
Logic Based Criteria

CMPT 473
Software Quality Assurance

Nick Sumner
Material from Ammonn & Offut

Logic Based Coverage Criteria

● Logical conditions are pervasive.

Logic Based Coverage Criteria

● Logical conditions are pervasive.
● if statements are the most frequently fixed

statements in bug fixes. [Pan, ESE 2008]

Logic Based Coverage Criteria

● Logical conditions are pervasive.
● if statements are the most frequently fixed

statements in bug fixes. [Pan, ESE 2008]

● Safety critical systems often involve many complex
conditions. (avionics, medical, …)

Logic Based Coverage Criteria

● Logical conditions are pervasive.
● if statements are the most frequently fixed

statements in bug fixes. [Pan, ESE 2008]

● Safety critical systems often involve many complex
conditions. (avionics, medical, …)

● Isn't branch coverage enough?

Logic Based Coverage Criteria

● Logical conditions are pervasive.
● if statements are the most frequently fixed

statements in bug fixes. [Pan, ESE 2008]

● Safety critical systems often involve many complex
conditions. (avionics, medical, …)

● Isn't branch coverage enough?

if (a || b) && (c || d):
 s

Logic Based Coverage Criteria

● Logical conditions are pervasive.
● if statements are the most frequently fixed

statements in bug fixes. [Pan, ESE 2008]

● Safety critical systems often involve many complex
conditions. (avionics, medical, …)

● Isn't branch coverage enough?

if (a || b) && (c || d):
 s

a b

c d

s

F

T

F

T

T T F
 F

Logic Based Coverage Criteria

● Logical conditions are pervasive.
● if statements are the most frequently fixed

statements in bug fixes. [Pan, ESE 2008]

● Safety critical systems often involve many complex
conditions. (avionics, medical, …)

● Isn't branch coverage enough?

if (a || b) && (c || d):
 s

a b

c d

s

F

T

F

T

T T F
 F

What doesn't branch coverage test?

Logic Based Coverage Criteria

● Logical conditions are pervasive.
● if statements are the most frequently fixed

statements in bug fixes. [Pan, ESE 2008]

● Safety critical systems often involve many complex
conditions. (avionics, medical, …)

● Isn't branch coverage enough?
● Why not just use path coverage?

Logic Based Coverage Criteria

● Logical conditions are pervasive.
● if statements are the most frequently fixed

statements in bug fixes. [Pan, ESE 2008]

● Safety critical systems often involve many complex
conditions. (avionics, medical, …)

● Isn't branch coverage enough?
● Why not just use path coverage?

1)Scalability

Logic Based Coverage Criteria

● Logical conditions are pervasive.
● if statements are the most frequently fixed

statements in bug fixes. [Pan, ESE 2008]

● Safety critical systems often involve many complex
conditions. (avionics, medical, …)

● Isn't branch coverage enough?
● Why not just use path coverage?

1)Scalability
2) if (a | b) & (c | d):

 s

Logic Based Coverage Criteria

● Logical conditions are pervasive.
● if statements are the most frequently fixed

statements in bug fixes. [Pan, ESE 2008]

● Safety critical systems often involve many complex
conditions. (avionics, medical, …)

● Isn't branch coverage enough?
● Why not just use path coverage?

1)Scalability
2)

3)Other languages (e.g., SQL)

if (a | b) & (c | d):
 s

Logic Based Coverage Criteria

● We want to reason about the logical expressions
and how inputs affect their outcomes.

(a > 0) && foo(b) || c

Logic Based Coverage Criteria

● We want to reason about the logical expressions
and how inputs affect their outcomes.

● Clauses (in this context) are true or false and don't
have logical operators.

(a > 0) && foo(b) || c

Logic Based Coverage Criteria

● We want to reason about the logical expressions
and how inputs affect their outcomes.

● Clauses (in this context) are true or false and don't
have logical operators.

● Logical coverage criteria
identify a set values for
clauses to test.

(a > 0) && foo(b) || c

(a>0) foo(b) c result
T T T T
T T F T
T F T T
T F F F
F T T T
F T F F
F F T T
F F F F

Logic Based Coverage Criteria

● We want to reason about the logical expressions
and how inputs affect their outcomes.

● Clauses (in this context) are true or false and don't
have logical operators.

● Logical coverage criteria
identify a set values for
clauses to test.

(a > 0) && foo(b) || c

(a>0) foo(b) c result
T T T T
T T F T
T F T T
T F F F
F T T T
F T F F
F F T T
F F F F

Predicate & Clause Coverage

● A predicate is simply a boolean expression.

Predicate & Clause Coverage

● A predicate is simply a boolean expression.
● Predicate Coverage requires each predicate to be

true in one test & be false in one test.

Predicate & Clause Coverage

● A predicate is simply a boolean expression.
● Predicate Coverage requires each predicate to be

true in one test & be false in one test.
if (a || b) && (c || d):
 s

if (a | b) & (c | d):
 s

How does it do in these cases?

Predicate & Clause Coverage

● A predicate is simply a boolean expression.
● Predicate Coverage requires each predicate to be

true in one test & be false in one test.
if (a || b) && (c || d):
 s

if (a | b) & (c | d):
 s

T F T F

Predicate & Clause Coverage

● A predicate is simply a boolean expression.
● Predicate Coverage requires each predicate to be

true in one test & be false in one test.
● Clause Coverage requires each clause to be true in

one test & be false in one test.

Predicate & Clause Coverage

● A predicate is simply a boolean expression
● Predicate Coverage requires each predicate to be

true in one test & be false in one test.
● Clause Coverage requires each clause to be true in

one test & be false in one test.

if (a || b) && (c || d):
 s

if (a | b) & (c | d):
 s

How does it do in these cases?

Predicate & Clause Coverage

● A predicate is simply a boolean expression
● Predicate Coverage requires each predicate to be

true in one test & be false in one test.
● Clause Coverage requires each clause to be true in

one test & be false in one test.

if (a || b) && (c || d):
 s

if (a | b) & (c | d):
 s

T F T F T F T F T F T F T F T F

How many tests?

Predicate & Clause Coverage

● A predicate is simply a boolean expression
● Predicate Coverage requires each predicate to be

true in one test & be false in one test.
● Clause Coverage requires each clause to be true in

one test & be false in one test.

if (a || b) && (c || d):
 s

if (a | b) & (c | d):
 s

Minimum of 2 tests

a=true, b=true, c=false, d=false
a=false, b=false, c=true, d=true

T F T F T F T F T F T F T F T F

Predicate & Clause Coverage

● A predicate is simply a boolean expression
● Predicate Coverage requires each predicate to be

true in one test & be false in one test.
● Clause Coverage requires each clause to be true in

one test & be false in one test.

if (a || b) && (c || d):
 s

if (a | b) & (c | d):
 s

Minimum of 2 tests

a=true, b=true, c=false, d=false
a=false, b=false, c=true, d=true

T F T F T F T F T F T F T F T F

Predicate & Clause Coverage

● A predicate is simply a boolean expression
● Predicate Coverage requires each predicate to be

true in one test & be false in one test.
● Clause Coverage requires each clause to be true in

one test & be false in one test.

if (a || b) && (c || d):
 s

if (a | b) & (c | d):
 s

Minimum of 2 tests

a=true, b=true, c=false, d=false
a=false, b=false, c=true, d=true

T F T F T F T F T F T F T F T F

Combinatorial Coverage

● Combinatorial/Multiple Condition Coverage requires
each possible combination of clauses to be tested.
(Each row of the truth table)

Combinatorial Coverage

● Combinatorial/Multiple Condition Coverage requires
each possible combination of clauses to be tested.
(Each row of the truth table)

(a > 0) && foo(b) || c

Combinatorial Coverage

● Combinatorial/Multiple Condition Coverage requires
each possible combination of clauses to be tested.
(Each row of the truth table)

(a > 0) && foo(b) || c

(a>0) foo(b) c result
T T T T
T T F T
T F T T
T F F F
F T T T
F T F F
F F T T
F F F F

How many tests?

Defining a Beter Goal

● Clause coverage takes each clause into account.

Defining a Beter Goal

● Clause coverage takes each clause into account.
● Combinatorial coverage tests the impact of a

combination.

Defining a Beter Goal

● Clause coverage takes each clause into account.
● Combinatorial coverage tests the impact of a

combination.
● Can we test for the impact of each clause?

Defining a Beter Goal

● Clause coverage takes each clause into account.
● Combinatorial coverage tests the impact of a

combination.
● Can we test for the impact of each clause?

if (a | b) & (c | d):
 s

How can we test the impact of a clause?

Defining a Beter Goal

● Clause coverage takes each clause into account.
● Combinatorial coverage tests the impact of a

combination.
● Can we test for the impact of each clause?

if (a | b) & (c | d):
 s

How can we test the impact of a clause?

The relative behavior when
changing one clause maters.

Defining a Beter Goal

● Clause coverage takes each clause into account.
● Combinatorial coverage tests the impact of a

combination.
● Can we test for the impact of each clause?

– This is the intuition behind MC/DC testing...

Modified Condition/Decision Coverage

● Modified Condition/Decision Coverage

Modified Condition/Decision Coverage

● Modified Condition/Decision Coverage
1)Each entry & exit is used

Modified Condition/Decision Coverage

● Modified Condition/Decision Coverage
1)Each entry & exit is used
2)Each decision/branch takes every possible outcome

Modified Condition/Decision Coverage

● Modified Condition/Decision Coverage
1)Each entry & exit is used
2)Each decision/branch takes every possible outcome
3)Each clause takes every possible outcome

Modified Condition/Decision Coverage

● Modified Condition/Decision Coverage
1)Each entry & exit is used
2)Each decision/branch takes every possible outcome
3)Each clause takes every possible outcome
4)Each clause independently impacts the the outcome

Modified Condition/Decision Coverage

● Modified Condition/Decision Coverage
1)Each entry & exit is used
2)Each decision/branch takes every possible outcome
3)Each clause takes every possible outcome
4)Each clause independently impacts the the outcome

● Use in safety critical systems: avionics, spacecraft, …

Modified Condition/Decision Coverage

● Modified Condition/Decision Coverage
1)Each entry & exit is used
2)Each decision/branch takes every possible outcome
3)Each clause takes every possible outcome
4)Each clause independently impacts the the outcome

● Use in safety critical systems: avionics, spacecraft, …
● Not only ensures that clauses are tested,

 but that each has an impact

How To Show a Clause Has Impact

● A clause determines the outcome of a predicate
when changing only the value of that clause
changes the outcome of the predicate

How To Show a Clause Has Impact

● A clause determines the outcome of a predicate
when changing only the value of that clause
changes the outcome of the predicate

φ(a,b,c) ≠ φ(a,b,¬c)

How To Show a Clause Has Impact

● A clause determines the outcome of a predicate
when changing only the value of that clause
changes the outcome of the predicate

φ(a,b,c) ≠ φ(a,b,¬c)

(a || b && c)

How To Show a Clause Has Impact

● A clause determines the outcome of a predicate
when changing only the value of that clause
changes the outcome of the predicate

φ(a,b,c) ≠ φ(a,b,¬c)

(a || b && c)
a=F
b=T
c=T

T

a=F
b=T
c=F

F

How To Show a Clause Has Impact

● A clause determines the outcome of a predicate
when changing only the value of that clause
changes the outcome of the predicate

φ(a,b,c) ≠ φ(a,b,¬c)

(a || b && c)
a=F
b=T
c=T

T

a=F
b=T
c=F

F

This pair of tests shows the impact of c.

How To Show a Clause Has Impact

● A clause determines the outcome of a predicate
when changing only the value of that clause
changes the outcome of the predicate

● The basic steps come from & and |

How To Show a Clause Has Impact

● A clause determines the outcome of a predicate
when changing only the value of that clause
changes the outcome of the predicate

● The basic steps come from & and |

a & b
If a=True, b determines

the outcome.

How To Show a Clause Has Impact

● A clause determines the outcome of a predicate
when changing only the value of that clause
changes the outcome of the predicate

● The basic steps come from & and |

a | b
If a=False, b determines

the outcome.

a & b
If a=True, b determines

the outcome.

How To Show a Clause Has Impact

● A clause determines the outcome of a predicate
when changing only the value of that clause
changes the outcome of the predicate

● The basic steps come from & and |

● By definition, solve φ = φc=true ⊕ φc=false

a | b
If a=False, b determines

the outcome.

a & b
If a=True, b determines

the outcome.

How To Show a Clause Has Impact

● A clause determines the outcome of a predicate
when changing only the value of that clause
changes the outcome of the predicate

● The basic steps come from & and |

● By definition, solve φ = φc=true ⊕ φc=false

a | b
If a=False, b determines

the outcome.

a & b
If a=True, b determines

the outcome.

Let's try:
a & b
a | b

a | (b & c)

How To Show a Clause Has Impact

● Given a | (b & c), generate tests for a

How To Show a Clause Has Impact

● Given a | (b & c), generate tests for a
#T | (b & c)a has impact ↔ ≠ #F | (b & c)

by definition

How To Show a Clause Has Impact

● Given a | (b & c), generate tests for a
#T | (b & c)a has impact ↔ ≠ #F | (b & c)

#T↔ ≠

How To Show a Clause Has Impact

● Given a | (b & c), generate tests for a
#T | (b & c)a has impact ↔ ≠ #F | (b & c)

#T↔ ≠ b & c

How To Show a Clause Has Impact

● Given a | (b & c), generate tests for a
#T | (b & c)a has impact ↔ ≠ #F | (b & c)

#T↔ ≠ b & c
#T↔ = ¬b | ¬c

How To Show a Clause Has Impact

● Given a | (b & c), generate tests for a
#T | (b & c)a has impact ↔ ≠ #F | (b & c)

#T↔ ≠ b & c
#T↔ = ¬b | ¬c

b is false or c is false↔

How To Show a Clause Has Impact

● Given a | (b & c), generate tests for a
#T | (b & c)a has impact ↔ ≠ #F | (b & c)

#T↔ ≠ b & c
#T↔ = ¬b | ¬c

b is false or c is false↔

defines two different ways to test a

How To Show a Clause Has Impact

● Given a | (b & c), generate tests for a
#T | (b & c)a has impact ↔ ≠ #F | (b & c)

#T↔ ≠ b & c
#T↔ = ¬b | ¬c

b is false or c is false↔

defines two different ways to test a

a=#T, b=#F, c=#T
a=#F, b=#F, c=#T

Have b be #F

How To Show a Clause Has Impact

● Given a | (b & c), generate tests for a
#T | (b & c)a has impact ↔ ≠ #F | (b & c)

#T↔ ≠ b & c
#T↔ = ¬b | ¬c

b is false or c is false↔

defines two different ways to test a

a=#T, b=#F, c=#T
a=#F, b=#F, c=#T

a=#T, b=#T, c=#F
a=#F, b=#T, c=#F

Have b be #F Have c be #F

Showing Impact

● What about (a & b) | (a & ¬b)?
– Can you show the impact of a?
– Can you show the impact of b?

Showing Impact

● What about (a & b) | (a & ¬b)?
– Can you show the impact of a?
– Can you show the impact of b?

MC/DC coverage also identifies
redundancies that are likely bugs.

Generating a Test Suite with MC/DC

(a > 0) && foo(b) || c

1 2 3

Generating a Test Suite with MC/DC

(a > 0) && foo(b) || c

Select a first clause.

1 2 3

Generating a Test Suite with MC/DC

(a > 0) && foo(b) || c

Solve the constraints for other clauses.

1 2 3

2=#T, 3=#F

Generating a Test Suite with MC/DC

(a > 0) && foo(b) || c

Include tests for the clause
in the test suite.

1 2 3

2=#T, 3=#F

Tests:
1=#T, 2=#T, 3=#F
1=#F, 2=#T, 3=#F

Generating a Test Suite with MC/DC

(a > 0) && foo(b) || c

Consider the next clause.

1 2 3

Tests:
1=#T, 2=#T, 3=#F
1=#F, 2=#T, 3=#F

Generating a Test Suite with MC/DC

(a > 0) && foo(b) || c

Try to add a test for it
based on existing tests.

1 2 3

Tests:
1=#T, 2=#T, 3=#F
1=#F, 2=#T, 3=#F
1=#T, 2=#F, 3=#F

Generating a Test Suite with MC/DC

(a > 0) && foo(b) || c

Repeat for the last clause.

1 2 3

Tests:
1=#T, 2=#T, 3=#F
1=#F, 2=#T, 3=#F
1=#T, 2=#F, 3=#F
1=#T, 2=#F, 3=#T

Generating a Test Suite with MC/DC?

● BUT NASA recommended not generating MC/DC
coverage.

Generating a Test Suite with MC/DC?

● BUT NASA recommended not generating MC/DC
coverage.
– Use MC/DC as a means of evaluating test suites

generated by other means

MC/DC Over Time

● Some historical ambiguities
– Originally only required impact when changing clause
– Changing other clauses at the same time was allowed!

MC/DC Over Time

● Some historical ambiguities
– Originally only required impact when changing clause
– Changing other clauses at the same time was allowed!
– Why is this problematic?

MC/DC Over Time

● Some historical ambiguities
– Originally only required impact when changing clause
– Changing other clauses at the same time was allowed!
– Why is this problematic?

● The form presented here is also known as
Restricted Active Clause Coverage

Logic and MC/DC Testing

● Tests complex interactions in conditions.
● Required for avionics software.

Is it good? Bad?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76

