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The Story So Far

● We have seen how to measure the quality of 
software
– Establish quality requirements

– Build a test suite

– Run it to identify missed requirements

● Are the requirements in real software 
static/fixed?

● Software evolves
– The testing process should support and facilitate 

change Why is this a problem?
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Why Use Regression Testing

● As software evolves, previously working 
functionality can fail
– Software is complex & interconnected. Changing 

one component can unintentionally impact another.

– New environments can introduce unexpected 
behavior in components that originally work.

● Most testing is regression testing
● Ensuring previous functionality can require 

large test suites. Are they always realistic?

How often did you run regression
tests in co-ops/internships?
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Regression Testing In Practice

● Too many & too frequent to do by hand
– Automate it:

e.g. JUnit suites, commit hooks, nightlies

● Over time, regression suites grow even larger
– Cannot run every time you commit

– Cannot run every night

● Can grow the test bed as well, but that costs $ 
as well...

How else can we address this problem?
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Limiting Regression Suites

● Be careful not to add redundant test to the test 
suite.

When have you found it useful/required
to add tests?



26

Limiting Regression Suites

● Be careful not to add redundant test to the test 
suite.
– Every bug indicates a useful behavior to test

– Test adequacy criteria can limit the other tests



27

Limiting Regression Suites

● Be careful not to add redundant test to the test 
suite.
– Every bug indicates a useful behavior to test

– Test adequacy criteria can limit the other tests

● Sometimes not all tests need to run with each 
commit

Why might this be?



28

Limiting Regression Suites

● Be careful not to add redundant test to the test 
suite.
– Every bug indicates a useful behavior to test

– Test adequacy criteria can limit the other tests

● Sometimes not all tests need to run with each 
commit

What strategies have you encountered?



29

Limiting Regression Suites

● Be careful not to add redundant test to the test 
suite.
– Every bug indicates a useful behavior to test

– Test adequacy criteria can limit the other tests

● Sometimes not all tests need to run with each 
commit
– Run a subset of sanity or smoke tests for commits



30

Limiting Regression Suites

● Be careful not to add redundant test to the test 
suite.
– Every bug indicates a useful behavior to test

– Test adequacy criteria can limit the other tests

● Sometimes not all tests need to run with each 
commit
– Run a subset of sanity or smoke tests for commits

– Run more thorough tests nightly



31

Limiting Regression Suites

● Be careful not to add redundant test to the test 
suite.
– Every bug indicates a useful behavior to test

– Test adequacy criteria can limit the other tests

● Sometimes not all tests need to run with each 
commit
– Run a subset of sanity or smoke tests for commits

– Run more thorough tests nightly

– “                   ” weekly

– “                   ” preparing for milestones/ integration
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Limiting Regression Testing

● Can we be smarter about which test we run & 
when?

What else could we do?
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Limiting Regression Testing

● Can we be smarter about which test we run & 
when?

● Change Impact Analysis
– Identify how changes affect the rest of software

● Can decide which tests to run on demand
– Conservative: run all tests

– Cheap: run tests with test requirements related to 
the changed lines

– Middle ground: Run those tests affected by how 
changed propagate through the software?

In practice, tools can assist in finding
out which tests need to be run
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Failure

● Eventually, tests will fail. What do you do?
Honestly. What do you do?

We are no longer measuring quality.
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Failure

● Eventually, tests will fail. What do you do?
– It depends...

● If the new and old versions should be equivalent:
– A failing tests indicates misbehavior to correct

● Otherwise:
– The software has a bug to fix

– Test inputs are stale and must be fixed

– The expected behavior has changed & must be fixed

Keeping these cases separate is important.
How can we do that?
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Failure

● Eventually, tests will fail. What do you do?
– It depends...

● If the new and old versions should be equivalent:
– A failing tests indicates misbehavior to correct

● Otherwise:
– The software has a bug to fix

– Test inputs are stale and must be fixed

– The expected behavior has changed & must be fixed

● Maintaining regression tests is costly
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Burdens

Burdens of scale
● Running the tests
● Interpreting the results
● Updating tests
● Adding new tests

Addressing these burdens is a major focus of 
automated testing and testability
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