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How can we automate the top of the pyramid?

● Recall the automated testing pyramid:
– The top is: high value, more expensive, challenging to automate
– But why?!
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● Think back to the structure of unit tests

TEST_CASE("empty") {
  Environment env;
  ExprTree tree;
  auto result = evaluate(tree, env);
  CHECK(!result.has_value());
}

Act

Arrange

Assert

What implications does testing the UI have for each of these?
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Challenges
● Arrange (inputs+scenario)

– Not a command line or simple API call!
– Event based
– Polyglot & multi system
– Change: Churn and dynamism
– Nondeterminism
– Time matters

● Act (running)
– Nondeterminism
– Performance

● Assert (oracles)
– Nondeterminism
– Visual results
– Final vs intermediate states

And more....
The concerns we had about 

testability are only amplified.

We must design UIs to be testable 
and codesign the testing methods.



  

UI Testing Frameworks

● Tools to facilitate UI testing will focus on
– UI Frameworks (e.g. Flutter, React, etc.)
– Platforms (e.g. Selenium, Robotium, Robot, etc.)



  

UI Testing Frameworks

● Tools to facilitate UI testing will focus on
– UI Frameworks (e.g. Flutter, React, etc.)
– Platforms (e.g. Selenium, Robotium, Robot, etc.)

● These tools provide much needed leverage
– Can hook into the event system of the UI
– Synthesize events
– Programmatic interface



  

UI Testing Frameworks

● Tools to facilitate UI testing will focus on
– UI Frameworks (e.g. Flutter, React, etc.)
– Platforms (e.g. Selenium, Robotium, Robot, etc.)

● These tools provide much needed leverage
– Can hook into the event system of the UI
– Synthesize events
– Programmatic interface

– Feed information in
– Extract information out
– Provide logical time based on events
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Feeding information into a UI

● Let us consider a simple chat program
– What kinds of things make sense to test?
– Wiring and routing
– Core interactions and user stories
– ...

● Consider these simple stories
– A user can

enter a valid server and click connect
to reach the chat pane.

– A user on the chat pane can
enter a message in a chat room
to receive it back in their own chat room display.

Act
Arrange

Assert
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Finding things to interact with

● There may be several ways you wish to find a component
– By its contents
– By the path through the UI tree to reach it
– By a unique ID

● There are trade offs and use cases for all of these
– Why can finding by contents be useful?
– Why can finding by paths be useful?
– Why can finding by ID be useful?

● But if you plan in advance, you can make your life easier
– Testability and designing for testing is critical

Managing IDs well helps to 
deal with churn and evolution
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  key: ValueKey("ServerField"),
  controller: _serverController,
  onSubmitted: _connectToServer,
  obscureText: false,
  autofocus: true,
);



  

Finding things to interact with

● Manging IDs in Flutter
final serverField = TextField(
  key: ValueKey("ServerField"),
  controller: _serverController,
  onSubmitted: _connectToServer,
  obscureText: false,
  autofocus: true,
);

test('Connects to echo server and receives message', () async {
  final serverFinder   = find.byValueKey('ServerField');
  final connectFinder  = find.byValueKey('ConnectButton');
  final messageFinder  = find.byValueKey('MessageField');
  final sendFinder     = find.byValueKey('SendButton');
  final receivedFinder = find.byValueKey('Message(0)');
...
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Feeding information into a UI

● The UI framework will provide functionality for time, events, and data:
– Text entry
– Button presses
– Gestures
– ...

● Tests then run sequences of simulated events

test('Connects to echo server and receives message', () async {
  final serverFinder   = find.byValueKey('ServerField');
  final connectFinder  = find.byValueKey('ConnectButton');
  final messageFinder  = find.byValueKey('MessageField');
  final sendFinder     = find.byValueKey('SendButton');
  final receivedFinder = find.byValueKey('Message(0)');
...

...
  // Enter an echo server into the server field.
  await driver.tap(serverFinder);
  await driver.enterText('ws://echo.websocket.org');
...
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Dealing with time

● Why is time a problem?
– Nondeterminism
– Latency
– Cost

● All of these can be dealt with to some degree
– Tolerate
– Abstract away
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Dealing with time

● Do we always care about real time?
– “Wait for the UI to update in response to my action.”
– “Wait for the server to respond to my request.”
– “First click this, then click that after the first response was processed”

● In many cases, time can be abstracted to ordered events.
– Don’t “wait X seconds”
– Do “wait until the page loads”
– (Unless your framework doesn’t support it....)

● When this option is available to you it is more robust
– To change, to nondeterminism, ...
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Dealing with time

● What if we don’t have a choice?
– You can fall back to time thresholded waits,

but you should expect: flaky tests,
higher maintenance costs
developer ambivalence

– It is a cost/benefit decision

● In Flutter
await tester.pumpWidget(MyWidget(title: 'T', message: 'M'));
await tester.enterText(find.byValueKey('greeting'), 'hi');
await tester.tap(find.byValueKey('confirm'));
await tester.pump(Duration.zero);
expect(...)



  

Dealing with time

● What if we don’t have a choice?
– You can fall back to time thresholded waits,

but you should expect: flaky tests,
higher maintenance costs
developer ambivalence

– It is a cost/benefit decision

● In Flutter
await tester.pumpWidget(MyWidget(title: 'T', message: 'M'));
await tester.enterText(find.byValueKey('greeting'), 'hi');
await tester.tap(find.byValueKey('confirm'));
await tester.pumpWidget(MyWidget(title: 'T', message: 'M'));
expect(...)

Future<bool>
isPresent(SerializableFinder byValueKey,
          FlutterDriver driver,
          {Duration timeout = const Duration(seconds: 1)}) async {
  try {
    await driver.waitFor(byValueKey, timeout: timeout);
    return true;
  } catch(exception) {
    return false;
  }
}

expect(await isPresent(messageFinder, driver), true);
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final message = 'Hi, there!';
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final serverFinder   = find.byValueKey('ServerField');
final connectFinder  = find.byValueKey('ConnectButton');
final messageFinder  = find.byValueKey('MessageField');
final sendFinder     = find.byValueKey('SendButton');
final receivedFinder = find.byValueKey('Message(0)');
final message = 'Hi, there!';

Arrange

Act
Assert

// Enter an echo server into the server field.
await driver.tap(serverFinder);
await driver.enterText('ws://echo.websocket.org');
    
// Tap the connect button to reach the 
await driver.tap(connectFinder);
// Wait for the next page to load
expect(await isPresent(messageFinder, driver), true);
// Enter a message into the message field
await driver.tap(messageFinder);
await driver.enterText(message);
await driver.tap(sendFinder);
// Wait for a response to be triggered
expect(await isPresent(receivedFinder, driver), true);
expect(await driver.getText(receivedFinder), message);



  

Revisiting the Chat App (for 1 story)
final serverFinder   = find.byValueKey('ServerField');
final connectFinder  = find.byValueKey('ConnectButton');
final messageFinder  = find.byValueKey('MessageField');
final sendFinder     = find.byValueKey('SendButton');
final receivedFinder = find.byValueKey('Message(0)');
final message = 'Hi, there!';

Arrange

Act
Assert

// Enter an echo server into the server field.
await driver.tap(serverFinder);
await driver.enterText('ws://echo.websocket.org');
    
// Tap the connect button to reach the 
await driver.tap(connectFinder);
// Wait for the next page to load
expect(await isPresent(messageFinder, driver), true);
// Enter a message into the message field
await driver.tap(messageFinder);
await driver.enterText(message);
await driver.tap(sendFinder);
// Wait for a response to be triggered
expect(await isPresent(receivedFinder, driver), true);
expect(await driver.getText(receivedFinder), message);
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Practical Concerns

● What do you actually want to test?
– Just the front end?
– The full system

– You can reduce costs & decrease flakiness by faking the backend!

● Who should actually be creating the tests?
– Acceptance level by client?
– System level by a developer?
– The person defining the tests may not be a programmer!
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Recording vs scripting

● For precise control & using IDs well, you may hand write tests
– But it is not necessarily required!

● Tools like Selenium can record user interactions as an event series
– A trace of (Command, Target, Value)s
– Can be replayed

● This can make it easier to produce tests for nonexperts,
but recorded tests can be more brittle
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BDD

● Behavior Driven Development (BDD) tools provide another route for 
non-programmers to define tests

● Originated as a way to facilitate collaboration between
business & developer experts
– User stories given in natural language with common structure
– Given some initial context

When some event occurs
Then ensure some outcome

● Tools like Cucumber can translate these into, e.g., Selenium tests

Scenario: Breaker joins a game
    Given the Maker has started a game with the word "silky"
    When the Breaker joins the Maker's game
    Then the Breaker must guess a word with 5 characters

[Cucumber.io Docs]

https://cucumber.io/docs/gherkin/reference/
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Further Directions

● We have only considered automated functional UI testing
● We could also consider

– User Experience (UX)
– Performance
– Security
– Regulatory compliance
– Exploratory methods
– Automated test generation
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Summary

● UI testing adds many challenges on top of test automation
● Frameworks can intercept behavior to facilitate easier test 

construction
● Careful design of code to be testable is just as important in this 

setting.
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