
Regression Testing

CMPT 473
Software Quality Assurance

Nick Sumner - Fall 2014

2

The Story So Far

● We have seen how to measure the quality of
software

3

The Story So Far

● We have seen how to measure the quality of
software (and even improve it a bit)

4

The Story So Far

● We have seen how to measure the quality of
software
– Establish quality requirements

5

The Story So Far

● We have seen how to measure the quality of
software
– Establish quality requirements

– Build a test suite

6

The Story So Far

● We have seen how to measure the quality of
software
– Establish quality requirements

– Build a test suite

– Run it to identify missed requirements

7

The Story So Far

● We have seen how to measure the quality of
software
– Establish quality requirements

– Build a test suite

– Run it to identify missed requirements

● Are the requirements in real software
static/fixed?

8

The Story So Far

● We have seen how to measure the quality of
software
– Establish quality requirements

– Build a test suite

– Run it to identify missed requirements

● Are the requirements in real software
static/fixed?

● Software evolves

9

The Story So Far

● We have seen how to measure the quality of
software
– Establish quality requirements

– Build a test suite

– Run it to identify missed requirements

● Are the requirements in real software
static/fixed?

● Software evolves
– The testing process should support and facilitate

change

10

The Story So Far

● We have seen how to measure the quality of
software
– Establish quality requirements

– Build a test suite

– Run it to identify missed requirements

● Are the requirements in real software
static/fixed?

● Software evolves
– The testing process should support and facilitate

change Why is this a problem?

11

Regression Testing

● Regression Testing

What is it?

12

Regression Testing

● Regression Testing
– Retesting software as it evolves to ensure previous

functionality

13

Regression Testing

● Regression Testing
– Retesting software as it evolves to ensure previous

functionality

● Useful as a tool for ratcheting software quality

What is a ratchet?

14

Regression Testing

● Regression Testing
– Retesting software as it evolves to ensure previous

functionality

● Useful as a tool for ratcheting software quality

What is a ratchet?

15

Why Use Regression Testing

● As software evolves, previously working
functionality can fail

Why?

16

Why Use Regression Testing

● As software evolves, previously working
functionality can fail
– Software is complex & interconnected. Changing

one component can unintentionally impact another.

17

Why Use Regression Testing

● As software evolves, previously working
functionality can fail
– Software is complex & interconnected. Changing

one component can unintentionally impact another.

– New environments can introduce unexpected
behavior in components that originally work.

18

Why Use Regression Testing

● As software evolves, previously working
functionality can fail
– Software is complex & interconnected. Changing

one component can unintentionally impact another.

– New environments can introduce unexpected
behavior in components that originally work.

● Most testing is regression testing

19

Why Use Regression Testing

● As software evolves, previously working
functionality can fail
– Software is complex & interconnected. Changing

one component can unintentionally impact another.

– New environments can introduce unexpected
behavior in components that originally work.

● Most testing is regression testing
● Ensuring previous functionality can require

large test suites. Are they always realistic?

20

Why Use Regression Testing

● As software evolves, previously working
functionality can fail
– Software is complex & interconnected. Changing

one component can unintentionally impact another.

– New environments can introduce unexpected
behavior in components that originally work.

● Most testing is regression testing
● Ensuring previous functionality can require

large test suites. Are they always realistic?

How often did you run regression
tests in co-ops/internships?

21

Regression Testing In Practice

● Too many & too frequent to do by hand
– Automate it:

e.g. JUnit suites, commit hooks, nightlies

22

Regression Testing In Practice

● Too many & too frequent to do by hand
– Automate it:

e.g. JUnit suites, commit hooks, nightlies

● Over time, regression suites grow even larger
– Cannot run every time you commit

– Cannot run every night

23

Regression Testing In Practice

● Too many & too frequent to do by hand
– Automate it:

e.g. JUnit suites, commit hooks, nightlies

● Over time, regression suites grow even larger
– Cannot run every time you commit

– Cannot run every night

● Can grow the test bed as well, but that costs $
as well...

24

Regression Testing In Practice

● Too many & too frequent to do by hand
– Automate it:

e.g. JUnit suites, commit hooks, nightlies

● Over time, regression suites grow even larger
– Cannot run every time you commit

– Cannot run every night

● Can grow the test bed as well, but that costs $
as well...

How else can we address this problem?

25

Limiting Regression Suites

● Be careful not to add redundant test to the test
suite.

When have you found it useful/required
to add tests?

26

Limiting Regression Suites

● Be careful not to add redundant test to the test
suite.
– Every bug indicates a useful behavior to test

– Test adequacy criteria can limit the other tests

27

Limiting Regression Suites

● Be careful not to add redundant test to the test
suite.
– Every bug indicates a useful behavior to test

– Test adequacy criteria can limit the other tests

● Sometimes not all tests need to run with each
commit

Why might this be?

28

Limiting Regression Suites

● Be careful not to add redundant test to the test
suite.
– Every bug indicates a useful behavior to test

– Test adequacy criteria can limit the other tests

● Sometimes not all tests need to run with each
commit

What strategies have you encountered?

29

Limiting Regression Suites

● Be careful not to add redundant test to the test
suite.
– Every bug indicates a useful behavior to test

– Test adequacy criteria can limit the other tests

● Sometimes not all tests need to run with each
commit
– Run a subset of sanity or smoke tests for commits

30

Limiting Regression Suites

● Be careful not to add redundant test to the test
suite.
– Every bug indicates a useful behavior to test

– Test adequacy criteria can limit the other tests

● Sometimes not all tests need to run with each
commit
– Run a subset of sanity or smoke tests for commits

– Run more thorough tests nightly

31

Limiting Regression Suites

● Be careful not to add redundant test to the test
suite.
– Every bug indicates a useful behavior to test

– Test adequacy criteria can limit the other tests

● Sometimes not all tests need to run with each
commit
– Run a subset of sanity or smoke tests for commits

– Run more thorough tests nightly

– “ ” weekly

– “ ” preparing for milestones/ integration

32

Limiting Regression Testing

● Can we be smarter about which test we run &
when?

What else could we do?

33

Limiting Regression Testing

● Can we be smarter about which test we run &
when?

● Change Impact Analysis
– Identify how changes affect the rest of software

34

Limiting Regression Testing

● Can we be smarter about which test we run &
when?

● Change Impact Analysis
– Identify how changes affect the rest of software

35

Limiting Regression Testing

● Can we be smarter about which test we run &
when?

● Change Impact Analysis
– Identify how changes affect the rest of software

● Can decide which tests to run on demand

36

Limiting Regression Testing

● Can we be smarter about which test we run &
when?

● Change Impact Analysis
– Identify how changes affect the rest of software

● Can decide which tests to run on demand
– Conservative: run all tests

– Cheap: run tests with test requirements related to
the changed lines

37

Limiting Regression Testing

● Can we be smarter about which test we run &
when?

● Change Impact Analysis
– Identify how changes affect the rest of software

● Can decide which tests to run on demand
– Conservative: run all tests

– Cheap: run tests with test requirements related to
the changed lines

Is the cheap approach enough?

38

Limiting Regression Testing

● Can we be smarter about which test we run &
when?

● Change Impact Analysis
– Identify how changes affect the rest of software

● Can decide which tests to run on demand
– Conservative: run all tests

– Cheap: run tests with test requirements related to
the changed lines

– Middle ground: Run those tests affected by how
changed propagate through the software?

39

Limiting Regression Testing

● Can we be smarter about which test we run &
when?

● Change Impact Analysis
– Identify how changes affect the rest of software

● Can decide which tests to run on demand
– Conservative: run all tests

– Cheap: run tests with test requirements related to
the changed lines

– Middle ground: Run those tests affected by how
changed propagate through the software?

In practice, tools can assist in finding
out which tests need to be run

40

Failure

● Eventually, tests will fail. What do you do?

41

Failure

● Eventually, tests will fail. What do you do?
Honestly. What do you do?

We are no longer measuring quality.

42

Failure

● Eventually, tests will fail. What do you do?
– It depends...

43

Failure

● Eventually, tests will fail. What do you do?
– It depends...

● If the new and old versions should be equivalent:

Why might this happen?

44

Failure

● Eventually, tests will fail. What do you do?
– It depends...

● If the new and old versions should be equivalent:
– A failing tests indicates misbehavior to correct

45

Failure

● Eventually, tests will fail. What do you do?
– It depends...

● If the new and old versions should be equivalent:
– A failing tests indicates misbehavior to correct

● Otherwise:

46

Failure

● Eventually, tests will fail. What do you do?
– It depends...

● If the new and old versions should be equivalent:
– A failing tests indicates misbehavior to correct

● Otherwise:
– The software has a bug to fix

– Test inputs are stale and must be fixed

– The expected behavior has changed & must be fixed

47

Failure

● Eventually, tests will fail. What do you do?
– It depends...

● If the new and old versions should be equivalent:
– A failing tests indicates misbehavior to correct

● Otherwise:
– The software has a bug to fix

– Test inputs are stale and must be fixed

– The expected behavior has changed & must be fixed

Keeping these cases separate is important.
How can we do that?

48

Failure

● Eventually, tests will fail. What do you do?
– It depends...

● If the new and old versions should be equivalent:
– A failing tests indicates misbehavior to correct

● Otherwise:
– The software has a bug to fix

– Test inputs are stale and must be fixed

– The expected behavior has changed & must be fixed

● Maintaining regression tests is costly

49

Burdens

Burdens of scale

50

Burdens

Burdens of scale
● Running the tests

51

Burdens

Burdens of scale
● Running the tests
● Interpreting the results

52

Burdens

Burdens of scale
● Running the tests
● Interpreting the results
● Updating tests

53

Burdens

Burdens of scale
● Running the tests
● Interpreting the results
● Updating tests
● Adding new tests

54

Burdens

Burdens of scale
● Running the tests
● Interpreting the results
● Updating tests
● Adding new tests

Addressing these burdens is a major focus of
automated testing and testability

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

