CMPT 473 Software Quality Assurance

Data Flow Criteria

Nick Sumner

- Programs manipulate data
 - Focus on testing the ways that data moves/flows

- Programs manipulate data
 - Focus on testing the ways that data moves/flows

Definition (Def)

- Programs manipulate data
 - Focus on testing the ways that data moves/flows

- Programs manipulate data
 - Focus on testing the ways that data moves/flows

- Programs manipulate data
 - Focus on testing the ways that data moves/flows
- New goal?
 - Try to test all of the ways that a Def may flow to its varied uses

- Programs manipulate data
 - Focus on testing the ways that data moves/flows
- New goal?
 - Try to test all of the ways that a Def may flow to its varied uses

- Programs manipulate data
 - Focus on testing the ways that data moves/flows
- New goal?
 - Try to test all of the ways that a Def may flow to its varied uses

What are the defs?

- Programs manipulate data
 - Focus on testing the ways that data moves/flows
- New goal?
 - Try to test all of the ways that a Def may flow to its varied uses

What are the defs?

- Programs manipulate data
 - Focus on testing the ways that data moves/flows
- New goal?
 - Try to test all of the ways that a Def may flow to its varied uses

What are the defs?

What may be interesting to test? 10

What are the def-use pairs?

What are the def-use pairs?

What is interesting to test?

What are the use pairs?

What is interesting to test?

• The def at 1 is killed by the def at 3,

What are the use pairs?

What is interesting to test?

• The def at 1 is killed by the def at 3, so it does not reach 4

- All Defs Coverage
 - Every Def is covered by at least one test of a use

- All Defs Coverage
 - Every Def is covered by at least one test of a use
- All Uses Coverage
 - Every Use is covered through at least one def

- All Defs Coverage
 - Every Def is covered by at least one test of a use
- All Uses Coverage
 - Every Use is covered through at least one def
- All Def-Use Pairs Coverage
 - All def-use pairs are covered

- All Defs Coverage
 - Every Def is covered by at least one test of a use
- All Uses Coverage
 - Every Use is covered through at least one def
- All Def-Use Pairs Coverage
 - All def-use pairs are covered
- All Def-Use Paths Coverage
 - All simple paths between def-use pairs are covered

- All Defs Coverage
 - Every Def is covered by at least one test of a use
- All Uses Coverage
 - Every Use is covered through at least one def
- All Def-Use Pairs Coverage
 - All def-use pairs are covered
- All Def-Use Paths Coverage
 - All simple paths between def-use pairs are covered

How do these compare to edge coverage?

- All Defs Coverage
 - Every Def is covered by at least one test of a use
- All Uses Coverage
 - Every Use is covered through at least one def
- All Def-Use Pairs Coverage
 - All def-use pairs are covered
- All Def-Use Paths Coverage
 - All simple paths between def-use pairs are covered

How do these compare to edge coverage?

How do these compare to prime paths?

A Brief Example

What should be tested for the different criteria?

Another Example

What should be tested for the different criteria?

 Where else might we see graphs when thinking about program design?

- Where else might we see graphs when thinking about program design?
 - call graphs

- Where else might we see graphs when thinking about program design?
 - call graphs

How does graph coverage translate?

- Where else might we see graphs when thinking about program design?
 - call graphs

How does graph coverage translate?

How might it be useful?

- Where else might we see graphs when thinking about program design?
 - call graphs
 - inheritance

- Where else might we see graphs when thinking about program design?
 - call graphs
 - inheritance

How does graph coverage translate?

- Where else might we see graphs when thinking about program design?
 - call graphs
 - inheritance

How does graph coverage translate?

How might it be useful?

- Where else might we see graphs when thinking about program design?
 - call graphs
 - inheritance
 - finite state machines

- Where else might we see graphs when thinking about program design?
 - call graphs
 - inheritance
 - finite state machines

How does graph coverage translate?

- Where else might we see graphs when thinking about program design?
 - call graphs
 - inheritance
 - finite state machines

How does graph coverage translate?

How might it be useful?

- Where else might we see graphs when thinking about program design?
 - call graphs
 - inheritance
 - finite state machines

– ...

Graph coverage is a powerful & general concept. You can apply it to many varied features of programs.

No One Clear Winner

 Is there a case where input space partitioning is weaker than CFG coverage?

No One Clear Winner

- Is there a case where input space partitioning is weaker than CFG coverage?
- Is there a case where CFG coverage is weaker than input space partitioning?

No One Clear Winner

- Is there a case where input space partitioning is weaker than CFG coverage?
- Is there a case where CFG coverage is weaker than input space partitioning?
- Using just one approach may not be enough
 - But maybe there are other ways to evaluate adequacy...