
CMPT 473
Software Testing, Reliability and Security

Nick Sumner

Input Space Partitioning

Recall

● Testing involves running software and comparing observed behavior
against expected behavior
– Select an input, look at the output

Recall

● Testing involves running software and comparing observed behavior
against expected behavior
– Select an input, look at the output

● Problem: The input domain is infinite or pragmatically infinite.

Recall

● Testing involves running software and comparing observed behavior
against expected behavior
– Select an input, look at the output

● Problem: The input domain is infinite or pragmatically infinite.
● Test suites select a finite subset of inputs that help measure quality

Recall

● Testing involves running software and comparing observed behavior
against expected behavior
– Select an input, look at the output

● Problem: The input domain is infinite or pragmatically infinite.
● Test suites select a finite subset of inputs that help measure quality

We can take a direct approach:
Focus on the input!

Input Space Partitioning

● Input Space Partitioning (AKA Partition Testing)
– Divide (partition) the set of possible inputs into equivalence classes
– Test one input from each class

Input Space Partitioning

● Input Space Partitioning (AKA Partition Testing)
– Divide (partition) the set of possible inputs into equivalence classes
– Test one input from each class What does this show?

What does it not show?

Input Space Partitioning

● Input Space Partitioning (AKA Partition Testing)
– Divide (partition) the set of possible inputs into equivalence classes
– Test one input from each class

e.g. abs(x)
 Input Domain: …, -3, -2, -1, 0, 1, 2, 3, ...

How many tests if done exhaustively?

Input Space Partitioning

● Input Space Partitioning (AKA Partition Testing)
– Divide (partition) the set of possible inputs into equivalence classes
– Test one input from each class

e.g. abs(x)
 Input Domain:
 Partitions:

…, -3, -2, -1, 0, 1, 2, 3, ...
…, -3, -2, -1, 0, 1, 2,
3, ...

Input Space Partitioning

● Input Space Partitioning (AKA Partition Testing)
– Divide (partition) the set of possible inputs into equivalence classes
– Test one input from each class

e.g. abs(x)
 Input Domain:
 Partitions:

…, -3, -2, -1, 0, 1, 2, 3, ...
…, -3, -2, -1, 0, 1, 2,
3, ...

What might reasonable partitions be?

Input Space Partitioning

● Input Space Partitioning (AKA Partition Testing)
– Divide (partition) the set of possible inputs into equivalence classes
– Test one input from each class

e.g. abs(x)
 Input Domain:
 Partitions:

…, -3, -2, -1, 0, 1, 2, 3, ...
…, -3, -2, -1, 0, 1, 2,
3, ...

What might reasonable partitions be?

Input Space Partitioning

● Input Space Partitioning (AKA Partition Testing)
– Divide (partition) the set of possible inputs into equivalence classes
– Test one input from each class

e.g. abs(x)
 Input Domain:
 Partitions:

…, -3, -2, -1, 0, 1, 2, 3, ...
…, -3, -2, -1, 0, 1, 2,
3, ...

What might reasonable partitions be?

How many tests for the partitions?

Input Space Partitioning

1) Identify the component

abs(x)

Input Space Partitioning

1) Identify the component
● Whole program
● Module
● Class
● Function

abs(x)

Input Space Partitioning

1) Identify the component
2) Identify the inputs / parameters

abs(x)

x ∈ℤ

Input Space Partitioning

1) Identify the component
2) Identify the inputs / parameters

● Function/method parameters
● Object state
● Global variables
● File contents
● User provided inputs
● …

abs(x)

x ∈ℤ

Input Space Partitioning

1) Identify the component
2) Identify the inputs / parameters
3) Develop an input domain model for input characteristics*

abs(x)

x ∈ℤ
x < 0
x = 0
x > 0

A way of partitioning the input space

Input Space Partitioning

1) Identify the component
2) Identify the inputs / parameters
3) Develop an input domain model for input characteristics
4) Refine combinations with constraints*

abs(x)

x ∈ℤ
x < 0
x = 0
x > 0

Input Space Partitioning

1) Identify the component
2) Identify the inputs / parameters
3) Develop an input domain model for input characteristics
4) Refine combinations with constraints
5) Generate combinations / test frames*

abs(x)

x ∈ℤ
x < 0
x = 0
x > 0

frame 1: x < 0
frame 2: x = 0
frame 3: x > 0

Input Space Partitioning

1) Identify the component
2) Identify the inputs / parameters
3) Develop an input domain model for input characteristics
4) Refine combinations with constraints
5) Generate combinations / test frames
6) Select concrete inputs*

abs(x)

x ∈ℤ
x < 0
x = 0
x > 0

frame 1: x < 0
frame 2: x = 0
frame 3: x > 0

test 1: abs(-3) = 3
test 2: abs(0) = 0
test 3: abs(7) = 7

Input Space Partitioning

1) Identify the component
2) Identify the inputs / parameters
3) Develop an input domain model for input characteristics
4) Refine combinations with constraints
5) Generate combinations / test frames
6) Select concrete inputs

abs(x)

x ∈ℤ
x < 0
x = 0
x > 0

frame 1: x < 0
frame 2: x = 0
frame 3: x > 0

test 1: abs(-3) = 3
test 2: abs(0) = 0
test 3: abs(7) = 7

* some parts are more subtle than they appear

Input Domain Modeling

● Partition a domain D on characteristics

A B

C
D =

Input Domain Modeling

● Partition a domain D on characteristics
● Must satisfy 2 criteria:

– Disjoint: Pi ∩ Pj = ∅
– Cover: A ∪ B ∪ C = D

A B

C
D =

Input Domain Modeling

● Partition a domain D on characteristics
● Must satisfy 2 criteria:

– Disjoint: Pi ∩ Pj = ∅
– Cover: A ∪ B ∪ C = D

A B

C
D =

What do these criteria intuitively provide?

Input Domain Modeling

● Characteristics of the input space drive the process

Input Domain Modeling

● Characteristics of the input space drive the process
– Can come from many sources:

requirements, types, formal specifications, …

Input Domain Modeling

● Characteristics of the input space drive the process
– Can come from many sources:

requirements, types, formal specifications, …
– May be boolean or non-boolean

Input Domain Modeling

● Characteristics of the input space drive the process
– Can come from many sources:

requirements, types, formal specifications, …
– May be boolean or non-boolean

List s is sorted ascending (boolean)

Input Domain Modeling

● Characteristics of the input space drive the process
– Can come from many sources:

requirements, types, formal specifications, …
– May be boolean or non-boolean

List s is sorted ascending (boolean)

Sortedness of s (non-boolean)
● sorted ascending
● sorted descending
● unsorted

?

Input Domain Modeling

● Characteristics of the input space drive the process
– Can come from many sources:

requirements, types, formal specifications, …
– May be boolean or non-boolean

List s is sorted ascending (boolean)

Sortedness of s (non-boolean)
● |s| < 2
● ∃k. x s, x = k∀ ∈ (|s| ≥ 2)
● sorted ascending (|s| ≥ 2, k...∄)
● sorted descending (|s| ≥ 2, k...∄)
● unsorted (|s| ≥ 2, k...∄)

Input Domain Modeling

● Characteristics of the input space drive the process
– Can come from many sources:

requirements, types, formal specifications, …
– May be boolean or non-boolean

List s is sorted ascending (boolean)

Sortedness of s (non-boolean)
● |s| < 2
● ∃k. x s, x = k∀ ∈ (|s| ≥ 2)
● sorted ascending (|s| ≥ 2, k...)∄
● sorted descending (|s| ≥ 2, k...)∄
● unsorted (|s| ≥ 2, k...)∄

Reference x is null (boolean)

Input Domain Modeling

● Characteristics of the input space drive the process
– Can come from many sources:

requirements, types, formal specifications, …
– May be boolean or non-boolean

List s is sorted ascending (boolean)
Reference x is null (boolean)

Size of string s (non-boolean)
● 0
● 1
● 2
● 2 < |s| < 1024
● |s| ≥ 1024

Sortedness of s (non-boolean)
● |s| < 2
● ∃k. x s, x = k∀ ∈ (|s| ≥ 2)
● sorted ascending (|s| ≥ 2, k...)∄
● sorted descending (|s| ≥ 2, k...)∄
● unsorted (|s| ≥ 2, k...)∄

Input Domain Modeling: Partitioning Practice

● Suppose we have

characteristic: “The kind/subtype of parallelogram”

classifyParallelogram(p1: Parallelogram) -> Kind

Input Domain Modeling: Partitioning Practice

● Suppose we have

characteristic: “The kind/subtype of parallelogram”
– How can we partition based on this characteristic?
– What problems might arise?

classifyParallelogram(p1: Parallelogram) -> Kind

Input Domain Modeling: Partitioning Practice

● Suppose we have

characteristic: “The kind/subtype of parallelogram”
– How can we partition based on this characteristic?
– What problems might arise?

● In class exercise:
Suppose we have

what should partitions be?

classifyParallelogram(p1: Parallelogram) -> Kind

classifyTriangle(s1: int, s2: int, s3: int) -> Kind

Input Domain Modeling – Choosing Characteristics

2 main approaches:

Input Domain Modeling – Choosing Characteristics

2 main approaches:

● Interface based
– Guided directly by identified parameters & domains
– Simple
– Automatable

Input Domain Modeling – Choosing Characteristics

2 main approaches:

● Interface based
– Guided directly by identified parameters & domains
– Simple
– Automatable

● Functionality/Requirements based
– Derived from expected input/output relationship by spec.
– Requires more design & more thought
– May be better (smaller, goal oriented, …)

Input Domain Modeling – Interface Based

● Consider parameters individually
– Examine their types/domains
– Ignore relationships & dependencies

Input Domain Modeling – Interface Based

● Consider parameters individually
– Examine their types/domains
– Ignore relationships & dependencies

classifyTriangle(s1: int, s2: int, s3: int) -> Kind

How does this apply to our
triangle classifier?

Input Domain Modeling – Interface Based

● Consider parameters individually
– Examine their types/domains
– Ignore relationships & dependencies

classifyTriangle(s1: int, s2: int, s3: int) -> Kind

How does this apply to our
triangle classifier?

s1 ∈ℤ
s1 < 0
s1 = 0
s1 > 0

s2 ∈ℤ
s2 < 0
s2 = 0
s2 > 0

s3 ∈ℤ
s3 < 0
s3 = 0
s3 > 0

We will revisit how this is good / bad

Input Domain Modeling – Functionality Based

● Characteristics correspond to behaviors in the requirements
– Includes knowledge from the problem domain
– Accounts for relationships between parameters

Input Domain Modeling – Functionality Based

● Characteristics correspond to behaviors in the requirements
– Includes knowledge from the problem domain
– Accounts for relationships between parameters
– Same parameter may play a role in multiple characteristics

● Need to reason about constraints & conflicts!

Input Domain Modeling – Functionality Based

● Characteristics correspond to behaviors in the requirements
– Includes knowledge from the problem domain
– Accounts for relationships between parameters
– Same parameter may play a role in multiple characteristics

● Need to reason about constraints & conflicts!
classifyTriangle(s1: int, s2: int, s3: int) -> Kind

How does this apply to our
triangle classifier?

Input Domain Modeling – Functionality Based

● Characteristics correspond to behaviors in the requirements
– Includes knowledge from the problem domain
– Accounts for relationships between parameters
– Same parameter may play a role in multiple characteristics

● Need to reason about constraints & conflicts!
classifyTriangle(s1: int, s2: int, s3: int) -> Kind

How does this apply to our
triangle classifier?

Kind
Scalene

Isosceles - Equilateral
Equilateral

Invalid

Input Domain Modeling

Common sources for characteristics:

Input Domain Modeling

Common sources for characteristics:
● Component specifications

– Preconditions
– Postconditions

Input Domain Modeling

Common sources for characteristics:
● Component specifications

– Preconditions
– Postconditions

● Domain knowledge
– Relationships to special values
– Relationships between variables

Input Domain Modeling

Common sources for characteristics:
● Component specifications

– Preconditions
– Postconditions

● Domain knowledge
– Relationships to special values
– Relationships between variables

● Checklists [Langr, Hunt, Thomas]
– Correctness
– Ordering
– Range
– Reference
– Existence
– Cardinality
– Time

https://pragprog.com/titles/utj2/pragmatic-unit-testing-in-java-8-with-junit/

Generating Combinations / Test Frames

● We may have multiple ways / dimensions of partitioning.
● We can plan our tests by creating test frames that identify the

combinations of partitions used in each abstract / planned test.

Generating Combinations / Test Frames

● We may have multiple ways / dimensions of partitioning.
● We can plan our tests by creating test frames that identify the

combinations of partitions used in each abstract / planned test.

classifyTriangle(s1: int, s2: int, s3: int) -> Kind

s1 ∈ℤ
s1 < 0
s1 = 0
s1 > 0

s2 ∈ℤ
s2 < 0
s2 = 0
s2 > 0

s3 ∈ℤ
s3 < 0
s3 = 0
s3 > 0

Generating Combinations / Test Frames

● We may have multiple ways / dimensions of partitioning.
● We can plan our tests by creating test frames that identify the

combinations of partitions used in each abstract / planned test.

classifyTriangle(s1: int, s2: int, s3: int) -> Kind

s1 ∈ℤ
s1 < 0
s1 = 0
s1 > 0

s2 ∈ℤ
s2 < 0
s2 = 0
s2 > 0

s3 ∈ℤ
s3 < 0
s3 = 0
s3 > 0

We need to choose a value for
each side.

Generating Combinations / Test Frames

● We may have multiple ways / dimensions of partitioning.
● We can plan our tests by creating test frames that identify the

combinations of partitions used in each abstract / planned test.

classifyTriangle(s1: int, s2: int, s3: int) -> Kind

s1 ∈ℤ
s1 < 0
s1 = 0
s1 > 0

s2 ∈ℤ
s2 < 0
s2 = 0
s2 > 0

s3 ∈ℤ
s3 < 0
s3 = 0
s3 > 0

Frame 1
S1: s1 < 0
S2: s2 < 0
S3: s3 < 0

Frame 2
S1: s1 = 0
S2: s2 < 0
S3: s3 < 0

Frame 3
S1: s1 < 0
S2: s2 = 0
S3: s3 < 0

Frame 4
S1: s1 < 0
S2: s2 < 0
S3: s3 = 0

Frame 5
S1: s1 > 0
S2: s2 < 0
S3: s3 < 0

Frame 6
S1: s1 < 0
S2: s2 > 0
S3: s3 < 0

Frame ...
S1: ...
S2: ...
S3: ...

Practical Issues: Interface Based

s1 ∈ℤ
s1 < 0
s1 = 0
s1 > 0

s2 ∈ℤ
s2 < 0
s2 = 0
s2 > 0

s3 ∈ℤ
s3 < 0
s3 = 0
s3 > 0

classifyTriangle(s1: int, s2: int, s3: int) -> Kind

How many tests does this create?

Practical Issues: Interface Based

s1 ∈ℤ
s1 < 0
s1 = 0
s1 > 0

s2 ∈ℤ
s2 < 0
s2 = 0
s2 > 0

s3 ∈ℤ
s3 < 0
s3 = 0
s3 > 0

classifyTriangle(s1: int, s2: int, s3: int) -> Kind

How many tests does this create?

What will this test well?
What won't this test well?

Practical Issues: Interface Based

s1 ∈ℤ
s1 < 0
s1 = 0
s1 = 1
s1 > 1

s2 ∈ℤ
s2 < 0
s2 = 0
s2 = 1
s2 > 1

s3 ∈ℤ
s3 < 0
s3 = 0
s3 = 1
s3 > 1

classifyTriangle(s1: int, s2: int, s3: int) -> Kind

{sn > 0} → {sn = 1}, {sn > 1}

Practical Issues: Interface Based

s1 ∈ℤ
s1 < 0
s1 = 0
s1 = 1
s1 > 1

s2 ∈ℤ
s2 < 0
s2 = 0
s2 = 1
s2 > 1

s3 ∈ℤ
s3 < 0
s3 = 0
s3 = 1
s3 > 1

classifyTriangle(s1: int, s2: int, s3: int) -> Kind

How many tests now?

Practical Issues: Interface Based

s1 ∈ℤ
s1 < 0
s1 = 0
s1 = 1
s1 > 1

s2 ∈ℤ
s2 < 0
s2 = 0
s2 = 1
s2 > 1

s3 ∈ℤ
s3 < 0
s3 = 0
s3 = 1
s3 > 1

classifyTriangle(s1: int, s2: int, s3: int) -> Kind

How many tests now? Is it still disjoint? Complete?

Practical Issues: Interface Based

s1 ∈ℤ
s1 < 0
s1 = 0
s1 = 1
s1 > 1

s2 ∈ℤ
s2 < 0
s2 = 0
s2 = 1
s2 > 1

s3 ∈ℤ
s3 < 0
s3 = 0
s3 = 1
s3 > 1

classifyTriangle(s1: int, s2: int, s3: int) -> Kind

How many tests now? Is it still disjoint? Complete?

What does it test well? Not well?

Practical Issues: Functionality Based

classifyTriangle(s1: int, s2: int, s3: int) -> Kind

Kind
Scalene

Isosceles - Equilateral
Equilateral

Invalid

Are there alternatives?

Practical Issues: Functionality Based

classifyTriangle(s1: int, s2: int, s3: int) -> Kind

Kind
Scalene

Isosceles - Equilateral
Equilateral

Invalid
Is equilateral?

True
False

Is isosceles?
True
False

Is scalene?
True
False

× ×

Practical Issues: Functionality Based

classifyTriangle(s1: int, s2: int, s3: int) -> Kind

Kind
Scalene

Isosceles - Equilateral
Equilateral

Invalid
Is equilateral?

True
False

Is isosceles?
True
False

Is scalene?
True
False

× ×

Why might you use it?
Frame 1

Is Eq: False
Is Iso: False
Is Sc: False

Frame 2
Is Eq: True
Is Iso: False
Is Sc: False

Frame ...
Is Eq: ...
Is Iso: ...
Is Sc: ...

Another Functionality Based Example

● Suppose we have a simple function:

that returns all elements unique to either s1 or s2.

symmetricDifference(s1: list, s2: list) -> list

Another Functionality Based Example

● Suppose we have a simple function:

that returns all elements unique to either s1 or s2.

● Try to construct a functionality based input domain model.
● Keep disjointness and coverage in mind.

symmetricDifference(s1: list, s2: list) -> list

Try it out, and we’ll discuss

Refining Combinations with Constraints
Is equilateral?

True
False

Is isosceles?
True
False

Is scalene?
True
False

× ×

Frame 2
Is Eq: True
Is Iso: False
Is Sc: False

What is wrong with this?

Refining Combinations with Constraints

We can add properties and constraints to prune impossible or redundant tests

Is equilateral?
True
False

Is isosceles?
True
False

Is scalene?
True
False

× ×

Frame 2
Is Eq: True
Is Iso: False
Is Sc: False

Is equilateral?
True [if Iso]
False

Is isosceles?
True [property Iso]
False

Is scalene?
True [if not Iso]
False

× ×

Refining Combinations with Constraints

We can add properties and constraints to prune impossible or redundant tests

Is equilateral?
True
False

Is isosceles?
True
False

Is scalene?
True
False

× ×

Frame 2
Is Eq: True
Is Iso: False
Is Sc: False

Is equilateral?
True [if Iso]
False

Is isosceles?
True [property Iso]
False

Is scalene?
True [if not Iso]
False

× ×

[Error] annotations can identify cases
not benefiting from combinations

Selecting Concrete Inputs

● In theory, any value in a partition can represent it. (equivalence classes)

Selecting Concrete Inputs

● In theory, any value in a partition can represent it. (equivalence classes)
● In practice…

bugs often live on extreme cases & the boundaries of partitions

Selecting Concrete Inputs

● In theory, any value in a partition can represent it. (equivalence classes)
● In practice…

bugs often live on extreme cases & the boundaries of partitions
abs(INT_MIN) → ?

Selecting Concrete Inputs

● In theory, any value in a partition can represent it. (equivalence classes)
● In practice…

bugs often live on extreme cases & the boundaries of partitions
abs(INT_MIN) → ?

void toUppercase(char *str) {
 for (int i = 0, e = strlen(str) - 1; i < e; ++i) {
 if (isletter(str[i]) && islower(str[i])) {
 str[i] = str[i] - 32;
 }
 }
 printf(“%s\n”, str);
}

Selecting Concrete Inputs

● In theory, any value in a partition can represent it. (equivalence classes)
● In practice…

bugs often live on extreme cases & the boundaries of partitions
– This is the same reason we look for OBOEs (off by one errors)

Selecting Concrete Inputs

● In theory, any value in a partition can represent it. (equivalence classes)
● In practice…

bugs often live on extreme cases & the boundaries of partitions
– This is the same reason we look for OBOEs (off by one errors)

● So we might consider
– Expected values
– Invalid, valid, and special values
– Boundary values

Selecting Concrete Inputs

● In theory, any value in a partition can represent it. (equivalence classes)
● In practice…

bugs often live on extreme cases & the boundaries of partitions
– This is the same reason we look for OBOEs (off by one errors)

● So we might consider
– Expected values
– Invalid, valid, and special values
– Boundary values

…, -3, -2, -1, 0, 1, 2,
3, ... ↑ ↑ ↑ ↑↑

abs(x)

Selecting Concrete Inputs

● In theory, any value in a partition can represent it. (equivalence classes)
● In practice…

bugs often live on extreme cases & the boundaries of partitions
– This is the same reason we look for OBOEs (off by one errors)

● So we might consider
– Expected values
– Invalid, valid, and special values
– Boundary values

↑↑↑ ↑

x < 10

One last example

Part 1: Analyze the specification
– What is the component?
– What are the parameters?
– What are the characteristics?

Command FIND
Syntax FIND <pattern> <file>
Function The FIND command is used to locate one or more instances of a given

pattern in a text file. All lines in the file that contain the pattern are
written to standard output. A line containing the pattern is written only
once, regardless of the number of times the pattern occurs on it.

The pattern is any sequence of characters whose length does not exceed
the maximum length of a line in the file. To include a blank in the pattern,
the entire pattern must be enclosed in quotes ("). To include a quotation
mark in the pattern, two quotes in a row ("") must be used.

One last example

Part 1: Analyze the specification
– What is the component?
– What are the parameters?
– What are the characteristics?

Command FIND
Syntax FIND <pattern> <file>
Function The FIND command is used to locate one or more instances of a given

pattern in a text file. All lines in the file that contain the pattern are
written to standard output. A line containing the pattern is written only
once, regardless of the number of times the pattern occurs on it.

The pattern is any sequence of characters whose length does not exceed
the maximum length of a line in the file. To include a blank in the pattern,
the entire pattern must be enclosed in quotes ("). To include a quotation
mark in the pattern, two quotes in a row ("") must be used.

Parameters:
 Pattern
 Input file (& its contents!)

One last example

Part 1: Analyze the specification
– What is the component?
– What are the parameters?
– What are the characteristics?

Command FIND
Syntax FIND <pattern> <file>
Function The FIND command is used to locate one or more instances of a given

pattern in a text file. All lines in the file that contain the pattern are
written to standard output. A line containing the pattern is written only
once, regardless of the number of times the pattern occurs on it.

The pattern is any sequence of characters whose length does not exceed
the maximum length of a line in the file. To include a blank in the pattern,
the entire pattern must be enclosed in quotes ("). To include a quotation
mark in the pattern, two quotes in a row ("") must be used.

Parameters:
 Pattern
 Input file (& its contents!)

Characteristics:
 Pattern
 Input file
 Pattern Size
 Quoting
 Embedded Quotes
 File Name
Environment / System Characteristics:
 # of pattern occurrences in file
 # of occurrences on a particular line:

One last example

● Part 2: Partition the Input Space
– Guided by intelligence and intuition
– Combine interface and functionality based approaches as necessary
Parameters:
 Pattern Size:
 Empty
 Single character
 Many characters
 Longer than any line in the file
 Quoting:
...

One last example

● Part 3: Refine with constraints
Pattern size : empty
Quoting : pattern is quoted
Embedded blanks : several embedded blanks
Embedded quotes : no embedded quotes
File name : good file name
Number of occurrences of pattern in file : none
Pattern occurrences on target line : one

Problem?

One last example

● Part 3: Refine with constraints
Pattern size : empty
Quoting : pattern is quoted
Embedded blanks : several embedded blanks
Embedded quotes : no embedded quotes
File name : good file name
Number of occurrences of pattern in file : none
Pattern occurrences on target line : one

Problem?

One last example

● Part 3: Refine with constraints
Pattern size : empty
Quoting : pattern is quoted
Embedded blanks : several embedded blanks
Embedded quotes : no embedded quotes
File name : good file name
Number of occurrences of pattern in file : none
Pattern occurrences on target line : one

Problem?
 Pattern Size:
 Empty [Property Empty]
 Single character [Property NonEmpty]
 Many characters [Property NonEmpty]
 Longer than any line in the file [Property NonEmpty]

One last example

● Part 3: Refine with constraints
Pattern size : empty
Quoting : pattern is quoted
Embedded blanks : several embedded blanks
Embedded quotes : no embedded quotes
File name : good file name
Number of occurrences of pattern in file : none
Pattern occurrences on target line : one

Problem?
 Pattern Size:
 Empty [Property Empty]
 Single character [Property NonEmpty]
 Many characters [Property NonEmpty]
 Longer than any line in the file [Property NonEmpty]
 Quoting:
 Pattern is quoted [Property Quoted]
 Pattern is not quoted [If NonEmpty]
 Pattern is improperly quoted [If NonEmpty]

One last example

● Part 3: Refine with constraints
Pattern size : empty
Quoting : pattern is quoted
Embedded blanks : several embedded blanks
Embedded quotes : no embedded quotes
File name : good file name
Number of occurrences of pattern in file : none
Pattern occurrences on target line : one

Problem?
 Pattern Size:
 Empty [Property Empty]
 Single character [Property NonEmpty]
 Many characters [Property NonEmpty]
 Longer than any line in the file [Property NonEmpty]
 Quoting:
 Pattern is quoted [Property Quoted]
 Pattern is not quoted [If NonEmpty]
 Pattern is improperly quoted [If NonEmpty]

What should this do to the number of tests?
To the quality of tests?

One last example

● Part 4:
– Generate test frames.
– Analyze.
– Select concrete values and tests.
– Prune redundant tests.

Why might scenarios be redundant?

One last example

● Part 4:
– Generate test frames.
– Analyze.
– Select concrete values and tests.
– Prune redundant tests.

● Then take your tests and automate them

Summary

● Partition based testing allows for testing software without detailed
knowledge of its implementation

● Careful design of an input domain model helps
ensure useful tests and
avoid less useful tests

● The assumption of equivalence in a partition is a convenience.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87

