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Recall: Coverage/Adequacy

● Can't look at all possible inputs.
● Need to determine if a test suite covers/is adequate for our quality 

objectives.
● So far: Input & Requirements based

void sortEfficiently(List list) {
  if (list.size() < THRESHOLD) {
    sort1(list);
  } else {
    sort2(list);
  }
}

How might we do better?

Efficiently sort a provided list in under X seconds

How well can input based
techniques test this?
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White Box / Black Blox

● Considering only the requirements or input is a black box approach
– Treats the program like an opaque box
– No deep knowledge of the program's structure
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White Box / Black Blox

● Considering only the requirements or input is a black box approach
– Treats the program like an opaque box
– No deep knowledge of the program's structure

● Techniques that use artifacts of the program structure are white box 
approaches
– They can 'see into' the program's implementation
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White Box Testing

● What is a simple approach that solves our problem here?

void sortEfficiently(List list) {
  if (list.size() < THRESHOLD) {
    sort1(list);
  } else {
    sort2(list);
  }
}
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White Box Testing

● What is a simple approach that solves our problem here?
● Statement Coverage

– How many of the statements did the suite test? (%)

void sortEfficiently(List list) {
  if (list.size() < THRESHOLD) {
    sort1(list);
  } else {
    sort2(list);
  }
}
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White Box Testing

● What is a simple approach that solves our problem here?
● Statement Coverage

– How many of the statements did the suite test? (%)
● Branch Coverage

– How many of the condition outcomes were tested? (%)

void sortEfficiently(List list) {
  if (list.size() < THRESHOLD) {
    sort1(list);
  } else {
    sort2(list);
  }
}
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White Box Testing

● In this course, we'll mostly look at graph coverage based techniques
– Most commonly used metrics in the real world
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White Box Testing

● In this course, we'll mostly look at graph coverage based techniques
– Most commonly used metrics in the real world
– Most concepts can be modeled through graphs

e.g. programs, protocols, use patterns, designs, ...

So a bit of review...
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Graphs

● What is a graph G?
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Graphs

● What is a graph G?
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– A set E of edges

● When edges are directed from one node to 
another, the graph is a directed graph

● A path is a list of pairwise connected nodes
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Graphs

● What is a graph G?
– A set N of nodes
– A set E of edges

● When edges are directed from one node to 
another, the graph is a directed graph

● A path is a list of pairwise connected nodes

B A

D
EC

ABCDE
ABDE
AE
BCDE
BD
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Control Flow Graphs (CFGs)

● Programs can be modeled as graphs
– Used extensively in compilers
– Also used in testing!
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if a > b

x++

x += a x += a

x += 2
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Control Flow Graphs (CFGs)

● Programs can be modeled as graphs
– Used extensively in compilers
– Also used in testing!

● Control Flow Graphs
– Nodes comprise the code of a program
– Edges show the paths that an execution 

may take through a program

if a > b

x++

x += a x += a

x += 2
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Control Flow Graphs
Example:

void
sortEfficiently(List list) {
  if (list.size() < THRESHOLD) {
    sort1(list);
  } else {
    sort2(list);
  }
}

if (list.size() < THRESHOLD)

sort1(list); sort2(list);

return;
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Control Flow Graphs
Example:

void
sortEfficiently(List list) {
  if (list.size() < THRESHOLD) {
    sort1(list);
  } else {
    sort2(list);
  }
}

if (list.size() < THRESHOLD)

sort1(list); sort2(list);

return;

size < THRESHOLD size >= THRESHOLD
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● Many types of nodes

Control Flow Graphs

if (list.size() < THRESHOLD)

sort1(list); sort2(list);

print(list);

list = ...

return;

size < THRESHOLD size >= THRESHOLD
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● Many types of nodes

Control Flow Graphs

if (list.size() < THRESHOLD)

sort1(list); sort2(list);

print(list);

list = ...

return;

size < THRESHOLD size >= THRESHOLD

entry node
0 incoming nodes
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● Many types of nodes

Control Flow Graphs

if (list.size() < THRESHOLD)

sort1(list); sort2(list);

print(list);

list = ...

return;

size < THRESHOLD size >= THRESHOLD

entry node

exit node

0 incoming nodes

0 outgoing nodes
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● Many types of nodes

Control Flow Graphs

if (list.size() < THRESHOLD)

sort1(list); sort2(list);

print(list);

list = ...

return;

size < THRESHOLD size >= THRESHOLD

decision / branch node

>1 outgoing nodes
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● Many types of nodes

Control Flow Graphs

if (list.size() < THRESHOLD)

sort1(list); sort2(list);

print(list);

list = ...

return;

size < THRESHOLD size >= THRESHOLD

decision / branch node

join node

>1 outgoing nodes

>1 incoming nodes
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● Straight line code is grouped into basic blocks

Control Flow Graphs

list = …
if (list.size() < THRESHOLD)

sort1(list); sort2(list);

print(list);
return;

No jumps in or out
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● Many patterns arise from common constructs

Control Flow Graphs

q = 0;
r = x;
while r >= y {
  r = r - y;
  q = q + 1;
}
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● Many patterns arise from common constructs

Control Flow Graphs

q = 0;
r = x;
while r >= y {
  r = r - y;
  q = q + 1;
}

for (i = 0; i < n; i++) {
   foo(i);
}

switch  (x) {
   case a: foo(x); break;
   case b: bar(x);
   case c: baz(x); break;
}
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● Many patterns arise from common constructs

Control Flow Graphs

q = 0;
r = x;
while r >= y {
  r = r - y;
  q = q + 1;
}

for (i = 0; i < n; i++) {
   foo(i);
}

switch  (x) {
   case a: foo(x); break;
   case b: bar(x);
   case c: baz(x); break;
}

if (x == 0 || y/x > 1) {
    foo(x, y);
}
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Control Flow Graphs

x = 0;
while (x < y) {
   y = f (x, y);
   if (y == 0) {
      break;
   } else if (y < 0) {
      y = y*2;
      continue;
   }
   x = x + 1;
}
print (y);

From: Ammann & Offutt



40

Control Flow Graphs

x = 0;
while (x < y) {
   y = f (x, y);
   if (y == 0) {
      break;
   } else if (y < 0) {
      y = y*2;
      continue;
   }
   x = x + 1;
}
print (y);

1
2
3
4

6

7

10

12
From: Ammann & Offutt



41

Control Flow Graphs

x = 0;
while (x < y) {
   y = f (x, y);
   if (y == 0) {
      break;
   } else if (y < 0) {
      y = y*2;
      continue;
   }
   x = x + 1;
}
print (y);

1
2
3
4

6

7

10

12
From: Ammann & Offutt



42

Control Flow Graphs

x = 0;
while (x < y) {
   y = f (x, y);
   if (y == 0) {
      break;
   } else if (y < 0) {
      y = y*2;
      continue;
   }
   x = x + 1;
}
print (y);

1
2
3
4

6

7

10

12
From: Ammann & Offutt



43

Control Flow Graphs

x = 0;
while (x < y) {
   y = f (x, y);
   if (y == 0) {
      break;
   } else if (y < 0) {
      y = y*2;
      continue;
   }
   x = x + 1;
}
print (y);

1
2
3
4

6

7

10

12
From: Ammann & Offutt



44

Control Flow Graphs

x = 0;
while (x < y) {
   y = f (x, y);
   if (y == 0) {
      break;
   } else if (y < 0) {
      y = y*2;
      continue;
   }
   x = x + 1;
}
print (y);

1
2
3
4

6

7

10

12
From: Ammann & Offutt



45

Control Flow Graphs

x = 0;
while (x < y) {
   y = f (x, y);
   if (y == 0) {
      break;
   } else if (y < 0) {
      y = y*2;
      continue;
   }
   x = x + 1;
}
print (y);

1
2
3
4

6

7

10

12
From: Ammann & Offutt



46

Control Flow Graphs

x = 0;
while (x < y) {
   y = f (x, y);
   if (y == 0) {
      break;
   } else if (y < 0) {
      y = y*2;
      continue;
   }
   x = x + 1;
}
print (y);

1
2
3
4

6

7

10

12
From: Ammann & Offutt



47

Control Flow Graphs

x = 0;
while (x < y) {
   y = f (x, y);
   if (y == 0) {
      break;
   } else if (y < 0) {
      y = y*2;
      continue;
   }
   x = x + 1;
}
print (y);

1
2
3
4

6

7

10

12
From: Ammann & Offutt



48

CFG Coverage

● Statement Coverage → Node Coverage
– Try to cover all reachable basic blocks
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CFG Coverage

● Statement Coverage → Node Coverage
– Try to cover all reachable basic blocks Thinking in terms of node coverage

can be more efficient. Why?
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CFG Coverage

● Statement Coverage → Node Coverage
– Try to cover all reachable basic blocks

● Branch Coverage → Edge Coverage
– Try to cover all reachable paths of length ≤ 1

How do node & edge coverage
compare? Why?
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Pragmatic Concerns

● The goal is full coverage (of whatever criteria)
● We must consider reachability

– Syntactic Reachability
● Based on the structure of the code

ENTER

...

return;

print(“Got Here”)

return;

How could this happen?
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Pragmatic Concerns

● The goal is full coverage (of whatever criteria)
● We must consider reachability

– Syntactic Reachability
● Based on the structure of the code

– Semantic Reachability
● Based on the meaning of the code

condition = false;
if (condition)

... ...

return;
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Pragmatic Concerns

● The goal is full coverage (of whatever criteria)
● We must consider reachability

– Syntactic Reachability
● Based on the structure of the code

– Semantic Reachability
● Based on the meaning of the code

condition = false;
if (condition)

... ...

return;

This can be
undecidable!
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Pragmatic Concerns

● The goal is full coverage (of whatever criteria)
● We must consider reachability

– Syntactic Reachability
● Based on the structure of the code

– Semantic Reachability
● Based on the meaning of the code

● So what do you do in practice?
– No, really. What have you done in practice?
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Pragmatic Concerns

● The goal is full coverage (of whatever criteria)
● We must consider reachability

– Syntactic Reachability
● Based on the structure of the code

– Semantic Reachability
● Based on the meaning of the code

● So what do you do in practice?
– No, really. What have you done in practice?
– Relative degrees of coverage matter (40%? 80%?)
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Pragmatic Concerns

● Many branch coverage tools work only at if granularity
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Pragmatic Concerns

● Many branch coverage tools work only at if granularity

def misleading(x: int, y: int) -> bool:
  if x > 0 or y > 0:
      return x + y > 0 
  return x * y < 20

def test_misleading():
    assert not misleading(0,0)
    assert misleading(1,0)

pytest-cov → 100% branch coverage
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Pragmatic Concerns

● Many branch coverage tools work only at if granularity

def misleading(x: int, y: int) -> bool:
  if x > 0 or y > 0:
      return x + y > 0 
  return x * y < 20

def test_misleading():
    assert not misleading(0,0)
    assert misleading(1,0)

function misleading(x, y) {
  if (x > 0 || y > 0) {
    return x + y > 0;
  }
  return x * y < 20;
}

test('misleading branch coverage', () => {
  expect(misleading(0, 0)).toBe(true);
  expect(misleading(1, 0)).toBe(true);
});

jest → 100% branch coverage



64

Pragmatic Concerns

● Many branch coverage tools work only at if granularity
– “Condition coverage” can complement this but is also misleading (more later)
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Pragmatic Concerns

● Many branch coverage tools work only at if granularity
– “Condition coverage” can complement this but is also misleading

● Other tools consider short-circuits to be branches
– Common in native languages, Java, …
– Recommended practice by the FAA….

https://www.tc.faa.gov/its/worldpac/techrpt/ar0654.pdf
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Pragmatic Concerns

● Many branch coverage tools work only at if granularity
– “Condition coverage” can complement this but is also misleading

● Stronger graph coverage criteria can help
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CFG Coverage

● The path taken by each test can matter
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CFG Coverage

● The path taken by each test can matter
if (condition 1)

... x = 0;

if (condition2)

... z = y/x;

return;

Full edge coverage
& no bugs found
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... z = y/x;

return;

How can we make sure 
to find the bug?
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CFG Coverage

● The path taken by each test can matter
if (condition 1)

... x = 0;

if (condition2)

... z = y/x;

return;

How can we make sure 
to find the bug?
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CFG Coverage

● The path taken by each test can matter
if (condition 1)

... x = 0;

if (condition2)

... z = y/x;

return;

Testing all paths
exposes the bug.

How can we make sure 
to find the bug?
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● Complete Path Coverage
– Test all paths through the graph
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Why?



77

Path Coverage

● Complete Path Coverage
– Test all paths through the graph

B

CD

A

Infeasibility

Is this reasonable?
Why?



78

Path Coverage

● Complete Path Coverage
– Test all paths through the graph
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Path Coverage

● Complete Path Coverage
– Test all paths through the graph

B

CD

A

Infeasibility

A

CB

D

FE

G

H

JI

K

... ... Intractability

Is this reasonable?
Why?

How many paths?
How does this relate to input

based approaches?
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Compromises?
A

CB

D

FE

G

H

JI

K

... ...B

CD

A

What could we do instead?
(How did we handle the input based approaches?)
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Compromises?

● Edge Pair Coverage
– Each path of length <= 2 is tested.
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Compromises?

● Edge Pair Coverage
– Each path of length <= 2 is tested.

● Specified Path Coverage
– Given a number k, test k paths
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Compromises?

● Edge Pair Coverage
– Each path of length <= 2 is tested.

● Specified Path Coverage
– Given a number k, test k paths

A

CB

D

FE

G

H

JI

K

... ...B

CD

A

What do these look like?

Are they good?
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● What criteria do you use when testing loops?
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Coping With Loops

● What criteria do you use when testing loops?
● Simple Paths

– A path between nodes is simple if no node appears more than once. 
(Except maybe the first and last)
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BDAB
ABDAC
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Coping With Loops

● What criteria do you use when testing loops?
● Simple Paths

– A path between nodes is simple if no node appears more than once. 
(Except maybe the first and last)

– Captures the acyclic behaviors of a program

A

B C

D

AB
CD
BDAB
ABDAC
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Coping With Loops

● What criteria do you use when testing loops?
● Simple Paths

– A path between nodes is simple if no node appears more than once. 
(Except maybe the first and last)

– Captures the acyclic behaviors of a program

How many may there be?A

B C

D
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Coping With Loops

● What criteria do you use when testing loops?
● Simple Paths

– A path between nodes is simple if no node appears more than once. 
(Except maybe the first and last)

– Captures the acyclic behaviors of a program
● Prime Paths

– A simple path that is not a subpath of any other simple path
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Coping With Loops

● What criteria do you use when testing loops?
● Simple Paths

– A path between nodes is simple if no node appears more than once. 
(Except maybe the first and last)

– Captures the acyclic behaviors of a program
● Prime Paths

– A simple path that is not a subpath of any other simple path
A

B C

D

What does this provide?
What do they look like?
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Coping With Loops

● Prime Path Coverage
– Cover all prime paths
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● Prime Path Coverage
– Cover all prime paths
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Example from Ammann & Offutt 
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Coping With Loops

● Prime Path Coverage
– Cover all prime paths
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Example from Ammann & Offutt 

What are the prime paths?

How many simple paths?
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Coping With Loops

● Prime Path Coverage
– Cover all prime paths

A

G

B

C

ED

F

Example from Ammann & Offutt 

What are the prime paths?

How many simple paths?

Can you intuitively explain 
what prime paths capture?
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Coping With Loops

● Prime Path Coverage
– Cover all prime paths

Are these tests good or bad?
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Coping With Loops

● Prime Path Coverage
– Cover all prime paths

Are these tests good or bad?

Do they address all of the 
problems with path coverage?
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Coping With Loops

● Prime Path Coverage
– Cover all prime paths

Are these tests good or bad?

Do they address all of the 
problems with path coverage?

Can you think of things 
they miss?
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Turning Them Into Tests

● Reconsider
A

G

B

C

ED

F

Is this path prime?

Is it still useful?

One test may cover multiple prime paths!
Requirements ≠ Tests
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Remember that graphs are everywhere
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Remember that graphs are everywhere

● Protocols and lifecycles

[developer.apple.com][

[developer.android.com]

https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/Hotspot_Network_Subsystem_Guide/Contents/AuthStateMachine.html
https://developer.android.com/guide/components/activities/activity-lifecycle
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Remember that graphs are everywhere

● Protocols and lifecycles
● Dependencies between components

[www.jetbrains.com]

https://www.jetbrains.com/help/idea/project-module-dependencies-diagram.html#view_module_diagram
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Remember that graphs are everywhere

● Protocols and lifecycles
● Dependencies between components
● Callgraphs

[www.androguard.com]

https://androguard.readthedocs.io/en/latest/tools/androcg.html
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Remember that graphs are everywhere

● Protocols and lifecycles
● Dependencies between components
● Callgraphs
● (Micro)Services and distributed systems

[Beschastnikh et al.]

https://people.cs.umass.edu/~brun/pubs/pubs/Beschastnikh20tosem.pdf
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Summary

● Graph coverage is a common basis for measuring test suite adequacy
– Branch coverage is the most common “cost-effective” approach
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Summary

● Graph coverage is a common basis for measuring test suite adequacy
– Branch coverage is the most common “cost-effective” approach

● Path coverage criteria can provide deeper insight
– Subtle logic interactions
– Subtle loop behaviors
– But managing costs can require care

● Graphs. Are. Everywhere.
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