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Recall from Last Time

● Consider our triangle classifier
– Takes 3 integers for sides 1, 2, & 3

3 guiding questions...

Characteristic b1 b2 b3
Side 1 <?> 0 Side 1 > 0 Side 1 = 0 Side 1 < 0
Side 2 <?> 0 Side 2 > 0 Side 2 = 0 Side 2 < 0
Side 3 <?>0 Side 3 > 0 Side 3 = 0 Side 3 < 0
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Recall from Last Time (part 2)

● We can subdivide partitions to cover more behavior

Characteristic b1 b2 b3 b4
Value of side 1 Side 1 > 1 Side 1 = 1 Side 1 = 0 Side 1 < 0
Value of side 2 Side 2 > 1 Side 2 = 1 Side 2 = 0 Side 2 < 0
Value of side 3 Side 3 > 1 Side 3 = 1 Side 3 = 0 Side 3 < 0

How many tests now?
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What Is The Scale?

Suppose inputs or characteristics I1, I2, I3, …, In
● How does the number of tests change?
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What Is The Scale?

Suppose inputs or characteristics I1, I2, I3, …, In
● How does the number of tests change?
● |D1| * |D2| * |D3| * … * |Dn| = k n
● This is combinatorial explosion

What does it mean in practice?
● Find command: 4x3x3x3x3x3x2 = 1944 tests
● Website generator: > 30 → > 1 billion tests

Too many to maintain!
Too many to reasonably even create!
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How Do We Cope With Scale?

● What did the input partitioning do?
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How Do We Cope With Scale?

● What did the input partitioning do?
– Constraints

  Pattern Size:
    Empty                             [Property Empty]
    Single character                  [Property NonEmpty]
    Many characters                   [Property NonEmpty]
    Longer than any line in the file  [Property NonEmpty]

  Quoting:
    Pattern is quoted                 [Property Quoted]
    Pattern is not quoted             [If NonEmpty]
    Pattern is improperly quoted      [If NonEmpty]
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How Do We Cope With Scale?

● What did the input partitioning do?
– Constraints
– [property] to identify rules for useful tests
– [error] to identify when 1 test for a block is sufficient

● What else might we do?
– Not test as thoroughly (sampling)

Why might this be okay?



18

How Do We Cope With Scale?

● What did the input partitioning do?
– Constraints
– [property] to identify rules for useful tests
– [error] to identify when 1 test for a block is sufficient

● What else might we do?
– Not test as thoroughly (sampling)
– Identify related variables/domains & test together

Why would this lead to 
fewer tests?



19

Choosing Combinations

Several possible strategies:
● All Combinations
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Choosing Combinations

Several possible strategies:
● All Combinations

– Every combination of every block is tried
– Leaps headfirst into combinatorial explosion

But is it inherently bad?
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Combinations – Each Choice

● How can we minimize #tests and still test each 
block?
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Combinations – Each Choice

● How can we minimize #tests and still test each 
block?

● Each Choice
– 1 value from each block used in at least one test

A

B

C

1

2

Adequate Tests:
(A,1), (B,2), (C,1)
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Combinations – Each Choice

● How can we minimize #tests and still test each 
block?

● Each Choice
– 1 value from each block used in at least one test
– # tests = maximum number of blocks

How many tests?

Why?
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Combinations – ???

● Can we come up with a compromise?
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Combinations – Pair Wise/All Pairs

● Can we come up with a compromise?
● Pair Wise

– 1 value for each block combined with 1 value for each 
other block
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Combinations – Pair Wise/All Pairs

● Can we come up with a compromise?
● Pair Wise

– 1 value for each block combined with 1 value for each 
other block

A

B

C

1

2

Adequate Tests:
(A,1,*), (A,2,*)
(B,1,*), (B,2,*)
(C,1,*), (C,2,*)

X

Y

all combinations of two
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Combinations – Pair Wise/All Pairs

● Can we come up with a compromise?
● Pair Wise

– 1 value for each block combined with 1 value for each 
other block

A

B

C

1

2

Adequate Tests:
(A,1,X), (A,2,Y)
(B,1,Y), (B,2,X)
(C,1,*), (C,2,*)

X

Y

Fill in X and Y to make sure
all pairwise combos are tested!
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Combinations – Pair Wise/All Pairs

● Can we come up with a compromise?
● Pair Wise

– 1 value for each block combined with 1 value for each 
other block

A

B

C

1

2

Adequate Tests:
(A,1,X), (A,2,Y)
(B,1,Y), (B,2,X)
(C,1,*), (C,2,*)

X

Y

What should the last two be?
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Combinations – Pair Wise/All Pairs

● Can we come up with a compromise?
● Pair Wise

– 1 value for each block combined with 1 value for each 
other block

What does this look like for the triangle classifier?
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Combinations – Pair Wise/All Pairs

● Can we come up with a compromise?
● Pair Wise

– 1 value for each block combined with 1 value for each 
other block

What does this look like for the triangle classifier?

Are these tests good? Why?
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Combinations – Pair Wise/All Pairs

● Can we come up with a compromise?
● Pair Wise

– 1 value for each block combined with 1 value for each 
other block

How many tests?
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Combinations – Pair Wise/All Pairs

● Can we come up with a compromise?
● Pair Wise

– 1 value for each block combined with 1 value for each 
other block

– #tests ≥ product of 2 largest domain partitionings

How many tests?
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Combinations – Pair Wise/All Pairs

● Can we come up with a compromise?
● Pair Wise

– 1 value for each block combined with 1 value for each 
other block

– #tests ≥ product of 2 largest domain partitionings

How many tests?
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Combinations – Pair Wise/All Pairs

● Can we come up with a compromise?
● Pair Wise

– 1 value for each block combined with 1 value for each 
other block

– #tests ≥ product of 2 largest domain partitionings

How many tests?

Expected on the order of  |D1| * |D2| * log(n) 
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Combinations - ???

● Can we extend this further?
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Combinations – T-wise

● Can we extend this further?
● T-wise

– 1 value from each block for each group of T 
characteristics
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Combinations – T-wise
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Combinations – T-wise

● Can we extend this further?
● T-wise

– 1 value from each block for each group of T 
characteristics

– #tests ≥ product of T largest domain partitionings

What happens as T increases?
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Combinations – T-wise

● Can we extend this further?
● T-wise

– 1 value from each block for each group of T 
characteristics

– #tests ≥ product of T largest domain partitionings
– Bounded by (max number of blocks)T

– More expensive than pairs & uncertain gains
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Combinations – T-wise

● Can we extend this further?
● T-wise

– 1 value from each block for each group of T 
characteristics

– #tests ≥ product of T largest domain partitionings
– Bounded by (max number of blocks)T

– More expensive than pairs & uncertain gains

T is often called the test strength
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Combinations – Base Choice

● So far, all of our approaches are domain agnostic
– What if we know that certain values are important?
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Combinations – Base Choice

● So far, all of our approaches are domain agnostic
– What if we know that certain values are important?

● Base Choice
– Select a base test
– Generate tests by changing only one block and taking 

other values from the base
– # tests = 1 base + 1 per each other block

A

B

C

1

2
Adequate Tests:

X

Y

Base Test:
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Combinations – Base Choice

● So far, all of our approaches are domain agnostic
– What if we know that certain values are important?

● Base Choice
– Select a base test
– Generate tests by changing only one block and taking 

other values from the base
– # tests = 1 base + 1 per each other block

B

C

1

Adequate Tests:
Y

Base Test:
(A,2,X)A

2

X
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Combinations – Base Choice

● So far, all of our approaches are domain agnostic
– What if we know that certain values are important?

● Base Choice
– Select a base test
– Generate tests by changing only one block and taking 

other values from the base
– # tests = 1 base + 1 per each other block

B

C

1

Adequate Tests:
(B,2,X), (C,2,X)

Y

Base Test:
(A,2,X)A

2

X
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Combinations – Base Choice

● So far, all of our approaches are domain agnostic
– What if we know that certain values are important?

● Base Choice
– Select a base test
– Generate tests by changing only one block and taking 

other values from the base
– # tests = 1 base + 1 per each other block

B

C

1

Adequate Tests:
(B,2,X), (C,2,X)
(A,1,X)

Y

Base Test:
(A,2,X)A

2

X
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Combinations – Base Choice

● So far, all of our approaches are domain agnostic
– What if we know that certain values are important?

● Base Choice
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– # tests = 1 base + 1 per each other block

B

C

1

Adequate Tests:
(B,2,X), (C,2,X)
(A,1,X)
(A,2,Y)

Y

Base Test:
(A,2,X)A

2

X
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Combinations – Base Choice

● So far, all of our approaches are domain agnostic
– What if we know that certain values are important?

● Base Choice
– Select a base test
– Generate tests by changing only one block and taking 

other values from the base
– # tests = 1 base + 1 per each other block

B

C

1

Adequate Tests:
(B,2,X), (C,2,X)
(A,1,X)
(A,2,Y)

Y

Base Test:
(A,2,X)A

2

X
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Combinations – Base Choice

● So far, all of our approaches are domain agnostic
– What if we know that certain values are important?

● Base Choice
– Select a base test
– Generate tests by changing only one block and taking 

other values from the base
– # tests = 1 base + 1 per each other block

What does this look like for the triangle classifier?

How many tests?

1 + ∑ |Di-1|



61

Base Choices

Which test to use as a base is crucial

Why? What if we choose poorly?
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● Must at least be feasible

– Do the combined values create a valid run?
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Base Choices

Which test to use as a base is crucial
● Must at least be feasible

– Do the combined values create a valid run?

How might we select a base test?
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Which test to use as a base is crucial
● Must at least be feasible

– Do the combined values create a valid run?
● Guided by:

– Most likely?
– Simplest?
– Smallest?
– Etc.
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Base Choices

Which test to use as a base is crucial
● Must at least be feasible

– Do the combined values create a valid run?
● Guided by:

– Most likely?
– Simplest?
– Smallest?
– Etc.

● Decision must be well understood & well 
maintained
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Combinations - ???

● Notice the pattern.
– Can base choices be extended?
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Combinations – Multiple Base Choice

● Notice the pattern.
– Can base choices be extended?

● Multiple Base Choice
– Select 1 or more base characteristics
– Generate base tests by using each at least once

This yields a set of base tests
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Combinations – Multiple Base Choice

● Notice the pattern.
– Can base choices be extended?

● Multiple Base Choice
– Select 1 or more base characteristics
– Generate base tests by using each at least once
– Change 1 block at a time to an unselected one just as 

before

M base tests:
M * (1 + ∑ |Di-1|)
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How Are They Related?

All Combinations

Each Choice
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How Are They Related?

All Combinations

Each Choice

Subsumption
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Multiple Base Choice

Base Choice
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and some will be independent.
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All Combos

Using Your Intuition

● Broadly, some subset of inputs may interact,
and some will be independent.

● Careful combinations of different approaches can 
yield more meaningful tests.

● And we have already seen another strategy for 
reducing test suites...

All Combos All Combos
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Remember the Constraints

● Constraints, and [error]s can reduce the # of tests 
further
– No need to test invalid constraints
– No need to test more than one [error]
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