
Scale & Combinatorial
Testing

CMPT 473
Software Quality Assurance

Nick Sumner
material from Ammonn & Offut

2

Recall from Last Time

● Consider our triangle classifier
– Takes 3 integers for sides 1, 2, & 3

3 guiding questions...

Characteristic b1 b2 b3
Side 1 <?> 0 Side 1 > 0 Side 1 = 0 Side 1 < 0
Side 2 <?> 0 Side 2 > 0 Side 2 = 0 Side 2 < 0
Side 3 <?>0 Side 3 > 0 Side 3 = 0 Side 3 < 0

3

Recall from Last Time

● Consider our triangle classifier
– Takes 3 integers for sides 1, 2, & 3

How many tests does this create?

Characteristic b1 b2 b3
Side 1 <?> 0 Side 1 > 0 Side 1 = 0 Side 1 < 0
Side 2 <?> 0 Side 2 > 0 Side 2 = 0 Side 2 < 0
Side 3 <?>0 Side 3 > 0 Side 3 = 0 Side 3 < 0

4

Recall from Last Time

● Consider our triangle classifier
– Takes 3 integers for sides 1, 2, & 3

Characteristic b1 b2 b3
Side 1 <?> 0 Side 1 > 0 Side 1 = 0 Side 1 < 0
Side 2 <?> 0 Side 2 > 0 Side 2 = 0 Side 2 < 0
Side 3 <?>0 Side 3 > 0 Side 3 = 0 Side 3 < 0

How many tests does this create?

What will this test well?
What won't this test well?

5

Recall from Last Time

● Consider our triangle classifier
– Takes 3 integers for sides 1, 2, & 3

Characteristic b1 b2 b3
Side 1 <?> 0 Side 1 > 0 Side 1 = 0 Side 1 < 0
Side 2 <?> 0 Side 2 > 0 Side 2 = 0 Side 2 < 0
Side 3 <?>0 Side 3 > 0 Side 3 = 0 Side 3 < 0

How many tests does this create?

What will this test well?
What won't this test well?

6

Recall from Last Time (part 2)

● We can subdivide partitions to cover more behavior

Characteristic b1 b2 b3 b4
Value of side 1 Side 1 > 1 Side 1 = 1 Side 1 = 0 Side 1 < 0
Value of side 2 Side 2 > 1 Side 2 = 1 Side 2 = 0 Side 2 < 0
Value of side 3 Side 3 > 1 Side 3 = 1 Side 3 = 0 Side 3 < 0

How many tests now?

7

What Is The Scale?

Suppose inputs or characteristics I1, I2, I3, …, In
● How does the number of tests change?

8

What Is The Scale?

Suppose inputs or characteristics I1, I2, I3, …, In
● How does the number of tests change?
● |D1| * |D2| * |D3| * … * |Dn| = k n
● This is combinatorial explosion

9

What Is The Scale?

Suppose inputs or characteristics I1, I2, I3, …, In
● How does the number of tests change?
● |D1| * |D2| * |D3| * … * |Dn| = k n
● This is combinatorial explosion

What does it mean in practice?
● Find command: 4x3x3x3x3x3x2 = 1944 tests

10

What Is The Scale?

Suppose inputs or characteristics I1, I2, I3, …, In
● How does the number of tests change?
● |D1| * |D2| * |D3| * … * |Dn| = k n
● This is combinatorial explosion

What does it mean in practice?
● Find command: 4x3x3x3x3x3x2 = 1944 tests
● Website generator: > 30 → > 1 billion tests

11

What Is The Scale?

Suppose inputs or characteristics I1, I2, I3, …, In
● How does the number of tests change?
● |D1| * |D2| * |D3| * … * |Dn| = k n
● This is combinatorial explosion

What does it mean in practice?
● Find command: 4x3x3x3x3x3x2 = 1944 tests
● Website generator: > 30 → > 1 billion tests

Too many to maintain!

12

What Is The Scale?

Suppose inputs or characteristics I1, I2, I3, …, In
● How does the number of tests change?
● |D1| * |D2| * |D3| * … * |Dn| = k n
● This is combinatorial explosion

What does it mean in practice?
● Find command: 4x3x3x3x3x3x2 = 1944 tests
● Website generator: > 30 → > 1 billion tests

Too many to maintain!
Too many to reasonably even create!

13

How Do We Cope With Scale?

● What did the input partitioning do?

14

How Do We Cope With Scale?

● What did the input partitioning do?
– Constraints

 Pattern Size:
 Empty [Property Empty]
 Single character [Property NonEmpty]
 Many characters [Property NonEmpty]
 Longer than any line in the file [Property NonEmpty]

 Quoting:
 Pattern is quoted [Property Quoted]
 Pattern is not quoted [If NonEmpty]
 Pattern is improperly quoted [If NonEmpty]

15

How Do We Cope With Scale?

● What did the input partitioning do?
– Constraints
– [property] to identify rules for useful tests
– [error] to identify when 1 test for a block is sufficient

 Pattern Size:
 Empty [Property Empty]
 Single character [Property NonEmpty]
 Many characters [Property NonEmpty]
 Longer than any line in the file [Property NonEmpty]

 Quoting:
 Pattern is quoted [Property Quoted]
 Pattern is not quoted [If NonEmpty]
 Pattern is improperly quoted [If NonEmpty]

16

How Do We Cope With Scale?

● What did the input partitioning do?
– Constraints
– [property] to identify rules for useful tests
– [error] to identify when 1 test for a block is sufficient

● What else might we do?

17

How Do We Cope With Scale?

● What did the input partitioning do?
– Constraints
– [property] to identify rules for useful tests
– [error] to identify when 1 test for a block is sufficient

● What else might we do?
– Not test as thoroughly (sampling)

Why might this be okay?

18

How Do We Cope With Scale?

● What did the input partitioning do?
– Constraints
– [property] to identify rules for useful tests
– [error] to identify when 1 test for a block is sufficient

● What else might we do?
– Not test as thoroughly (sampling)
– Identify related variables/domains & test together

Why would this lead to
fewer tests?

19

Choosing Combinations

Several possible strategies:
● All Combinations

20

Choosing Combinations

Several possible strategies:
● All Combinations

– Every combination of every block is tried
– Leaps headfirst into combinatorial explosion

21

Choosing Combinations

Several possible strategies:
● All Combinations

– Every combination of every block is tried
– Leaps headfirst into combinatorial explosion

But is it inherently bad?

22

Combinations – Each Choice

● How can we minimize #tests and still test each
block?

23

Combinations – Each Choice

● How can we minimize #tests and still test each
block?

● Each Choice
– 1 value from each block used in at least one test

24

Combinations – Each Choice

● How can we minimize #tests and still test each
block?

● Each Choice
– 1 value from each block used in at least one test

A

B

C

1

2

Adequate Tests:

25

Combinations – Each Choice

● How can we minimize #tests and still test each
block?

● Each Choice
– 1 value from each block used in at least one test

A

B

C

1

2

Adequate Tests:
(A,1), (B,2), (C,1)

26

Combinations – Each Choice

● How can we minimize #tests and still test each
block?

● Each Choice
– 1 value from each block used in at least one test

What does this look like for the triangle classifier?

27

Combinations – Each Choice

● How can we minimize #tests and still test each
block?

● Each Choice
– 1 value from each block used in at least one test

What does this look like for the triangle classifier?

Are these tests good? Why?

28

Combinations – Each Choice

● How can we minimize #tests and still test each
block?

● Each Choice
– 1 value from each block used in at least one test

How many tests?

29

Combinations – Each Choice

● How can we minimize #tests and still test each
block?

● Each Choice
– 1 value from each block used in at least one test
– # tests = maximum number of blocks

How many tests?

Why?

30

Combinations – ???

● Can we come up with a compromise?

31

Combinations – Pair Wise/All Pairs

● Can we come up with a compromise?
● Pair Wise

– 1 value for each block combined with 1 value for each
other block

32

Combinations – Pair Wise/All Pairs

● Can we come up with a compromise?
● Pair Wise

– 1 value for each block combined with 1 value for each
other block

A

B

C

1

2

Adequate Tests:
X

Y

33

Combinations – Pair Wise/All Pairs

● Can we come up with a compromise?
● Pair Wise

– 1 value for each block combined with 1 value for each
other block

A

B

C

1

2

Adequate Tests:
(A,1,*), (A,2,*)
(B,1,*), (B,2,*)
(C,1,*), (C,2,*)

X

Y

all combinations of two

34

Combinations – Pair Wise/All Pairs

● Can we come up with a compromise?
● Pair Wise

– 1 value for each block combined with 1 value for each
other block

A

B

C

1

2

Adequate Tests:
(A,1,X), (A,2,Y)
(B,1,Y), (B,2,X)
(C,1,*), (C,2,*)

X

Y

Fill in X and Y to make sure
all pairwise combos are tested!

35

Combinations – Pair Wise/All Pairs

● Can we come up with a compromise?
● Pair Wise

– 1 value for each block combined with 1 value for each
other block

A

B

C

1

2

Adequate Tests:
(A,1,X), (A,2,Y)
(B,1,Y), (B,2,X)
(C,1,*), (C,2,*)

X

Y

What should the last two be?

36

Combinations – Pair Wise/All Pairs

● Can we come up with a compromise?
● Pair Wise

– 1 value for each block combined with 1 value for each
other block

What does this look like for the triangle classifier?

37

Combinations – Pair Wise/All Pairs

● Can we come up with a compromise?
● Pair Wise

– 1 value for each block combined with 1 value for each
other block

What does this look like for the triangle classifier?

Are these tests good? Why?

38

Combinations – Pair Wise/All Pairs

● Can we come up with a compromise?
● Pair Wise

– 1 value for each block combined with 1 value for each
other block

How many tests?

39

Combinations – Pair Wise/All Pairs

● Can we come up with a compromise?
● Pair Wise

– 1 value for each block combined with 1 value for each
other block

– #tests ≥ product of 2 largest domain partitionings

How many tests?

40

Combinations – Pair Wise/All Pairs

● Can we come up with a compromise?
● Pair Wise

– 1 value for each block combined with 1 value for each
other block

– #tests ≥ product of 2 largest domain partitionings

How many tests?

41

Combinations – Pair Wise/All Pairs

● Can we come up with a compromise?
● Pair Wise

– 1 value for each block combined with 1 value for each
other block

– #tests ≥ product of 2 largest domain partitionings

How many tests?

Expected on the order of |D1| * |D2| * log(n)

42

Combinations - ???

● Can we extend this further?

43

Combinations – T-wise

● Can we extend this further?
● T-wise

– 1 value from each block for each group of T
characteristics

44

Combinations – T-wise

● Can we extend this further?
● T-wise

– 1 value from each block for each group of T
characteristics

How many tests?

45

Combinations – T-wise

● Can we extend this further?
● T-wise

– 1 value from each block for each group of T
characteristics

– #tests ≥ product of T largest domain partitionings

46

Combinations – T-wise

● Can we extend this further?
● T-wise

– 1 value from each block for each group of T
characteristics

– #tests ≥ product of T largest domain partitionings

What happens as T increases?

47

Combinations – T-wise

● Can we extend this further?
● T-wise

– 1 value from each block for each group of T
characteristics

– #tests ≥ product of T largest domain partitionings
– Bounded by (max number of blocks)T

– More expensive than pairs & uncertain gains

48

Combinations – T-wise

● Can we extend this further?
● T-wise

– 1 value from each block for each group of T
characteristics

– #tests ≥ product of T largest domain partitionings
– Bounded by (max number of blocks)T

– More expensive than pairs & uncertain gains

T is often called the test strength

49

Combinations – Base Choice

● So far, all of our approaches are domain agnostic
– What if we know that certain values are important?

50

Combinations – Base Choice

● So far, all of our approaches are domain agnostic
– What if we know that certain values are important?

● Base Choice
– Select a base test
– Generate tests by changing only one block and taking

other values from the base

51

Combinations – Base Choice

● So far, all of our approaches are domain agnostic
– What if we know that certain values are important?

● Base Choice
– Select a base test
– Generate tests by changing only one block and taking

other values from the base
– # tests = 1 base + 1 per each other block

A

B

C

1

2
Adequate Tests:

X

Y

Base Test:

52

Combinations – Base Choice

● So far, all of our approaches are domain agnostic
– What if we know that certain values are important?

● Base Choice
– Select a base test
– Generate tests by changing only one block and taking

other values from the base
– # tests = 1 base + 1 per each other block

B

C

1

Adequate Tests:
Y

Base Test:
(A,2,X)A

2

X

53

Combinations – Base Choice

● So far, all of our approaches are domain agnostic
– What if we know that certain values are important?

● Base Choice
– Select a base test
– Generate tests by changing only one block and taking

other values from the base
– # tests = 1 base + 1 per each other block

B

C

1

Adequate Tests:
(B,2,X), (C,2,X)

Y

Base Test:
(A,2,X)A

2

X

54

Combinations – Base Choice

● So far, all of our approaches are domain agnostic
– What if we know that certain values are important?

● Base Choice
– Select a base test
– Generate tests by changing only one block and taking

other values from the base
– # tests = 1 base + 1 per each other block

B

C

1

Adequate Tests:
(B,2,X), (C,2,X)
(A,1,X)

Y

Base Test:
(A,2,X)A

2

X

55

Combinations – Base Choice

● So far, all of our approaches are domain agnostic
– What if we know that certain values are important?

● Base Choice
– Select a base test
– Generate tests by changing only one block and taking

other values from the base
– # tests = 1 base + 1 per each other block

B

C

1

Adequate Tests:
(B,2,X), (C,2,X)
(A,1,X)
(A,2,Y)

Y

Base Test:
(A,2,X)A

2

X

56

Combinations – Base Choice

● So far, all of our approaches are domain agnostic
– What if we know that certain values are important?

● Base Choice
– Select a base test
– Generate tests by changing only one block and taking

other values from the base
– # tests = 1 base + 1 per each other block

B

C

1

Adequate Tests:
(B,2,X), (C,2,X)
(A,1,X)
(A,2,Y)

Y

Base Test:
(A,2,X)A

2

X

57

Combinations – Base Choice

● So far, all of our approaches are domain agnostic
– What if we know that certain values are important?

● Base Choice
– Select a base test
– Generate tests by changing only one block and taking

other values from the base
– # tests = 1 base + 1 per each other block

58

Combinations – Base Choice

● So far, all of our approaches are domain agnostic
– What if we know that certain values are important?

● Base Choice
– Select a base test
– Generate tests by changing only one block and taking

other values from the base
– # tests = 1 base + 1 per each other block

What does this look like for the triangle classifier?

59

Combinations – Base Choice

● So far, all of our approaches are domain agnostic
– What if we know that certain values are important?

● Base Choice
– Select a base test
– Generate tests by changing only one block and taking

other values from the base
– # tests = 1 base + 1 per each other block

What does this look like for the triangle classifier?

How many tests?

60

Combinations – Base Choice

● So far, all of our approaches are domain agnostic
– What if we know that certain values are important?

● Base Choice
– Select a base test
– Generate tests by changing only one block and taking

other values from the base
– # tests = 1 base + 1 per each other block

What does this look like for the triangle classifier?

How many tests?

1 + ∑ |Di-1|

61

Base Choices

Which test to use as a base is crucial

Why? What if we choose poorly?

62

Base Choices

Which test to use as a base is crucial
● Must at least be feasible

– Do the combined values create a valid run?

63

Base Choices

Which test to use as a base is crucial
● Must at least be feasible

– Do the combined values create a valid run?

How might we select a base test?

64

Base Choices

Which test to use as a base is crucial
● Must at least be feasible

– Do the combined values create a valid run?
● Guided by:

– Most likely?
– Simplest?
– Smallest?
– Etc.

65

Base Choices

Which test to use as a base is crucial
● Must at least be feasible

– Do the combined values create a valid run?
● Guided by:

– Most likely?
– Simplest?
– Smallest?
– Etc.

● Decision must be well understood & well
maintained

66

Combinations - ???

● Notice the pattern.
– Can base choices be extended?

67

Combinations – Multiple Base Choice

● Notice the pattern.
– Can base choices be extended?

● Multiple Base Choice
– Select 1 or more base characteristics

68

Combinations – Multiple Base Choice

● Notice the pattern.
– Can base choices be extended?

● Multiple Base Choice
– Select 1 or more base characteristics
– Generate base tests by using each at least once

69

Combinations – Multiple Base Choice

● Notice the pattern.
– Can base choices be extended?

● Multiple Base Choice
– Select 1 or more base characteristics
– Generate base tests by using each at least once

This yields a set of base tests

70

Combinations – Multiple Base Choice

● Notice the pattern.
– Can base choices be extended?

● Multiple Base Choice
– Select 1 or more base characteristics
– Generate base tests by using each at least once
– Change 1 block at a time to an unselected one just as

before

M base tests:
M * (1 + ∑ |Di-1|)

71

How Are They Related?

All Combinations

Each Choice

72

How Are They Related?

All Combinations

Each Choice

Subsumption

73

How Are They Related?

All Combinations

Each Choice

T-wise

Pair-wise

74

How Are They Related?

All Combinations

Each Choice

T-wise

Pair-wise

Multiple Base Choice

Base Choice

75

How Are They Related?

All Combinations

Each Choice

T-wise

Pair-wise

Multiple Base Choice

Base Choice

76

How Are They Related?

All Combinations

Each Choice

T-wise

Pair-wise

Multiple Base Choice

Base Choice

?

77

How Are They Related?

All Combinations

Each Choice

T-wise

Pair-wise

Multiple Base Choice

Base Choice

?

78

Using Your Intuition

● Broadly, some subset of inputs may interact,
and some will be independent.

79

All Combos

Using Your Intuition

● Broadly, some subset of inputs may interact,
and some will be independent.

● Careful combinations of different approaches can
yield more meaningful tests.

All Combos All Combos

80

All Combos

Using Your Intuition

● Broadly, some subset of inputs may interact,
and some will be independent.

● Careful combinations of different approaches can
yield more meaningful tests.

● And we have already seen another strategy for
reducing test suites...

All Combos All Combos

81

Remember the Constraints

● Constraints, and [error]s can reduce the # of tests
further
– No need to test invalid constraints
– No need to test more than one [error]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

