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How Else Can We Judge Adequacy?

● Input & graph based techniques provide 
requirements that measure quality.
– But they still have difficulties finding bugs!
– Can we try to measure that directly?

How might you go about this?
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Fault Seeding

● Insert or seed representative/typical faults
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Fault Seeding

● Insert or seed representative/typical faults
● Measure how many are found or killed by the test 

suite
– Effectiveness = # killed / # seeded
– Directly measures bug finding ability

● Why might this fail?
– What are representative faults?
– Are there enough faults to be meaningful?
– Did you forget to remove faults afterward?
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Mutation Analysis & Testing

● Mutant
– A valid program that behaves differently than the 

original
– Consider small, local changes to programs

a = b + c a = b * c
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Mutation Analysis & Testing

● Mutant
– A valid program that behaves differently than the 

original
– Consider small, local changes to programs
– A test t kills a mutant m if t produces a different outcome 

on m than the original program

What does this mean?
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Mutation Analysis & Testing

● Mutant
– A valid program that behaves differently than the 

original
– Consider small, local changes to programs
– A test t kills a mutant m if t produces a different outcome 

on m than the original program
● Systematically generate mutants separately from 

original program
● The goal is to:

– Mutation Analysis – Measure bug finding ability
– Mutation Testing – create a test suite that kills a 

representative set of mutants
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Mutation

● What are possible mutants?
int foo(int x, int y) {
  if (x > 5) {return x + y;}
  else {return x;}
}
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Mutation

● What are possible mutants?

● Once we have a test case that kills a mutant, the 
mutant itself is no longer useful.

● Some are not generally useful:

int foo(int x, int y) {
  if (x > 5) {return x + y;}
  else {return x;}
}

Why might they not be useful?
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Mutation

● What are possible mutants?

● Once we have a test case that kills a mutant, the 
mutant itself is no longer useful.

● Some are not generally useful:
– Not compilable
– (Trivial) Killed by most test cases
– (Equivalent) Indistinguishable from original program

int foo(int x, int y) {
  if (x > 5) {return x + y;}
  else {return x;}
}
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Mutation

● What are possible mutants?

● Once we have a test case that kills a mutant, the 
mutant itself is no longer useful.

● Some are not generally useful:
– Not compilable
– (Trivial) Killed by most test cases
– (Equivalent) Indistinguishable from original program
– (Redundant) Indistinguishable from other mutants

int foo(int x, int y) {
  if (x > 5) {return x + y;}
  else {return x;}
}
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Mutation
int min(int a, int b) {
  int minVal;
  minVal = a;
  if (b < a) {
    minVal = b;
  }
  return minVal;
}

● Mimic mistakes
● Encode knowledge from other techniques



32

Mutation
int min(int a, int b) {
  int minVal;
  minVal = a;
  if (b < a) {
    minVal = b;
  }
  return minVal;
}

int min(int a, int b) {
  int minVal;
  minVal = a;

  if (b < a) {
  
  
    minVal = b;
   
  
  
  }
  return minVal;
}● Mimic mistakes

● Encode knowledge from other techniques
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Mutation
int min(int a, int b) {
  int minVal;
  minVal = a;
  if (b < a) {
    minVal = b;
  }
  return minVal;
}

int min(int a, int b) {
  int minVal;
  minVal = a;
  minVal = b;
  if (b < a) {
  
  
    minVal = b;
   
  
  
  }
  return minVal;
}

Mutant 1: minVal = b;

● Mimic mistakes
● Encode knowledge from other techniques
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Mutation
int min(int a, int b) {
  int minVal;
  minVal = a;
  if (b < a) {
    minVal = b;
  }
  return minVal;
}

int min(int a, int b) {
  int minVal;
  minVal = a;
  minVal = b;
  if (b < a) {
  if (b > a) {
  
    minVal = b;
   
  
  
  }
  return minVal;
}

Mutant 1: minVal = b;

Mutant 2: if (b > a) {

● Mimic mistakes
● Encode knowledge from other techniques
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Mutation
int min(int a, int b) {
  int minVal;
  minVal = a;
  if (b < a) {
    minVal = b;
  }
  return minVal;
}

int min(int a, int b) {
  int minVal;
  minVal = a;
  minVal = b;
  if (b < a) {
  if (b > a) {
  if (b < minVal) {
    minVal = b;
   
  
  
  }
  return minVal;
}

Mutant 1: minVal = b;

Mutant 2: if (b > a) {
Mutant 3: if (b < minVal) {

● Mimic mistakes
● Encode knowledge from other techniques
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Mutation
int min(int a, int b) {
  int minVal;
  minVal = a;
  if (b < a) {
    minVal = b;
  }
  return minVal;
}

int min(int a, int b) {
  int minVal;
  minVal = a;
  minVal = b;
  if (b < a) {
  if (b > a) {
  if (b < minVal) {
    minVal = b;
    BOMB();
  
  
  }
  return minVal;
}

Mutant 1: minVal = b;

Mutant 2: if (b > a) {
Mutant 3: if (b < minVal) {

Mutant 4:   BOMB();

● Mimic mistakes
● Encode knowledge from other techniques
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Mutation
int min(int a, int b) {
  int minVal;
  minVal = a;
  if (b < a) {
    minVal = b;
  }
  return minVal;
}

int min(int a, int b) {
  int minVal;
  minVal = a;
  minVal = b;
  if (b < a) {
  if (b > a) {
  if (b < minVal) {
    minVal = b;
    BOMB();
    minVal = a;
   
  }
  return minVal;
}

Mutant 1: minVal = b;

Mutant 2: if (b > a) {
Mutant 3: if (b < minVal) {

Mutant 4:   BOMB();
Mutant 5:   minVal = a;

● Mimic mistakes
● Encode knowledge from other techniques
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Mutation
int min(int a, int b) {
  int minVal;
  minVal = a;
  if (b < a) {
    minVal = b;
  }
  return minVal;
}

int min(int a, int b) {
  int minVal;
  minVal = a;
  minVal = b;
  if (b < a) {
  if (b > a) {
  if (b < minVal) {
    minVal = b;
    BOMB();
    minVal = a;
    minVal = failOnZero(b);
  }
  return minVal;
}

Mutant 1: minVal = b;

Mutant 2: if (b > a) {
Mutant 3: if (b < minVal) {

Mutant 4:   BOMB();
Mutant 5:   minVal = a;
Mutant 6:   minVal = failOnZero(b);

● Mimic mistakes
● Encode knowledge from other techniques
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Mutation
int min(int a, int b) {
  int minVal;
  minVal = a;
  if (b < a) {
    minVal = b;
  }
  return minVal;
}

int min(int a, int b) {
  int minVal;
  minVal = a;
  minVal = b;
  if (b < a) {
  if (b > a) {
  if (b < minVal) {
    minVal = b;
    BOMB();
    minVal = a;
    minVal = failOnZero(b);
  }
  return minVal;
}

Mutant 1: minVal = b;

Mutant 2: if (b > a) {
Mutant 3: if (b < minVal) {

Mutant 4:   BOMB();
Mutant 5:   minVal = a;
Mutant 6:   minVal = failOnZero(b);

What mimics
statement coverage?

● Mimic mistakes
● Encode knowledge from other techniques
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Mutation
int min(int a, int b) {
  int minVal;
  minVal = a;
  if (b < a) {
    minVal = b;
  }
  return minVal;
}

int min(int a, int b) {
  int minVal;
  minVal = a;
  minVal = b;
  if (b < a) {
  if (b > a) {
  if (b < minVal) {
    minVal = b;
    BOMB();
    minVal = a;
    minVal = failOnZero(b);
  }
  return minVal;
}

Mutant 1: minVal = b;

Mutant 2: if (b > a) {
Mutant 3: if (b < minVal) {

Mutant 4:   BOMB();
Mutant 5:   minVal = a;
Mutant 6:   minVal = failOnZero(b);

What mimics
input classes?

● Mimic mistakes
● Encode knowledge from other techniques
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Mutation Analysis

Mutants
Mutant 1
Mutant 2
Mutant 3
Mutant 4
Mutant 5
Mutant 6
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Mutation Analysis

Mutants Test Suite
Mutant 1
Mutant 2
Mutant 3
Mutant 4
Mutant 5
Mutant 6

min(1,2) Ô 1
min(2,1) Ô 1
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Mutation Analysis

Mutants Test Suite
Mutant 1
Mutant 2
Mutant 3
Mutant 4
Mutant 5
Mutant 6

min(1,2) Ô 1
min(2,1) Ô 1

Try every mutant on test 1.
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Mutation Analysis

Mutants Test Suite
Mutant 1
Mutant 2
Mutant 3
Mutant 4
Mutant 5
Mutant 6

min(1,2) Ô 1
min(2,1) Ô 1Ki

lle
d

Try every live mutant on test 2.



46

Mutation Analysis

Mutants Test Suite
Mutant 1
Mutant 2
Mutant 3

min(1,2) Ô 1
Ki

lle
d

Mutant 4
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Mutant 6

min(2,1) Ô 1
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Mutation Analysis

Mutants Test Suite
Mutant 1
Mutant 2
Mutant 3

min(1,2) Ô 1
Ki

lle
d

Mutant 4
Mutant 5
Mutant 6

min(2,1) Ô 1
Ki

lle
d

min3(int a, int b):
  int minVal;
  minVal = a;
  if (b < minVal)
    minVal = b;
  return minVal;

min6(int a, int b):
  int minVal;
  minVal = a;
  if (b < a)
    minVal = failOnZero(b);
  return minVal;

So the mutation score is... 4/5. Why?
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Mutation Analysis

Mutants Test Suite
Mutant 1
Mutant 2
Mutant 3

min(1,2) Ô 1
Ki

lle
d

Mutant 4
Mutant 5
Mutant 6

min(2,1) Ô 1
Ki

lle
d

min3(int a, int b):
  int minVal;
  minVal = a;
  if (b < minVal)
    minVal = b;
  return minVal;

min3(int a, int b):
  int minVal;
  minVal = a;
  if (b < a)
    minVal = failOnZero(b);
  return minVal;

Equivalent to the original!
There is no injected bug.

So the mutation score is... 4/5. Why?
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counted



52

Equivalent Mutants

● Equivalent mutants are not bugs and should not be 
counted

● New Mutation Score:



53

Equivalent Mutants

● Equivalent mutants are not bugs and should not be 
counted

● New Mutation Score:
#Killed
#Mutants

Start with the score
from fault seeding
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Equivalent Mutants

● Equivalent mutants are not bugs and should not be 
counted

● New Mutation Score:
# Killed

#Mutants−#Equivalent

Traditional mutation score
from literature
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Equivalent Mutants

● Equivalent mutants are not bugs and should not be 
counted

● New Mutation Score:
#Killed−#Killed Duplicates

#Mutants−#Equivalent−#Duplicates

Updated for modern handling
of duplicate & equivalent mutants
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Equivalent Mutants

● Equivalent mutants are not bugs and should not be 
counted

● New Mutation Score:

● Detecting equivalent mutants is undecidable in 
general
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#Mutants−#Equivalent−#Duplicates
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Equivalent Mutants

● Equivalent mutants are not bugs and should not be 
counted

● New Mutation Score:

● Detecting equivalent mutants is undecidable in 
general

● So why are they equivalent?

Reachability Infection Propagation?
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Equivalent Mutants

● Equivalent mutants are not bugs and should not be 
counted

● New Mutation Score:

● Detecting equivalent mutants is undecidable in 
general

● So why are they equivalent?

Reachability Infection Propagation? ?

More on this later....

#Killed−#Killed Duplicates
#Mutants−#Equivalent−#Duplicates



64

Equivalent Mutants

● Identifying equivalent mutants is one of the most 
expensive / burdensome aspects of mutation 
analysis.
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Equivalent Mutants

● Identifying equivalent mutants is one of the most 
expensive / burdensome aspects of mutation 
analysis.

min3(int a, int b):
  int minVal;
  minVal = a;
  if (b < minVal)
    minVal = b;
  return minVal;

Requires reasoning about why
the result was the same.
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Mutation Testing

● Given an unkilled mutant, how can we improve the 
test suite?
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Mutation Testing

● Given an unkilled mutant, how can we improve the 
test suite?

min3(int a, int b):
  int minVal;
  minVal = a;
  if (b < a)
    minVal = failOnZero(b);
  return minVal;
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Mutation Testing

● Given an unkilled mutant, how can we improve the 
test suite?

min3(int a, int b):
  int minVal;
  minVal = a;
  if (b < a)
    minVal = failOnZero(b);
  return minVal;

min(2,0) Ô 0New Test:
New Score:  5/5
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● The mutants should guide the tester toward an 
effective test suite
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● The mutants should guide the tester toward an 
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Mutation Operators

● The mutants should guide the tester toward an 
effective test suite
– Need a 'representative' pool of mutants

idea: “If there is a fault, there is a mutant to match it”
– Need a rigorous way of creating mutants

● Mutation Operators
– Systematic changes that may be applied to produce 

mutants
– Language dependent, but often similar

Why might they be language dependent?
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Some Mutation Operators – in Java

● Absolute Value Insertion
– Each arithmetic (sub)expression is wrapped with abs(), 

-abs(), and failOnZero()

w = x + y + z

Just for abs()?



76

Some Mutation Operators – in Java

● Absolute Value Insertion
– Each arithmetic (sub)expression is wrapped with abs(), 

-abs(), and failOnZero()

w = x + y + z

Just for abs()?

w = abs(x) + y + z

w = x + abs(y) + z

w = x + y + abs(z)

w = abs(x + y) + z

w = x + abs(y + z)

w = abs(x + y + z)

Just for abs()!
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Some Mutation Operators – in Java

● Absolute Value Insertion
– Each arithmetic (sub)expression is wrapped with abs(), 

-abs(), and failOnZero()
● Arithmetic Operator Replacement

– Each operator (+,-,*,/,%,...) is replaced with each other 
operator and LEFTOP and RIGHTOP
(returning the named operand).

w = x + y + z
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Some Mutation Operators – in Java

● Absolute Value Insertion
– Each arithmetic (sub)expression is wrapped with abs(), 

-abs(), and failOnZero()
● Arithmetic Operator Replacement

– Each operator (+,-,*,/,%,...) is replaced with each other 
operator and LEFTOP and RIGHTOP
(returning the named operand).

w = x + y + z

w = x + y * z w = x + y ...
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Some Mutation Operators – in Java

● Absolute Value Insertion
– Each arithmetic (sub)expression is wrapped with abs(), 

-abs(), and failOnZero()
● Arithmetic Operator Replacement

– Each operator (+,-,*,/,%,...) is replaced with each other 
operator and LEFTOP and RIGHTOP
(returning the named operand).

● Relational Operator Replacement
– Each operator (=,!=,<,<=,>,>=) is replaced with each 

other and TRUEOP and FALSEOP
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Some Mutation Operators – in Java

● Conditional Operator Replacement
– Replace operators (&&, ||, &, |, ^) with each other and 

LEFTOP, RIGHTOP, TRUEOP, FALSEOP
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Some Mutation Operators – in Java

● Conditional Operator Replacement
– Replace operators (&&, ||, &, |, ^) with each other and 

LEFTOP, RIGHTOP, TRUEOP, FALSEOP

Could these be used to mimic edge coverage?
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Some Mutation Operators – in Java

● Conditional Operator Replacement
– Replace operators (&&, ||, &, |, ^) with each other and 

LEFTOP, RIGHTOP, TRUEOP, FALSEOP
● The operator replacement pattern continues...

– Assignment, Unary Insertion, Unary Deletion
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Some Mutation Operators – in Java

● Conditional Operator Replacement
– Replace operators (&&, ||, &, |, ^) with each other and 

LEFTOP, RIGHTOP, TRUEOP, FALSEOP
● The operator replacement pattern continues...

– Assignment, Unary Insertion, Unary Deletion
● Scalar Variable Replacement

– Replace each variable use with another compatible 
variable in scope

What does compatible mean? Is it necessary?
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Some Mutation Operators – in Java

● Conditional Operator Replacement
– Replace operators (&&, ||, &, |, ^) with each other and 

LEFTOP, RIGHTOP, TRUEOP, FALSEOP
● The operator replacement pattern continues...

– Assignment, Unary Insertion, Unary Deletion
● Scalar Variable Replacement

– Replace each variable use with another compatible 
variable in scope

● Bomb Statement Replacement
– Replace a statement with BOMB()
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Some Mutation Operators – in Java

● Conditional Operator Replacement
– Replace operators (&&, ||, &, |, ^) with each other and 

LEFTOP, RIGHTOP, TRUEOP, FALSEOP
● The operator replacement pattern continues...

– Assignment, Unary Insertion, Unary Deletion
● Scalar Variable Replacement

– Replace each variable use with another compatible 
variable in scope

● Bomb Statement Replacement
– Replace a statement with BOMB()

How does the BOMB() operator
mimic statement coverage?
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Some Mutation Operators – in Java

● These are all intraprocedural (within one method)
● What might interprocedural operators be?
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Some Mutation Operators – in Java

● These are all intraprocedural (within one method)
● What might interprocedural operators be?

– Changing parameter values
– Changing the call target
– Changing incoming dependencies
– ...
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Some Mutation Operators – in Java

● These are all intraprocedural (within one method)
● What might interprocedural operators be?

– Changing parameter values
– Changing the call target
– Changing incoming dependencies
– …

● And more...
– Interface Mutation, Object Oriented Mutation, …
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Some Mutation Operators – in Java

● These are all intraprocedural (within one method)
● What might interprocedural operators be?

– Changing parameter values
– Changing the call target
– Changing incoming dependencies
– …

● And more...
● Often just the simplest are used
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Mutation Operators

● Are the mutants representative of all bugs?
● Do we expect the mutation score to be meaningful?

Ideas? Why? Why not?



91

Mutation Operators

● Are the mutants representative of all bugs?
● Do we expect the mutation score to be meaningful?

2 Key ideas are missing....

Ideas? Why? Why not?
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Competent Programmer Hypothesis

Programmers tend to write code that is almost correct



93

Competent Programmer Hypothesis

Programmers tend to write code that is almost correct
– So most of the time simple mutations should reflect the 

real bugs.
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Coupling Effect

Tests that cover so much behavior that even simple 
errors are detected should also be sensitive enough to 
detect more complex errors
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Coupling Effect

Tests that cover so much behavior that even simple 
errors are detected should also be sensitive enough to 
detect more complex errors

– By casting a fine enough net, we'll catch the big fish, too 
(sorry dolphins)
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What Problems Remain?

● Scale (there are a lot of tests)
● Equivalence

● Scale may be attacked in many ways
– Coverage filters
– Short circuiting tests
– Testing mutants simultaneously

● Can also modify mutation criteria to help with 
both...
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● Recall: If a test can detect a mutant, that mutant is 
killed by the test.
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Mutation Criteria

● Recall: If a test can detect a mutant, that mutant is 
killed by the test.

What does it mean if a mutant was killed?

What does it mean if a mutant was not killed?
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output than p(t)
● Weakly Killed

– A test weakly kills a mutant m if m(t) produces different 
internal state than p(t)

– Reachable, infects, but might not propagate.

Mutation Criteria

How might this happen?

int min(int a, int b) {
  int minVal;
  minVal = b; // was a
  if (b < a) {
    minVal = b;
  }
  return minVal;
}
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Mutation Criteria

● Strongly Killed
– A test strongly kills a mutant m if m(t) produces different 

output than p(t)
● Weakly Killed

– A test weakly kills a mutant m if m(t) produces different 
internal state than p(t)

– Reachable, infects, but doesn't propagate.

How might this happen?

int min(int a, int b) {
  int minVal;
  minVal = b; // was a
  if (b < a) {
    minVal = b;
  }
  return minVal;
}

a = 10, b = 5

minVal = 5

minVal = 5

return 5
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Mutation Criteria

● Strongly Killed
– A test strongly kills a mutant m if m(t) produces different 

output than p(t)
● Weakly Killed

– A test weakly kills a mutant m if m(t) produces different 
internal state than p(t)

– Reachable, infects, but doesn't propagate.

How can we strongly kill the mutant instead?

int min(int a, int b) {
  int minVal;
  minVal = b; // was a
  if (b < a) {
    minVal = b;
  }
  return minVal;
}

a = 5, b = 10

minVal = 10

return 10
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● Strongly Killed
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● Weakly Killed
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Mutation Criteria

● Strongly Killed
– A test strongly kills a mutant m if m(t) produces different 

output than p(t)
● Weakly Killed

– A test weakly kills a mutant m if m(t) produces different 
internal state than p(t)

– Reachable, infects, but doesn't propagate.

What might an equivalent mutant look like?

int min(int a, int b) {
  int minVal;
  minVal = a;
  if (b < a) {
    minVal = b;
  }
  return minVal;
}

int min(int a, int b) {
  int minVal;
  minVal = a;
  if (b < minVal) {
    minVal = b;
  }
  return minVal;
}
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Mutation Criteria

● Strongly Killed
– A test strongly kills a mutant m if m(t) produces different 

output than p(t)
● Weakly Killed

– A test weakly kills a mutant m if m(t) produces different 
internal state than p(t)

– Reachable, infects, but doesn't propagate.

They always behave the same way!

int min(int a, int b) {
  int minVal;
  minVal = a;
  if (b < a) {
    minVal = b;
  }
  return minVal;
}

int min(int a, int b) {
  int minVal;
  minVal = a;
  if (b < minVal) {
    minVal = b;
  }
  return minVal;
}
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Mutation Criteria

● Strongly Killed
– A test strongly kills a mutant m if m(t) produces different 

output than p(t)
● Weakly Killed

– A test weakly kills a mutant m if m(t) produces different 
internal state than p(t)

– Reachable, infects, but might not propagate.
Leading to...
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– For each mutant, the test suite contains a test that 
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Mutation Criteria

● Strong Mutation Coverage
– For each mutant, the test suite contains a test that 

strongly kills the mutant
● Weak Mutation Coverage

– For each mutant, the test suite contains a test that 
weakly kills the mutant

How might weak coverage help with equivalence?

How might weak coverage help with scalability?



130

Mutation Criteria

● Strong Mutation Coverage
– For each mutant, the test suite contains a test that 

strongly kills the mutant
● Weak Mutation Coverage

– For each mutant, the test suite contains a test that 
weakly kills the mutant

How might weak coverage help with equivalence?

How might weak coverage help with scalability?

Is there any reason to prefer strong coverage?



131

Mutation Testing

● Considered one of the strongest criteria

Why?
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Mutation Testing

● Considered one of the strongest criteria
– Mimics some input specifications
– Mimics some graph coverage (node, edge, …)

● Massive number of criteria.
● Still not always the most tests.

Why?
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Traditional Coverage vs Mutation

● Statement & branch based coverage are the most 
popular adequacy measures in practice.
– Covstmt(T1) > Covstmt(T2) → T1 is more likely to find

more bugs.

What if you change |T|?
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T1 is more likely to find
more bugs.
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● Statement & branch based coverage are the most 
popular adequacy measures in practice.
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defect finding power

T1 is more likely to find
more bugs.
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Traditional Coverage vs Mutation

● Statement & branch based coverage are the most 
popular adequacy measures in practice.
– Covstmt(T1) > Covstmt(T2) → 
– Covstmt(T) increases with the |T|
– Shrinking |T| while preserving Covstmt(T) decreases 

defect finding power
→ You cannot assume that better coverage increases 

defect finding ability!

T1 is more likely to find
more bugs.

Then does coverage serve a purpose?
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Traditional Coverage vs Mutation

● Statement & branch based coverage are the most 
popular adequacy measures in practice.
– Covstmt(T1) > Covstmt(T2) → 
– Covstmt(T) increases with the |T|
– Shrinking |T| while preserving Covstmt(T) decreases 

defect finding power
– Coverage still tells you which portions of a program 

haven't been tested!

T1 is more likely to find
more bugs.
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Traditional Coverage vs Mutation

● Statement & branch based coverage are the most 
popular adequacy measures in practice.
– Covstmt(T1) > Covstmt(T2) → 
– Covstmt(T) increases with the |T|
– Shrinking |T| while preserving Covstmt(T) decreases 

defect finding power
– Coverage still tells you which portions of a program 

haven't been tested!
– It just cannot fully measure defect finding capability.

T1 is more likely to find
more bugs.
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Traditional Coverage vs Mutation

● Mutation analysis/testing correlates with defect 
finding independent of code coverage! [Just 2014]
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Traditional Coverage vs Mutation

● Mutation analysis/testing correlates with defect 
finding independent of code coverage! [Just 2014]

So is that it?
Can we just do mutation 

testing & be done?
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A Summary of Test Adequacy

● Many ways of measuring test adequacy.
● No single approach is sufficient.
● Mutation testing is the strongest known single 

approach we presently have, but it comes at a price.
● Even combining all adequacy measures, there will 

still be bugs.
– And they have consequences

http://arstechnica.com/security/2016/02/extremely-sev
ere-bug-leaves-dizzying-number-of-apps-and-devices-vul
nerable/

http://arstechnica.com/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://arstechnica.com/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
http://arstechnica.com/security/2016/02/extremely-severe-bug-leaves-dizzying-number-of-apps-and-devices-vulnerable/
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