
Mutation Analysis & Testing

CMPT 473
Software Quality Assurance

Nick Sumner
With material from Ammann & Offutt, Patrick Lam, Gordon Fraser

2

How Else Can We Judge Adequacy?

● Input & graph based techniques provide
requirements that measure quality.

3

How Else Can We Judge Adequacy?

● Input & graph based techniques provide
requirements that measure quality.

C1 C2

4

How Else Can We Judge Adequacy?

● Input & graph based techniques provide
requirements that measure quality.

C1 C2

Requirements

5

How Else Can We Judge Adequacy?

● Input & graph based techniques provide
requirements that measure quality.

C1 C2

Requirements Tests

6

How Else Can We Judge Adequacy?

● Input & graph based techniques provide
requirements that measure quality.

C1 C2

A

G

B
C

ED
F

Requirements Tests

7

How Else Can We Judge Adequacy?

● Input & graph based techniques provide
requirements that measure quality.

C1 C2

A

G

B
C

ED
F

ABCDG
ACDG
ABCEG
ACEG
ACEF
FEG
EFE
FEF

Requirements Tests

8

How Else Can We Judge Adequacy?

● Input & graph based techniques provide
requirements that measure quality.

C1 C2

A

G

B
C

ED
F

ABCDG
ACDG
ABCEG
ACEG
ACEF
FEG
EFE
FEF Tests

Requirements Tests

9

How Else Can We Judge Adequacy?

● Input & graph based techniques provide
requirements that measure quality.
– But they still have difficulties finding bugs!

10

How Else Can We Judge Adequacy?

● Input & graph based techniques provide
requirements that measure quality.
– But they still have difficulties finding bugs!
– Can we try to measure that directly?

How might you go about this?

11

Fault Seeding

● Insert or seed representative/typical faults

12

Fault Seeding

● Insert or seed representative/typical faults
● Measure how many are found or killed by the test

suite

13

Fault Seeding

● Insert or seed representative/typical faults
● Measure how many are found or killed by the test

suite
– Effectiveness = # killed / # seeded

14

Fault Seeding

● Insert or seed representative/typical faults
● Measure how many are found or killed by the test

suite
– Effectiveness = # killed / # seeded
– Directly measures bug finding ability

15

Fault Seeding

● Insert or seed representative/typical faults
● Measure how many are found or killed by the test

suite
– Effectiveness = # killed / # seeded
– Directly measures bug finding ability

● Why might this fail?

16

Fault Seeding

● Insert or seed representative/typical faults
● Measure how many are found or killed by the test

suite
– Effectiveness = # killed / # seeded
– Directly measures bug finding ability

● Why might this fail?
– What are representative faults?
– Are there enough faults to be meaningful?
– Did you forget to remove faults afterward?

17

Mutation Analysis & Testing

● Mutant
– A valid program that behaves differently than the

original

18

Mutation Analysis & Testing

● Mutant
– A valid program that behaves differently than the

original
– Consider small, local changes to programs

a = b + c a = b * c

19

Mutation Analysis & Testing

● Mutant
– A valid program that behaves differently than the

original
– Consider small, local changes to programs
– A test t kills a mutant m if t produces a different outcome

on m than the original program

20

Mutation Analysis & Testing

● Mutant
– A valid program that behaves differently than the

original
– Consider small, local changes to programs
– A test t kills a mutant m if t produces a different outcome

on m than the original program

What does this mean?

21

Mutation Analysis & Testing

● Mutant
– A valid program that behaves differently than the

original
– Consider small, local changes to programs
– A test t kills a mutant m if t produces a different outcome

on m than the original program
● Systematically generate mutants separately from

original program

22

Mutation Analysis & Testing

● Mutant
– A valid program that behaves differently than the

original
– Consider small, local changes to programs
– A test t kills a mutant m if t produces a different outcome

on m than the original program
● Systematically generate mutants separately from

original program
● The goal is to:

– Mutation Analysis – Measure bug finding ability

23

Mutation Analysis & Testing

● Mutant
– A valid program that behaves differently than the

original
– Consider small, local changes to programs
– A test t kills a mutant m if t produces a different outcome

on m than the original program
● Systematically generate mutants separately from

original program
● The goal is to:

– Mutation Analysis – Measure bug finding ability
– Mutation Testing – create a test suite that kills a

representative set of mutants

24

Mutation

● What are possible mutants?
int foo(int x, int y) {
 if (x > 5) {return x + y;}
 else {return x;}
}

25

Mutation

● What are possible mutants?

● Once we have a test case that kills a mutant, the
mutant itself is no longer useful.

int foo(int x, int y) {
 if (x > 5) {return x + y;}
 else {return x;}
}

26

Mutation

● What are possible mutants?

● Once we have a test case that kills a mutant, the
mutant itself is no longer useful.

● Some are not generally useful:

int foo(int x, int y) {
 if (x > 5) {return x + y;}
 else {return x;}
}

Why might they not be useful?

27

Mutation

● What are possible mutants?

● Once we have a test case that kills a mutant, the
mutant itself is no longer useful.

● Some are not generally useful:
– Not compilable

int foo(int x, int y) {
 if (x > 5) {return x + y;}
 else {return x;}
}

28

Mutation

● What are possible mutants?

● Once we have a test case that kills a mutant, the
mutant itself is no longer useful.

● Some are not generally useful:
– Not compilable
– (Trivial) Killed by most test cases

int foo(int x, int y) {
 if (x > 5) {return x + y;}
 else {return x;}
}

29

Mutation

● What are possible mutants?

● Once we have a test case that kills a mutant, the
mutant itself is no longer useful.

● Some are not generally useful:
– Not compilable
– (Trivial) Killed by most test cases
– (Equivalent) Indistinguishable from original program

int foo(int x, int y) {
 if (x > 5) {return x + y;}
 else {return x;}
}

30

Mutation

● What are possible mutants?

● Once we have a test case that kills a mutant, the
mutant itself is no longer useful.

● Some are not generally useful:
– Not compilable
– (Trivial) Killed by most test cases
– (Equivalent) Indistinguishable from original program
– (Redundant) Indistinguishable from other mutants

int foo(int x, int y) {
 if (x > 5) {return x + y;}
 else {return x;}
}

31

Mutation
int min(int a, int b) {
 int minVal;
 minVal = a;
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

● Mimic mistakes
● Encode knowledge from other techniques

32

Mutation
int min(int a, int b) {
 int minVal;
 minVal = a;
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

int min(int a, int b) {
 int minVal;
 minVal = a;

 if (b < a) {

 minVal = b;

 }
 return minVal;
}● Mimic mistakes

● Encode knowledge from other techniques

33

Mutation
int min(int a, int b) {
 int minVal;
 minVal = a;
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

int min(int a, int b) {
 int minVal;
 minVal = a;
 minVal = b;
 if (b < a) {

 minVal = b;

 }
 return minVal;
}

Mutant 1: minVal = b;

● Mimic mistakes
● Encode knowledge from other techniques

34

Mutation
int min(int a, int b) {
 int minVal;
 minVal = a;
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

int min(int a, int b) {
 int minVal;
 minVal = a;
 minVal = b;
 if (b < a) {
 if (b > a) {

 minVal = b;

 }
 return minVal;
}

Mutant 1: minVal = b;

Mutant 2: if (b > a) {

● Mimic mistakes
● Encode knowledge from other techniques

35

Mutation
int min(int a, int b) {
 int minVal;
 minVal = a;
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

int min(int a, int b) {
 int minVal;
 minVal = a;
 minVal = b;
 if (b < a) {
 if (b > a) {
 if (b < minVal) {
 minVal = b;

 }
 return minVal;
}

Mutant 1: minVal = b;

Mutant 2: if (b > a) {
Mutant 3: if (b < minVal) {

● Mimic mistakes
● Encode knowledge from other techniques

36

Mutation
int min(int a, int b) {
 int minVal;
 minVal = a;
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

int min(int a, int b) {
 int minVal;
 minVal = a;
 minVal = b;
 if (b < a) {
 if (b > a) {
 if (b < minVal) {
 minVal = b;
 BOMB();

 }
 return minVal;
}

Mutant 1: minVal = b;

Mutant 2: if (b > a) {
Mutant 3: if (b < minVal) {

Mutant 4: BOMB();

● Mimic mistakes
● Encode knowledge from other techniques

37

Mutation
int min(int a, int b) {
 int minVal;
 minVal = a;
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

int min(int a, int b) {
 int minVal;
 minVal = a;
 minVal = b;
 if (b < a) {
 if (b > a) {
 if (b < minVal) {
 minVal = b;
 BOMB();
 minVal = a;

 }
 return minVal;
}

Mutant 1: minVal = b;

Mutant 2: if (b > a) {
Mutant 3: if (b < minVal) {

Mutant 4: BOMB();
Mutant 5: minVal = a;

● Mimic mistakes
● Encode knowledge from other techniques

38

Mutation
int min(int a, int b) {
 int minVal;
 minVal = a;
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

int min(int a, int b) {
 int minVal;
 minVal = a;
 minVal = b;
 if (b < a) {
 if (b > a) {
 if (b < minVal) {
 minVal = b;
 BOMB();
 minVal = a;
 minVal = failOnZero(b);
 }
 return minVal;
}

Mutant 1: minVal = b;

Mutant 2: if (b > a) {
Mutant 3: if (b < minVal) {

Mutant 4: BOMB();
Mutant 5: minVal = a;
Mutant 6: minVal = failOnZero(b);

● Mimic mistakes
● Encode knowledge from other techniques

39

Mutation
int min(int a, int b) {
 int minVal;
 minVal = a;
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

int min(int a, int b) {
 int minVal;
 minVal = a;
 minVal = b;
 if (b < a) {
 if (b > a) {
 if (b < minVal) {
 minVal = b;
 BOMB();
 minVal = a;
 minVal = failOnZero(b);
 }
 return minVal;
}

Mutant 1: minVal = b;

Mutant 2: if (b > a) {
Mutant 3: if (b < minVal) {

Mutant 4: BOMB();
Mutant 5: minVal = a;
Mutant 6: minVal = failOnZero(b);

What mimics
statement coverage?

● Mimic mistakes
● Encode knowledge from other techniques

40

Mutation
int min(int a, int b) {
 int minVal;
 minVal = a;
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

int min(int a, int b) {
 int minVal;
 minVal = a;
 minVal = b;
 if (b < a) {
 if (b > a) {
 if (b < minVal) {
 minVal = b;
 BOMB();
 minVal = a;
 minVal = failOnZero(b);
 }
 return minVal;
}

Mutant 1: minVal = b;

Mutant 2: if (b > a) {
Mutant 3: if (b < minVal) {

Mutant 4: BOMB();
Mutant 5: minVal = a;
Mutant 6: minVal = failOnZero(b);

What mimics
input classes?

● Mimic mistakes
● Encode knowledge from other techniques

41

Mutation Analysis

Mutants
Mutant 1
Mutant 2
Mutant 3
Mutant 4
Mutant 5
Mutant 6

42

Mutation Analysis

Mutants Test Suite
Mutant 1
Mutant 2
Mutant 3
Mutant 4
Mutant 5
Mutant 6

min(1,2) Ô 1
min(2,1) Ô 1

43

Mutation Analysis

Mutants Test Suite
Mutant 1
Mutant 2
Mutant 3
Mutant 4
Mutant 5
Mutant 6

min(1,2) Ô 1
min(2,1) Ô 1

Try every mutant on test 1.

44

Mutation Analysis

Mutants Test Suite
Mutant 1
Mutant 2
Mutant 3
Mutant 4
Mutant 5
Mutant 6

min(1,2) Ô 1
min(2,1) Ô 1Ki

lle
d

45

Mutation Analysis

Mutants Test Suite
Mutant 1
Mutant 2
Mutant 3
Mutant 4
Mutant 5
Mutant 6

min(1,2) Ô 1
min(2,1) Ô 1Ki

lle
d

Try every live mutant on test 2.

46

Mutation Analysis

Mutants Test Suite
Mutant 1
Mutant 2
Mutant 3

min(1,2) Ô 1
Ki

lle
d

Mutant 4
Mutant 5
Mutant 6

min(2,1) Ô 1
Ki

lle
d

47

Mutation Analysis

Mutants Test Suite
Mutant 1
Mutant 2
Mutant 3

min(1,2) Ô 1
Ki

lle
d

Mutant 4
Mutant 5
Mutant 6

min(2,1) Ô 1
Ki

lle
d

So the mutation score is...

48

Mutation Analysis

Mutants Test Suite
Mutant 1
Mutant 2
Mutant 3

min(1,2) Ô 1
Ki

lle
d

Mutant 4
Mutant 5
Mutant 6

min(2,1) Ô 1
Ki

lle
d

So the mutation score is... 4/5. Why?

49

Mutation Analysis

Mutants Test Suite
Mutant 1
Mutant 2
Mutant 3

min(1,2) Ô 1
Ki

lle
d

Mutant 4
Mutant 5
Mutant 6

min(2,1) Ô 1
Ki

lle
d

min3(int a, int b):
 int minVal;
 minVal = a;
 if (b < minVal)
 minVal = b;
 return minVal;

min6(int a, int b):
 int minVal;
 minVal = a;
 if (b < a)
 minVal = failOnZero(b);
 return minVal;

So the mutation score is... 4/5. Why?

50

Mutation Analysis

Mutants Test Suite
Mutant 1
Mutant 2
Mutant 3

min(1,2) Ô 1
Ki

lle
d

Mutant 4
Mutant 5
Mutant 6

min(2,1) Ô 1
Ki

lle
d

min3(int a, int b):
 int minVal;
 minVal = a;
 if (b < minVal)
 minVal = b;
 return minVal;

min3(int a, int b):
 int minVal;
 minVal = a;
 if (b < a)
 minVal = failOnZero(b);
 return minVal;

Equivalent to the original!
There is no injected bug.

So the mutation score is... 4/5. Why?

51

Equivalent Mutants

● Equivalent mutants are not bugs and should not be
counted

52

Equivalent Mutants

● Equivalent mutants are not bugs and should not be
counted

● New Mutation Score:

53

Equivalent Mutants

● Equivalent mutants are not bugs and should not be
counted

● New Mutation Score:
#Killed
#Mutants

Start with the score
from fault seeding

54

Equivalent Mutants

● Equivalent mutants are not bugs and should not be
counted

● New Mutation Score:
Killed

#Mutants−#Equivalent

Traditional mutation score
from literature

55

Equivalent Mutants

● Equivalent mutants are not bugs and should not be
counted

● New Mutation Score:
#Killed−#Killed Duplicates

#Mutants−#Equivalent−#Duplicates

Updated for modern handling
of duplicate & equivalent mutants

56

Equivalent Mutants

● Equivalent mutants are not bugs and should not be
counted

● New Mutation Score:

● Detecting equivalent mutants is undecidable in
general

#Killed−#Killed Duplicates
#Mutants−#Equivalent−#Duplicates

57

Equivalent Mutants

● Equivalent mutants are not bugs and should not be
counted

● New Mutation Score:

● Detecting equivalent mutants is undecidable in
general

● So why are they equivalent?

Reachability Infection Propagation

#Killed−#Killed Duplicates
#Mutants−#Equivalent−#Duplicates

58

Equivalent Mutants

● Equivalent mutants are not bugs and should not be
counted

● New Mutation Score:

● Detecting equivalent mutants is undecidable in
general

● So why are they equivalent?

Reachability Infection Propagation

#Killed−#Killed Duplicates
#Mutants−#Equivalent−#Duplicates

59

Equivalent Mutants

● Equivalent mutants are not bugs and should not be
counted

● New Mutation Score:

● Detecting equivalent mutants is undecidable in
general

● So why are they equivalent?

Reachability Infection Propagation

#Killed−#Killed Duplicates
#Mutants−#Equivalent−#Duplicates

60

Equivalent Mutants

● Equivalent mutants are not bugs and should not be
counted

● New Mutation Score:

● Detecting equivalent mutants is undecidable in
general

● So why are they equivalent?

Reachability Infection Propagation

#Killed−#Killed Duplicates
#Mutants−#Equivalent−#Duplicates

61

Equivalent Mutants

● Equivalent mutants are not bugs and should not be
counted

● New Mutation Score:

● Detecting equivalent mutants is undecidable in
general

● So why are they equivalent?

Reachability Infection Propagation?

#Killed−#Killed Duplicates
#Mutants−#Equivalent−#Duplicates

62

Equivalent Mutants

● Equivalent mutants are not bugs and should not be
counted

● New Mutation Score:

● Detecting equivalent mutants is undecidable in
general

● So why are they equivalent?

Reachability Infection Propagation?

#Killed−#Killed Duplicates
#Mutants−#Equivalent−#Duplicates

63

Equivalent Mutants

● Equivalent mutants are not bugs and should not be
counted

● New Mutation Score:

● Detecting equivalent mutants is undecidable in
general

● So why are they equivalent?

Reachability Infection Propagation? ?

More on this later....

#Killed−#Killed Duplicates
#Mutants−#Equivalent−#Duplicates

64

Equivalent Mutants

● Identifying equivalent mutants is one of the most
expensive / burdensome aspects of mutation
analysis.

65

Equivalent Mutants

● Identifying equivalent mutants is one of the most
expensive / burdensome aspects of mutation
analysis.

min3(int a, int b):
 int minVal;
 minVal = a;
 if (b < minVal)
 minVal = b;
 return minVal;

Requires reasoning about why
the result was the same.

66

Mutation Testing

● Given an unkilled mutant, how can we improve the
test suite?

67

Mutation Testing

● Given an unkilled mutant, how can we improve the
test suite?

min3(int a, int b):
 int minVal;
 minVal = a;
 if (b < a)
 minVal = failOnZero(b);
 return minVal;

68

Mutation Testing

● Given an unkilled mutant, how can we improve the
test suite?

min3(int a, int b):
 int minVal;
 minVal = a;
 if (b < a)
 minVal = failOnZero(b);
 return minVal;

min(2,0) Ô 0New Test:
New Score: 5/5

69

Mutation Operators

● The mutants should guide the tester toward an
effective test suite

70

Mutation Operators

● The mutants should guide the tester toward an
effective test suite
– Need a 'representative' pool of mutants

idea: “If there is a fault, there is a mutant to match it”

71

Mutation Operators

● The mutants should guide the tester toward an
effective test suite
– Need a 'representative' pool of mutants

idea: “If there is a fault, there is a mutant to match it”
– Need a rigorous way of creating mutants

72

Mutation Operators

● The mutants should guide the tester toward an
effective test suite
– Need a 'representative' pool of mutants

idea: “If there is a fault, there is a mutant to match it”
– Need a rigorous way of creating mutants

● Mutation Operators
– Systematic changes that may be applied to produce

mutants

73

Mutation Operators

● The mutants should guide the tester toward an
effective test suite
– Need a 'representative' pool of mutants

idea: “If there is a fault, there is a mutant to match it”
– Need a rigorous way of creating mutants

● Mutation Operators
– Systematic changes that may be applied to produce

mutants
– Language dependent, but often similar

74

Mutation Operators

● The mutants should guide the tester toward an
effective test suite
– Need a 'representative' pool of mutants

idea: “If there is a fault, there is a mutant to match it”
– Need a rigorous way of creating mutants

● Mutation Operators
– Systematic changes that may be applied to produce

mutants
– Language dependent, but often similar

Why might they be language dependent?

75

Some Mutation Operators – in Java

● Absolute Value Insertion
– Each arithmetic (sub)expression is wrapped with abs(),

-abs(), and failOnZero()

w = x + y + z

Just for abs()?

76

Some Mutation Operators – in Java

● Absolute Value Insertion
– Each arithmetic (sub)expression is wrapped with abs(),

-abs(), and failOnZero()

w = x + y + z

Just for abs()?

w = abs(x) + y + z

w = x + abs(y) + z

w = x + y + abs(z)

w = abs(x + y) + z

w = x + abs(y + z)

w = abs(x + y + z)

Just for abs()!

77

Some Mutation Operators – in Java

● Absolute Value Insertion
– Each arithmetic (sub)expression is wrapped with abs(),

-abs(), and failOnZero()
● Arithmetic Operator Replacement

– Each operator (+,-,*,/,%,...) is replaced with each other
operator and LEFTOP and RIGHTOP
(returning the named operand).

w = x + y + z

78

Some Mutation Operators – in Java

● Absolute Value Insertion
– Each arithmetic (sub)expression is wrapped with abs(),

-abs(), and failOnZero()
● Arithmetic Operator Replacement

– Each operator (+,-,*,/,%,...) is replaced with each other
operator and LEFTOP and RIGHTOP
(returning the named operand).

w = x + y + z

w = x + y * z w = x + y ...

79

Some Mutation Operators – in Java

● Absolute Value Insertion
– Each arithmetic (sub)expression is wrapped with abs(),

-abs(), and failOnZero()
● Arithmetic Operator Replacement

– Each operator (+,-,*,/,%,...) is replaced with each other
operator and LEFTOP and RIGHTOP
(returning the named operand).

● Relational Operator Replacement
– Each operator (=,!=,<,<=,>,>=) is replaced with each

other and TRUEOP and FALSEOP

80

Some Mutation Operators – in Java

● Conditional Operator Replacement
– Replace operators (&&, ||, &, |, ^) with each other and

LEFTOP, RIGHTOP, TRUEOP, FALSEOP

81

Some Mutation Operators – in Java

● Conditional Operator Replacement
– Replace operators (&&, ||, &, |, ^) with each other and

LEFTOP, RIGHTOP, TRUEOP, FALSEOP

Could these be used to mimic edge coverage?

82

Some Mutation Operators – in Java

● Conditional Operator Replacement
– Replace operators (&&, ||, &, |, ^) with each other and

LEFTOP, RIGHTOP, TRUEOP, FALSEOP
● The operator replacement pattern continues...

– Assignment, Unary Insertion, Unary Deletion

83

Some Mutation Operators – in Java

● Conditional Operator Replacement
– Replace operators (&&, ||, &, |, ^) with each other and

LEFTOP, RIGHTOP, TRUEOP, FALSEOP
● The operator replacement pattern continues...

– Assignment, Unary Insertion, Unary Deletion
● Scalar Variable Replacement

– Replace each variable use with another compatible
variable in scope

What does compatible mean? Is it necessary?

84

Some Mutation Operators – in Java

● Conditional Operator Replacement
– Replace operators (&&, ||, &, |, ^) with each other and

LEFTOP, RIGHTOP, TRUEOP, FALSEOP
● The operator replacement pattern continues...

– Assignment, Unary Insertion, Unary Deletion
● Scalar Variable Replacement

– Replace each variable use with another compatible
variable in scope

● Bomb Statement Replacement
– Replace a statement with BOMB()

85

Some Mutation Operators – in Java

● Conditional Operator Replacement
– Replace operators (&&, ||, &, |, ^) with each other and

LEFTOP, RIGHTOP, TRUEOP, FALSEOP
● The operator replacement pattern continues...

– Assignment, Unary Insertion, Unary Deletion
● Scalar Variable Replacement

– Replace each variable use with another compatible
variable in scope

● Bomb Statement Replacement
– Replace a statement with BOMB()

How does the BOMB() operator
mimic statement coverage?

86

Some Mutation Operators – in Java

● These are all intraprocedural (within one method)
● What might interprocedural operators be?

87

Some Mutation Operators – in Java

● These are all intraprocedural (within one method)
● What might interprocedural operators be?

– Changing parameter values
– Changing the call target
– Changing incoming dependencies
– ...

88

Some Mutation Operators – in Java

● These are all intraprocedural (within one method)
● What might interprocedural operators be?

– Changing parameter values
– Changing the call target
– Changing incoming dependencies
– …

● And more...
– Interface Mutation, Object Oriented Mutation, …

89

Some Mutation Operators – in Java

● These are all intraprocedural (within one method)
● What might interprocedural operators be?

– Changing parameter values
– Changing the call target
– Changing incoming dependencies
– …

● And more...
● Often just the simplest are used

90

Mutation Operators

● Are the mutants representative of all bugs?
● Do we expect the mutation score to be meaningful?

Ideas? Why? Why not?

91

Mutation Operators

● Are the mutants representative of all bugs?
● Do we expect the mutation score to be meaningful?

2 Key ideas are missing....

Ideas? Why? Why not?

92

Competent Programmer Hypothesis

Programmers tend to write code that is almost correct

93

Competent Programmer Hypothesis

Programmers tend to write code that is almost correct
– So most of the time simple mutations should reflect the

real bugs.

94

Coupling Effect

Tests that cover so much behavior that even simple
errors are detected should also be sensitive enough to
detect more complex errors

95

Coupling Effect

Tests that cover so much behavior that even simple
errors are detected should also be sensitive enough to
detect more complex errors

– By casting a fine enough net, we'll catch the big fish, too
(sorry dolphins)

100

What Problems Remain?

● Scale (there are a lot of tests)

101

What Problems Remain?

● Scale (there are a lot of tests)
● Equivalence

102

What Problems Remain?

● Scale (there are a lot of tests)
● Equivalence

● Scale may be attacked in many ways

Ideas?

103

What Problems Remain?

● Scale (there are a lot of tests)
● Equivalence

● Scale may be attacked in many ways
– Coverage filters
– Short circuiting tests
– Testing mutants simultaneously

104

What Problems Remain?

● Scale (there are a lot of tests)
● Equivalence

● Scale may be attacked in many ways
– Coverage filters
– Short circuiting tests
– Testing mutants simultaneously

● Can also modify mutation criteria to help with
both...

105

Mutation Criteria

● Recall: If a test can detect a mutant, that mutant is
killed by the test.

106

Mutation Criteria

● Recall: If a test can detect a mutant, that mutant is
killed by the test.

What does it mean if a mutant was killed?

107

Mutation Criteria

● Recall: If a test can detect a mutant, that mutant is
killed by the test.

What does it mean if a mutant was killed?

What does it mean if a mutant was not killed?

108

Mutation Criteria

● Strongly Killed
– A test strongly kills a mutant m if m(t) produces different

output than p(t)

109

Mutation Criteria

● Strongly Killed
– A test strongly kills a mutant m if m(t) produces different

output than p(t)

Reachability Infection Propagation

110

Mutation Criteria

● Strongly Killed
– A test strongly kills a mutant m if m(t) produces different

output than p(t)
● Weakly Killed

– A test weakly kills a mutant m if m(t) produces different
internal state than p(t)

111

Mutation Criteria

● Strongly Killed
– A test strongly kills a mutant m if m(t) produces different

output than p(t)
● Weakly Killed

– A test weakly kills a mutant m if m(t) produces different
internal state than p(t)

Reachability Infection Propagation?

112

Mutation Criteria

● Strongly Killed
– A test strongly kills a mutant m if m(t) produces different

output than p(t)
● Weakly Killed

– A test weakly kills a mutant m if m(t) produces different
internal state than p(t)

– Reachable, infects, but might not propagate.

How might this happen?

113

● Strongly Killed
– A test strongly kills a mutant m if m(t) produces different

output than p(t)
● Weakly Killed

– A test weakly kills a mutant m if m(t) produces different
internal state than p(t)

– Reachable, infects, but might not propagate.

Mutation Criteria

How might this happen?

int min(int a, int b) {
 int minVal;
 minVal = b; // was a
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

114

Mutation Criteria

● Strongly Killed
– A test strongly kills a mutant m if m(t) produces different

output than p(t)
● Weakly Killed

– A test weakly kills a mutant m if m(t) produces different
internal state than p(t)

– Reachable, infects, but doesn't propagate.

How might this happen?

int min(int a, int b) {
 int minVal;
 minVal = b; // was a
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

a = 10, b = 5

115

Mutation Criteria

● Strongly Killed
– A test strongly kills a mutant m if m(t) produces different

output than p(t)
● Weakly Killed

– A test weakly kills a mutant m if m(t) produces different
internal state than p(t)

– Reachable, infects, but doesn't propagate.

How might this happen?

int min(int a, int b) {
 int minVal;
 minVal = b; // was a
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

a = 10, b = 5

minVal = 5

116

Mutation Criteria

● Strongly Killed
– A test strongly kills a mutant m if m(t) produces different

output than p(t)
● Weakly Killed

– A test weakly kills a mutant m if m(t) produces different
internal state than p(t)

– Reachable, infects, but doesn't propagate.

How might this happen?

int min(int a, int b) {
 int minVal;
 minVal = b; // was a
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

a = 10, b = 5

minVal = 5

minVal = 5

117

Mutation Criteria

● Strongly Killed
– A test strongly kills a mutant m if m(t) produces different

output than p(t)
● Weakly Killed

– A test weakly kills a mutant m if m(t) produces different
internal state than p(t)

– Reachable, infects, but doesn't propagate.

How might this happen?

int min(int a, int b) {
 int minVal;
 minVal = b; // was a
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

a = 10, b = 5

minVal = 5

minVal = 5

return 5

118

Mutation Criteria

● Strongly Killed
– A test strongly kills a mutant m if m(t) produces different

output than p(t)
● Weakly Killed

– A test weakly kills a mutant m if m(t) produces different
internal state than p(t)

– Reachable, infects, but doesn't propagate.

How can we strongly kill the mutant instead?

int min(int a, int b) {
 int minVal;
 minVal = b; // was a
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

119

Mutation Criteria

● Strongly Killed
– A test strongly kills a mutant m if m(t) produces different

output than p(t)
● Weakly Killed

– A test weakly kills a mutant m if m(t) produces different
internal state than p(t)

– Reachable, infects, but doesn't propagate.

How can we strongly kill the mutant instead?

int min(int a, int b) {
 int minVal;
 minVal = b; // was a
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

a = 5, b = 10

120

Mutation Criteria

● Strongly Killed
– A test strongly kills a mutant m if m(t) produces different

output than p(t)
● Weakly Killed

– A test weakly kills a mutant m if m(t) produces different
internal state than p(t)

– Reachable, infects, but doesn't propagate.

How can we strongly kill the mutant instead?

int min(int a, int b) {
 int minVal;
 minVal = b; // was a
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

a = 5, b = 10

minVal = 10

121

Mutation Criteria

● Strongly Killed
– A test strongly kills a mutant m if m(t) produces different

output than p(t)
● Weakly Killed

– A test weakly kills a mutant m if m(t) produces different
internal state than p(t)

– Reachable, infects, but doesn't propagate.

How can we strongly kill the mutant instead?

int min(int a, int b) {
 int minVal;
 minVal = b; // was a
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

a = 5, b = 10

minVal = 10

return 10

122

Mutation Criteria

● Strongly Killed
– A test strongly kills a mutant m if m(t) produces different

output than p(t)
● Weakly Killed

– A test weakly kills a mutant m if m(t) produces different
internal state than p(t)

– Reachable, infects, but might not propagate.

What might an equivalent mutant look like?

int min(int a, int b) {
 int minVal;
 minVal = a;
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

123

Mutation Criteria

● Strongly Killed
– A test strongly kills a mutant m if m(t) produces different

output than p(t)
● Weakly Killed

– A test weakly kills a mutant m if m(t) produces different
internal state than p(t)

– Reachable, infects, but doesn't propagate.

What might an equivalent mutant look like?

int min(int a, int b) {
 int minVal;
 minVal = a;
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

int min(int a, int b) {
 int minVal;
 minVal = a;
 if (b < minVal) {
 minVal = b;
 }
 return minVal;
}

124

Mutation Criteria

● Strongly Killed
– A test strongly kills a mutant m if m(t) produces different

output than p(t)
● Weakly Killed

– A test weakly kills a mutant m if m(t) produces different
internal state than p(t)

– Reachable, infects, but doesn't propagate.

They always behave the same way!

int min(int a, int b) {
 int minVal;
 minVal = a;
 if (b < a) {
 minVal = b;
 }
 return minVal;
}

int min(int a, int b) {
 int minVal;
 minVal = a;
 if (b < minVal) {
 minVal = b;
 }
 return minVal;
}

125

Mutation Criteria

● Strongly Killed
– A test strongly kills a mutant m if m(t) produces different

output than p(t)
● Weakly Killed

– A test weakly kills a mutant m if m(t) produces different
internal state than p(t)

– Reachable, infects, but might not propagate.
Leading to...

126

Mutation Criteria

● Strong Mutation Coverage
– For each mutant, the test suite contains a test that

strongly kills the mutant

127

Mutation Criteria

● Strong Mutation Coverage
– For each mutant, the test suite contains a test that

strongly kills the mutant
● Weak Mutation Coverage

– For each mutant, the test suite contains a test that
weakly kills the mutant

128

Mutation Criteria

● Strong Mutation Coverage
– For each mutant, the test suite contains a test that

strongly kills the mutant
● Weak Mutation Coverage

– For each mutant, the test suite contains a test that
weakly kills the mutant

How might weak coverage help with equivalence?

129

Mutation Criteria

● Strong Mutation Coverage
– For each mutant, the test suite contains a test that

strongly kills the mutant
● Weak Mutation Coverage

– For each mutant, the test suite contains a test that
weakly kills the mutant

How might weak coverage help with equivalence?

How might weak coverage help with scalability?

130

Mutation Criteria

● Strong Mutation Coverage
– For each mutant, the test suite contains a test that

strongly kills the mutant
● Weak Mutation Coverage

– For each mutant, the test suite contains a test that
weakly kills the mutant

How might weak coverage help with equivalence?

How might weak coverage help with scalability?

Is there any reason to prefer strong coverage?

131

Mutation Testing

● Considered one of the strongest criteria

Why?

132

Mutation Testing

● Considered one of the strongest criteria
– Mimics some input specifications
– Mimics some graph coverage (node, edge, …)

133

Mutation Testing

● Considered one of the strongest criteria
– Mimics some input specifications
– Mimics some graph coverage (node, edge, …)

● Massive number of criteria.

Why?

134

Mutation Testing

● Considered one of the strongest criteria
– Mimics some input specifications
– Mimics some graph coverage (node, edge, …)

● Massive number of criteria.
● Still not always the most tests.

Why?

135

Traditional Coverage vs Mutation

● Statement & branch based coverage are the most
popular adequacy measures in practice.

136

Traditional Coverage vs Mutation

● Statement & branch based coverage are the most
popular adequacy measures in practice.
– Covstmt(T1) > Covstmt(T2) → ?

137

Traditional Coverage vs Mutation

● Statement & branch based coverage are the most
popular adequacy measures in practice.
– Covstmt(T1) > Covstmt(T2) → T1 is more likely to find

more bugs.

138

Traditional Coverage vs Mutation

● Statement & branch based coverage are the most
popular adequacy measures in practice.
– Covstmt(T1) > Covstmt(T2) → T1 is more likely to find

more bugs.

What if you change |T|?

139

Traditional Coverage vs Mutation

● Statement & branch based coverage are the most
popular adequacy measures in practice.
– Covstmt(T1) > Covstmt(T2) →
– Covstmt(T) increases with the |T|

T1 is more likely to find
more bugs.

140

Traditional Coverage vs Mutation

● Statement & branch based coverage are the most
popular adequacy measures in practice.
– Covstmt(T1) > Covstmt(T2) →
– Covstmt(T) increases with the |T|
– Shrinking |T| while preserving Covstmt(T) decreases

defect finding power

T1 is more likely to find
more bugs.

141

Traditional Coverage vs Mutation

● Statement & branch based coverage are the most
popular adequacy measures in practice.
– Covstmt(T1) > Covstmt(T2) →
– Covstmt(T) increases with the |T|
– Shrinking |T| while preserving Covstmt(T) decreases

defect finding power
→ You cannot assume that better coverage increases

defect finding ability!

T1 is more likely to find
more bugs.

Then does coverage serve a purpose?

142

Traditional Coverage vs Mutation

● Statement & branch based coverage are the most
popular adequacy measures in practice.
– Covstmt(T1) > Covstmt(T2) →
– Covstmt(T) increases with the |T|
– Shrinking |T| while preserving Covstmt(T) decreases

defect finding power
– Coverage still tells you which portions of a program

haven't been tested!

T1 is more likely to find
more bugs.

143

Traditional Coverage vs Mutation

● Statement & branch based coverage are the most
popular adequacy measures in practice.
– Covstmt(T1) > Covstmt(T2) →
– Covstmt(T) increases with the |T|
– Shrinking |T| while preserving Covstmt(T) decreases

defect finding power
– Coverage still tells you which portions of a program

haven't been tested!
– It just cannot fully measure defect finding capability.

T1 is more likely to find
more bugs.

144

Traditional Coverage vs Mutation

● Mutation analysis/testing correlates with defect
finding independent of code coverage! [Just 2014]

145

Traditional Coverage vs Mutation

● Mutation analysis/testing correlates with defect
finding independent of code coverage! [Just 2014]

So is that it?
Can we just do mutation

testing & be done?

146

A Summary of Test Adequacy

● Many ways of measuring test adequacy.

147

A Summary of Test Adequacy

● Many ways of measuring test adequacy.
● No single approach is sufficient.

148

A Summary of Test Adequacy

● Many ways of measuring test adequacy.
● No single approach is sufficient.
● Mutation testing is the strongest known single

approach we presently have, but it comes at a price.

149

A Summary of Test Adequacy

● Many ways of measuring test adequacy.
● No single approach is sufficient.
● Mutation testing is the strongest known single

approach we presently have, but it comes at a price.
● Even combining all adequacy measures, there will

still be bugs.

150

A Summary of Test Adequacy

● Many ways of measuring test adequacy.
● No single approach is sufficient.
● Mutation testing is the strongest known single

approach we presently have, but it comes at a price.
● Even combining all adequacy measures, there will

still be bugs.
– And they have consequences

http://arstechnica.com/security/2016/02/extremely-sev
ere-bug-leaves-dizzying-number-of-apps-and-devices-vul
nerable/

http://arstechnica.com/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://arstechnica.com/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://arstechnica.com/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150

