
CMPT 473
Software Testing, Reliability and Security

Nick Sumner
wsumner@sfu.ca

User Interface Testing
& Automation

How can we automate the top of the pyramid?

● Recall the automated testing pyramid:

How can we automate the top of the pyramid?

● Recall the automated testing pyramid:

Unit

API/
Integration/
Component/

System UI
Integrated

Isolated

Slow

Fast

How can we automate the top of the pyramid?

● Recall the automated testing pyramid:

Unit

API/
Integration/
Component/

System UI
Integrated

Isolated

Slow

Fast

How can we automate the top of the pyramid?

● Recall the automated testing pyramid:
– The top is: high value, more expensive, challenging to automate
– But why?!

Unit

API/
Integration/
Component/

System UI
Integrated

Isolated

Slow

Fast

Challenges

● Think back to the structure of unit tests

Challenges

● Think back to the structure of unit tests

TEST_CASE("empty") {
 Environment env;
 ExprTree tree;
 auto result = evaluate(tree, env);
 CHECK(!result.has_value());
}

Act

Arrange

Assert

Challenges

● Think back to the structure of unit tests

TEST_CASE("empty") {
 Environment env;
 ExprTree tree;
 auto result = evaluate(tree, env);
 CHECK(!result.has_value());
}

Act

Arrange

Assert

What implications does testing the UI have for each of these?

Challenges
● Arrange (inputs+scenario)

– Not a command line or simple API call!

Challenges
● Arrange (inputs+scenario)

– Not a command line or simple API call!
– Event based
– Polyglot & multi system
– Change: Churn and dynamism
– Nondeterminism
– Time matters

Challenges
● Arrange (inputs+scenario)

– Not a command line or simple API call!
– Event based
– Polyglot & multi system
– Change: Churn and dynamism
– Nondeterminism
– Time matters

● Act (running)
– Nondeterminism
– Performance

Challenges
● Arrange (inputs+scenario)

– Not a command line or simple API call!
– Event based
– Polyglot & multi system
– Change: Churn and dynamism
– Nondeterminism
– Time matters

● Act (running)
– Nondeterminism
– Performance

● Assert (oracles)
– Nondeterminism
– Visual results
– Final vs intermediate states

Challenges
● Arrange (inputs+scenario)

– Not a command line or simple API call!
– Event based
– Polyglot & multi system
– Change: Churn and dynamism
– Nondeterminism
– Time matters

● Act (running)
– Nondeterminism
– Performance

● Assert (oracles)
– Nondeterminism
– Visual results
– Final vs intermediate states

And more....
The concerns we had about

testability are only amplified.

We must design UIs to be testable
and codesign the testing methods.

UI Testing Frameworks

● Tools to facilitate UI testing will focus on
– UI Frameworks (e.g. Flutter, React, etc.)
– Platforms (e.g. Selenium, Robotium, Robot, etc.)

UI Testing Frameworks

● Tools to facilitate UI testing will focus on
– UI Frameworks (e.g. Flutter, React, etc.)
– Platforms (e.g. Selenium, Robotium, Robot, etc.)

● These tools provide much needed leverage
– Can hook into the event system of the UI
– Synthesize events
– Programmatic interface

UI Testing Frameworks

● Tools to facilitate UI testing will focus on
– UI Frameworks (e.g. Flutter, React, etc.)
– Platforms (e.g. Selenium, Robotium, Robot, etc.)

● These tools provide much needed leverage
– Can hook into the event system of the UI
– Synthesize events
– Programmatic interface

– Feed information in
– Extract information out
– Provide logical time based on events

Feeding information into a UI

● Let us consider a simple chat program

Feeding information into a UI

● Let us consider a simple chat program

Feeding information into a UI

● Let us consider a simple chat program

Feeding information into a UI

● Let us consider a simple chat program
– What kinds of things make sense to test?

Feeding information into a UI

● Let us consider a simple chat program
– What kinds of things make sense to test?
– Wiring and routing
– Core interactions and user stories
– ...

Feeding information into a UI

● Let us consider a simple chat program
– What kinds of things make sense to test?
– Wiring and routing
– Core interactions and user stories
– ...

● Consider these simple stories
– A user can

enter a valid server and click connect
to reach the chat pane.

Feeding information into a UI

● Let us consider a simple chat program
– What kinds of things make sense to test?
– Wiring and routing
– Core interactions and user stories
– ...

● Consider these simple stories
– A user can

enter a valid server and click connect
to reach the chat pane.

– A user on the chat pane can
enter a message in a chat room
to receive it back in their own chat room display.

Feeding information into a UI

● Let us consider a simple chat program
– What kinds of things make sense to test?
– Wiring and routing
– Core interactions and user stories
– ...

● Consider these simple stories
– A user can

enter a valid server and click connect
to reach the chat pane.

– A user on the chat pane can
enter a message in a chat room
to receive it back in their own chat room display.

Act
Arrange

Assert

Finding things to interact with

● There may be several ways you wish to find a component

Finding things to interact with

● There may be several ways you wish to find a component

Finding things to interact with

● There may be several ways you wish to find a component
– By its contents

Finding things to interact with

● There may be several ways you wish to find a component
– By its contents
– By the path through the UI tree to reach it

Finding things to interact with

● There may be several ways you wish to find a component
– By its contents
– By the path through the UI tree to reach it
– By a unique ID

Finding things to interact with

● There may be several ways you wish to find a component
– By its contents
– By the path through the UI tree to reach it
– By a unique ID

● There are trade offs and use cases for all of these
– Why can finding by contents be useful?
– Why can finding by paths be useful?
– Why can finding by ID be useful?

Finding things to interact with

● There may be several ways you wish to find a component
– By its contents
– By the path through the UI tree to reach it
– By a unique ID

● There are trade offs and use cases for all of these
– Why can finding by contents be useful?
– Why can finding by paths be useful?
– Why can finding by ID be useful?

● But if you plan in advance, you can make your life easier
– Testability and designing for testing is critical

Finding things to interact with

● There may be several ways you wish to find a component
– By its contents
– By the path through the UI tree to reach it
– By a unique ID

● There are trade offs and use cases for all of these
– Why can finding by contents be useful?
– Why can finding by paths be useful?
– Why can finding by ID be useful?

● But if you plan in advance, you can make your life easier
– Testability and designing for testing is critical

Managing IDs well helps to
deal with churn and evolution

Finding things to interact with

● Manging IDs in Flutter
final serverField = TextField(
 key: ValueKey("ServerField"),
 controller: _serverController,
 onSubmitted: _connectToServer,
 obscureText: false,
 autofocus: true,
);

Finding things to interact with

● Manging IDs in Flutter
final serverField = TextField(
 key: ValueKey("ServerField"),
 controller: _serverController,
 onSubmitted: _connectToServer,
 obscureText: false,
 autofocus: true,
);

test('Connects to echo server and receives message', () async {
 final serverFinder = find.byValueKey('ServerField');
 final connectFinder = find.byValueKey('ConnectButton');
 final messageFinder = find.byValueKey('MessageField');
 final sendFinder = find.byValueKey('SendButton');
 final receivedFinder = find.byValueKey('Message(0)');
...

Feeding information into a UI

● The UI framework will provide functionality for time, events, and data:
– Text entry
– Button presses
– Gestures
– ...

Feeding information into a UI

● The UI framework will provide functionality for time, events, and data:
– Text entry
– Button presses
– Gestures
– ...

● Tests then run sequences of simulated events

Feeding information into a UI

● The UI framework will provide functionality for time, events, and data:
– Text entry
– Button presses
– Gestures
– ...

● Tests then run sequences of simulated events

test('Connects to echo server and receives message', () async {
 final serverFinder = find.byValueKey('ServerField');
 final connectFinder = find.byValueKey('ConnectButton');
 final messageFinder = find.byValueKey('MessageField');
 final sendFinder = find.byValueKey('SendButton');
 final receivedFinder = find.byValueKey('Message(0)');
...

Feeding information into a UI

● The UI framework will provide functionality for time, events, and data:
– Text entry
– Button presses
– Gestures
– ...

● Tests then run sequences of simulated events

test('Connects to echo server and receives message', () async {
 final serverFinder = find.byValueKey('ServerField');
 final connectFinder = find.byValueKey('ConnectButton');
 final messageFinder = find.byValueKey('MessageField');
 final sendFinder = find.byValueKey('SendButton');
 final receivedFinder = find.byValueKey('Message(0)');
...

...
 // Enter an echo server into the server field.
 await driver.tap(serverFinder);
 await driver.enterText('ws://echo.websocket.org');
...

Dealing with time

● Why is time a problem?
– Nondeterminism
– Latency
– Cost

Dealing with time

● Why is time a problem?
– Nondeterminism
– Latency
– Cost

● All of these can be dealt with to some degree
– Tolerate
– Abstract away

Dealing with time

● Do we always care about real time?

Dealing with time

● Do we always care about real time?
– “Wait for the UI to update in response to my action.”
– “Wait for the server to respond to my request.”
– “First click this, then click that after the first response was processed”

Dealing with time

● Do we always care about real time?
– “Wait for the UI to update in response to my action.”
– “Wait for the server to respond to my request.”
– “First click this, then click that after the first response was processed”

● In many cases, time can be abstracted to ordered events.
– Don’t “wait X seconds”
– Do “wait until the page loads”

Dealing with time

● Do we always care about real time?
– “Wait for the UI to update in response to my action.”
– “Wait for the server to respond to my request.”
– “First click this, then click that after the first response was processed”

● In many cases, time can be abstracted to ordered events.
– Don’t “wait X seconds”
– Do “wait until the page loads”
– (Unless your framework doesn’t support it....)

Dealing with time

● Do we always care about real time?
– “Wait for the UI to update in response to my action.”
– “Wait for the server to respond to my request.”
– “First click this, then click that after the first response was processed”

● In many cases, time can be abstracted to ordered events.
– Don’t “wait X seconds”
– Do “wait until the page loads”
– (Unless your framework doesn’t support it....)

● When this option is available to you it is more robust
– To change, to nondeterminism, ...

Dealing with time

● What if we don’t have a choice?

Dealing with time

● What if we don’t have a choice?
– You can fall back to time thresholded waits,

but you should expect:

Dealing with time

● What if we don’t have a choice?
– You can fall back to time thresholded waits,

but you should expect: flaky tests,
higher maintenance costs
developer ambivalence

Dealing with time

● What if we don’t have a choice?
– You can fall back to time thresholded waits,

but you should expect: flaky tests,
higher maintenance costs
developer ambivalence

– It is a cost/benefit decision

Dealing with time

● What if we don’t have a choice?
– You can fall back to time thresholded waits,

but you should expect: flaky tests,
higher maintenance costs
developer ambivalence

– It is a cost/benefit decision

● In Flutter

Dealing with time

● What if we don’t have a choice?
– You can fall back to time thresholded waits,

but you should expect: flaky tests,
higher maintenance costs
developer ambivalence

– It is a cost/benefit decision

● In Flutter
await tester.pumpWidget(MyWidget(title: 'T', message: 'M'));
await tester.enterText(find.byValueKey('greeting'), 'hi');
await tester.tap(find.byValueKey('confirm'));
await tester.pump(Duration.zero);
expect(...)

Dealing with time

● What if we don’t have a choice?
– You can fall back to time thresholded waits,

but you should expect: flaky tests,
higher maintenance costs
developer ambivalence

– It is a cost/benefit decision

● In Flutter
await tester.pumpWidget(MyWidget(title: 'T', message: 'M'));
await tester.enterText(find.byValueKey('greeting'), 'hi');
await tester.tap(find.byValueKey('confirm'));
await tester.pumpWidget(MyWidget(title: 'T', message: 'M'));
expect(...)

Future<bool>
isPresent(SerializableFinder byValueKey,
 FlutterDriver driver,
 {Duration timeout = const Duration(seconds: 1)}) async {
 try {
 await driver.waitFor(byValueKey, timeout: timeout);
 return true;
 } catch(exception) {
 return false;
 }
}

expect(await isPresent(messageFinder, driver), true);

Revisiting the Chat App (for 1 story)
final serverFinder = find.byValueKey('ServerField');
final connectFinder = find.byValueKey('ConnectButton');
final messageFinder = find.byValueKey('MessageField');
final sendFinder = find.byValueKey('SendButton');
final receivedFinder = find.byValueKey('Message(0)');
final message = 'Hi, there!';

Arrange

Revisiting the Chat App (for 1 story)
final serverFinder = find.byValueKey('ServerField');
final connectFinder = find.byValueKey('ConnectButton');
final messageFinder = find.byValueKey('MessageField');
final sendFinder = find.byValueKey('SendButton');
final receivedFinder = find.byValueKey('Message(0)');
final message = 'Hi, there!';

Arrange

Act
Assert

// Enter an echo server into the server field.
await driver.tap(serverFinder);
await driver.enterText('ws://echo.websocket.org');

// Tap the connect button to reach the
await driver.tap(connectFinder);
// Wait for the next page to load
expect(await isPresent(messageFinder, driver), true);
// Enter a message into the message field
await driver.tap(messageFinder);
await driver.enterText(message);
await driver.tap(sendFinder);
// Wait for a response to be triggered
expect(await isPresent(receivedFinder, driver), true);
expect(await driver.getText(receivedFinder), message);

Revisiting the Chat App (for 1 story)
final serverFinder = find.byValueKey('ServerField');
final connectFinder = find.byValueKey('ConnectButton');
final messageFinder = find.byValueKey('MessageField');
final sendFinder = find.byValueKey('SendButton');
final receivedFinder = find.byValueKey('Message(0)');
final message = 'Hi, there!';

Arrange

Act
Assert

// Enter an echo server into the server field.
await driver.tap(serverFinder);
await driver.enterText('ws://echo.websocket.org');

// Tap the connect button to reach the
await driver.tap(connectFinder);
// Wait for the next page to load
expect(await isPresent(messageFinder, driver), true);
// Enter a message into the message field
await driver.tap(messageFinder);
await driver.enterText(message);
await driver.tap(sendFinder);
// Wait for a response to be triggered
expect(await isPresent(receivedFinder, driver), true);
expect(await driver.getText(receivedFinder), message);

Practical Concerns

● What do you actually want to test?
– Just the front end?
– The full system?

Practical Concerns

● What do you actually want to test?
– Just the front end?
– The full system?

– You can reduce costs & decrease flakiness by faking the backend!

Practical Concerns

● What do you actually want to test?
– Just the front end?
– The full system

– You can reduce costs & decrease flakiness by faking the backend!

● Who should actually be creating the tests?
– Acceptance level by client?
– System level by a developer?

Practical Concerns

● What do you actually want to test?
– Just the front end?
– The full system

– You can reduce costs & decrease flakiness by faking the backend!

● Who should actually be creating the tests?
– Acceptance level by client?
– System level by a developer?
– The person defining the tests may not be a programmer!

Recording vs scripting

● For precise control & using IDs well, you may hand write tests

Recording vs scripting

● For precise control & using IDs well, you may hand write tests
– But it is not necessarily required!

Recording vs scripting

● For precise control & using IDs well, you may hand write tests
– But it is not necessarily required!

● Tools like Selenium can record user interactions as an event series

Recording vs scripting

● For precise control & using IDs well, you may hand write tests
– But it is not necessarily required!

● Tools like Selenium can record user interactions as an event series
– A trace of (Command, Target, Value)s
– Can be replayed

Recording vs scripting

● For precise control & using IDs well, you may hand write tests
– But it is not necessarily required!

● Tools like Selenium can record user interactions as an event series
– A trace of (Command, Target, Value)s
– Can be replayed

● This can make it easier to produce tests for nonexperts,
but recorded tests can be more brittle

BDD

● Behavior Driven Development (BDD) tools provide another route for
non-programmers to define tests

BDD

● Behavior Driven Development (BDD) tools provide another route for
non-programmers to define tests

● Originated as a way to facilitate collaboration between
business & developer experts

BDD

● Behavior Driven Development (BDD) tools provide another route for
non-programmers to define tests

● Originated as a way to facilitate collaboration between
business & developer experts
– User stories given in natural language with common structure

BDD

● Behavior Driven Development (BDD) tools provide another route for
non-programmers to define tests

● Originated as a way to facilitate collaboration between
business & developer experts
– User stories given in natural language with common structure
– Given some initial context

When some event occurs
Then ensure some outcome

BDD

● Behavior Driven Development (BDD) tools provide another route for
non-programmers to define tests

● Originated as a way to facilitate collaboration between
business & developer experts
– User stories given in natural language with common structure
– Given some initial context

When some event occurs
Then ensure some outcome

Scenario: Breaker joins a game
 Given the Maker has started a game with the word "silky"
 When the Breaker joins the Maker's game
 Then the Breaker must guess a word with 5 characters

[Cucumber.io Docs]

https://cucumber.io/docs/gherkin/reference/

BDD

● Behavior Driven Development (BDD) tools provide another route for
non-programmers to define tests

● Originated as a way to facilitate collaboration between
business & developer experts
– User stories given in natural language with common structure
– Given some initial context

When some event occurs
Then ensure some outcome

● Tools like Cucumber can translate these into, e.g., Selenium tests

Scenario: Breaker joins a game
 Given the Maker has started a game with the word "silky"
 When the Breaker joins the Maker's game
 Then the Breaker must guess a word with 5 characters

[Cucumber.io Docs]

https://cucumber.io/docs/gherkin/reference/

Further Directions

● We have only considered automated functional UI testing

Further Directions

● We have only considered automated functional UI testing
● We could also consider

– User Experience (UX)
– Performance
– Security
– Regulatory compliance
– Exploratory methods
– Automated test generation

Summary

● UI testing adds many challenges on top of test automation

Summary

● UI testing adds many challenges on top of test automation
● Frameworks can intercept behavior to facilitate easier test

construction

Summary

● UI testing adds many challenges on top of test automation
● Frameworks can intercept behavior to facilitate easier test

construction
● Careful design of code to be testable is just as important in this

setting.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

