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Bugs!

● So far, we've been trying to find & avoid them
– Test, test, test!

● Eventually, you might actually encounter a 
bug/error

● 2 perspectives to consider
– Developer – how should the program handle errors?

● Error Reporting

– Client/Teammate – how should the bug be reported / 
prioritized / fixed?

● Bug Advocacy

These perspectives are not independent!
Why?
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Error Reporting

● What should the program do when it detects an 
error?
– Simply ignoring the error is often a poor choice

– Log it, print it, or otherwise report it

– Fail gracefully, continuing if possible

● What should error messages contain?
– What specifically is incorrect

– Why it is incorrect

– Where / when it is incorrect
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Error Reporting

● Should match your existing intuition:
– “try { … } catch (Exception e) {}” is hideous!

– “Segmentation Fault” is frustrating

– “Program Error” is infuriating

– “Index out of bounds: index i = 30 > size 15 at line 5 
of MyVector.java” is rather pleasant

● But not all information should be reported!
– Why might some values/variables be undesirable to 

report? Note: Sensitive values should not even be
 available or possible to report! 

This indicates design bugs!
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Reporting, Advocacy, & Management

● The reason we need good error messages is to 
support bug reporting & management

● Help facilitate:
– Reproducing the failure
– Finding the best initial “owner”
– Combining duplicate reports
– Identifying possible causes & effects
– Prioritizing the bug
– Identifying workarounds & working cases
– … and creating a fix

Bad bug reporting & management
is worse that none!

Any ideas why?
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Bug Management

● All projects have unfixed bugs
– How do we keep track of them & decide what to fix?

– Bug Databases

– e.g. Bugzilla, Mantis, Trac, FogBugz, ...

● Bug Databases
– Centralize communication (developer & user) to:

● Own
● Prioritize
● Reproduce, Localize, Explain
● Patch



38

Ownership

● Who is responsible for a bug?
– A very difficult task in general



39

Ownership

● Who is responsible for a bug?
– A very difficult task in general

– “Who knows the most about this module?”

– “Whose code (if any!) exposed the bug?” (RIP)

– “Who worked with this code most recently?”



40

Ownership

● Who is responsible for a bug?
– A very difficult task in general

– “Who knows the most about this module?”

– “Whose code (if any!) exposed the bug?” (RIP)

– “Who worked with this code most recently?”

– Is this a client side issue?
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● Which bugs are important?

What makes bugs a higher priority for you?
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Prioritizing Bugs

● All projects have unfixed bugs
– If a bug doesn't appear important, it won't get fixed

● Which bugs are important?
– Occur frequently / for most users

– Have substantial risks / consequences

– Are new in the latest version

● Identifying the importance of bugs is critical to 
prioritizing them
– Usually informally at first until a bug owner is found 

to estimate the risk
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But what should a report contain?
● A concise explanation of anything helpful in 

evaluating & fixing the bug
– …?
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But what should a report contain?
● A concise explanation of anything helpful in 

evaluating & fixing the bug
– Product, version, & relevant feature

– Platform & environment

– Potential severity / priority

– Possible owners

– Possible duplicates

– A one line summary

– An explanation of what happened, when it 
happened, & why it was unexpected

– A minimal, self contained test case
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Bug Advocacy – An Example
“A colleague of mine have find a hairy bug,

here is a simple code to reproduce it.”
public class FunWithMultiCatch {
   public static void main(String[] args) {
     Runnable r = () -> {
       try {
         Object o = null;
         o.getClass();
         throw new IOException();
       } catch(IOException | IllegalArgumentException e) {
         System.out.println("KO !");
       } catch(RuntimeException e) {
         System.out.println("OK !");
       }
     };
     r.run();
   }
} http://mail.openjdk.java.net/pipermail/lambda-dev/2014-March/011940.html

http://mail.openjdk.java.net/pipermail/lambda-dev/2014-March/011940.html


49

Bug Advocacy – An Example
“A colleague of mine have find a hairy bug,

here is a simple code to reproduce it.”
public class FunWithMultiCatch {
   public static void main(String[] args) {
     Runnable r = () -> {
       try {
         Object o = null;
         o.getClass();
         throw new IOException();
       } catch(IOException | IllegalArgumentException e) {
         System.out.println("KO !");
       } catch(RuntimeException e) {
         System.out.println("OK !");
       }
     };
     r.run();
   }
}

It prints 'KO !' :(

http://mail.openjdk.java.net/pipermail/lambda-dev/2014-March/011940.html

http://mail.openjdk.java.net/pipermail/lambda-dev/2014-March/011940.html
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How can we minimize test cases

● For now:
– How do you already minimize test cases?
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