log it, print it, or otherwise report it

– Fail gracefully, continuing if possible

● What should error messages contain?
– What specifically is incorrect

14

Error Reporting

● What should the program do when it detects an
error?
– Simply ignoring the error is often a poor choice

– Log it, print it, or otherwise report it

– Fail gracefully, continuing if possible

● What should error messages contain?
– What specifically is incorrect

– Why it is incorrect

15

Error Reporting

● What should the program do when it detects an
error?
– Simply ignoring the error is often a poor choice

– Log it, print it, or otherwise report it

– Fail gracefully, continuing if possible

● What should error messages contain?
– What specifically is incorrect

– Why it is incorrect

– Where / when it is incorrect

16

Error Reporting

● Should match your existing intuition:

17

Error Reporting

● Should match your existing intuition:
– “try { … } catch (Exception e) {}” is hideous!

18

Error Reporting

● Should match your existing intuition:
– “try { … } catch (Exception e) {}” is hideous!

– “Segmentation Fault” is frustrating

19

Error Reporting

● Should match your existing intuition:
– “try { … } catch (Exception e) {}” is hideous!

– “Segmentation Fault” is frustrating

– “Program Error” is infuriating

20

Error Reporting

● Should match your existing intuition:
– “try { … } catch (Exception e) {}” is hideous!

– “Segmentation Fault” is frustrating

– “Program Error” is infuriating

– “Index out of bounds: index i = 30 > size 15 at line 5
of MyVector.java” is rather pleasant

21

Error Reporting

● Should match your existing intuition:
– “try { … } catch (Exception e) {}” is hideous!

– “Segmentation Fault” is frustrating

– “Program Error” is infuriating

– “Index out of bounds: index i = 30 > size 15 at line 5
of MyVector.java” is rather pleasant

● But not all information should be reported!
– Why might some values/variables be undesirable to

report?

22

Error Reporting

● Should match your existing intuition:
– “try { … } catch (Exception e) {}” is hideous!

– “Segmentation Fault” is frustrating

– “Program Error” is infuriating

– “Index out of bounds: index i = 30 > size 15 at line 5
of MyVector.java” is rather pleasant

● But not all information should be reported!
– Why might some values/variables be undesirable to

report? Note: Sensitive values should not even be
 available or possible to report!

This indicates design bugs!

23

Reporting, Advocacy, & Management

● The reason we need good error messages is to
support bug reporting & management

24

Reporting, Advocacy, & Management

● The reason we need good error messages is to
support bug reporting & management

● Help facilitate:

25

Reporting, Advocacy, & Management

● The reason we need good error messages is to
support bug reporting & management

● Help facilitate:
– Reproducing the failure

26

Reporting, Advocacy, & Management

● The reason we need good error messages is to
support bug reporting & management

● Help facilitate:
– Reproducing the failure
– Finding the best initial “owner”

27

Reporting, Advocacy, & Management

● The reason we need good error messages is to
support bug reporting & management

● Help facilitate:
– Reproducing the failure
– Finding the best initial “owner”
– Combining duplicate reports

28

Reporting, Advocacy, & Management

● The reason we need good error messages is to
support bug reporting & management

● Help facilitate:
– Reproducing the failure
– Finding the best initial “owner”
– Combining duplicate reports
– Identifying possible causes & effects

29

Reporting, Advocacy, & Management

● The reason we need good error messages is to
support bug reporting & management

● Help facilitate:
– Reproducing the failure
– Finding the best initial “owner”
– Combining duplicate reports
– Identifying possible causes & effects
– Prioritizing the bug

30

Reporting, Advocacy, & Management

● The reason we need good error messages is to
support bug reporting & management

● Help facilitate:
– Reproducing the failure
– Finding the best initial “owner”
– Combining duplicate reports
– Identifying possible causes & effects
– Prioritizing the bug
– Identifying workarounds & working cases

31

Reporting, Advocacy, & Management

● The reason we need good error messages is to
support bug reporting & management

● Help facilitate:
– Reproducing the failure
– Finding the best initial “owner”
– Combining duplicate reports
– Identifying possible causes & effects
– Prioritizing the bug
– Identifying workarounds & working cases

What have we left out?

32

Reporting, Advocacy, & Management

● The reason we need good error messages is to
support bug reporting & management

● Help facilitate:
– Reproducing the failure
– Finding the best initial “owner”
– Combining duplicate reports
– Identifying possible causes & effects
– Prioritizing the bug
– Identifying workarounds & working cases
– … and creating a fix

33

Reporting, Advocacy, & Management

● The reason we need good error messages is to
support bug reporting & management

● Help facilitate:
– Reproducing the failure
– Finding the best initial “owner”
– Combining duplicate reports
– Identifying possible causes & effects
– Prioritizing the bug
– Identifying workarounds & working cases
– … and creating a fix

Bad bug reporting & management
is worse that none!

Any ideas why?

34

Bug Management

● All projects have unfixed bugs
– How do we keep track of them & decide what to fix?

35

Bug Management

● All projects have unfixed bugs
– How do we keep track of them & decide what to fix?

– Bug Databases

– e.g. Bugzilla, Mantis, Trac, FogBugz, ...

36

Bug Management

● All projects have unfixed bugs
– How do we keep track of them & decide what to fix?

– Bug Databases

– e.g. Bugzilla, Mantis, Trac, FogBugz, ...

● Bug Databases
– Centralize communication (developer & user) to:

37

Bug Management

● All projects have unfixed bugs
– How do we keep track of them & decide what to fix?

– Bug Databases

– e.g. Bugzilla, Mantis, Trac, FogBugz, ...

● Bug Databases
– Centralize communication (developer & user) to:

● Own
● Prioritize
● Reproduce, Localize, Explain
● Patch

38

Ownership

● Who is responsible for a bug?
– A very difficult task in general

39

Ownership

● Who is responsible for a bug?
– A very difficult task in general

– “Who knows the most about this module?”

– “Whose code (if any!) exposed the bug?” (RIP)

– “Who worked with this code most recently?”

40

Ownership

● Who is responsible for a bug?
– A very difficult task in general

– “Who knows the most about this module?”

– “Whose code (if any!) exposed the bug?” (RIP)

– “Who worked with this code most recently?”

– Is this a client side issue?

41

Prioritizing Bugs

● All projects have unfixed bugs
– If a bug doesn't appear important, it won't get fixed

42

Prioritizing Bugs

● All projects have unfixed bugs
– If a bug doesn't appear important, it won't get fixed

● Which bugs are important?

What makes bugs a higher priority for you?

43

Prioritizing Bugs

● All projects have unfixed bugs
– If a bug doesn't appear important, it won't get fixed

● Which bugs are important?
– Occur frequently / for most users

– Have substantial risks / consequences

– Are new in the latest version

44

Prioritizing Bugs

● All projects have unfixed bugs
– If a bug doesn't appear important, it won't get fixed

● Which bugs are important?
– Occur frequently / for most users

– Have substantial risks / consequences

– Are new in the latest version

Why are new bugs important?

45

Prioritizing Bugs

● All projects have unfixed bugs
– If a bug doesn't appear important, it won't get fixed

● Which bugs are important?
– Occur frequently / for most users

– Have substantial risks / consequences

– Are new in the latest version

● Identifying the importance of bugs is critical to
prioritizing them
– Usually informally at first until a bug owner is found

to estimate the risk

46

But what should a report contain?
● A concise explanation of anything helpful in

evaluating & fixing the bug
– …?

47

But what should a report contain?
● A concise explanation of anything helpful in

evaluating & fixing the bug
– Product, version, & relevant feature

– Platform & environment

– Potential severity / priority

– Possible owners

– Possible duplicates

– A one line summary

– An explanation of what happened, when it
happened, & why it was unexpected

– A minimal, self contained test case

48

Bug Advocacy – An Example
“A colleague of mine have find a hairy bug,

here is a simple code to reproduce it.”
public class FunWithMultiCatch {
 public static void main(String[] args) {
 Runnable r = () -> {
 try {
 Object o = null;
 o.getClass();
 throw new IOException();
 } catch(IOException | IllegalArgumentException e) {
 System.out.println("KO !");
 } catch(RuntimeException e) {
 System.out.println("OK !");
 }
 };
 r.run();
 }
} http://mail.openjdk.java.net/pipermail/lambda-dev/2014-March/011940.html

http://mail.openjdk.java.net/pipermail/lambda-dev/2014-March/011940.html

49

Bug Advocacy – An Example
“A colleague of mine have find a hairy bug,

here is a simple code to reproduce it.”
public class FunWithMultiCatch {
 public static void main(String[] args) {
 Runnable r = () -> {
 try {
 Object o = null;
 o.getClass();
 throw new IOException();
 } catch(IOException | IllegalArgumentException e) {
 System.out.println("KO !");
 } catch(RuntimeException e) {
 System.out.println("OK !");
 }
 };
 r.run();
 }
}

It prints 'KO !' :(

http://mail.openjdk.java.net/pipermail/lambda-dev/2014-March/011940.html

http://mail.openjdk.java.net/pipermail/lambda-dev/2014-March/011940.html

50

How can we minimize test cases

● For now:
– How do you already minimize test cases?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

