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● The simplest of these is Unit Testing
– Testing the smallest possible fragments of a 

program
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Unit Testing

● Try to ensure that the functionality of each 
component works in isolation
– Unit Test a car:

Wheels work. Steering wheel works....

– Integration Test a car:
Steering wheel turns the wheels....

– System Test a car:
 Driving down the highway with the air conditioning on 

works....

● Not testing how well things are glued together.
Why? How is this beneficial?
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Unit Tests

● A dual view:
– They specify the expected behavior of individual 

components

– An executable specification

● Can even be built first & used to guide 
development
– Usually called Test Driven Development

Have any of you experienced
this in your jobs?
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Unit Tests

● Some guiding principles:
– Focus on one component in isolation

– Be simple to set up & run

– Be easy to understand

● Usually managed by some automating 
framework

What frameworks have you
used to write unit tests?
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JUnit
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– And I know that you should have seen it before
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JUnit

● Widely used unit testing framework for Java
– And I know that you should have seen it before

● We'll use it to drive our discussion, but its 
features exist in other frameworks, too.

What features do your unit testing
frameworks provide?
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JUnit

● Basic Features
– Per class set up & tear down

@BeforeClass & @AfterClass

– Per test set up & tear down
@Before & @After

– Test identification & properties
@Test      (expected=Exception.class)     (timeout=100)

– Test hiding
@Ignore

– Expectations
assertEquals, assertTrue, assertFalse, assertNull, ...
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JUnit

● Let's work through a simple example

(There shouldn't be anything new here, but it should be a 
refresher if you haven't seen it in awhile)
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Testability
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– What makes it difficult to write tests?
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Testability

● What makes testing hard?
– Not just difficult to get adequacy

– What makes it difficult to write tests?

● Dependencies
– Connections between classes
– Singletons
– Nondeterminism
– Static binding
– Mixing construction & application logic
– ... But solutions exist!

You can design code to be testable!
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Testability (by example)

● Let's work together to improve some difficult to 
test code....
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Testability

● Keys things to notice:
– Mocks & stubs allow us to isolate components 

under test

– Dependency Injection allows us to use mocks and 
stubs as necessary

– But doing this can lead to a lot more work and 
boilerplate code when written by hand

Given dependency injection,
what happens to the way we create objects?

How might we mitigate
boilerplate issues?
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Mocking Framework Example

● Frameworks exist that can automate the 
boilerplate behind:
– Mocking

e.g. Mockito, Jmock, etc.

[DEMO]
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Mocking Framework Example

● Frameworks exist that can automate the 
boilerplate behind:
– Mocking

e.g. Mockito, Jmock, etc.

– Dependency Injection

e.g. Google Guice, Pico Container, etc.
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