
CMPT 473
Software Testing, Reliability and Security

Nick Sumner

Graph Coverage

2

Recall: Coverage/Adequacy

● Can't look at all possible inputs.
● Need to determine if a test suite covers/is adequate for our quality

objectives.
● So far: Input & Requirements based

3

Recall: Coverage/Adequacy

● Can't look at all possible inputs.
● Need to determine if a test suite covers/is adequate for our quality

objectives.
● So far: Input & Requirements based

void sortEfficiently(List list) {
 if (list.size() < THRESHOLD) {
 sort1(list);
 } else {
 sort2(list);
 }
}

Efficiently sort a provided list in under X seconds

4

Recall: Coverage/Adequacy

● Can't look at all possible inputs.
● Need to determine if a test suite covers/is adequate for our quality

objectives.
● So far: Input & Requirements based

void sortEfficiently(List list) {
 if (list.size() < THRESHOLD) {
 sort1(list);
 } else {
 sort2(list);
 }
}

Efficiently sort a provided list in under X seconds

How well can input based
techniques test this?

5

Recall: Coverage/Adequacy

● Can't look at all possible inputs.
● Need to determine if a test suite covers/is adequate for our quality

objectives.
● So far: Input & Requirements based

void sortEfficiently(List list) {
 if (list.size() < THRESHOLD) {
 sort1(list);
 } else {
 sort2(list);
 }
}

How might we do better?

Efficiently sort a provided list in under X seconds

How well can input based
techniques test this?

6

White Box / Black Blox

● Considering only the requirements or input is a black box approach
– Treats the program like an opaque box
– No deep knowledge of the program's structure

7

White Box / Black Blox

● Considering only the requirements or input is a black box approach
– Treats the program like an opaque box
– No deep knowledge of the program's structure

● Techniques that use artifacts of the program structure are white box
approaches
– They can 'see into' the program's implementation

8

White Box Testing

● What is a simple approach that solves our problem here?

void sortEfficiently(List list) {
 if (list.size() < THRESHOLD) {
 sort1(list);
 } else {
 sort2(list);
 }
}

9

White Box Testing

● What is a simple approach that solves our problem here?
● Statement Coverage

– How many of the statements did the suite test? (%)

void sortEfficiently(List list) {
 if (list.size() < THRESHOLD) {
 sort1(list);
 } else {
 sort2(list);
 }
}

10

White Box Testing

● What is a simple approach that solves our problem here?
● Statement Coverage

– How many of the statements did the suite test? (%)
● Branch Coverage

– How many of the condition outcomes were tested? (%)

void sortEfficiently(List list) {
 if (list.size() < THRESHOLD) {
 sort1(list);
 } else {
 sort2(list);
 }
}

11

White Box Testing

● In this course, we'll mostly look at graph coverage based techniques
– Most commonly used metrics in the real world

12

White Box Testing

● In this course, we'll mostly look at graph coverage based techniques
– Most commonly used metrics in the real world
– Most concepts can be modeled through graphs

e.g. programs, protocols, use patterns, designs, ...

13

White Box Testing

● In this course, we'll mostly look at graph coverage based techniques
– Most commonly used metrics in the real world
– Most concepts can be modeled through graphs

e.g. programs, protocols, use patterns, designs, ...

So a bit of review...

14

Graphs

● What is a graph G?

15

Graphs

● What is a graph G?
– A set N of nodes

B A

D
EC

16

Graphs

● What is a graph G?
– A set N of nodes
– A set E of edges B A

D
EC

17

Graphs

● What is a graph G?
– A set N of nodes
– A set E of edges

● When edges are directed from one node to
another, the graph is a directed graph

B A

D
EC

18

Graphs

● What is a graph G?
– A set N of nodes
– A set E of edges

● When edges are directed from one node to
another, the graph is a directed graph

● A path is a list of pairwise connected nodes

B A

D
EC

19

Graphs

● What is a graph G?
– A set N of nodes
– A set E of edges

● When edges are directed from one node to
another, the graph is a directed graph

● A path is a list of pairwise connected nodes

B A

D
EC

ABCDE

20

Graphs

● What is a graph G?
– A set N of nodes
– A set E of edges

● When edges are directed from one node to
another, the graph is a directed graph

● A path is a list of pairwise connected nodes

B A

D
EC

ABCDE
ABDE
AE
BCDE
BD

21

Control Flow Graphs (CFGs)

● Programs can be modeled as graphs
– Used extensively in compilers
– Also used in testing!

22

Control Flow Graphs (CFGs)

● Programs can be modeled as graphs
– Used extensively in compilers
– Also used in testing!

● Control Flow Graphs

23

Control Flow Graphs (CFGs)

● Programs can be modeled as graphs
– Used extensively in compilers
– Also used in testing!

● Control Flow Graphs
– Nodes comprise the code of a program

if a > b

x++

x += a x += a

x += 2

24

Control Flow Graphs (CFGs)

● Programs can be modeled as graphs
– Used extensively in compilers
– Also used in testing!

● Control Flow Graphs
– Nodes comprise the code of a program
– Edges show the paths that an execution

may take through a program

if a > b

x++

x += a x += a

x += 2

25

Control Flow Graphs
Example:

void
sortEfficiently(List list) {
 if (list.size() < THRESHOLD) {
 sort1(list);
 } else {
 sort2(list);
 }
}

if (list.size() < THRESHOLD)

sort1(list); sort2(list);

return;

26

Control Flow Graphs
Example:

void
sortEfficiently(List list) {
 if (list.size() < THRESHOLD) {
 sort1(list);
 } else {
 sort2(list);
 }
}

if (list.size() < THRESHOLD)

sort1(list); sort2(list);

return;

27

Control Flow Graphs
Example:

void
sortEfficiently(List list) {
 if (list.size() < THRESHOLD) {
 sort1(list);
 } else {
 sort2(list);
 }
}

if (list.size() < THRESHOLD)

sort1(list); sort2(list);

return;

size < THRESHOLD size >= THRESHOLD

28

Control Flow Graphs
Example:

void
sortEfficiently(List list) {
 if (list.size() < THRESHOLD) {
 sort1(list);
 } else {
 sort2(list);
 }
}

if (list.size() < THRESHOLD)

sort1(list); sort2(list);

return;

size < THRESHOLD size >= THRESHOLD

29

● Many types of nodes

Control Flow Graphs

if (list.size() < THRESHOLD)

sort1(list); sort2(list);

print(list);

list = ...

return;

size < THRESHOLD size >= THRESHOLD

30

● Many types of nodes

Control Flow Graphs

if (list.size() < THRESHOLD)

sort1(list); sort2(list);

print(list);

list = ...

return;

size < THRESHOLD size >= THRESHOLD

entry node
0 incoming nodes

31

● Many types of nodes

Control Flow Graphs

if (list.size() < THRESHOLD)

sort1(list); sort2(list);

print(list);

list = ...

return;

size < THRESHOLD size >= THRESHOLD

entry node

exit node

0 incoming nodes

0 outgoing nodes

32

● Many types of nodes

Control Flow Graphs

if (list.size() < THRESHOLD)

sort1(list); sort2(list);

print(list);

list = ...

return;

size < THRESHOLD size >= THRESHOLD

decision / branch node

>1 outgoing nodes

33

● Many types of nodes

Control Flow Graphs

if (list.size() < THRESHOLD)

sort1(list); sort2(list);

print(list);

list = ...

return;

size < THRESHOLD size >= THRESHOLD

decision / branch node

join node

>1 outgoing nodes

>1 incoming nodes

34

● Straight line code is grouped into basic blocks

Control Flow Graphs

list = …
if (list.size() < THRESHOLD)

sort1(list); sort2(list);

print(list);
return;

No jumps in or out

35

● Many patterns arise from common constructs

Control Flow Graphs

q = 0;
r = x;
while r >= y {
 r = r - y;
 q = q + 1;
}

36

● Many patterns arise from common constructs

Control Flow Graphs

q = 0;
r = x;
while r >= y {
 r = r - y;
 q = q + 1;
}

for (i = 0; i < n; i++) {
 foo(i);
}

37

● Many patterns arise from common constructs

Control Flow Graphs

q = 0;
r = x;
while r >= y {
 r = r - y;
 q = q + 1;
}

for (i = 0; i < n; i++) {
 foo(i);
}

switch (x) {
 case a: foo(x); break;
 case b: bar(x);
 case c: baz(x); break;
}

38

● Many patterns arise from common constructs

Control Flow Graphs

q = 0;
r = x;
while r >= y {
 r = r - y;
 q = q + 1;
}

for (i = 0; i < n; i++) {
 foo(i);
}

switch (x) {
 case a: foo(x); break;
 case b: bar(x);
 case c: baz(x); break;
}

if (x == 0 || y/x > 1) {
 foo(x, y);
}

39

Control Flow Graphs

x = 0;
while (x < y) {
 y = f (x, y);
 if (y == 0) {
 break;
 } else if (y < 0) {
 y = y*2;
 continue;
 }
 x = x + 1;
}
print (y);

From: Ammann & Offutt

40

Control Flow Graphs

x = 0;
while (x < y) {
 y = f (x, y);
 if (y == 0) {
 break;
 } else if (y < 0) {
 y = y*2;
 continue;
 }
 x = x + 1;
}
print (y);

1
2
3
4

6

7

10

12
From: Ammann & Offutt

41

Control Flow Graphs

x = 0;
while (x < y) {
 y = f (x, y);
 if (y == 0) {
 break;
 } else if (y < 0) {
 y = y*2;
 continue;
 }
 x = x + 1;
}
print (y);

1
2
3
4

6

7

10

12
From: Ammann & Offutt

42

Control Flow Graphs

x = 0;
while (x < y) {
 y = f (x, y);
 if (y == 0) {
 break;
 } else if (y < 0) {
 y = y*2;
 continue;
 }
 x = x + 1;
}
print (y);

1
2
3
4

6

7

10

12
From: Ammann & Offutt

43

Control Flow Graphs

x = 0;
while (x < y) {
 y = f (x, y);
 if (y == 0) {
 break;
 } else if (y < 0) {
 y = y*2;
 continue;
 }
 x = x + 1;
}
print (y);

1
2
3
4

6

7

10

12
From: Ammann & Offutt

44

Control Flow Graphs

x = 0;
while (x < y) {
 y = f (x, y);
 if (y == 0) {
 break;
 } else if (y < 0) {
 y = y*2;
 continue;
 }
 x = x + 1;
}
print (y);

1
2
3
4

6

7

10

12
From: Ammann & Offutt

45

Control Flow Graphs

x = 0;
while (x < y) {
 y = f (x, y);
 if (y == 0) {
 break;
 } else if (y < 0) {
 y = y*2;
 continue;
 }
 x = x + 1;
}
print (y);

1
2
3
4

6

7

10

12
From: Ammann & Offutt

46

Control Flow Graphs

x = 0;
while (x < y) {
 y = f (x, y);
 if (y == 0) {
 break;
 } else if (y < 0) {
 y = y*2;
 continue;
 }
 x = x + 1;
}
print (y);

1
2
3
4

6

7

10

12
From: Ammann & Offutt

47

Control Flow Graphs

x = 0;
while (x < y) {
 y = f (x, y);
 if (y == 0) {
 break;
 } else if (y < 0) {
 y = y*2;
 continue;
 }
 x = x + 1;
}
print (y);

1
2
3
4

6

7

10

12
From: Ammann & Offutt

48

CFG Coverage

● Statement Coverage → Node Coverage
– Try to cover all reachable basic blocks

49

CFG Coverage

● Statement Coverage → Node Coverage
– Try to cover all reachable basic blocks Thinking in terms of node coverage

can be more efficient. Why?

50

CFG Coverage

● Statement Coverage → Node Coverage
– Try to cover all reachable basic blocks

● Branch Coverage → Edge Coverage
– Try to cover all reachable paths of length ≤ 1

51

CFG Coverage

● Statement Coverage → Node Coverage
– Try to cover all reachable basic blocks

● Branch Coverage → Edge Coverage
– Try to cover all reachable paths of length ≤ 1

How do node & edge coverage
compare? Why?

52

Pragmatic Concerns

● The goal is full coverage (of whatever criteria)

53

Pragmatic Concerns

● The goal is full coverage (of whatever criteria)
● We must consider reachability

54

Pragmatic Concerns

● The goal is full coverage (of whatever criteria)
● We must consider reachability

– Syntactic Reachability
● Based on the structure of the code

How could this happen?

55

Pragmatic Concerns

● The goal is full coverage (of whatever criteria)
● We must consider reachability

– Syntactic Reachability
● Based on the structure of the code

ENTER

...

return;

print(“Got Here”)

return;

How could this happen?

56

Pragmatic Concerns

● The goal is full coverage (of whatever criteria)
● We must consider reachability

– Syntactic Reachability
● Based on the structure of the code

– Semantic Reachability
● Based on the meaning of the code

57

Pragmatic Concerns

● The goal is full coverage (of whatever criteria)
● We must consider reachability

– Syntactic Reachability
● Based on the structure of the code

– Semantic Reachability
● Based on the meaning of the code

condition = false;
if (condition)

... ...

return;

58

Pragmatic Concerns

● The goal is full coverage (of whatever criteria)
● We must consider reachability

– Syntactic Reachability
● Based on the structure of the code

– Semantic Reachability
● Based on the meaning of the code

condition = false;
if (condition)

... ...

return;

This can be
undecidable!

59

Pragmatic Concerns

● The goal is full coverage (of whatever criteria)
● We must consider reachability

– Syntactic Reachability
● Based on the structure of the code

– Semantic Reachability
● Based on the meaning of the code

● So what do you do in practice?
– No, really. What have you done in practice?

60

Pragmatic Concerns

● The goal is full coverage (of whatever criteria)
● We must consider reachability

– Syntactic Reachability
● Based on the structure of the code

– Semantic Reachability
● Based on the meaning of the code

● So what do you do in practice?
– No, really. What have you done in practice?
– Relative degrees of coverage matter (40%? 80%?)

61

Pragmatic Concerns

● Many branch coverage tools work only at if granularity

62

Pragmatic Concerns

● Many branch coverage tools work only at if granularity

def misleading(x: int, y: int) -> bool:
 if x > 0 or y > 0:
 return x + y > 0
 return x * y < 20

def test_misleading():
 assert not misleading(0,0)
 assert misleading(1,0)

pytest-cov → 100% branch coverage

63

Pragmatic Concerns

● Many branch coverage tools work only at if granularity

def misleading(x: int, y: int) -> bool:
 if x > 0 or y > 0:
 return x + y > 0
 return x * y < 20

def test_misleading():
 assert not misleading(0,0)
 assert misleading(1,0)

function misleading(x, y) {
 if (x > 0 || y > 0) {
 return x + y > 0;
 }
 return x * y < 20;
}

test('misleading branch coverage', () => {
 expect(misleading(0, 0)).toBe(true);
 expect(misleading(1, 0)).toBe(true);
});

jest → 100% branch coverage

64

Pragmatic Concerns

● Many branch coverage tools work only at if granularity
– “Condition coverage” can complement this but is also misleading (more later)

65

Pragmatic Concerns

● Many branch coverage tools work only at if granularity
– “Condition coverage” can complement this but is also misleading

● Other tools consider short-circuits to be branches
– Common in native languages, Java, …
– Recommended practice by the FAA….

https://www.tc.faa.gov/its/worldpac/techrpt/ar0654.pdf

66

Pragmatic Concerns

● Many branch coverage tools work only at if granularity
– “Condition coverage” can complement this but is also misleading

● Stronger graph coverage criteria can help

67

CFG Coverage

● The path taken by each test can matter

68

CFG Coverage

● The path taken by each test can matter
if (condition 1)

... x = 0;

if (condition2)

... z = y/x;

return;

69

CFG Coverage

● The path taken by each test can matter
if (condition 1)

... x = 0;

if (condition2)

... z = y/x;

return;

70

CFG Coverage

● The path taken by each test can matter
if (condition 1)

... x = 0;

if (condition2)

... z = y/x;

return;

Full edge coverage
& no bugs found

71

CFG Coverage

● The path taken by each test can matter
if (condition 1)

... x = 0;

if (condition2)

... z = y/x;

return;

How can we make sure
to find the bug?

72

CFG Coverage

● The path taken by each test can matter
if (condition 1)

... x = 0;

if (condition2)

... z = y/x;

return;

How can we make sure
to find the bug?

73

CFG Coverage

● The path taken by each test can matter
if (condition 1)

... x = 0;

if (condition2)

... z = y/x;

return;

How can we make sure
to find the bug?

74

CFG Coverage

● The path taken by each test can matter
if (condition 1)

... x = 0;

if (condition2)

... z = y/x;

return;

Testing all paths
exposes the bug.

How can we make sure
to find the bug?

75

Path Coverage

● Complete Path Coverage
– Test all paths through the graph

76

Path Coverage

● Complete Path Coverage
– Test all paths through the graph

Is this reasonable?
Why?

77

Path Coverage

● Complete Path Coverage
– Test all paths through the graph

B

CD

A

Infeasibility

Is this reasonable?
Why?

78

Path Coverage

● Complete Path Coverage
– Test all paths through the graph

B

CD

A

Infeasibility

A

CB

D

FE

G

H

JI

K

... ... Intractability

Is this reasonable?
Why?

79

Path Coverage

● Complete Path Coverage
– Test all paths through the graph

B

CD

A

Infeasibility

A

CB

D

FE

G

H

JI

K

... ... Intractability

Is this reasonable?
Why?

How many paths?
How does this relate to input

based approaches?

80

Compromises?
A

CB

D

FE

G

H

JI

K

... ...B

CD

A

What could we do instead?
(How did we handle the input based approaches?)

81

Compromises?
A

CB

D

FE

G

H

JI

K

... ...B

CD

A

82

Compromises?

● Edge Pair Coverage
– Each path of length <= 2 is tested.

A

CB

D

FE

G

H

JI

K

... ...B

CD

A

83

Compromises?

● Edge Pair Coverage
– Each path of length <= 2 is tested.

● Specified Path Coverage
– Given a number k, test k paths

A

CB

D

FE

G

H

JI

K

... ...B

CD

A

84

Compromises?

● Edge Pair Coverage
– Each path of length <= 2 is tested.

● Specified Path Coverage
– Given a number k, test k paths

A

CB

D

FE

G

H

JI

K

... ...B

CD

A

What do these look like?

Are they good?

85

Coping With Loops

● What criteria do you use when testing loops?

86

Coping With Loops

● What criteria do you use when testing loops?
● Simple Paths

– A path between nodes is simple if no node appears more than once.
(Except maybe the first and last)

A

B C

D

AB
CD
BDAB
ABDAC

87

Coping With Loops

● What criteria do you use when testing loops?
● Simple Paths

– A path between nodes is simple if no node appears more than once.
(Except maybe the first and last)

– Captures the acyclic behaviors of a program

A

B C

D

AB
CD
BDAB
ABDAC

88

Coping With Loops

● What criteria do you use when testing loops?
● Simple Paths

– A path between nodes is simple if no node appears more than once.
(Except maybe the first and last)

– Captures the acyclic behaviors of a program

How many may there be?A

B C

D

89

Coping With Loops

● What criteria do you use when testing loops?
● Simple Paths

– A path between nodes is simple if no node appears more than once.
(Except maybe the first and last)

– Captures the acyclic behaviors of a program
● Prime Paths

– A simple path that is not a subpath of any other simple path

90

Coping With Loops

● What criteria do you use when testing loops?
● Simple Paths

– A path between nodes is simple if no node appears more than once.
(Except maybe the first and last)

– Captures the acyclic behaviors of a program
● Prime Paths

– A simple path that is not a subpath of any other simple path
A

B C

D

What does this provide?
What do they look like?

91

Coping With Loops

● Prime Path Coverage
– Cover all prime paths

92

Coping With Loops

● Prime Path Coverage
– Cover all prime paths

A

G

B

C

ED

F

Example from Ammann & Offutt

93

Coping With Loops

● Prime Path Coverage
– Cover all prime paths

A

G

B

C

ED

F

Example from Ammann & Offutt

What are the prime paths?

94

Coping With Loops

● Prime Path Coverage
– Cover all prime paths

A

G

B

C

ED

F

Example from Ammann & Offutt

What are the prime paths?

How many simple paths?

95

Coping With Loops

● Prime Path Coverage
– Cover all prime paths

A

G

B

C

ED

F

Example from Ammann & Offutt

What are the prime paths?

How many simple paths?

Can you intuitively explain
what prime paths capture?

96

Coping With Loops

● Prime Path Coverage
– Cover all prime paths

Are these tests good or bad?

97

Coping With Loops

● Prime Path Coverage
– Cover all prime paths

Are these tests good or bad?

Do they address all of the
problems with path coverage?

98

Coping With Loops

● Prime Path Coverage
– Cover all prime paths

Are these tests good or bad?

Do they address all of the
problems with path coverage?

Can you think of things
they miss?

99

Turning Them Into Tests

● Reconsider
A

G

B

C

ED

F

100

Turning Them Into Tests

● Reconsider
A

G

B

C

ED

F

Is this path prime?

101

Turning Them Into Tests

● Reconsider
A

G

B

C

ED

F

Is this path prime?

Is it still useful?

102

Turning Them Into Tests

● Reconsider
A

G

B

C

ED

F

Is this path prime?

Is it still useful?

One test may cover multiple prime paths!
Requirements ≠ Tests

103

Remember that graphs are everywhere

104

Remember that graphs are everywhere

● Protocols and lifecycles

[developer.apple.com][

[developer.android.com]

https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/Hotspot_Network_Subsystem_Guide/Contents/AuthStateMachine.html
https://developer.android.com/guide/components/activities/activity-lifecycle

105

Remember that graphs are everywhere

● Protocols and lifecycles
● Dependencies between components

[www.jetbrains.com]

https://www.jetbrains.com/help/idea/project-module-dependencies-diagram.html#view_module_diagram

106

Remember that graphs are everywhere

● Protocols and lifecycles
● Dependencies between components
● Callgraphs

[www.androguard.com]

https://androguard.readthedocs.io/en/latest/tools/androcg.html

107

Remember that graphs are everywhere

● Protocols and lifecycles
● Dependencies between components
● Callgraphs
● (Micro)Services and distributed systems

[Beschastnikh et al.]

https://people.cs.umass.edu/~brun/pubs/pubs/Beschastnikh20tosem.pdf

108

Summary

● Graph coverage is a common basis for measuring test suite adequacy
– Branch coverage is the most common “cost-effective” approach

109

Summary

● Graph coverage is a common basis for measuring test suite adequacy
– Branch coverage is the most common “cost-effective” approach

● Path coverage criteria can provide deeper insight

110

Summary

● Graph coverage is a common basis for measuring test suite adequacy
– Branch coverage is the most common “cost-effective” approach

● Path coverage criteria can provide deeper insight
– Subtle logic interactions
– Subtle loop behaviors

111

Summary

● Graph coverage is a common basis for measuring test suite adequacy
– Branch coverage is the most common “cost-effective” approach

● Path coverage criteria can provide deeper insight
– Subtle logic interactions
– Subtle loop behaviors
– But managing costs can require care

112

Summary

● Graph coverage is a common basis for measuring test suite adequacy
– Branch coverage is the most common “cost-effective” approach

● Path coverage criteria can provide deeper insight
– Subtle logic interactions
– Subtle loop behaviors
– But managing costs can require care

● Graphs. Are. Everywhere.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112

