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Logic Based Coverage Criteria

● Logical conditions are pervasive.
● if statements are the most frequently fixed 

statements in bug fixes. [Pan, ESE 2008]

● Safety critical systems often involve many complex 
conditions. (avionics, medical, …)

● Isn't branch coverage enough?
● Why not just use path coverage?

1)Scalability
2)

3)Other languages (e.g., SQL)

if (a | b) & (c | d):
  s
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Defining a Beter Goal

● Clause coverage takes each clause into account.
● Combinatorial coverage tests the impact of a 

combination.
● Can we test for the impact of each clause?

– This is the intuition behind MC/DC testing...
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Modified Condition/Decision Coverage

● Modified Condition/Decision Coverage
1)Each entry & exit is used
2)Each decision/branch takes every possible outcome
3)Each clause takes every possible outcome
4)Each clause independently impacts the the outcome

●  Use in safety critical systems: avionics, spacecraft, …
●  Not only ensures that clauses are tested,

 but that each has an impact
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How To Show a Clause Has Impact

● A clause determines the outcome of a predicate 
when changing only the value of that clause 
changes the outcome of the predicate

● The basic steps come from & and |

● By definition, solve φ = φc=true  ⊕ φc=false

a | b
If a=False, b determines

the outcome.

a & b
If a=True, b determines

the outcome.

Let's try:
a & b
a | b

a | (b & c)
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Showing Impact

● What about (a & b) | (a & ¬b)? 
– Can you show the impact of a?
– Can you show the impact of b?

MC/DC coverage also identifies
redundancies that are likely bugs.
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Generating a Test Suite with MC/DC

(a > 0) && foo(b) || c

Repeat for the last clause.

1 2 3

Tests:
1=#T,   2=#T,   3=#F
1=#F,   2=#T,   3=#F
1=#T,   2=#F,   3=#F
1=#T,   2=#F,   3=#T
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Generating a Test Suite with MC/DC?

● BUT NASA recommended not generating MC/DC 
coverage.
– Use MC/DC as a means of evaluating test suites 

generated by other means
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MC/DC Over Time

● Some historical ambiguities
– Originally only required impact when changing clause
– Changing other clauses at the same time was allowed!
– Why is this problematic?

● The form presented here is also known as
Restricted Active Clause Coverage



Logic and MC/DC Testing

● Tests complex interactions in conditions.
● Required for avionics software.

Is it good? Bad?
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