
Input Space Partitioning

CMPT 473
Software Quality Assurance

Nick Sumner

2

Recall

● Testing involves running software and comparing
observed behavior against expected behavior

– Select an input, look at the output

3

Recall

● Testing involves running software and comparing
observed behavior against expected behavior

– Select an input, look at the output

● Problem: The input domain is infinite or
pragmatically infinite.

for test in allPossibleInputs:
 run_program(test)

4

Recall

● Testing involves running software and comparing
observed behavior against expected behavior

– Select an input, look at the output

● Problem: The input domain is infinite or
pragmatically infinite.

● Testing is about selecting a finite subset of inputs
that can help measure quality

5

Input Space Partitioning

Take the direct approach:
Focus on the input!

6

Input Space Partitioning

● Input Space Partitioning

– Divide (partition) the set of possible inputs into
equivalence classes

7

Input Space Partitioning

● Input Space Partitioning

– Divide (partition) the set of possible inputs into
equivalence classes

– Test one input from each class

8

Input Space Partitioning

● Input Space Partitioning

– Divide (partition) the set of possible inputs into
equivalence classes

– Test one input from each class

e.g. abs(x)

Input Domain: …, -3, -2, -1, 0, 1, 2, 3, ...

How many tests if done exhaustively?

9

Input Space Partitioning

● Input Space Partitioning

– Divide (partition) the set of possible inputs into
equivalence classes

– Test one input from each class

e.g. abs(x)

Input Domain:

Partitions:

What might reasonable partitions be?

…, -3, -2, -1, 0, 1, 2, 3, ...

…, -3, -2, -1, 0, 1, 2, 3, ...

10

Input Space Partitioning

● Input Space Partitioning

– Divide (partition) the set of possible inputs into
equivalence classes

– Test one input from each class

e.g. abs(x)

Input Domain:

Partitions:

…, -3, -2, -1, 0, 1, 2, 3, ...

…, -3, -2, -1, 0, 1, 2, 3, ...

11

Input Space Partitioning

● Input Space Partitioning

– Divide (partition) the set of possible inputs into
equivalence classes

– Test one input from each class

e.g. abs(x)

Input Domain:

Partitions: …, -3, -2, -1, 0, 1, 2, 3, ...

How many tests for the partitions?

…, -3, -2, -1, 0, 1, 2, 3, ...

12

Input Space Partitioning

● Input Space Partitioning

– Divide (partition) the set of possible inputs into
equivalence classes

– Test one input from each class

e.g. abs(x)

Input Domain:

Partitions:

Impressive! How do we do it?

…, -3, -2, -1, 0, 1, 2, 3, ...

…, -3, -2, -1, 0, 1, 2, 3, ...

13

Input Space Partitioning

1) Identify the component

14

Input Space Partitioning

1) Identify the component
– Whole program
– Module
– Class
– Function

15

Input Space Partitioning

1) Identify the component
– Whole program
– Module
– Class
– Function

2) Identify the inputs

What might the inputs be?

16

Input Space Partitioning

1) Identify the component
– Whole program
– Module
– Class
– Function

2) Identify the inputs
– Function/method parameters

17

Input Space Partitioning

1) Identify the component
– Whole program
– Module
– Class
– Function

2) Identify the inputs
– Function/method parameters
– Object state

18

Input Space Partitioning

1) Identify the component
– Whole program
– Module
– Class
– Function

2) Identify the inputs
– Function/method parameters
– Object state
– Global variables

19

Input Space Partitioning

1) Identify the component
– Whole program
– Module
– Class
– Function

2) Identify the inputs
– Function/method parameters
– Object state
– Global variables
– File contents

20

Input Space Partitioning

1) Identify the component
– Whole program
– Module
– Class
– Function

2) Identify the inputs
– Function/method parameters
– Object state
– Global variables
– File contents
– User provided inputs

21

Input Space Partitioning

1) Identify the component
– Whole program
– Module
– Class
– Function

2) Identify the inputs
– Function/method parameters
– Object state
– Global variables
– File contents
– User provided inputs
– …

22

Input Space Partitioning

3) Develop an Input Domain Model

23

Input Space Partitioning

3) Develop an Input Domain Model

– A way of describing the possible inputs

– Partitioned by characteristics

24

Partitioned Input Domain

● Partition the domain D on characteristics

A B

C

D =

25

Partitioned Input Domain

● Partition the domain D on characteristics

What are characteristics?

A B

C

D =

26

Partitioned Input Domain

● Partition the domain D on characteristics

● Must satisfy 2 criteria:

– Disjoint: A ∩ B ∩ C = ∅
– Cover: A B C = D∪ ∪

A B

C

D =

27

Partitioned Input Domain

● Partition the domain D on characteristics

● Must satisfy 2 criteria:

– Disjoint: A ∩ B ∩ C = ∅
– Cover: A B C = D∪ ∪

What do these criteria intuitively provide?

A B

C

D =

28

Using Partitions
● Select one input from each block

● Each input in a block is assumed equally useful

29

Using Partitions
● Select one input from each block

● Each input in a block is assumed equally useful

● How?

– Identify characteristics of the possible inputs
(from requirements, types, etc.)

30

Using Partitions
● Select one input from each block

● Each input in a block is assumed equally useful

● How?

– Identify characteristics of the possible inputs
(from requirements, types, etc.)

– Partition into blocks based on each characteristic

31

Using Partitions
● Select one input from each block

● Each input in a block is assumed equally useful

● How?

– Identify characteristics of the possible inputs
(from requirements, types, etc.)

– Partition into blocks based on each characteristic

– Create tests by selecting values for each block

32

Using Partitions
● Select one input from each block

● Each input in a block is assumed equally useful

● How?

– Identify characteristics of the possible inputs
(from requirements, types, etc.)

– Partition into blocks based on each characteristic

– Create tests by selecting values for each block

How many tests might this imply?
Might there be more? Fewer?

33

Using Partitions
● Select one input from each block

● Each input in a block is assumed equally useful

● How?

– Identify characteristics of the possible inputs
(from requirements, types, etc.)

– Partition into blocks based on each characteristic

– Create tests by selecting values for each block

We're hiding some details in this last step.
It's not quite right yet.

How many tests might this imply?
Might there be more? Fewer?

34

Using Partitions
● Select one input from each block

● Each input in a block is assumed equally useful

● How?

– Identify characteristics of the possible inputs
(from requirements, types, etc.)

– Partition into blocks based on each characteristic

– Create tests by selecting values for each block

● Characteristics:

– List s is sorted ascending
– X is null
– String length
– ...

35

Partitioning is Subtle

● Suppose we have:

Characteristic: “The subtype of parallelogram”

classifyParallelogram(p1)
(Informal)

36

Partitioning is Subtle

● Suppose we have:

Characteristic: “The subtype of parallelogram”

– How can we partition based on this characteristic?

– What problems might arise?

classifyParallelogram(p1)

37

Partitioning is Subtle

● Suppose we have:

Characteristic: “The subtype of parallelogram”

– How can we partition based on this characteristic?

– What problems might arise?

● In class exercise:
Partitioning a triangle classifying program

classifyParallelogram(p1)

triType(int s1, int s2, int s3)

38

Partitioning is Subtle

● Suppose we have:

Characteristic: “The subtype of parallelogram”

– How can we partition based on this characteristic?

– What problems might arise?

● In class exercise:
Partitioning a triangle classifying program

● It is easy to create overlapping partitions.
– Care and design required to avoid it.

classifyParallelogram(p1)

39

Partitioning is Subtle

● Suppose we have:

Characteristic: “The subtype of parallelogram”

– How can we partition based on this characteristic?

– What problems might arise?

● In class exercise:
Partitioning a triangle classifying program

● It is easy to create overlapping partitions.
– Care and design required to avoid it.

classifyParallelogram(p1)

Why do disjoint partitions matter?

40

Process (Reiterated)

3 step process (for now):

1)Find the component / function to test

methods, classes, programs, functions

41

Process (Reiterated)

3 step process (for now):

1)Find the component / function to test

methods, classes, programs, functions

2)Find all test parameters
● Must identify everything

locals, globals, files, databases, schedules, servers, ...

42

Process (Reiterated)

3 step process (for now):

1)Find the component / function to test

methods, classes, programs, functions

2)Find all test parameters
● Must identify everything

locals, globals, files, databases, schedules, servers, ...

3)Model the input domain
● Identify characteristics
● Partition the input domain
● Select values for each region

43

Process (Reiterated)

3 step process (for now):

1)Find the component / function to test

methods, classes, programs, functions

2)Find all test parameters
● Must identify everything

locals, globals, files, databases, schedules, servers, ...

3)Model the input domain
● Identify characteristics
● Partition the input domain
● Select values for each region

Domain knowledge, tactics, and creativity apply here.

44

Approaches to Input Modeling

We still haven't talked about how to model input!

45

Approaches to Input Modeling

2 Main approaches:

46

Approaches to Input Modeling

2 Main approaches:

1)Interface based

– Guided directly by identified parameters & domains

47

Approaches to Input Modeling

2 Main approaches:

1)Interface based

– Guided directly by identified parameters & domains
– Simple
– Automatable

48

Approaches to Input Modeling

2 Main approaches:

1)Interface based

– Guided directly by identified parameters & domains
– Simple
– Automatable

2)Functionality/Requirements based

– Derived from expected input/output relationship by spec.

49

Approaches to Input Modeling

2 Main approaches:

1)Interface based

– Guided directly by identified parameters & domains
– Simple
– Automatable

2)Functionality/Requirements based

– Derived from expected input/output relationship by spec.

– Requires more design & more thought
– May be better (smaller, goal oriented, …)

50

Interface Based Modeling

● Consider parameters individually

51

Interface Based Modeling

● Consider parameters individually

– Examine their types/domains

– Ignore relationships & dependences

52

Interface Based Modeling

● Consider parameters individually

– Examine their types/domains

– Ignore relationships & dependences

How does this apply to our
triangle classifier?

53

Functionality Based Modeling

● Identify characteristics corresponding to
behaviors/functionality in the requirements

54

Functionality Based Modeling

● Identify characteristics corresponding to
behaviors/functionality in the requirements

– Includes knowledge from the problem domain

55

Functionality Based Modeling

● Identify characteristics corresponding to
behaviors/functionality in the requirements

– Includes knowledge from the problem domain

– Accounts for relationships between parameters

56

Functionality Based Modeling

● Identify characteristics corresponding to
behaviors/functionality in the requirements

– Includes knowledge from the problem domain

– Accounts for relationships between parameters

– Same parameter may appear in multiple characteristics
● Need to reason about constraints & conflicts!

57

Functionality Based Modeling

● Identify characteristics corresponding to
behaviors/functionality in the requirements

– Includes knowledge from the problem domain

– Accounts for relationships between parameters

– Same parameter may appear in multiple characteristics
● Need to reason about constraints & conflicts!

How might this apply to our triangle classifier?

58

Finding Typical Characteristics

What might typical characteristics be?

59

Finding Typical Characteristics

What might typical characteristics be?

● Preconditions

● Postconditions

60

Finding Typical Characteristics

What might typical characteristics be?

● Preconditions

● Postconditions
Invariants

61

Finding Typical Characteristics

What might typical characteristics be?

● Preconditions

● Postconditions

● Relationships to special values

● Relationships between variables

62

Finding Typical Values

How might you select values for a block?

63

Finding Typical Values

How might you select values for a block?

● Expected values (e.g. exampled from spec)

● Invalid, valid, & special values

● Boundary values

64

Finding Typical Values

How might you select values for a block?

● Expected values (e.g. exampled from spec)

● Invalid, valid, & special values

● Boundary values

Thought experiment:
What do boundary values as a selection

approach indicate?

65

An Interface Based Example

● Consider our triangle classifier

– Takes 3 integers for sides 1, 2, & 3

66

An Interface Based Example

● Consider our triangle classifier

– Takes 3 integers for sides 1, 2, & 3

Characteristic b1 b2 b3

Side 1 <?> 0 Side 1 > 0 Side 1 = 0 Side 1 < 0

Side 2 <?> 0 Side 2 > 0 Side 2 = 0 Side 2 < 0

Side 3 <?>0 Side 3 > 0 Side 3 = 0 Side 3 < 0

67

An Interface Based Example

● Consider our triangle classifier

– Takes 3 integers for sides 1, 2, & 3

Characteristic b1 b2 b3

Side 1 <?> 0 Side 1 > 0 Side 1 = 0 Side 1 < 0

Side 2 <?> 0 Side 2 > 0 Side 2 = 0 Side 2 < 0

Side 3 <?>0 Side 3 > 0 Side 3 = 0 Side 3 < 0

How many tests does this create?

68

An Interface Based Example

● Consider our triangle classifier

– Takes 3 integers for sides 1, 2, & 3

Characteristic b1 b2 b3

Side 1 <?> 0 Side 1 > 0 Side 1 = 0 Side 1 < 0

Side 2 <?> 0 Side 2 > 0 Side 2 = 0 Side 2 < 0

Side 3 <?>0 Side 3 > 0 Side 3 = 0 Side 3 < 0

How many tests does this create?

What will this test well?
What won't this test well?

69

Refining the Example

● We can subdivide partitions to cover more behavior

Characteristic b1 b2 b3 b4

Value of side 1 Side 1 > 1 Side 1 = 1 Side 1 = 0 Side 1 < 0

Value of side 2 Side 2 > 1 Side 2 = 1 Side 2 = 0 Side 2 < 0

Value of side 3 Side 3 > 1 Side 3 = 1 Side 3 = 0 Side 3 < 0

{Side n > 0} → {Side n = 1},{ Side n > 1}

70

Refining the Example

● We can subdivide partitions to cover more behavior

Characteristic b1 b2 b3 b4

Value of side 1 Side 1 > 1 Side 1 = 1 Side 1 = 0 Side 1 < 0

Value of side 2 Side 2 > 1 Side 2 = 1 Side 2 = 0 Side 2 < 0

Value of side 3 Side 3 > 1 Side 3 = 1 Side 3 = 0 Side 3 < 0

How many tests now?

71

Refining the Example

● We can subdivide partitions to cover more behavior

Characteristic b1 b2 b3 b4
Value of side 1 Side 1 > 1 Side 1 = 1 Side 1 = 0 Side 1 < 0

Value of side 2 Side 2 > 1 Side 2 = 1 Side 2 = 0 Side 2 < 0

Value of side 3 Side 3 > 1 Side 3 = 1 Side 3 = 0 Side 3 < 0

How many tests now?

Is it still disjoint? Complete?

72

Refining the Example

● We can subdivide partitions to cover more behavior

Characteristic b1 b2 b3 b4
Value of side 1 Side 1 > 1 Side 1 = 1 Side 1 = 0 Side 1 < 0

Value of side 2 Side 2 > 1 Side 2 = 1 Side 2 = 0 Side 2 < 0

Value of side 3 Side 3 > 1 Side 3 = 1 Side 3 = 0 Side 3 < 0

How many tests now?

Is it still disjoint? Complete?

What does it test well? Not well?

73

A Functionality Based Example

● Consider our triangle classifier again

– What might our characteristics & partitions be?

74

A Functionality Based Example

● Consider our triangle classifier again

– What might our characteristics & partitions be?

– Are there alternatives?

75

A Functionality Based Example

● Consider our triangle classifier again

– What might our characteristics & partitions be?

– Are there alternatives?

– Why might you use them?

76

A Richer Functionality Based Example

● Suppose we have a simple function:

that returns all elements unique to either s1 or s2.

symmetricDifference(s1, s2)

77

A Richer Functionality Based Example

● Suppose we have a simple function:

that returns all elements unique to either s1 or s2.

● Try to construct a functionality based input domain
model.

– Keep disjointness and completeness in mind.

symmetricDifference(s1, s2)

Try it out, and we’ll discuss

78

A Classic Example

● Start with a component / specification:

Command FIND

Syntax FIND <pattern> <file>

Function The FIND command is used to locate one or more instances of a given
pattern in a text file. All lines in the file that contain the pattern are
written to standard output. A line containing the pattern is written only
once, regardless of the number of times the pattern occurs on it.

The pattern is any sequence of characters whose length does not exceed
the maximum length of a line in the file. To include a blank in the pattern,
the entire pattern must be enclosed in quotes ("). To include a quotation
mark in the pattern, two quotes in a row ("") must be used.

79

A Classic Example

● Step 1: Analyze the specification

– What is the component?

– What are the parameters?

– What are the characteristics?

80

A Classic Example

● Step 1: Analyze the specification

– What is the component?

– What are the parameters?

– What are the characteristics?

Parameters:
 Pattern
 Input file (& its contents!)

81

A Classic Example

● Step 1: Analyze the specification

– What is the component?

– What are the parameters?

– What are the characteristics?

Parameters:
 Pattern
 Input file (& its contents!)

Characteristics:
 Pattern
 Input file
 Pattern Size
 Quoting
 Embedded Quotes
 File Name
Environment / System Characteristics:
 # of pattern occurrences in file
 # of occurrences on a particular line:

82

A Classic Example

● Step 2: Partition the Input Space

– Guided by intelligence and intuition

– Combine interface and functionality based approaches
as necessary

83

A Classic Example

● Step 2: Partition the Input Space

– Guided by intelligence and intuition

– Combine interface and functionality based approaches
as necessary

Parameters:
 Pattern Size:
 Empty
 Single character
 Many characters
 Longer than any line in the file
 Quoting:
...

84

A Classic Example

● Familiar Idea:

– Select one block per characteristic at a time

– Combine into test frames (test case plans)

– e.g. …

85

A Classic Example

● Familiar Idea:

– Select one block per characteristic at a time

– Combine into test frames (test case plans)

– e.g.

Pattern size : empty
Quoting : pattern is quoted
Embedded blanks : several embedded blanks
Embedded quotes : no embedded quotes
File name : good file name
Number of occurrences of pattern in file : none
Pattern occurrences on target line : one

86

A Classic Example

● Familiar Idea:

– Select one block per characteristic at a time

– Combine into test frames (test case plans)

– e.g.

Pattern size : empty
Quoting : pattern is quoted
Embedded blanks : several embedded blanks
Embedded quotes : no embedded quotes
File name : good file name
Number of occurrences of pattern in file : none
Pattern occurrences on target line : one

Problem?

87

A Classic Example

● Familiar Idea:

– Select one block per characteristic at a time

– Combine into test frames (test case plans)

– e.g.

Pattern size : empty
Quoting : pattern is quoted
Embedded blanks : several embedded blanks
Embedded quotes : no embedded quotes
File name : good file name
Number of occurrences of pattern in file : none
Pattern occurrences on target line : one

Problem?

88

A Classic Example

● Step 3: Identify constraints among the
characteristics & blocks

 Pattern Size:
 Empty [Property Empty]
 Single character [Property NonEmpty]
 Many characters [Property NonEmpty]
 Longer than any line in the file [Property NonEmpty]

89

A Classic Example

● Step 3: Identify constraints among the categories

 Pattern Size:
 Empty [Property Empty]
 Single character [Property NonEmpty]
 Many characters [Property NonEmpty]
 Longer than any line in the file [Property NonEmpty]

 Quoting:
 Pattern is quoted [Property Quoted]
 Pattern is not quoted [If NonEmpty]
 Pattern is improperly quoted [If NonEmpty]

90

A Classic Example

● Step 3: Identify constraints among the categories

 Pattern Size:
 Empty [Property Empty]
 Single character [Property NonEmpty]
 Many characters [Property NonEmpty]
 Longer than any line in the file [Property NonEmpty]

 Quoting:
 Pattern is quoted [Property Quoted]
 Pattern is not quoted [If NonEmpty]
 Pattern is improperly quoted [If NonEmpty]

What should this do to the number of tests?
To the quality of tests?

91

A Classic Example

● Step 4

– Create tests by selecting values that satisfy the selected
blocks for each frame

– Eliminate tests that cover redundant scenarios

92

A Classic Example

● Step 4

– Create tests by selecting values that satisfy the selected
blocks for each frame

– Eliminate tests that cover redundant scenarios

Why might scenarios be redundant?

93

A Classic Example

● Step 5:

– Take your generated test cases and automate them

94

The next steps...

● We have talked so far as if we have a single input
and a single model, but real world programs have
many!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94

