
Unit Testing & Testability

CMPT 473
Software Quality Assurance

Nick Sumner - Fall 2014

2

Levels of Testing

● Recall that we discussed different levels of
testing for test planning:
– Unit Tests

– Integration Tests

– System Tests

– …

3

Levels of Testing

● Recall that we discussed different levels of
testing for test planning:
– Unit Tests

– Integration Tests

– System Tests

– …

● The simplest of these is Unit Testing
– Testing the smallest possible fragments of a

program

4

Unit Testing

● Try to ensure that the functionality of each
component works in isolation

5

Unit Testing

● Try to ensure that the functionality of each
component works in isolation
– Unit Test a car:

Wheels work. Steering wheel works....

6

Unit Testing

● Try to ensure that the functionality of each
component works in isolation
– Unit Test a car:

Wheels work. Steering wheel works....

– Integration Test a car:
Steering wheel turns the wheels....

7

Unit Testing

● Try to ensure that the functionality of each
component works in isolation
– Unit Test a car:

Wheels work. Steering wheel works....

– Integration Test a car:
Steering wheel turns the wheels....

– System Test a car:
 Driving down the highway with the air conditioning on

works...

8

Unit Testing

● Try to ensure that the functionality of each
component works in isolation
– Unit Test a car:

Wheels work. Steering wheel works....

– Integration Test a car:
Steering wheel turns the wheels....

– System Test a car:
 Driving down the highway with the air conditioning on

works....

● Not testing how well things are glued together.

9

Unit Testing

● Try to ensure that the functionality of each
component works in isolation
– Unit Test a car:

Wheels work. Steering wheel works....

– Integration Test a car:
Steering wheel turns the wheels....

– System Test a car:
 Driving down the highway with the air conditioning on

works....

● Not testing how well things are glued together.
Why? How is this beneficial?

10

Unit Tests

● A dual view:
– They specify the expected behavior of individual

components

11

Unit Tests

● A dual view:
– They specify the expected behavior of individual

components

– An executable specification

12

Unit Tests

● A dual view:
– They specify the expected behavior of individual

components

– An executable specification

● Can even be built first & used to guide
development
– Usually called Test Driven Development

13

Unit Tests

● A dual view:
– They specify the expected behavior of individual

components

– An executable specification

● Can even be built first & used to guide
development
– Usually called Test Driven Development

Have any of you experienced
this in your jobs?

14

Unit Tests

● Some guiding principles:
– Focus on one component in isolation

– Be simple to set up & run

– Be easy to understand

15

Unit Tests

● Some guiding principles:
– Focus on one component in isolation

– Be simple to set up & run

– Be easy to understand

● Usually managed by some automating
framework

16

Unit Tests

● Some guiding principles:
– Focus on one component in isolation

– Be simple to set up & run

– Be easy to understand

● Usually managed by some automating
framework

What frameworks have you
used to write unit tests?

17

JUnit

● Widely used unit testing framework for Java
– And I know that you should have seen it before

18

JUnit

● Widely used unit testing framework for Java
– And I know that you should have seen it before

● We'll use it to drive our discussion, but its
features exist in other frameworks, too.

What features do your unit testing
frameworks provide?

19

JUnit

● Basic Features

20

JUnit

● Basic Features
– Per class set up & tear down

@BeforeClass & @AfterClass

21

JUnit

● Basic Features
– Per class set up & tear down

@BeforeClass & @AfterClass

– Per test set up & tear down
@Before & @After

22

JUnit

● Basic Features
– Per class set up & tear down

@BeforeClass & @AfterClass

– Per test set up & tear down
@Before & @After

– Test identification & properties
@Test (expected=Exception.class) (timeout=100)

23

JUnit

● Basic Features
– Per class set up & tear down

@BeforeClass & @AfterClass

– Per test set up & tear down
@Before & @After

– Test identification & properties
@Test (expected=Exception.class) (timeout=100)

– Test hiding
@Ignore

24

JUnit

● Basic Features
– Per class set up & tear down

@BeforeClass & @AfterClass

– Per test set up & tear down
@Before & @After

– Test identification & properties
@Test (expected=Exception.class) (timeout=100)

– Test hiding
@Ignore

– Expectations
assertEquals, assertTrue, assertFalse, assertNull, ...

25

JUnit

● Let's work through a simple example

(There shouldn't be anything new here, but it should be a
refresher if you haven't seen it in awhile)

26

Testability

● What makes testing hard?
– Not just difficult to get adequacy

– What makes it difficult to write tests?

27

Testability

● What makes testing hard?
– Not just difficult to get adequacy

– What makes it difficult to write tests?

● Dependencies
– Connections between classes

28

Testability

● What makes testing hard?
– Not just difficult to get adequacy

– What makes it difficult to write tests?

● Dependencies
– Connections between classes
– Singletons

29

Testability

● What makes testing hard?
– Not just difficult to get adequacy

– What makes it difficult to write tests?

● Dependencies
– Connections between classes
– Singletons
– Nondeterminism

30

Testability

● What makes testing hard?
– Not just difficult to get adequacy

– What makes it difficult to write tests?

● Dependencies
– Connections between classes
– Singletons
– Nondeterminism
– Static binding

31

Testability

● What makes testing hard?
– Not just difficult to get adequacy

– What makes it difficult to write tests?

● Dependencies
– Connections between classes
– Singletons
– Nondeterminism
– Static binding
– Mixing construction & application logic
– ...

32

Testability

● What makes testing hard?
– Not just difficult to get adequacy

– What makes it difficult to write tests?

● Dependencies
– Connections between classes
– Singletons
– Nondeterminism
– Static binding
– Mixing construction & application logic
– ... But solutions exist!

You can design code to be testable!

33

Testability (by example)

● Let's work together to improve some difficult to
test code....

34

Testability

● Keys things to notice:
– Mocks & stubs allow us to isolate components

under test

35

Testability

● Keys things to notice:
– Mocks & stubs allow us to isolate components

under test

– Dependency Injection allows us to use mocks and
stubs as necessary

36

Testability

● Keys things to notice:
– Mocks & stubs allow us to isolate components

under test

– Dependency Injection allows us to use mocks and
stubs as necessary

– But doing this can lead to a lot more work and
boilerplate code when written by hand

37

Testability

● Keys things to notice:
– Mocks & stubs allow us to isolate components

under test

– Dependency Injection allows us to use mocks and
stubs as necessary

– But doing this can lead to a lot more work and
boilerplate code when written by hand

Given dependency injection,
what happens to the way we create objects?

38

Testability

● Keys things to notice:
– Mocks & stubs allow us to isolate components

under test

– Dependency Injection allows us to use mocks and
stubs as necessary

– But doing this can lead to a lot more work and
boilerplate code when written by hand

Given dependency injection,
what happens to the way we create objects?

How might we mitigate
boilerplate issues?

39

Mocking Framework Example

● Frameworks exist that can automate the
boilerplate behind:

40

Mocking Framework Example

● Frameworks exist that can automate the
boilerplate behind:
– Mocking

e.g. Mockito, Jmock, etc.

[DEMO]

41

Mocking Framework Example

● Frameworks exist that can automate the
boilerplate behind:
– Mocking

e.g. Mockito, Jmock, etc.

– Dependency Injection

e.g. Google Guice, Pico Container, etc.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

