CMPT 473 Software Quality Assurance

 Scale \& Combinatorial

 Scale \& Combinatorial Testing

 Testing}

Nick Sumner
material from Ammonn \& Offutt

Recall from Last Time

- Consider our triangle classifier
- Takes 3 integers for sides 1, 2, \& 3

Characteristic	b1	b2	b3
Side $1<?>0$	Side $1>0$	Side $1=0$	Side $1<0$
Side $2<?>0$	Side $2>0$	Side $2=0$	Side $2<0$
Side $3<?>0$	Side $3>0$	Side $3=0$	Side $3<0$

3 guiding questions...

Recall from Last Time

- Consider our triangle classifier
- Takes 3 integers for sides 1, 2, \& 3

Characteristic	b1	b2	b3
Side $1<?>0$	Side $1>0$	Side $1=0$	Side $1<0$
Side $2<?>0$	Side $2>0$	Side $2=0$	Side $2<0$
Side $3<?>0$	Side $3>0$	Side $3=0$	Side $3<0$

How many tests does this create?

Recall from Last Time

- Consider our triangle classifier
- Takes 3 integers for sides 1, 2, \& 3
Characteristic
b1
b2
b3

Side $1<?>0$	Side $1>0$	Side $1=0$	Side $1<0$
Side $2<?>0$	Side $2>0$	Side $2=0$	Side $2<0$
Side $3<?>0$	Side $3>0$	Side $3=0$	Side $3<0$

How many tests does this create?

What will this test well?
What won't this test well?

Recall from Last Time

- Consider our triangle classifier
- Takes 3 integers for sides 1, 2, \& 3

Characteristic	b1	b2	b3
Side $1<?>0$	Side $1>0$	Side $1=0$	Side $1<0$
Side $2<?>0$	Side $2>0$	Side $2=0$	Side $2<0$
Side $3<?>0$	Side $3>0$	Side $3=0$	Side $3<0$

How many tests does this create?

> What will this test well? What won't this test well?

Recall from Last Time (part 2)

- We can subdivide partitions to cover more behavior

Characteristic	b1	b2	b3	b4
Value of side 1	Side $1>1$	Side $1=1$	Side $1=0$	Side $1<0$
Value of side 2	Side $2>1$	Side $2=1$	Side $2=0$	Side $2<0$
Value of side 3	Side $3>1$	Side $3=1$	Side $3=0$	Side $3<0$

What Is The Scale?

Suppose inputs or characteristics $I_{1}, I_{2}, I_{3}, \ldots, I_{n}$ - How does the number of tests change?

What Is The Scale?

Suppose inputs or characteristics $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \ldots, \mathrm{I}_{\mathrm{n}}$

- How does the number of tests change?
- $\left|D_{1}\right|^{*}\left|D_{2}\right|^{*}\left|D_{3}\right|^{*} \ldots{ }^{*}\left|D_{n}\right|=k n$
- This is combinatorial explosion

What Is The Scale?

Suppose inputs or characteristics $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \ldots, \mathrm{I}_{\mathrm{n}}$

- How does the number of tests change?
- $\left|D_{1}\right|^{*}\left|D_{2}\right|^{*}\left|D_{3}\right|^{*} \ldots *\left|D_{n}\right|=k n$
- This is combinatorial explosion

What does it mean in practice?

- Find command: $4 \times 3 \times 3 \times 3 \times 3 \times 3 \times 2=1944$ tests

What Is The Scale?

Suppose inputs or characteristics $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \ldots, \mathrm{I}_{\mathrm{n}}$

- How does the number of tests change?
- $\left|D_{1}\right|^{*}\left|D_{2}\right|^{*}\left|D_{3}\right|^{*} \ldots *\left|D_{n}\right|=k n$
- This is combinatorial explosion

What does it mean in practice?

- Find command: $4 \times 3 \times 3 \times 3 \times 3 \times 3 \times 2=1944$ tests
- Website generator: > $30 \rightarrow$ > 1 billion tests

What Is The Scale?

Suppose inputs or characteristics $I_{1}, I_{2}, I_{3}, \ldots, I_{n}$

- How does the number of tests change?
- $\left|D_{1}\right|^{*}\left|D_{2}\right|^{*}\left|D_{3}\right|^{*} \ldots *\left|D_{n}\right|=k n$
- This is combinatorial explosion

What does it mean in practice?

- Find command: $4 \times 3 \times 3 \times 3 \times 3 \times 3 \times 2=1944$ tests
- Website generator: > $30 \rightarrow$ > 1 billion tests

Too many to maintain!

What Is The Scale?

Suppose inputs or characteristics $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \ldots, \mathrm{I}_{\mathrm{n}}$

- How does the number of tests change?
- $\left|D_{1}\right|^{*}\left|D_{2}\right|^{*}\left|D_{3}\right|^{*} \ldots *\left|D_{n}\right|=k n$
- This is combinatorial explosion

What does it mean in practice?

- Find command: $4 \times 3 \times 3 \times 3 \times 3 \times 3 \times 2=1944$ tests
- Website generator: > $30 \rightarrow$ > 1 billion tests

Too many to maintain!
Too many to reasonably even create!

How Do We Cope With Scale?

- What did the input partitioning do?

How Do We Cope With Scale?

- What did the input partitioning do?
- Constraints

Pattern Size:
Empty
Single character
Many characters
Longer than any line in the file
[Property Empty]
[Property NonEmpty]
[Property NonEmpty]
[Property NonEmpty]

Quoting:
Pattern is quoted
Pattern is not quoted
Pattern is improperly quoted
[Property Quoted]
[If NonEmpty]
[If NonEmpty]

How Do We Cope With Scale?

- What did the input partitioning do?
- Constraints
- [property] to identify rules for useful tests
- [error] to identify when 1 test for a block is sufficient

Pattern Size:
Empty
Single character
Many characters
Longer than any line in the file
[Property Empty]
[Property NonEmpty]
[Property NonEmpty]
[Property NonEmpty]

Quoting:
Pattern is quoted
Pattern is not quoted
Pattern is improperly quoted
[Property Quoted]
[If NonEmpty]
[If NonEmpty]

How Do We Cope With Scale?

- What did the input partitioning do?
- Constraints
- [property] to identify rules for useful tests
- [error] to identify when 1 test for a block is sufficient
- What else might we do?

How Do We Cope With Scale?

- What did the input partitioning do?
- Constraints
- [property] to identify rules for useful tests
- [error] to identify when 1 test for a block is sufficient
- What else might we do?
- Not test as thoroughly (sampling)

Why might this be okay?

How Do We Cope With Scale?

- What did the input partitioning do?
- Constraints
- [property] to identify rules for useful tests
- [error] to identify when 1 test for a block is sufficient
- What else might we do?
- Not test as thoroughly (sampling)
- Identify related variables/domains \& test together

Why would this lead to fewer tests?

Choosing Combinations

Several possible strategies:

- All Combinations

Choosing Combinations

Several possible strategies:

- All Combinations
- Every combination of every block is tried
- Leaps headfirst into combinatorial explosion

Choosing Combinations

Several possible strategies:

- All Combinations
- Every combination of every block is tried
- Leaps headfirst into combinatorial explosion

But is it inherently bad?

Combinations - Each Choice

- How can we minimize \#tests and still test each block?

Combinations - Each Choice

- How can we minimize \#tests and still test each block?
- Each Choice
- 1 value from each block used in at least one test

Combinations - Each Choice

- How can we minimize \#tests and still test each block?
- Each Choice
- 1 value from each block used in at least one test

Adequate Tests:

Combinations - Each Choice

- How can we minimize \#tests and still test each block?
- Each Choice
- 1 value from each block used in at least one test

Adequate Tests:
(A,1), (B,2), (C,1)

Combinations - Each Choice

- How can we minimize \#tests and still test each block?
- Each Choice
- 1 value from each block used in at least one test

What does this look like for the triangle classifier?

Combinations - Each Choice

- How can we minimize \#tests and still test each block?
- Each Choice
- 1 value from each block used in at least one test

What does this look like for the triangle classifier?
Are these tests good? Why?

Combinations - Each Choice

- How can we minimize \#tests and still test each block?
- Each Choice
- 1 value from each block used in at least one test

How many tests?

Combinations - Each Choice

- How can we minimize \#tests and still test each block?
- Each Choice
- 1 value from each block used in at least one test
- \# tests = maximum number of blocks

How many tests?
Why?

Combinations - ???

- Can we come up with a compromise?

Combinations - Pair Wise/All Pairs

- Can we come up with a compromise?
- Pair Wise
- 1 value for each block combined with 1 value for each other block

Combinations - Pair Wise/All Pairs

- Can we come up with a compromise?
- Pair Wise
- 1 value for each block combined with 1 value for each other block

Adequate Tests:

Combinations - Pair Wise/All Pairs

- Can we come up with a compromise?
- Pair Wise
- 1 value for each block combined with 1 value for each other block
all combinations of two

Adequate Tests:
(A,1,*), (A,2,*)
(B,1,*), (B,2,*)
$\left(\mathrm{C}, 1,{ }^{*}\right),\left(\mathrm{C}, 2,{ }^{*}\right)$

Combinations - Pair Wise/All Pairs

- Can we come up with a compromise?
- Pair Wise
- 1 value for each block combined with 1 value for each other block

Adequate Tests:
(A,1,X), (A,2,Y)
(B,1,Y), (B, 2,X)
(C,1,*), (C,2, $\left.{ }^{*}\right)$

Fill in X and Y to make sure all pairwise combos are tested!

Combinations - Pair Wise/All Pairs

- Can we come up with a compromise?
- Pair Wise
- 1 value for each block combined with 1 value for each other block

Adequate Tests:
(A, 1, X), (A, 2, Y)
(B,1,Y), (B,2,X)
$\left(\mathrm{C}, 1,{ }^{*}\right),\left(\mathrm{C}, 2,{ }^{*}\right)$

What should the last two be?

Combinations - Pair Wise/All Pairs

- Can we come up with a compromise?
- Pair Wise
- 1 value for each block combined with 1 value for each other block

What does this look like for the triangle classifier?

Combinations - Pair Wise/All Pairs

- Can we come up with a compromise?
- Pair Wise
- 1 value for each block combined with 1 value for each other block

What does this look like for the triangle classifier?
Are these tests good? Why?

Combinations - Pair Wise/All Pairs

- Can we come up with a compromise?
- Pair Wise
- 1 value for each block combined with 1 value for each other block

How many tests?

Combinations - Pair Wise/All Pairs

- Can we come up with a compromise?
- Pair Wise
- 1 value for each block combined with 1 value for each other block
- \#tests \geq product of 2 largest domain partitionings

How many tests?

Combinations - Pair Wise/All Pairs

- Can we come up with a compromise?
- Pair Wise
- 1 value for each block combined with 1 value for each other block
- \#test $\$ \geq$ product of 2 largest domain partitionings

How many tests?

Combinations - Pair Wise/All Pairs

- Can we come up with a compromise?
- Pair Wise
- 1 value for each block combined with 1 value for each other block
- \#test $\$$ product of 2 largest domain partitionings How many tests?

Expected on the order of $\left|D_{1}\right|^{*}\left|D_{2}\right|^{*} \log (n)$

Combinations - ???

- Can we extend this further?

Combinations - T-wise

- Can we extend this further?
- T-wise
- 1 value from each block for each group of T characteristics

Combinations - T-wise

- Can we extend this further?
- T-wise
- 1 value from each block for each group of T characteristics

How many tests?

Combinations - T-wise

- Can we extend this further?
- T-wise
- 1 value from each block for each group of T characteristics
- \#tests \geq product of T largest domain partitionings

Combinations - T-wise

- Can we extend this further?
- T-wise
- 1 value from each block for each group of T characteristics
- \#tests \geq product of T largest domain partitionings

What happens as Tincreases?

Combinations - T-wise

- Can we extend this further?
- T-wise
- 1 value from each block for each group of T characteristics
- \#tests \geq product of T largest domain partitionings
- Bounded by (max number of blocks) ${ }^{\top}$
- More expensive than pairs \& uncertain gains

Combinations - T-wise

- Can we extend this further?
- T-wise
- 1 value from each block for each group of T characteristics
- \#tests \geq product of T largest domain partitionings
- Bounded by (max number of blocks) ${ }^{\top}$
- More expensive than pairs \& uncertain gains

T is often called the test strength

Combinations - Base Choice

- So far, all of our approaches are domain agnostic
- What if we know that certain values are important?

Combinations - Base Choice

- So far, all of our approaches are domain agnostic
- What if we know that certain values are important?
- Base Choice
- Select a base test
- Generate tests by changing only one block and taking other values from the base

Combinations - Base Choice

Base Test:
(A,2,X)

Adequate Tests:
(B,2,X), (C,2,X)
($\mathrm{A}, 1, \mathrm{X}$)
(A,2,Y)

Combinations - Base Choice

- So far, all of our approaches are domain agnostic

Base Test:
(A,2,X)

Adequate Tests:
(B,2,X), (C,2,X)
($\mathrm{A}, 1, \mathrm{X}$)
(A,2,Y)

Combinations - Base Choice

- So far, all of our approaches are domain agnostic
- What if we know that certain values are important?
- Base Choice
- Select a base test
- Generate tests by changing only one block and taking other values from the base
- \# tests = 1 base + 1 per each other block

Combinations - Base Choice

- So far, all of our approaches are domain agnostic
- What if we know that certain values are important?
- Base Choice
- Select a base test
- Generate tests by changing only one block and taking other values from the base
- \# tests = 1 base + 1 per each other block

What does this look like for the triangle classifier?

Combinations - Base Choice

- So far, all of our approaches are domain agnostic
- What if we know that certain values are important?
- Base Choice
- Select a base test
- Generate tests by changing only one block and taking other values from the base
- \# tests = 1 base + 1 per each other block

What does this look like for the triangle classifier?
How many tests?

Combinations - Base Choice

- So far, all of our approaches are domain agnostic
- What if we know that certain values are important?
- Base Choice
- Select a base test
- Generate tests by changing only one block and taking other values from the base
- \# tests = 1 base + 1 per each other block

What does this look like for the triangle classifier?
How many tests?

$$
1+\sum\left|D_{i}-1\right|
$$

Base Choices

Which test to use as a base is crucial

Why? What if we choose poorly?

Base Choices

Which test to use as a base is crucial

- Must at least be feasible
- Do the combined values create a valid run?

Base Choices

Which test to use as a base is crucial

- Must at least be feasible
- Do the combined values create a valid run?

How might we select a base test?

Base Choices

Which test to use as a base is crucial

- Must at least be feasible
- Do the combined values create a valid run?
- Guided by:
- Most likely?
- Simplest?
- Smallest?
- Etc.

Base Choices

Which test to use as a base is crucial

- Must at least be feasible
- Do the combined values create a valid run?
- Guided by:
- Most likely?
- Simplest?
- Smallest?
- Etc.
- Decision must be well understood \& well maintained

Combinations - ???

- Notice the pattern.
- Can base choices be extended?

Combinations - Multiple Base Choice

- Notice the pattern.
- Can base choices be extended?
- Multiple Base Choice
- Select 1 or more base characteristics

Combinations - Multiple Base Choice

- Notice the pattern.
- Can base choices be extended?
- Multiple Base Choice
- Select 1 or more base characteristics
- Generate base tests by using each at least once

Combinations - Multiple Base Choice

- Notice the pattern.
- Can base choices be extended?
- Multiple Base Choice
- Select 1 or more base characteristics
- Generate base tests by using each at least once

This yields a set of base tests

Combinations - Multiple Base Choice

- Notice the pattern.
- Can base choices be extended?
- Multiple Base Choice
- Select 1 or more base characteristics
- Generate base tests by using each at least once
- Change 1 block at a time to an unselected one just as before
M base tests:
$M^{*}\left(1+\sum\left|D_{i}-1\right|\right)$

How Are They Related?

All Combinations

Each Choice

How Are They Related?

All Combinations

Subsumption

Each Choice

How Are They Related?

All Combinations

How Are They Related?

Using Your Intuition

- Broadly, some subset of inputs may interact, and some will be independent.

Using Your Intuition

- Broadly, some subset of inputs may interact, and some will be independent.
- Careful combinations of different approaches can yield more meaningful tests.

Using Your Intuition

- Broadly, some subset of inputs may interact, and some will be independent.
- Careful combinations of different approaches can yield more meaningful tests.

All Combos
All Combos
All Combos

- And we have already seen another strategy for reducing test suites...

Remember the Constraints

- Constraints, and [error]s can reduce the \# of tests further
- No need to test invalid constraints
- No need to test more than one [error]

